

A Hybrid Parallel Block Jacobi-Davidson Method

Jonas Thies, Melven Zöllner, Achim Basermann Moritz Kreutzer, Faisal Shahzad, Georg Hager, Gerhard Wellein Andreas Alvermann, Andreas Pieper, Holger Fehske

Motivation: why do we need exascale computers in quantum mechanics?

- L electrons in a magnetic field
- Each electron has 'spin up' (1) or 'spin down' (0)
- Superposition of states: vector Ψ of length $N = 2^L$
- Schrödinger Equation:

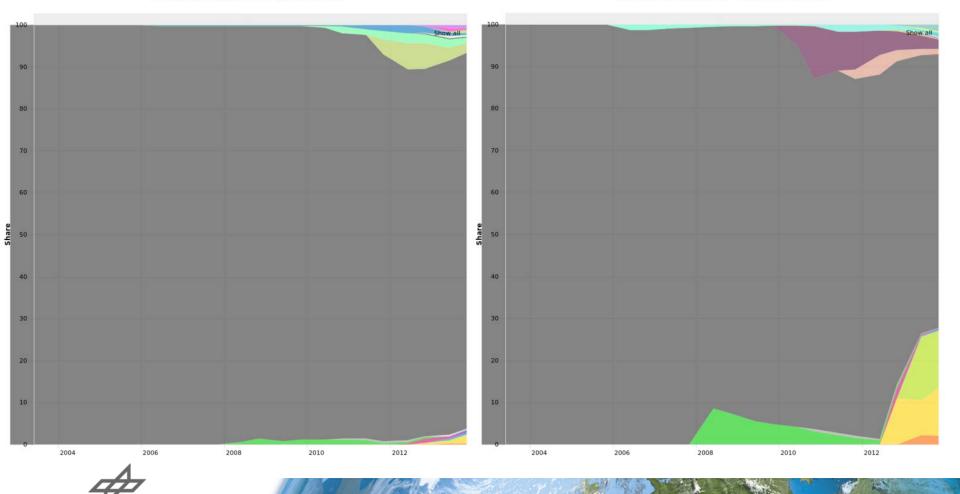
$$H\Psi = E\Psi$$

- Hamiltonian H describes the interaction of neighboring particles
- Possible additional level of parallelism: statistics over randomly perturbed ("disordered") matrices

Expected target architectures

Accelerator/Co-Processor - Systems Share

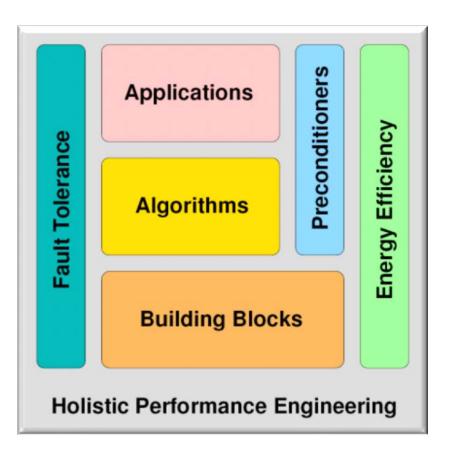
Accelerator/Co-Processor - Performance Share



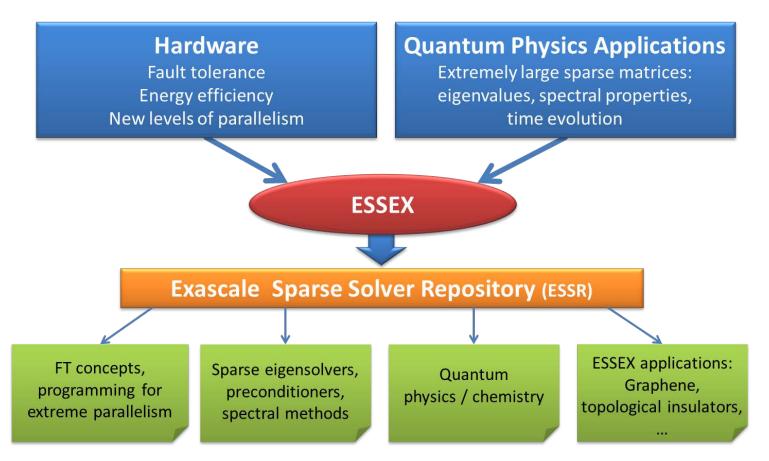
Equipping Sparse Solvers for the EXascale

Presumptions

- Heterogenous compute node replaces 'sequential' => MPI+X programming model
- Optimal node level performance is key to energy efficiency and scaling
- Fast hardware deserves fast algorithms



The ESSEX project in a nutshell



ESSEX - Equipping Sparse Solvers for Exascale

Block Jacobi-Davidson QR

- Aim: partial Schur decomposition

AQ - QR = 0, $R \in \mathbb{C}^{k \times k}$ upper triangular $\frac{1}{2}Q^{T}Q - \frac{1}{2} = 0,$ $Q \in \mathbb{C}^{N \times k}$

Newton's method: let $Q = \tilde{Q} + \Delta Q$

 $A\Delta Q - \Delta Q\tilde{R} \approx \tilde{Q}\tilde{R} - A\tilde{Q},$

 $\widetilde{\mathbf{Q}}^T \Delta \mathbf{Q} \approx \mathbf{0},$

Block Jacobi-Davidson (2)

- This leads to a correction equation

$$\left(I - \tilde{Q}\tilde{Q}^{H}\right)A\left(I - \tilde{Q}\tilde{Q}^{H}\right)\Delta Q - \left(I - \tilde{Q}\tilde{Q}^{H}\right)\Delta Q\tilde{R} = -(A\tilde{Q} - \tilde{Q}\tilde{R})$$
(1)

- Subspace acceleration: add search directions to basis V
- Ritz-Galerkin: $M = V^H A V$, $M = S^H R S$,
- Restart: shrink basis when it becomes too large
- Locking vs. deflation of converged eigenpairs

Solving the correction equation

- Eq. (1) a little more readable: find $\Delta Q \in \tilde{Q}^{\perp}$

$$A\Delta Q - \Delta Q\tilde{R} = -\mathrm{res}$$

This is an $N \times k$ dimensional linear system

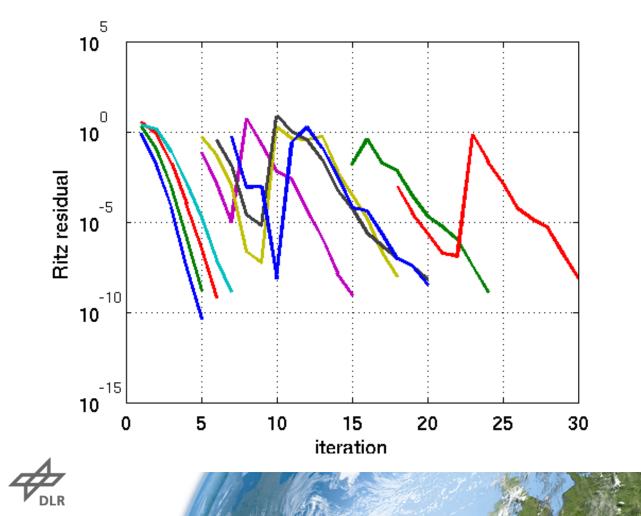
Replace \tilde{R} by its diagonal => decoupled systems => still local quadratic (cubic) convergence per eigenvalue, but no longer to the entire subspace

Iterative solution: Krylov method, possibly with preconditioner *P* Operators $I - \tilde{Q}\tilde{Q}^H$, *A* and *P* applied to *k* vectors at a time

Core operations in block JD

- Sparse Matrix times k vectors, Y = AX
 - matrix entries loaded into cache once per k vectors (temporal cache locality)
 - communication of X in a single message (lower latency penalty)
- Block Gram-Schmidt: $W = W V(V^T W)$
 - BLAS 3, single message for $(V^T W)$
- Block orthogonalization, $W = QR, Q^TQ = I$
 - TSQR (Hoemmen et al) tree algorithm, "communication optimal" rank revealing

Typical numerical behavior for fixed block size

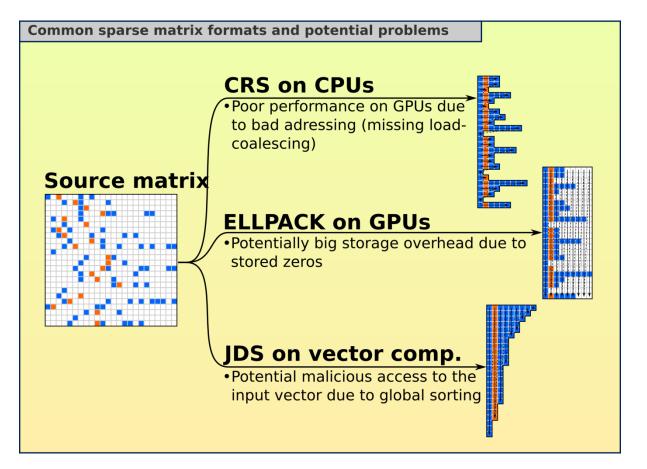


Behavior for increasing block size

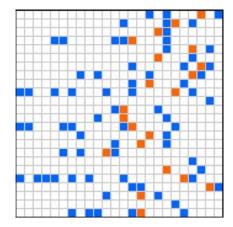
- Example: compute 10 left-most Eigenpairs for a "spin chain" of length L=20 in a magnetic field
- Fixed 10 iterations of GMRES for correction equation

Block size	# JD iters	# matvecs
1	63	693
2	37	407
4	29	319
5	23	253

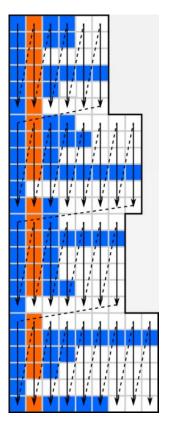
Sparse MVM on heterogenous nodes

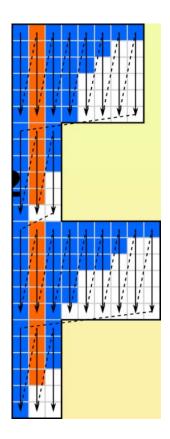


Solution: SELL $C - \sigma$ storage format



-(C)hunk size machine dependent -(σ)orting width, matrix dependent

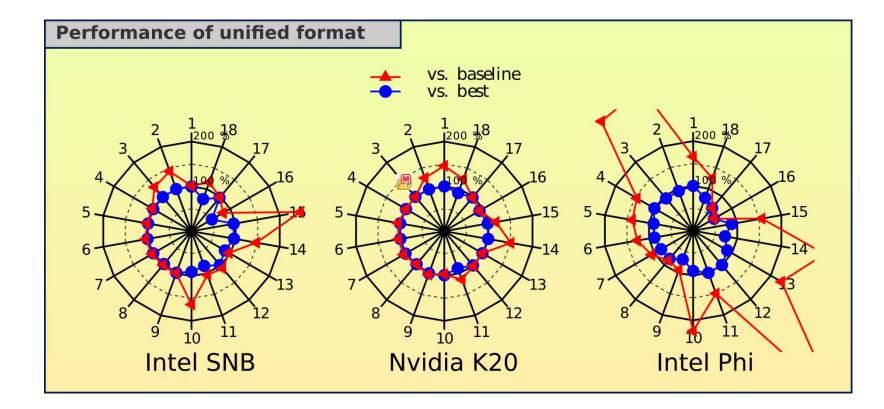




C=6, *σ*=1

C=6, *σ*=12

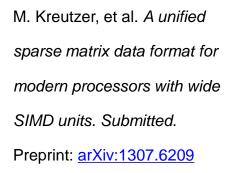
SELL $C - \sigma$ with fixed parameter C



How can performnace engineering help?

$$B_{\rm SELL}^{\rm DP} = \left(\frac{1}{\beta} \left(\frac{8+4}{2}\right) + \frac{8\alpha + 16/N_{\rm nzr}}{2}\right) \frac{\rm bytes}{\rm flop}$$

 α : overhead for stored zeros β : quantifies data access to X vector



perf. model (e.g. roofline)

Current state of JD in ESSEX

- GHOST: General Hybrid Optimized Sparse Toolkit
 - efficient sparse matrices and block vectors
 - queuing system for out-of-order execution
 - written in C/C++, OpenMP, OpenCL, and CUDA
 - single/double precision, real, complex
- PHIST: Pipelined Hybrid Iterative Solver Toolkit
 - single-vector JDQR and block JD, not fully optimized yet
 - choice of numerical libraries to provide "core operations":
 - Epetra/Tpetra (Trilinos)
 - GHOST (ESSEX)
 - Several hundred unit tests to ensure software quality
 - Callable from C/C++, Fortran, Python...

Next steps

- More optimizations possible
 - overlapping of communication and computation
- Adaptive "inner tolerance" (inexact Newton) for Block JD
- Extend performance engineering to entire algorithm
- Preconditioning for inner iteration
- Assess numerical and computational performance

contact: Jonas.Thies@dlr.de

