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Motivation: why do we need exascale  
computers in quantum mechanics? 
- L electrons in a magnetic field 
- Each electron has ‘spin up’ (1) or ‘spin down’ (0) 
- Superposition of states: vector Ψ of length 𝑁 = 2𝐿 
- Schrödinger Equation: 

 
- Hamiltonian H describes the interaction of neighboring particles 

 
- Possible additional level of parallelism: statistics over randomly perturbed 

(“disordered”) matrices 

- 𝑯Ψ = 𝐸𝐸 



Expected target architectures 



Equipping Sparse Solvers for the EXascale 

Presumptions 
 

- Heterogenous compute node 
replaces ‘sequential’ 

=> MPI+X programming model 
 

- Optimal node level performance is 
key to energy efficiency and scaling 
 

- Fast hardware deserves fast 
algorithms 
 
 

 
 
 
 
 
 



The ESSEX project in a nutshell 
 



Block Jacobi-Davidson QR 

- Aim: partial Schur decomposition 
 
 
 
 
 
 
Newton’s method: let Q = 𝑄� + Δ𝑄 

𝐴𝑄 − 𝑄𝑅 = 0, 
 1

2𝑄
𝑇𝑄 −

1
2

= 0, 
  

 

𝐴Δ𝑄 − Δ𝑄𝑅� ≈ 𝑄�𝑅� − 𝐴𝑄�, 
 

Q�𝑇Δ𝑄 ≈ 0, 
  

 

𝑅 ∈ ℂ𝑘×𝑘 upper triangular 
 

𝑄 ∈ ℂ𝑁×𝑘 
  

 



Block Jacobi-Davidson (2) 

- This leads to a correction equation 
 
 
 

 
 
 

- Subspace acceleration: add search directions to basis V 
 

- Ritz-Galerkin: 𝑀 = 𝑉𝐻𝐴𝐴, 𝑀 = 𝑆𝐻𝑅𝑅,  
 

- Restart: shrink basis when it becomes too large 
 

- Locking vs. deflation of converged eigenpairs 
 
 

𝐼 − 𝑄�𝑄�𝐻  𝐴 𝐼 − 𝑄�𝑄�𝐻 Δ𝑄 − 𝐼 − 𝑄�𝑄�𝐻 Δ𝑄𝑅�  = −(𝐴𝑄� − 𝑄�𝑅�) (1) 
  

 



Solving the correction equation 

- Eq. (1) a little more readable: find Δ𝑄 ∈  𝑄�⏊ 
 

 
 
This is an 𝑁 × 𝑘 dimensional linear system 
 
Replace 𝑅� by its diagonal 
 => decoupled systems 
 => still local quadratic (cubic) convergence per eigenvalue, 
 but no longer to the entire subspace 
 
Iterative solution: Krylov method, possibly with preconditioner P 
Operators  𝐼 − 𝑄�𝑄�𝐻, 𝐴 and 𝑃 applied to k vectors at a time 
 

𝐴Δ𝑄 − Δ𝑄𝑅�  = −res 
  

 



- Sparse Matrix times k vectors, 𝑌 = 𝐴𝐴 
- matrix entries loaded into cache once per k vectors  
   (temporal cache locality) 
- communication of X in a single message  
   (lower latency penalty) 

 
- Block Gram-Schmidt: 𝑊 = 𝑊 − 𝑉(𝑉𝑇𝑊) 

- BLAS 3, single message for (𝑉𝑇𝑊) 
 

 
- Block orthogonalization, 𝑊 = 𝑄𝑄,𝑄𝑇𝑄 = 𝐼 

- TSQR (Hoemmen et al) 
tree algorithm, “communication optimal” 
rank revealing 

 

Core operations in block JD 



Typical numerical behavior for fixed block size 



Behavior for increasing block size 

- Example: compute 10 left-most Eigenpairs for a “spin chain” of length 
L=20 in a magnetic field 

- Fixed 10 iterations of GMRES for correction equation 

Block size # JD iters # matvecs 
1 63 693 
2 37 407 
4 29 319 
5 23 253 



Sparse MVM on heterogenous nodes 



Solution: SELL 𝑪 − 𝝈 storage format 

-(C)hunk size machine dependent 
-(𝜎)orting width, matrix dependent 

C=6, 𝜎=1 C=6, 𝜎=12 



SELL 𝑪 − 𝝈 with fixed parameter C 



How can performnace engineering help? 

M. Kreutzer, et al. A unified 

sparse matrix data format for 

modern processors with wide 

SIMD units. Submitted. 

Preprint: arXiv:1307.6209 

𝛼: overhead for stored zeros 
𝛽: quantifies data access to X vector 

 perf. m
odel (e.g. roofline) 

http://arxiv.org/abs/1307.6209


Current state of JD in ESSEX 

- GHOST: General Hybrid Optimized Sparse Toolkit 
- efficient sparse matrices and block vectors 
- queuing system for out-of-order execution 
- written in C/C++, OpenMP, OpenCL, and CUDA 
- single/double precision, real, complex 

 
- PHIST: Pipelined Hybrid Iterative Solver Toolkit 

- single-vector JDQR and block JD, not fully optimized yet 
- choice of numerical libraries to provide “core operations”: 

- Epetra/Tpetra (Trilinos)  
- GHOST (ESSEX) 

- Several hundred unit tests to ensure software quality 
- Callable from C/C++, Fortran, Python… 

 
 



Next steps 

- More optimizations possible 
- overlapping of communication and computation 

 
- Adaptive “inner tolerance” (inexact Newton) for Block JD 

 
- Extend performance engineering to entire algorithm 

 
- Preconditioning for inner iteration 

 
- Assess numerical and computational performance 

 
 
contact: Jonas.Thies@dlr.de 
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