
A Hybrid Parallel Block Jacobi-Davidson Method

Jonas Thies, Melven Zöllner, Achim Basermann
Moritz Kreutzer, Faisal Shahzad, Georg Hager, Gerhard Wellein

Andreas Alvermann, Andreas Pieper, Holger Fehske

E
S

S
E

X

Motivation: why do we need exascale
computers in quantum mechanics?
- L electrons in a magnetic field
- Each electron has ‘spin up’ (1) or ‘spin down’ (0)
- Superposition of states: vector Ψ of length 𝑁 = 2𝐿
- Schrödinger Equation:

- Hamiltonian H describes the interaction of neighboring particles

- Possible additional level of parallelism: statistics over randomly perturbed

(“disordered”) matrices

- 𝑯Ψ = 𝐸𝐸

Expected target architectures

Equipping Sparse Solvers for the EXascale

Presumptions

- Heterogenous compute node
replaces ‘sequential’

=> MPI+X programming model

- Optimal node level performance is
key to energy efficiency and scaling

- Fast hardware deserves fast
algorithms

The ESSEX project in a nutshell

Block Jacobi-Davidson QR

- Aim: partial Schur decomposition

Newton’s method: let Q = 𝑄� + Δ𝑄

𝐴𝑄 − 𝑄𝑅 = 0,
 1

2𝑄
𝑇𝑄 −

1
2

= 0,

𝐴Δ𝑄 − Δ𝑄𝑅� ≈ 𝑄�𝑅� − 𝐴𝑄�,

Q�𝑇Δ𝑄 ≈ 0,

𝑅 ∈ ℂ𝑘×𝑘 upper triangular

𝑄 ∈ ℂ𝑁×𝑘

Block Jacobi-Davidson (2)

- This leads to a correction equation

- Subspace acceleration: add search directions to basis V

- Ritz-Galerkin: 𝑀 = 𝑉𝐻𝐴𝐴, 𝑀 = 𝑆𝐻𝑅𝑅,

- Restart: shrink basis when it becomes too large

- Locking vs. deflation of converged eigenpairs

𝐼 − 𝑄�𝑄�𝐻 𝐴 𝐼 − 𝑄�𝑄�𝐻 Δ𝑄 − 𝐼 − 𝑄�𝑄�𝐻 Δ𝑄𝑅� = −(𝐴𝑄� − 𝑄�𝑅�) (1)

Solving the correction equation

- Eq. (1) a little more readable: find Δ𝑄 ∈ 𝑄�⏊

This is an 𝑁 × 𝑘 dimensional linear system

Replace 𝑅� by its diagonal
 => decoupled systems
 => still local quadratic (cubic) convergence per eigenvalue,
 but no longer to the entire subspace

Iterative solution: Krylov method, possibly with preconditioner P
Operators 𝐼 − 𝑄�𝑄�𝐻, 𝐴 and 𝑃 applied to k vectors at a time

𝐴Δ𝑄 − Δ𝑄𝑅� = −res

- Sparse Matrix times k vectors, 𝑌 = 𝐴𝐴
- matrix entries loaded into cache once per k vectors
 (temporal cache locality)
- communication of X in a single message
 (lower latency penalty)

- Block Gram-Schmidt: 𝑊 = 𝑊 − 𝑉(𝑉𝑇𝑊)

- BLAS 3, single message for (𝑉𝑇𝑊)

- Block orthogonalization, 𝑊 = 𝑄𝑄,𝑄𝑇𝑄 = 𝐼

- TSQR (Hoemmen et al)
tree algorithm, “communication optimal”
rank revealing

Core operations in block JD

Typical numerical behavior for fixed block size

Behavior for increasing block size

- Example: compute 10 left-most Eigenpairs for a “spin chain” of length
L=20 in a magnetic field

- Fixed 10 iterations of GMRES for correction equation

Block size # JD iters # matvecs
1 63 693
2 37 407
4 29 319
5 23 253

Sparse MVM on heterogenous nodes

Solution: SELL 𝑪 − 𝝈 storage format

-(C)hunk size machine dependent
-(𝜎)orting width, matrix dependent

C=6, 𝜎=1 C=6, 𝜎=12

SELL 𝑪 − 𝝈 with fixed parameter C

How can performnace engineering help?

M. Kreutzer, et al. A unified

sparse matrix data format for

modern processors with wide

SIMD units. Submitted.

Preprint: arXiv:1307.6209

𝛼: overhead for stored zeros
𝛽: quantifies data access to X vector

 perf. m
odel (e.g. roofline)

http://arxiv.org/abs/1307.6209

Current state of JD in ESSEX

- GHOST: General Hybrid Optimized Sparse Toolkit
- efficient sparse matrices and block vectors
- queuing system for out-of-order execution
- written in C/C++, OpenMP, OpenCL, and CUDA
- single/double precision, real, complex

- PHIST: Pipelined Hybrid Iterative Solver Toolkit

- single-vector JDQR and block JD, not fully optimized yet
- choice of numerical libraries to provide “core operations”:

- Epetra/Tpetra (Trilinos)
- GHOST (ESSEX)

- Several hundred unit tests to ensure software quality
- Callable from C/C++, Fortran, Python…

Next steps

- More optimizations possible
- overlapping of communication and computation

- Adaptive “inner tolerance” (inexact Newton) for Block JD

- Extend performance engineering to entire algorithm

- Preconditioning for inner iteration

- Assess numerical and computational performance

contact: Jonas.Thies@dlr.de

	A Hybrid Parallel Block Jacobi-Davidson Method
	Motivation: why do we need exascale �computers in quantum mechanics?
	Expected target architectures
	Equipping Sparse Solvers for the EXascale
	The ESSEX project in a nutshell�
	Block Jacobi-Davidson QR
	Block Jacobi-Davidson (2)
	Solving the correction equation
	Core operations in block JD
	Typical numerical behavior for fixed block size
	Behavior for increasing block size
	Sparse MVM on heterogenous nodes
	Solution: SELL 𝑪−𝝈 storage format
	SELL 𝑪−𝝈 with fixed parameter C
	How can performnace engineering help?
	Current state of JD in ESSEX
	Next steps

