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Abstract

Hybrid MPI/OpenMP and pure MPI on clusters of multi-

core SMP nodes involve several mismatch problems be-

tween the parallel programming models and the hardware

architectures. Measurements of communication character-

istics between cores on the same socket, on the same SMP

node, and between SMP nodes on several platforms (includ-

ing Cray XT4 and XT5) show that machine topology has

a significant impact on performance for all parallelization

strategies and that topology awareness should be built into

all applications in the future. We describe potentials and

challenges of the dominant programming models on hierar-

chically structured hardware. Case studies with the multi-

zone NAS parallel benchmarks on several platforms demon-

strate the opportunities of hybrid programming.

1. Mainstream HPC architecture

Today scientists who wish to write efficient parallel soft-

ware for high performance systems have to face a highly

hierarchical system design, even (or especially) on “com-

modity” clusters (Fig. 1 (a)). The price/performance sweet

spot seems to have settled at a point where multi-socket

multi-core shared-memory compute nodes are coupled via

high-speed interconnects. Inside the node, details like UMA

(Uniform Memory Access) vs. ccNUMA (cache coherent

Non-Uniform Memory Access) characteristics, number of

cores per socket and/or ccNUMA domain, shared and sepa-

rate caches, or chipset and I/O bottlenecks complicate mat-

ters further. Communication between nodes usually shows a

rich set of performance characteristics because global, non-

blocking communication has grown out of the affordable

range.

This trend will continue into the foreseeable future,

broadening the available range of hardware designs even

when looking at high-end systems. Consequently, it seems

natural to employ a hybrid programming model which uses

OpenMP for parallelization inside the node and MPI for

message passing between nodes. However, there is always

the option to use pure MPI and treat every CPU core as

a separate entity with its own address space. And finally,

looking at the multitude of hierarchies mentioned above, the

question arises whether it might be advantageous to employ

a “mixed model” where more than one MPI process with

multiple threads runs on a node so that there is at least some

explicit intra-node communication (Fig. 1 (b)–(d)).

It is not a trivial task to determine the optimal model to

use for some specific application. There seems to be a gen-

eral lore that pure MPI can often outperform hybrid, but

counterexamples do exist and results tend to vary with in-

put data, problem size etc. even for a given code [1]. This

paper discusses potential reasons for this; in order to get op-

timal scalability one should in any case try to implement the

following strategies: (a) Reduce synchronization overhead

(see Sect. 3.5), (b) reduce load imbalance (Sect. 4.2), (c)

reduce computational overhead and memory consumption

(Sect. 4.3), and (d) Minimize MPI communication overhead

(Sect. 4.4).

There are some strong arguments in favor of a hybrid

model which tend to underline the assumption that it should

lead to improved parallel efficiency as compared to pure

MPI. In the following sections we will shed some light on
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Figure 1. A typical multi-socket multi-core
SMP cluster (a), and three possible paral-

lel programming models that can be mapped
onto it: (b) pure MPI, (c) fully hybrid
MPI/OpenMP, (d) mixed model with more than

one MPI process per node.

most of these statements and discuss their validity.

This paper is organized as follows: In Sect. 2 we outline

the available programming models on hybrid/hierarchical

parallel platforms, briefly describing their main strengths

and weaknesses. Sect. 3 concentrates on mismatch prob-

lems between parallel models and the parallel hardware:

Insufficient topology awareness of parallel runtime environ-

ments, issues with intra-node message passing, and subop-

timal network saturation. The additional complications that

arise from the necessity to optimize the OpenMP part of a

hybrid code are discussed in Sect. 3.5. In Sect. 4 we then

turn to the benefits that may be expected from employing

hybrid parallelization. In the final sections we address pos-

sible future developments in standardization which could

help address some of the problems described and close with

a summary.

2. Parallel programming models on hybrid

platforms

Fig. 2 shows a taxonomy of parallel programming mod-

els on hybrid platforms. We have added an “OpenMP only”

branch because “distributed virtual shared memory” tech-

nologies like Intel Cluster OpenMP [2] allow the use of

OpenMP-like parallelization even beyond the boundaries of

a single cluster node. See Sect. 2.4 for more information.

This overview ignores the details about how exactly the
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Figure 2. Taxonomy of parallel programming

models on hybrid platforms.

threads and processes of a hybrid program are to be mapped

onto hierarchical hardware. The mismatch problems which

are caused by the various alternatives to perform this map-

ping are discussed in detail in Sect. 3.

When using any combination of MPI and OpenMP, the

MPI implementation must feature some kind of threading

support. The MPI-2.1 standard defines the following levels:

• MPI_THREAD_SINGLE: Only one thread will execute.

• MPI_THREAD_FUNNELED: The process may be multi-

threaded, but only the main thread will make MPI

calls.

• MPI_THREAD_SERIALIZED: The process may be

multi-threaded, and multiple threads may make MPI

calls, but only one at a time: MPI calls are not made

concurrently from two distinct threads.

• MPI_THREAD_MULTIPLE: Multiple threads may call

MPI, with no restrictions.

Any hybrid code should always check for the required level

of threading support using the MPI_Thread_init() call.

2.1. Pure MPI

From a programmer’s point of view, pure MPI ignores

the fact that cores inside a single node work on shared mem-

ory. It can be employed right away on the hierarchical sys-

tems discussed above (see Fig. 1 (b)) without changes to ex-

isting code. Moreover, it is not required for the MPI library

and underlying software layers to support multi-threaded

applications, which simplifies implementation (Optimiza-

tions on the MPI level regarding the inner topology of the

node interconnect, e.g., fat tree or torus, may still be useful

or necessary).
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On the other hand, a pure MPI programming model

implicitly assumes that message passing is the correct

paradigm to use for all levels of parallelism available in

the application and that the application “topology” can be

mapped efficiently to the hardware topology. This may not

be true in all cases, see Sect. 3 for details. Furthermore, all

communication between processes on the same node goes

through the MPI software layers, which adds to overhead.

Hopefully the library is able to use “shortcuts” via shared

memory in this case, choosing ways of communication that

effectively use shared caches, hardware assists for global

operations, and the like. Such optimizations are usually out

of the programmer’s influence, but see Sect. 5 for some dis-

cussion regarding this point.

2.2. Hybrid masteronly

The hybrid masteronly model uses one MPI process per

node and OpenMP on the cores of the node, with no MPI

calls inside parallel regions. A typical iterative domain de-

composition code could look like the following:

for (iteration = 1...N)

{

#pragma omp parallel

{

/* numerical code */

}

/* on master thread only */

MPI_Send(bulk data to halo areas in other nodes)

MPI_Recv(halo data from the neighbors)

}

This resembles parallel programming on distributed-

memory parallel vector machines. In that case, the inner

layers of parallelism are not exploited by OpenMP but by

vectorization and multi-track pipelines.

As there is no intra-node message passing, MPI opti-

mizations and topology awareness for this case are not re-

quired. Of course, the OpenMP parts should be optimized

for the topology at hand, e.g., by employing parallel first-

touch initialization on ccNUMA nodes or using thread-core

affinity mechanisms.

There are, however, some major problems connected

with masteronly mode:

• All other threads are idle during communication

phases of the master thread which could lead to a

strong impact of communication overhead on scala-

bility. Alternatives are discussed in Sect. 3.1.3 and

Sect. 3.3 below.

• The full inter-node MPI bandwidth might not be satu-

rated by using a single communicating thread.

• The MPI library must be thread-aware on a simple

level by providing MPI_THREAD_FUNNELED. Actu-

ally, a lower thread-safety level would suffice for mas-

teronly, but the MPI-2.1 standard does not provide an

appropriate level less than MPI_THREAD_FUNNELED.

2.3. Hybrid with overlap

One way to avoid idling compute threads during MPI

communication is to split off one or more threads of the

OpenMP team to handle communication in parallel with

useful calculation:

if (my_thread_ID < ...) {

/* communication threads: */

/* transfer halo */

MPI_Send( halo data )

MPI_Recv( halo data )

} else {

/* compute threads: */

/* execute code that does not need halo data */

}

/* all threads: */

/* execute code that needs halo data */

A possible reason to use more than one communication

thread could arise if a single thread cannot saturate the full

communication bandwidth of a compute node (see Sect. 3.3

for details). There is, however, a trade-off because the more

threads are sacrificed for MPI, the fewer are available for

overlapping computation.

2.4. Pure OpenMP on clusters

A lot of research has been invested into the implemen-

tation of distributed virtual shared memory software [3]

which allows near-shared-memory programming on dis-

tributed memory parallel machines, notably clusters. Since

2006 Intel offers the “Cluster OpenMP” compiler add-

on, enabling the use of OpenMP (with minor restrictions)

across the nodes of a cluster [2]. Therefore, OpenMP has

literally become a possible programming model for those

machines. It is, to some extent, a hybrid model, being iden-

tical to plain OpenMP inside a shared-memory node but em-

ploying a sophisticated protocol that keeps “shared” mem-

ory pages coherent between nodes at explicit or automatic

OpenMP flush points.

With Cluster OpenMP, frequent page synchronization or

erratic access patterns to shared data must be avoided by all

means. If this is not possible, communication can poten-

tially become much more expensive than with plain MPI.
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3. Mismatch problems

It should be evident by now that the main issue with

getting good performance on hybrid architectures is that

none of the programming models at one’s disposal fits op-

timally to the hierarchical hardware. In the following sec-

tions we will elaborate on these mismatch problems. How-

ever, as sketched above, one can also expect hybrid models

to have positive effects on parallel performance (as shown

in Sect. 4). Most hybrid applications suffer from the for-

mer and benefit from the latter to varying degrees, thus it is

near to impossible to make a quantitative judgement with-

out thorough benchmarking.

3.1. The mapping problem: Machine topology

As a prototype mismatch problem we consider the map-

ping of a two-dimensional Cartesian domain decomposition

with 80 sub-domains, organized in a 5×16 grid, on a ten-

node dual-socket quad-core cluster like the one in Fig. 1 (a).

We will analyze the communication behavior of this appli-

cation with respect to the required inter-socket and inter-

node halo exchanges, presupposing that inter-core commu-

nication is fastest, hence favorable. See Sect. 3.2 for a dis-

cussion on the validity of this assumption.

3.1.1. Mapping problem with pure MPI

We assume here that the MPI start mechanism is able to

establish some affinity between processes and cores, i.e.

it is not left to chance which rank runs on which core of

a node. However, defaults vary across implementations.

Fig. 3 shows that there is an immense difference between

sequential and round-robin ranking, which is reflected in the

number of required inter-node and inter-socket connections.

In Fig. 3 (a), ranks are mapped to cores, sockets and nodes

(A. . . J) in sequential order, i.e., ranks 0. . . 7 go to the first

node, etc.. This leads at maximum to 17 inter-node and one

inter-socket halo exchanges per node, neglecting boundary

effects. If the default is to place MPI ranks in round-robin

order across nodes (Fig. 3 (b)), i.e., ranks 0. . . 9 are mapped

to the first core of each node, all the halo communication

uses inter-node connections, which leads to 32 inter-node

and no inter-socket exchanges. Whether the difference mat-

ters or not depends, of course, on the ratio of computational

effort versus amount of halo data, both per process, and the

characteristics of the network.

What is the best ranking order for the domain decom-

position at hand? It is important to realize that the hier-

archical node structure enforces multilevel domain decom-

position which can be optimized for minimizing inter-node

communication: It seems natural to try to reduce the socket

“surface area” exposed to the node boundary, as shown in
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Figure 4. Two possible mappings for multi-
level domain decomposition with pure MPI.
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Fig. 4 (a), which yields ten inter-node and four inter-socket

halo exchanges per node at maximum. But still there is op-

timization potential, because this process can be iterated to

the socket level (Fig. 4 (b)), cutting the number of inter-

socket connections in half. Comparing Figs. 3 (a), (b) and

Figs. 4 (a), (b), this is the best possible rank order for pure

MPI.

Above considerations should make it clear that it can be

vital to know about the default rank placement used in a

particular parallel environment and modify it if required.

Unfortunately, many commodity clusters are still run today

without a clear concept about rank-core affinity and even no

way to influence it on a user-friendly level.

3.1.2.Mapping problemwith fully hybridMPI+OpenMP

Hybrid MPI+OpenMP enforces the domain decomposition

to be a two-level algorithm. On MPI level, a coarse-grained

domain decomposition is performed. Parallelization on

OpenMP level implies a second level domain decomposi-

tion, which may be implicit (loop level parallelization) or

explicit as shown in Fig. 5.

In principle, hybrid MPI+OpenMP presents similar

challenges in terms of topology awareness, i.e. optimal

rank/thread placement, as pure MPI. There is, however, the

added complexity that standard OpenMP parallelization is

based on loop-level worksharing, which is, albeit easy to ap-

ply, not always the optimal choice. On ccNUMA systems,

for instance, it might be better to drop the worksharing con-

cept in favor of thread-level domain decomposition in order

to reduce inter-domain NUMA traffic (see below). On top

of this, proper first-touch page placement is required to get

scalable bandwidth inside a node, and thread-core affinity

must be employed. Still one should note that those issues

are not specific to hybrid MPI+OpenMP programming but

apply to pure OpenMP as well.

In contrast to pure MPI, hybrid parallelization of above

domain decomposition enforces a 2×5 MPI domain grid,

leading to oblong OpenMP subdomains (if explicit domain

decomposition is used on this level, see Fig. 5). Optimal

rank ordering leads to only three inter-node halo exchanges

per node, but each with about four times the data volume.

Thus we arrive at a slightly higher communication effort

compared to pure MPI (with optimal rank order), a conse-

quence of the non-square domains.

Beyond the requirements of hybrid MPI+OpenMP,

multi-level domain decomposition may be beneficial when

taking cache optimization into account: On the outermost

level the domain is divided into subdomains, one for each

MPI process. On the next level, these are again split into

portions for each thread, and then even further to fit into

successive cache levels (L3, L2, L1). This strategy ensures

maximum access locality, a minimum of cache misses,

Figure 5. Hybrid OpenMP+MPI two-level do-
main decomposition with a 2×5 MPI domain
grid and eight OpenMP threads per node. Al-

though there are fewer inter-node connec-
tions than with optimal MPI rank order (see
Fig. 4 (b)), the aggregate halo size is slightly

larger.

NUMA traffic, and inter-node communication, but it must

be performed by the application, especially in the case

of unstructured grids. For portable software development,

standardized methods are desirable for the application to

detect the system topology and characteristic sizes (see also

Sect. 5).

3.1.3. Mapping problem with mixed model

The mixed model (see Fig. 1 (d)) represents a sort of com-

promise between pure MPI and fully hybrid models, featur-

ing potential advantages in terms of network saturation (see

Sect. 3.3 below). It suffers from the same basic drawbacks

as the fully hybrid model, although the impact of a loss of

thread-core affinity may be larger because of the possibly

significant differences in OpenMP performance and, more

importantly, MPI communication characteristics for intra-

node message transfer. Fig. 6 shows a possible scenario

where we contrast two alternatives for thread placement. In

Fig. 6 (a), intra-node MPI uses the inter-socket connection

only and shared memory access with OpenMP is kept inside

of each multi-core socket, whereas in Fig. 6 (b) all intra-

node MPI (with masteronly style) is handled inside sock-

ets. However, due to the spreading of the OpenMP threads

belonging to a particular process across two sockets there

is the danger of increased OpenMP startup overhead (see

Sect. 3.5) and NUMA traffic.

As with pure MPI, the message-passing subsystem

should be topology-aware in the sense that optimiza-

tion opportunities for intra-node transfers are actually ex-

ploited. The following section provides some more infor-

mation about performance characteristics of intra-node ver-

sus inter-node MPI.
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3.2. Issues with intranode MPI communication

The question whether the benefits or disadvantages of

different hybrid programming models in terms of communi-

cation behavior really impact application performance can-

not be answered in general since there are far too many pa-

rameters involved. Even so, knowing the characteristics of

the MPI system at hand, one may at least arrive at an ed-

ucated guess. As an example we choose the well-known

PingPong benchmark from the Intel MPI benchmark (IMB)

suite, performed on a Cray XT5 at ARSC [17] (see Sect. 4.1

for more information on the system). Fig. 7 shows that

there are significant differences in achievable bandwidths

for message sizes below 2MB, which happens to be one

processor’s L3 cache size. If the two processes run on the

same socket (circles), the shared L3 cache provides supe-

rior communication bandwidth until the aggregate message

sizes exceed the cache size. For inter-socket communica-

tion (squares), the “revolving MPI buffers” feature of the

IMB must be activated (using the -off_cache command

line option) in order to avoid meaningless results [7]. The

-off_cache option forces the use of a new send buffer on

each MPI_Send() until the aggregate size of all buffers ex-

ceeds a configurable limit (the option’s parameter). Choos-

ing the limit to be at least the L3 cache size ensures that all

send buffers are actually evicted to memory at some point,

even if a single message fits into cache and the MPI library

uses single-copy transfers. If the option is omitted (dashed

line), the first MPI_Send() writes the message to the cache

of the processor it is executed on. Subsequent MPI_Send()

calls (which are always performed with PingPong to get ac-

curate timing measurements) then perform in-cache copy

operations. As the receive buffer is never used by the other

process, it never gets evicted to main memory, leading to

similar measurements as in the intra-socket case. This is a

situation that would never occur in a real application.

All intra-node and inter-node performance numbers be-

come identical at message lengths above 2MB. This may

be surprising because memory bandwidth as measured with,

e.g., STREAM benchmarks on the AMD Barcelona proces-

sor yields results beyond 5GB/s for a single core. However,

if we assume that a single intermediate buffer is used for

intra-node point-to-point transfers, the two required copy

operations send the message between four and six times

over the processor bus(es) (depending on whether non-

temporal moves are employed or not [8]), which easily ex-

plains at least the observed order of magnitude. The slight

disadvantage with inter-socket communication may be at-

tributed to the unavoidable NUMA traffic across the Hyper-

Transport links in this case.

This behavior is not only typical for the XT5 but also for

commodity cluster systems, see Figs. 8 and 9 [4, 13, 15].

It shows that simplistic assumptions about superior perfor-

mance of intra-node connections may be false, at least in

terms of bandwidth. Comparing Figs. 8 and 9, one can

see that the results not only depend on the hardware char-

acteristics of a given system, but also significantly on op-

timizations within the MPI library. There is a growing

awareness of those problems in the community and efforts

towards more efficient intra-node MPI communication are

visible [16].

At small message sizes, MPI communication is latency-
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dominated. For the setup described above we measure the

following latency numbers:

Latency [µs]

Xeon-IB

Mode XT5 IMPI 3.0 IMPI 3.1

inter-node 7.40 3.13 3.24

inter-socket 0.63 0.76 0.55

intra-socket 0.49 0.40 0.31

In strong scaling scenarios it is often quite likely that one

“rides the PingPong curve” towards a latency-driven regime

as processor numbers increase, possibly rendering the care-

fully tuned process/thread placement useless.

Please note that more elaborate low-level benchmarks

than PingPong may be advisable to arrive at a more com-

plete picture about communication characteristics.

3.3. Network saturation and sleeping threads with
the masteronly model

The masteronly variant, in which no MPI calls are issued

inside OpenMP-parallel regions, can be used with fully hy-

brid as well as the mixed model. Although being the easiest

way of implementing a hybrid MPI+OpenMP code, it has

two important shortcomings:

1. In the fully hybrid case, a single communicating thread

may not be able to saturate the node’s network connec-

tion. Using a mixed model (see Sect. 3.1.3) with more
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Figure 9. IMB PingPong bandwidth versus
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and intra-socket communication on a dual-
socket dual-core Xeon 5160 cluster with DDR
InfiniBand [4], using Intel MPI 3.1.038.

than one MPI process per node might solve this prob-

lem, but one has to be aware of possible rank/thread

ordering problems as described in Sect. 3.1. On flat-

memory SMP nodes with no intra-node hierarchical

structure, this may be an attractive and easy to use op-

tion [5]. However, the number of systems with such

characteristics is waning. Current hierarchical archi-

tectures require some more effort in terms of thread-

/core affinity (see Sect. 4.1 for benchmark results in

mixed mode on a contemporary cluster).

2. While the master thread executes MPI code, all other

threads sleep. This effectively makes communica-

tion a purely serial component in terms of Amdahl’s

Law. Overlapping communication with computation

may provide a solution here (see Sect. 3.4 below).

One should note that on many commodity clusters to-

day (including those featuring high-speed interconnects like

InfiniBand), saturation of a network port can usually be

achieved by a single thread. However, this may change if,

e.g., multiple network controllers or ports are available per

node. As for the second drawback above, one may argue

that MPI provides non-blocking point-to-point operations

which should generally be able to achieve the desired over-

lap. Even so, many MPI implementations allow communi-

cation progress, i.e., actual data transfer, only inside MPI

calls so that real background communication is ruled out.

The non-availability of non-blocking collectives in the cur-

rent MPI standard adds to the problem.
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3.4. Overlapping communication and computation

It seems feasible to “split off” one or more OpenMP

threads in order to execute MPI calls, letting the rest

do the actual computations. Just as the fully hybrid

model, this requires the MPI library to support at least

the MPI_THREAD_FUNNELED. However, work distribution

across the non-communicating threads is not straightfor-

ward with this variant, because standard OpenMP work-

sharing works on the whole team of threads only. Nested

parallelism is not an alternative due to its performance

drawbacks and limited availability. Therefore, manual

worksharing must be applied:

if (my_thread_ID < 1) {

MPI_Send( halo data )

MPI_Recv( halo data )

} else {

my_range = (high-low-1) / (num_threads-1) + 1;

my_low = low + (my_thread_ID+1)*my_range;

my_high = high+ (my_thread_ID+1+1)*my_range;

my_high = max(high, my_high)

for (i=my_low; i<my_high; i++) {

/* computation */

}

}

Apart from the additional programming effort for divid-

ing the computation into halo-dependent and non-halo-

dependent parts (see Sect. 2.3), directives for loop work-

sharing cannot be used any more, making “dynamic” or

“guided” schemes that are essential to use in poorly load-

balanced situations very hard to implement. Thread sub-

teams [6] have been proposed as a possible addition to the

future OpenMP 3.x/4.x standard and would ameliorate the

problem significantly. OpenMP tasks, which are part of the

recently passed OpenMP 3.0 standard, also form an elegant

alternative but presume that dynamic scheduling (which is

inherent to the task concept) is acceptable for the applica-

tion.

See Ref. [5] for performance models and measure-

ments comparing parallelization with masteronly style ver-

sus overlapping communication and computation on SMP

clusters with flat intra-node structure.

3.5. OpenMP performance pitfalls

As with standard (non-hybrid) OpenMP, hybrid

MPI+OpenMP is prone to some common performance pit-

falls. Just by switching on OpenMP, some compilers re-

frain from some loop optimizations, causing a significant

performance hit. A prominent example is SIMD vectoriza-

tion of parallel loops on x86 architectures, which gives best

performance when using 16-byte aligned load/store instruc-

tions. If the compiler cannot apply dynamic loop peeling

[8], a loop parallelized with OpenMP can only be vector-

ized using unaligned loads and stores. The situation seems

to improve gradually, though.

On ccNUMA architectures correct first-touch page

placement must be employed in order to achieve scalable

performance across NUMA locality domains. In this re-

spect one should also keep in mind that communicating

threads, inside or outside of parallel regions, may have to

partly access non-local MPI buffers (i.e. from other NUMA

domains).

Due to, e.g., limited memory bandwidth, it may be pref-

erential in terms of performance or power consumption to

use fewer threads than available cores inside of each MPI

process [9]. This leads again to several affinity options (sim-

ilar to Fig. 6 (a) and (b)) and may impact MPI inter-node

communication.

Thread creation/wakeup overhead and frequent synchro-

nization are further typical sources of performance prob-

lems with OpenMP, because they add to serial execution and

thus contribute to Amdahl’s Law on the node level. In order

to estimate these overheads we propose a simple benchmark

setup: We use the vector triad with short vector lengths so

that the parallel run scales across threads if each core has its

own L1 (performance would not scale with larger vectors

as shared caches or main memory usually present bottle-

necks):

!$OMP PARALLEL PRIVATE(j)

do j=1,NITER

!$OMP DO SCHEDULE(static) NOWAIT ! NOWAIT optional

do i=1,N

A(i) = B(i) + C(i) * D(i)

enddo

!$OMP END DO

enddo

!$OMP END PARALLEL

NITER is chosen so that overall runtime can be accurately

measured and one-time startup effects (loading data into

cache the first time etc.) become unimportant. The NOWAIT

clause is optional and is used here only to demonstrate the

impact of the implied barrier at the end of the loop work-

sharing construct (see below).

The performance model assumes that overall runtime

with a problem size of N on t threads can be split into com-

putational and setup/shutdown contributions:

T (N, t) = Tc(N, t)+Ts(t) . (1)

Further assuming that we have measured purely serial per-

formance Ps(N) we can write

Tc(N, t) =
N

tPs(N/t)
, (2)
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which accounts for any N-dependent performance behavior

unconnected to OpenMP overhead. As mentioned above,

setup/shutdown time is composed of a constant latency and

a per-thread component:

Ts(t) = Tl +Tp(t) . (3)

Now we can calculate parallel performance on t threads at

problem size N:

P(N, t) =
N

T (N, t)
=

N

N [tPs(N/t)]−1 +Ts(t)
(4)

Fig. 10 shows performance data for the small-N vector triad

on an XT5 node. We distinguish several important cases.

First, there is a measurable overhead for running with a

single OpenMP thread (squares) versus purely serial mode

(circles). However, the purely serial saturation performance

of 2300MFlops/s is met for N . 1000 even with OpenMP

switched on. This leads to the conclusion that, although

the compiler could do a better job in reducing overhead for

starting a single-thread “parallel” construct, the scalar loop-

level optimizations (software pipelining, SIMD vectoriza-

tion, etc.) are unharmed by OpenMP.

Second, the two-thread data (diamonds) labeled “1S”

and “2S” has been obtained by binding the threads to the

same sockets (solid line) and different sockets (dashed line),

respectively. An additional 20–40% overhead for cross-

socket synchronization of a pair of threads can be clearly

observed. This substantiates the need for accurate thread

placement.

And finally we have fitted the model (4) to measured

data for the eight-thread cases when using the NOWAIT

clause (filled triangles) and without it (open triangles). In-

stead of the real performance values for Ps we have used

a fit function (dashed line) to a simple latency/bandwidth

model (latency=1.1 ns, performance=2300MFlops/s) up to

a loop length of N = 1000. Measurements get erratic above

N = 1000 because of L1 associativity conflicts, but the

range considered here is sufficient to get decent estimates

for the overhead. The indicated fit parameters in nanosec-

onds denote Ts(t), as defined in (3). Obviously the barrier

strongly dominates OpenMP overhead. The eight-thread

data labeled “inner” (stars) was obtained by using a com-

bined parallel do directive, so that the team of threads is

woken up each time the inner loop gets executed:

do j=1,NITER

!$OMP PARALLEL DO SCHEDULE(static)

do i=1,N

A(i) = B(i) + C(i) * D(i)

enddo

!$OMP END PARALLEL DO

enddo
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Figure 10. Impact of OpenMP loop overhead
on an XT5 node for the small-N vector triad.
For two cases (triangles) the model (4) was

fitted to measured performance data. Note
the large impact of the implied barrier (re-
moved by the nowait clause). The stars indi-

cate data obtained by restarting the parallel
region with 8 threads on every triad loop.

This makes it possible to separate the thread wakeup time

from the barrier and worksharing overheads: Although

small compared to the barrier time, wakeup still contributes

in a measurable way, which proves that it is desirable to

minimize the number of parallel regions in an OpenMP pro-

gram. Wemust stress that these overhead measurements can

only be rough guidelines, and that the resulting numbers in

nanoseconds denote orders of magnitude rather than exact

figures. However, they show that thousands of cycles can be

spent for setting up a parallel work-sharing construct. This

effect will worsen with the advent of many-core chips.

4. Expected hybrid parallelization benefits

We have made it clear in the previous section that the par-

allel programming models described so far do not really fit

onto standard hybrid hardware. Consequently, one should

always try to optimize the parallel environment, especially

in terms of thread/core mapping and the correct choice of

hybrid execution mode, in order to minimize the mismatch

problems.

On the other hand, as pointed out in the introduction,

several real benefits can be expected from hybrid program-

ming models as opposed to pure MPI. We will elaborate on

the most important aspects in the following sections.
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4.1. Additional levels of parallelism

In some applications, there is a coarse outer level of par-

allelism which can be easily exploited by message passing,

but is strictly limited to a certain number of workers. In such

a case, a viable way to improve scalability beyond this limit

is to use OpenMP in order to speed up each MPI process,

e.g. by identifying parallelizable loops at an inner level. A

prominent example is the BT-MZ benchmark from the NPB

(Multi-Zone NAS Parallel Benchmarks) suite.

Benchmark results on Cray XT4 and Cray XT5 System

Here we present some performance results that were ob-

tained on Cray XT4 and Cray XT5 systems. The Cray XT4

used for the tests consists of 2,151 compute nodes. Each

node comprises one AMD “Budapest” 2.1GHz quad-core

processor with 8GB of memory, which makes for a to-

tal number of 8608 cores. The Cray XT5 has 432 com-

pute nodes. Each node comprises two AMD “Barcelona”

2.3GHz quad-core processors and 32GB of memory, for a

total of 3456 cores. The nodes are connected to a 3D torus

network by HyperTransport links, using the Cray Seastar2

Interconnect on both systems. The MPI implementations

are based on MPICH-2. Results were obtained by courtesy

of the HPCMO Program, the Engineer Research and Devel-

opment Center Major Shared Resource Center, Vicksburg,

MS, and the Arctic Region Supercomputer Center in Fair-

banks, Alaska. For compiling the benchmarks we used the

Cray ftn compiler which is based on the PGI Fortran com-

piler pgf90 7.1. We used the options ftn -fastsse -tp

barcelona-64 -r8 -mp. The aprun command was used

for execution. On the Cray XT4 the executable was started

as

export OMP_NUM_THREADS={4,2,1}

aprun -n NPROCS -N {1,2,4} -d {4,2,1}

This places 1, 2, or 4 MPI processes per node and employs

4, 2, or 1 core per MPI process, corresponding to the num-

ber of threads per process which is being used. On the Cray

XT5 the executable was started as

export OMP_NUM_THREADS={8,4,2,1}

aprun -n NPROCS -N 1 -d 8

aprun -n NPROCS -S {1,2,4} -d {4,2,1}

The first command places 1 MPI process per node and em-

ploys all 8 cores for OpenMP threads. The second com-

mand places 1, 2, or 4 MPI processes per socket and em-

ploys 4, 2, or 1 core per MPI process. One processor socket

(4 cores) corresponds to one NUMA node.

The NAS Parallel Benchmark (NPB) Multi-Zone

(MZ) [10] codes BT-MZ and SP-MZ (class E) were chosen
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Figure 11. NPB BT-MZ and SP-MZ (class C)

performance on Cray XT4 for mixed hybrid
and pure MPI modes (see text for details on
the mixed setup). There is no pure MPI data

for 512 cores as the number of MPI processes
is limited to 256 (zones) in that case.

to exemplify the benefits and limitations of hybrid mode.

The purpose of the NPB-MZ is to capture the multiple levels

of parallelism inherent in many full scale applications. Each

benchmark exposes a different challenge to scalability: BT-

MZ is a block tridiagonal simulated CFD code. The size of

the zones varies widely, with a ratio of about 20 between the

largest and the smallest zone. This poses a load balancing

problem when only coarse-grained parallelism is exploited

on a large number of cores. SP-MZ is a scalar pentadiago-

nal simulated CFD code with equally sized zones, so from

a workload point of view the best performance should be

achieved by pure MPI. A detailed discussion of the per-

formance characteristics of these codes is presented in [11].

The class C problem size for both benchmarks comprises

an aggregate grid size of 480×320×28 points and a total

number of 256 zones. Each MPI process is assigned a set

of zones to work on, according to a bin-packing algorithm

to achieve a balanced workload. Static worksharing is used

on the OpenmMP level. Due to the implementation of the

benchmarks the maximum number of MPI processes is lim-

ited to the number of zones for SP-MZ as well as BT-MZ to

256 for the class C benchmark.

Figures 11 and 12 show results at 16 to 512 cores.

For both BT-MZ and SP-MZ the mixed hybrid mode en-

ables scalability beyond the number of zones. In the case

of BT-MZ, reducing the number of MPI processes and us-

ing OpenMP threads allows for better load balancing while

maintaining a high level of parallelism. On the Cray XT4

we observe that BT-MZ does not scale to 512 cores. The
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Figure 12. NPB BT-MZ and SP-MZ (class C)
performance on Cray XT5 for mixed hybrid

and pure MPI modes (see text for details on
the mixed setup). There is no pure MPI data
for 512 cores as the number of MPI processes

is limited to 256 (zones) in that case.

reason is that optimal load balancing is achieved by em-

ploying 64 MPI processes using 8 threads each. This com-

bination is not possible on the Cray XT4. On the Cray XT5

BT-MZ does scale for 512 cores. SP-MZ generally scales

well with pure MPI. However, reducing the number of MPI

processes cuts down on the amount of data to be communi-

cated and the total number of MPI calls. For some cases this

leads to the hybrid version outperforming pure MPI. On the

Cray XT5, for example, SP-MZ 64×4 outperforms 256×1.

The communication overhead depends on the exact commu-

nication pattern and placement of the MPI processes. Thus,

for both benchmarks, hybrid MPI+OpenMP can outperform

pure MPI. The best mixed hybrid mode for BT-MZ depends

on the coarse-grained load balancing that can be achieved

and varies with the number of available cores.

We must emphasize that the use of affinity mechanisms

(built into aprun in this particular case) is absolutely es-

sential for getting good performance and reproducibility on

any ccNUMA architecture, including the XT5.

4.2. Improved load balancing

If the problem at hand has load balancing issues, some

kind of dynamic balancing should be implemented. In MPI,

this is a problem for which no generic recipes exist. It is

highly dependent on the numerics and potentially requires

significant communication overhead. It is therefore hard to

implement in production codes.

One big advantage of OpenMP over MPI lies in the pos-

sible use of “dynamic” or “guided” loop scheduling. No ad-

ditional programming effort or data movement is required.

However, one should be aware that non-static scheduling is

suboptimal for memory-bound code on ccNUMA systems

because of unpredictable (and non-reproducible) access pat-

terns; if guided or dynamic schedule is unavoidable, one

should at least employ round-robin page placement for ar-

ray data in order to get some level of parallel data access.

For the hybrid case, simple static load balancing on the

outer (MPI) level and dynamic/guided loop scheduling for

OpenMP can be used as a compromise. Note that if dy-

namic OpenMP load balancing is prohibitive because of

NUMA locality constraints, a mixed model (Fig. 1 (d)) may

be advisable where one MPI process runs in each NUMA

locality domain and dynamic scheduling is applied to the

threads therein.

4.3. Reduced memory consumption

Although one might believe that there should be no data

duplication or, more generally, data overhead between MPI

processes, this is not true in reality. E.g., in domain de-

composition scenarios, the more MPI domains a problem is

divided into, the larger the aggregated surface and thus the

larger the amount of memory required for halos. Other data

like buffers internal to the MPI subsystem, but also lookup

tables, global constants, and everything that is usually du-

plicated for efficiency reasons, adds to memory consump-

tion. This pertains to redundant computation as well.

One the other hand, if there are multiple (t) threads per

MPI process, duplicated data is reduced by a factor of t (this

is also true for halo layers if not using domain decomposi-

tion on the OpenMP level). Although this may seem like a

small advantage today, one must keep in mind that the num-

ber of cores per CPU chip is constantly increasing. In the

future, tens and even hundreds of cores per chip may lead

to a dramatic reduction of available memory per core.

It should be clear from the considerations in the previous

sections that it is not straightforward to pick the optimal

number of OpenMP threads per MPI process for a given

problem and system. Even assuming that mismatch/affinity

problems can be kept under control, using too many threads

can have negative effects on network saturation, whereas

too man MPI processes might lead to intolerable memory

consumption.

4.4. Further opportunities

Using multiple threads per process may have some ben-

efits on the algorithmic side due to larger physical domains

inside of each MPI process. This can happen whenever a

larger domain is advisable in order to get improved numer-

ical accuracy or convergence properties. Examples are:
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• A multigrid algorithm is employed only per MPI do-

main, i.e. inside each process, but not between do-

mains.

• Separate preconditioners are used inside and between

MPI processes.

• MPI domain decomposition is based on physical

zones.

An often used argument in favor of hybrid programming

is the potential reduction in MPI communication in compar-

ison to pure MPI. As shown in Sect. 3.1 and 5, this point

deserves some scrutiny because one must compare optimal

domain decompositions for both alternatives. However, the

number of messages sent and received per node does de-

crease which helps to reduce the adverse effects of MPI la-

tency. The overall aggregate message size is diminished as

well if intra-process “messages”, i.e. NUMA traffic, are not

counted. In the fully hybrid case, no intra-node MPI is re-

quired at all, which may allow the use of a simpler (and

hopefully more efficient) variant of the message-passing li-

brary, e.g., by not loading the shmem device driver. And

finally, a hybrid model enables incorporation of functional

parallelism in a very straightforward way: Just like using

one thread per process for concurrent communication/com-

putation as described above, one can equally well split off

another thread for, e.g., I/O or other chores that would be

hard to incorporate into the parallel workflow with pure

MPI. This could even reduce the non-parallelizable part of

the computation and thus enhance overall scalability.

5. Aspects of future standardization efforts

In Sect. 3 we have argued that mismatch problems need

special care, not only with hybrid programming, but also

under pure MPI. However, correct rank ordering and the

decisions between pure and mixed models cannot be op-

timized without knowledge about machine characteristics.

This includes, among other things, inter-node, inter-socket

and intra-socket communication bandwidths and latencies,

and information on the hardware topology in and between

nodes (cores per chip, chips per socket, shared caches,

NUMA domains and networks, and message-passing net-

work topology). Today, the programmer is often forced

to use non-portable interfaces in order to acquire this data

(examples under Linux are libnuma/numactl and the Intel

“cpuinfo” tool; other tools exist for other architectures and

operating systems) or perform their own low-level bench-

marks to figure out topology features.

What is needed for the future is a standardized interface

with an abstraction layer that shifts the non-portable pro-

gramming effort to a library provider. In our opinion, the

right place to provide such an interface is the MPI library,

which has to be adapted to the specific hardware anyway.

At least the most basic topology and (quantitative) commu-

nication performance characteristics could be done inside

MPI at little cost. Thus we propose the inclusion of a topol-

ogy/performance interface into the future MPI 3.0 standard,

see also [12].

As mentioned in Sect. 3.3, there are already some ef-

forts to include a subteam feature into upcoming OpenMP

standards. We believe this feature to be essential for hybrid

programming on current and future architectures, because

it will greatly facilitate functional parallelism and enable

standard dynamic load balancing inside multi-threadedMPI

processes.

6. Conclusions

In this paper we have pinpointed the issues and poten-

tials in developing high performance parallel codes on cur-

rent and future hierarchical systems. Mismatch problems,

i.e. the unsuitability of current hybrid hardware for running

highly parallel workloads, are often hard to solve, let alone

in a portable way. However, the potential gains in scalabil-

ity and absolute performance may be worth the significant

coding effort. New features in future MPI and OpenMP

standards may constitute a substantial improvement in that

respect.
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