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Improving robustness of the FEAST algorithm and solving eigenvalue
problems from graphene nanoribbons
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We consider the FEAST eigensolver, introduced by Polizzi in 2009 [5]. We describe an improvement concerning the reliability
of the algorithm and discuss an application in the solution of eigenvalue problems from graphene modeling.
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1 Introduction

The FEAST algorithm [5] is an algorithm aimed at solving generalized eigenvalue problems AX = BXΛ, where A,B are n×n
matrices. In [4] we presented a short analysis of FEAST involving this eigenvalue problem. In the present work we focus on
the real symmetric eigenvalue problem AX = XΛ, where A = AT, XTX = I and Λ is a diagonal matrix consisting of real
eigenvalues. These eigenvalues are sought in a given interval Iλ = [λ, λ]. The FEAST method aims at solving this particular
eigenvalue problem by performing Rayleigh–Ritz [6]. The involved subspace is spanned by

U :=
1

2πi

∫
C
(zI− A)−1Ydz, (1)

where Y is a starting base with m̃ ≤ n columns. The curve C is a closed curve in C, supposed to encircle Iλ. The integral is
typically approximated via numerical integration.

2 Counting eigenvalues

In [4], several minor shortcomings of FEAST were identified. One was the problem of choosing the initial dimension of
the search space, i. e., the number of columns of Y in (1). Since this number must be larger or equal to the number of A’s
eigenvalues in Iλ, this amounts to counting (or at least estimating the number of) those eigenvalues. Several methods for
counting eigenvalues based on the use of (1) have been proposed in [2, 3, 7]. In our experience, the most reliable one has
proven to be based on certain singular values. An analysis has been given in [7]. For an SVD of U, U = WΣVT, it can be
shown that the number of singular values (i. e., diagonal entries of Σ) larger or equal than 1/2 is a very good estimation for the
number of eigenvalues of A inside Iλ. In FEAST, the computation of BU := UTU is necessary and we have BU = VΣTΣVT,
meaning the number of eigenvalues inside Iλ can well be approximated by the number of singular values≥ 1/4 of BU. Letting
q denote this number (or a number slightly larger), we can set U′ := U · V(:, 1 : q), yielding a basis of the desired eigenspace.

3 Graphene modeling

The example matrices considered here arise from the modeling of graphene tubes and ribbons in the tight-binding approach [1].
They are band matrices with dimensionWL and bandwidth≤ 4min{W,L}+5 for a graphene sample of sizeW×L. Constant
off-diagonal elements correspond to electron hopping between neighboring carbon atoms. The main diagonal contains random
entries Aii ∈ [−γ, γ] accounting for on-site disorder potentials. The spectrum of these matrices is contained in the interval
[−3 − γ, 3 + γ]. For physics applications one is interested in the inner eigenvalues and eigenvectors close to the center of
the spectrum because they determine the electronic properties of the graphene samples such as the electrical conductivity.
Examples of eigenvalue distributions from graphene modeling are shown in Figs. 1, 2.

4 Numerical results

We applied the FEAST algorithm with the presented eigenvalue counting method to three eigenvalue problems arising in
graphene modeling, each of size approximately 1.2× 106. A parallel variant of the method has been implemented in C using
MPI. For the numerical integration we used Gauß–Legendre integration with 8 integration points. This leads to a numerical
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Matrix λ λ est. found nit tol rmin rmax
Graphene I −0.046 0.046 535 535 7 10−8 4 · 10−14 5 · 10−11
Graphene II (`) −0.2085 −0.195 494 494 3 10−8 4 · 10−12 6 · 10−11
Graphene II (r) 0.14 0.205 263 263 4 10−8 1 · 10−10 1 · 10−9
Graphene III −0.035 0.035 394 394 3 10−8 2 · 10−11 5 · 10−10

Table 1: Numerical results. The columns contain (in this order): interval boundaries, estimated and found number of eigenpairs in the
interval, number of FEAST iterations, residual tolerance, minimum and maximum eigenpair residual ‖Ax − xλ‖ for eigenvector x and
eigenvalue λ ∈ Iλ.
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Fig. 1: Density of states ρ(λ), i.e., the average number of eigen-
values as a function of the eigenvalues λ, computed with the kernel
polynomial method [8]. The plot corresponds to Graphene III, nor-
malized such that

∫
ρ(λ)dλ = 1.
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Fig. 2: Zoom into the interval [−0.35, 0.35] for Graphene II. It can
be seen that the spectrum has a gap around λ = 0.

approximation of the form U ≈
∑8
j=1 ωj(zj I − A)−1Y, where zj denote certain points on the contour C and ωj are scalars.

The matrices (zj I−A) were banded with semi-bandwidth 248, having in average 12 nonzero entries per row. Thus, the linear
systems (zj I − A)V = Y were solved using a parallel banded solver. The results are shown in Table 1. As it can be seen,
we sought eigenpairs with eigenvalue around zero. The residuals were required to be below tol = 10−8, in fact most of the
residuals were much smaller. The matrix Graphene II had a gap in the spectrum around zero, hence it was reasonable to treat
the parts to the left (`) and right (r) of zero independently. The number of eigenvalues in Iλ was estimated with the SVD
method from Sec. 2, while the actual subspace dimension was set to 1.25 times this number. When the estimated number of
eigenpairs was computed, the algorithm was stopped. For the level of orthogonality maxi 6=j |xTi xj |, where the eigenvalues
belonging to xi, xj resided in Iλ, we obtained values of order 10−15 to 10−13. In the case Graphene II we obtained a level
of orthogonality of order 10−11 between the eigenvectors belonging to the intervals on the left and right of zero. This is
remarkable because, typically, independently computed eigenvectors show a worse level of orthogonality [4].

5 Conclusion
We applied FEAST to the eigenvalue problems arising in graphene modeling. Our implementation proved to be reliable,
delivering high quality numerical results within a reliable number of iterations. For those problems having a gap around zero
in the spectrum, the orthogonality issues were not serious even for independently computed eigenvectors.
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