SPPEAA EI:

FYy v yre %
=] e ——

A Hybrid Parallel Block Jacobi-Davidson Method

Jonas Thies, Melven Zdéllner, Achim Basermann
Moritz Kreutzer, Faisal Shahzad, Georg Hager, Gerhard Wellein
Andreas Alvermann, Andreas Pieper, Holger Fehske

pife morrow

Motivation: why do we need exascale
computers in qguantum mechanics?

L electrons in a magnetic field

Each electron has ‘spin up’ (1) or ‘spin down’ (0)
Superposition of states: vector ¥ of length N = 2£
Schrédinger Equation:

- HY = EV¥
Hamiltonian H describes the interaction of neighboring particles

Possible additional level of parallelism: statistics over randomly perturbed
(“disordered”) matrices

Expected target architectures

Accelerator/Co-Processor - Systems Share Accelerator/Co-Processor - Performance Share

Equipping Sparse Solvers for the EXascale

key to energy efficiency and scaling

Presumptions o

. . e

Applications o
- Heterogenous compute node |8 -
replaces ‘sequential’) 3 g
=> MPI+X programming model | 8 'S
Algorithms B | =
- Optimal node level performance is - 2
o
o
L

- Fast hardware deserves fast Building Blocks

algorithms

\ J " =

Holistic Performance Engineering

i DLR

The ESSEX project in a nutshell

Hardware Quantum Physics Applications
Fault tolerance Extremely large sparse matrices:
Energy efficiency eigenvalues, spectral properties,
New levels of parallelism time evolution

Exascale Sparse Solver Repository (ESSR)

ESSEX - Equipping Sparse Solvers for Exascale

i DLR

Block Jacobi-Davidson QR

- Aim: partial Schur decomposition
AQ — QR =0, R € C**¥ upper triangular

1 1
-Q"e -5 =0, Q
Newton’s method: let Q = Q + AQ
AAQ — AQR ~ QR — AQ,

QTAQ ~ 0,

Block Jacobi-Davidson (2)

This leads to a correction equation

(1-GG") A(1 - G3")AQ — (1 — GG")AQR = —(AG—0R) (1)

Subspace acceleration: add search directions to basis V

Ritz-Galerkin: M = V7AV, M = SHRS,

Restart: shrink basis when it becomes too large

Locking vs. deflation of converged eigenpairs

i DLR

Solving the correction equation

- Eq. (1) a little more readable: find AQ € Q-
AAQ — AQR = —res
This is an N X k dimensional linear system
Replace R by its diagonal
=> decoupled systems
=> still local quadratic (cubic) convergence per eigenvalue,

but no longer to the entire subspace

Iterative solution: Krylov method, possibly with preconditioner P
Operators I — QQ", A and P applied to k vectors at a time

Core operations in block JD

- Sparse Matrix times k vectors, Y = AX
- matrix entries loaded into cache once per k vectors
(temporal cache locality)
- communication of X in a single message
(lower latency penalty)

- Block Gram-Schmidt: W =W — V(VTW)
- BLAS 3, single message for (VTW)

- Block orthogonalization, W = QR,Q7Q =1
- TSQR (Hoemmen et al)
tree algorithm, “communication optimal”
rank revealing

Typical numerical behavior for fixed block size

Ritz residual
=

0 5 10 15 20 25 30
iteration

Behavior for increasing block size

- Example: compute 10 left-most Eigenpairs for a “spin chain” of length
L=20 in a magnetic field
- Fixed 10 iterations of GMRES for correction equation

#JD iters

1 63 693
2 37 407
4 29 319
5 23 253

Sparse MVM on heterogenous nodes

Common sparse matrix formats and potential problems

Source matri

CRS on CPUs

*Poor performance on GPUs due™ &,
to bad adressing (missing load- i
coalescing) =

ELLPACK on GPUs

stored zeros

DS on vector comp. it
*Potential malicious access to the [{§
input vector due to global sorting ##

*Potentially big storage overhead due to 53_':7- |

Solution: SELL € — o storage format

o =l o
=] HE jiz)
H B E
[}
2] H Em
| =] B
H N o
EE E N . N -
n m
N]
=& == ")
N |
H B n
HE Em
i)
m o
H EEE B m = |
me .
m | a
H | | |

-(C)hunk size machine dependent
-(o)orting width, matrix dependent

i DLR

SELL € — o with fixed

parameter C

Performance of unified format

Intel SNB

—A— VS, basdine
-@- VS best

Nvidia K20

Intel Phi

How can performnace engineering help?

DP _ (1 (8+4 804—|-16/an1- bytes
BspLr, = (5 (550)+ > flop.

a: overhead for stored zeros
f: quantifies data access to X vector

- 12 Gflop/s

33 Gflop/s

(auijoo. *6°8) [9pow jiad

M. Kreutzer, et al. A unified

sparse matrix data format for
43 Gflop/s

modern processors with wide

SIMD units. Submitted. 53 Gflop/s

Preprint: arXiv:1307.6209

i DLR

http://arxiv.org/abs/1307.6209

Current state of JD in ESSEX

- GHOST: General Hybrid Optimized Sparse Toolkit
- efficient sparse matrices and block vectors
- gueuing system for out-of-order execution
- written in C/C++, OpenMP, OpenCL, and CUDA
- single/double precision, real, complex

- PHIST: Pipelined Hybrid Iterative Solver Toolkit
- single-vector JDQR and block JD, not fully optimized yet
- choice of numerical libraries to provide “core operations”:
- Epetra/Tpetra (Trilinos)
- GHOST (ESSEX)
- Several hundred unit tests to ensure software quality
- Callable from C/C++, Fortran, Python...

i DLR

Next steps

More optimizations possible
- overlapping of communication and computation

Adaptive “inner tolerance” (inexact Newton) for Block JD

Extend performance engineering to entire algorithm

Preconditioning for inner iteration

- Assess numerical and computational performance

contact: Jonas.Thies@dir.de

i DLR

	A Hybrid Parallel Block Jacobi-Davidson Method
	Motivation: why do we need exascale �computers in quantum mechanics?
	Expected target architectures
	Equipping Sparse Solvers for the EXascale
	The ESSEX project in a nutshell�
	Block Jacobi-Davidson QR
	Block Jacobi-Davidson (2)
	Solving the correction equation
	Core operations in block JD
	Typical numerical behavior for fixed block size
	Behavior for increasing block size
	Sparse MVM on heterogenous nodes
	Solution: SELL 𝑪−𝝈 storage format
	SELL 𝑪−𝝈 with fixed parameter C
	How can performnace engineering help?
	Current state of JD in ESSEX
	Next steps

