
High Performance High Performance ComputingComputing
SelectedSelected topicstopics in in sharedshared--memorymemory parallelizationparallelization

G. HagerG. Hager, G. , G. WelleinWellein
Regionales Rechenzentrum ErlangenRegionales Rechenzentrum Erlangen

W. u. E. W. u. E. HeraeusHeraeus SummerschoolSummerschool
on on ComputationalComputational ManyMany ParticleParticle PhysicsPhysics
Sep 18Sep 18--29, Greifswald, Germany29, Greifswald, Germany

25.09.06 hpc@rrze.uni-erlangen.de 2Shared-memory parallelization

Another warning

Optimization of sequential code goes first!

25.09.06 hpc@rrze.uni-erlangen.de 3Shared-memory parallelization

Outline

Architecture of shared memory computers
UMA/ccNUMA
Cache coherence

Shared memory programming
Introduction to OpenMP
Common pitfalls
Parallelization of sparse MVM

Programming for ccNUMA systems
Correct page placement
Optimization of parallel sparse MVM
C++ issues

Architecture of shared memory computersArchitecture of shared memory computers

25.09.06 hpc@rrze.uni-erlangen.de 5Shared-memory parallelization

Shared memory computers:
Basic concepts

Shared Memory Computer provides
single, shared address space for all parallel processors

Two basic categories of shared memory systems
Uniform Memory Access (UMA):

Flat Memory: Memory is equally accessible to all processors
with the same performance (Bandwidth & Latency).
A.k.a Symmetric Multi Processor (SMP) system

Cache-Coherent Non Uniform Memory Access (ccNUMA):
Memory is physically distributed: Performance (Bandwidth &
Latency) is different for local and remote memory access.

Cache-Coherence protocols and/or hardware provide
consistency between data in caches (multiple copies of same
data!) and data in memory

25.09.06 hpc@rrze.uni-erlangen.de 6Shared-memory parallelization

Shared memory computers:
UMA

UMA architecture

Simplest implementation: Dual-Core
Processor (e.g. AMD Opteron dual-core
or Intel Core)

Multi-Processor servers use bus or switch to connect CPUs
with main memory

Memory

CPU 1 CPU 2 CPU 3 CPU 4

Switch/Bus

Cache1 Cache2 Cache3 Cache4

MSMain Memory

register

L1 cache

L2 cache

register

L1 cache

Bus: Only one processor
can access bus at a time!

Switch: Cache-Coherency
traffic can “pollute” switch

Scalability beyond 2–8
CPUs is a problem

Dual core chips, small
Itanium servers, NEC SX8

25.09.06 hpc@rrze.uni-erlangen.de 7Shared-memory parallelization

Shared memory computers:
ccNUMA
ccNUMA architecture

Proprietary hardware concepts (e.g. Hypertransport/Opteron
or NUMALink /SGI) provide single address space & cache
coherency for physically distributed memory

Advantages:
Scalable concept (systems
up to 1024 CPUs are
available)

Disadvantages:
Cache Coherence hard to
implement / expensive
Performance depends on
access to local or remote
memory
(no flat view of memory!)

Memory

CPU CPU

Memory

CPU CPU

Memory

CPU CPU

Memory

CPU CPU

25.09.06 hpc@rrze.uni-erlangen.de 8Shared-memory parallelization

Shared memory computers:
Some examples

Dual CPU Intel Xeon node Dual Intel “Core” node

Dual AMD Opteron node SGI Altix (HLRB2 @ LRZ)

P
C

Chipset
(northbridge)

Memory

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

P
C

P
C

C C

MI

Memory

P
C

P
C

C C

MI

Memory

C
P
C
C

P
C
C

P
C
C

P
C
C

P
C
C

Memory Memory Memory Memory

S S

S SR

R

25.09.06 hpc@rrze.uni-erlangen.de 9Shared-memory parallelization

Memory

Shared memory computers
Cache coherence

Data in cache is only a copy of data in memory
Multiple copies of same data on multiprocessor systems
Cache coherence protocol/hardware ensure consistent data view
Without cache coherence, shared cache lines can become
clobbered:

C1

P1

A1, A2

C2

P2
P1 P2

Load A1
Write A1=0

A1, A2

Load A2

Write A2=0

A1, A2

Bus

Write-back to memory leads to
incoherent data

A1, A2 A1, A2 A1, A2

C1 & C2 entry can not
be merged to:

A1, A2

25.09.06 hpc@rrze.uni-erlangen.de 10Shared-memory parallelization

Memory

Shared Memory Computers
Cache coherence

Cache coherence protocol must keep track of cache line (CL)
status

C1

P1

A1, A2

C2

P2 Load A1
Write A1=0:

P1
Load A2

Write A2=0:

P2

A1, A2 A1, A2

Bus

t

1. Request exclusive
access to CL

2. Invalidate CL in C2

3. Modify A1 in C1

A1, A2

1. Request exclusive
CL access

2. CL write back+ Invalidate

3. Load CL to C2

4. Modify A2 in C2

A1, A2

A1, A2A1, A2

C2 is exclusive owner of CL

25.09.06 hpc@rrze.uni-erlangen.de 11Shared-memory parallelization

Shared Memory Computers
Cache coherence

Cache coherence can cause substantial overhead
may reduce available bandwidth

Different implementations
Snoopy: On modifying a CL, a CPU must broadcast its address
to the whole system
Directory, “snoop filter”: Chipset (“network”) keeps track of
which CLs are where and filters coherence traffic

Directory-based ccNUMA can reduce pain of additional
coherence traffic

But always take care:

Multiple processors should never write frequently to the same
cache line (“false sharing”)!

SharedShared--Memory ParallelizationMemory Parallelization

25.09.06 hpc@rrze.uni-erlangen.de 13Shared-memory parallelization

Parallel Programming with OpenMP

“Easy” and portable parallel programming of
shared memory computers: OpenMP

Standardized set of compiler directives & library functions:
http://www.openmp.org/

FORTRAN, C and C++ interfaces are defined
Supported by most/all commercial compilers, GNU starting
with 4.2
Few free tools are available

OpenMP program can be compiled and executed on a single-
processor machine just by ignoring the directives

API calls must be masked out though
Supports data parallelism

Central concept of OpenMP programming: Threads

25.09.06 hpc@rrze.uni-erlangen.de 14Shared-memory parallelization

privateprivate

Shared
Memory
Shared
Memory

Shared Memory Model used by OpenMP

T

T

T

T

Threads access globally
shared memory
Data can be shared or
private

shared data available
to all threads (in
principle)
private data only to
thread that owns it

Data transfer transparent
to programmer
Synchronization takes
place, is mostly implicit

privateprivate

privateprivate
privateprivate

25.09.06 hpc@rrze.uni-erlangen.de 15Shared-memory parallelization

OpenMP Program Execution
Fork and Join

Program start: only
master thread runs
Parallel region: team of
worker threads is
generated (“fork”)
synchronize when
leaving parallel region
(“join”)
Only master executes
sequential part

worker threads persist,
but are inactive

task and data distribution
possible via directives
Usually optimal:
1 Thread per ProcessorThread # 0 1 2 3 4 5

25.09.06 hpc@rrze.uni-erlangen.de 16Shared-memory parallelization

Hybrid parallelization on clustered SMPs

Parallelized by
library call (MPI)

Multi-Threading (OpenMP)

Low-Level Optimization

Inter-Node

Node

Single
CPU

DO j=1,m Intra-node OpenMP processing

DO I=1,l

DO k=1,n

Node Performance = OpenMP + Low-Level OptimizationNode Performance = OpenMP + Low-Level Optimization

single processor execution

Inter-node parallelization (MPI)

Message PassingMessage Passing

Basic OpenMP functionalityBasic OpenMP functionality

About Directives and ClausesAbout Directives and Clauses

About DataAbout Data

About Parallel RegionsAbout Parallel Regions
and Work Sharingand Work Sharing

25.09.06 hpc@rrze.uni-erlangen.de 18Shared-memory parallelization

program compute_pi
... (declarations omitted)

! function to integrate
f(a)=4.0_8/(1.0_8+a*a)

w=1.0_8/n
sum=0.0_8

do i=1,n
x=w*(i-0.5_8)
sum=sum+f(x)

enddo
pi=w*sum

... (printout omitted)
end program compute_pi

First example:
Numerical integration
Approximate by a discrete sum

where

We want

solve this in OpenMP

)(1)(
1

0 1
∫ ∑

=

≈
n

i
ixf

n
dttf

),...,1(5.0 ni
n

ixi =
−

=

π=
+∫

1

0
21

4
x

dx

25.09.06 hpc@rrze.uni-erlangen.de 19Shared-memory parallelization

First example:
Numerical integration

...
pi=0.0_8
w=1.0_8/n
!$OMP parallel private(x,sum)
sum=0.0_8
!$OMP do
do i=1,n
x=w*(i-0.5_8)
sum=sum+f(x)

enddo
!$OMP end do
!$OMP critical
pi=pi+w*sum
!$OMP end critical
!$OMP end parallel

concurrent execution
by “team of threads”

worksharing among
threads

sequential execution

25.09.06 hpc@rrze.uni-erlangen.de 20Shared-memory parallelization

Each directive starts with sentinel in column 1:
fixed source: !$OMP or C$OMP or *$OMP
free source: !$OMP

followed by a directive and, optionally, clauses.
For function calls:

conditional compilation of lines starting with !$ or C$ or *$
Example:

use include file for API call prototypes (or Fortran 90
module omp_lib if available)

myid = 0
!$ myid = omp_get_thread_num()

OpenMP Directives
Syntax in Fortran

25.09.06 hpc@rrze.uni-erlangen.de 21Shared-memory parallelization

OpenMP Directives
Syntax in C/C++

Include file
#include <omp.h>

pragma preprocessor directive:

#pragma omp [directive [clause ...]]
structured block

Conditional compilation: Compiler’s OpenMP switch sets
preprocessor macro

#ifdef _OPENMP

... do something

#endif

25.09.06 hpc@rrze.uni-erlangen.de 22Shared-memory parallelization

OpenMP Syntax:
Clauses

Many (but not all) OpenMP directives support clauses
Clauses specify additional information with the directive
Integration example:

private(x,sum) appears as clause to the parallel
directive

The specific clause(s) that can be used depend on the
directive
Another example: schedule(…) clause

static[,chunksize]: round-robin distribution of chunks
across threads (no chunksize: max. chunk size – default!)
dynamic[,chunksize]: threads get assigned work chunks
dynamically; used for load balancing
guided[,chunksize]: like dynamic, but with decreasing
chunk size (minimal size = chunksize); used for load
balancing when dynamic induces too much overhead
runtime: determine by OMP_SCHEDULE shell variable

25.09.06 hpc@rrze.uni-erlangen.de 23Shared-memory parallelization

OpenMP parallel regions
How to generate a team of threads

!$OMP PARALLEL and !$OMP END PARALLEL

Encloses a parallel region: All code executed
between start and end of this region is executed by
all threads.
This includes subroutine calls within the region
(unless explicitly sequentialized)
Both directives must appear in the same routine.

C/C++:
#pragma omp parallel
structured block

No END PARALLEL directive since block structure defines
boundaries of parallel region

25.09.06 hpc@rrze.uni-erlangen.de 24Shared-memory parallelization

OpenMP work sharing for loops

Requires thread distribution directive
!$OMP DO / !$OMP END DO encloses a loop which is to be

divided up if within a parallel region (“sliced”).
all threads synchronize at the end of the loop body
this default behaviour can be changed ...

Only loop immediately following the directive is sliced
C/C++:
#pragma omp for [clause]
for (...) {

...
}

restrictions on parallel loops (especially in C/C++)
trip count must be computable (no do while)
loop body with single entry and single exit point
Use integers, not iterators als loop variables

25.09.06 hpc@rrze.uni-erlangen.de 25Shared-memory parallelization

Directives for data scoping:
shared and private

Remember the OpenMP memory model?
Within a parallel region,
data can either be
private to each executing thread

each thread has its own local copy of data
or be
shared between threads

there is only one instance of data available to all threads
this does not mean that the instance is always visible to all threads!

Integration example:
shared scope not desirable for x and sum since values
computed on one thread must not be interfered with by
another thread.
Hence:

!$OMP parallel private(x,sum)

Shared
Memory

Shared
Memory

T

T

T

T

25.09.06 hpc@rrze.uni-erlangen.de 26Shared-memory parallelization

Defaults for data scoping

All data in parallel region is shared
This includes global data (Module, COMMON)
Exceptions:

1. Local data within enclosed subroutine calls are private
(Note: Inlining must be treated correctly by compiler!)
unless declared with SAVE attribute

2. Loop variables of parallel (“sliced”) loops are private
Due to stack size limits it may be necessary to give large
arrays the SAVE attribute

This presupposes it is safe to do so!
If not: make data dynamically allocated
For Intel Compilers: KMP_STACKSIZE may be set at run
time (increase thread-specific stack size)

25.09.06 hpc@rrze.uni-erlangen.de 27Shared-memory parallelization

Changing the scoping defaults

Default value for data scoping can be changed by using the
default clause on a parallel region:

!$OMP parallel default(private)

Beware side effects of data scoping:
Incorrect shared attribute may lead to race conditions and/or
performance issues (“false sharing”).

Use verification tools.
Scoping of local subroutine data and global data

is not (hereby) changed
compiler cannot be assumed to have knowledge

Recommendation: Use
!$OMP parallel default(none)

to not overlook anything

Not in
C/C++

25.09.06 hpc@rrze.uni-erlangen.de 28Shared-memory parallelization

Storage association of private data

Private variables: undefined on entry and upon exit of
parallel region

Original value of variable (before parallel region) is
undefined after exit from parallel region
To change this:

Replace private by firstprivate or lastprivate

Private variable within parallel region has no storage
association with same variable outside region

25.09.06 hpc@rrze.uni-erlangen.de 29Shared-memory parallelization

Running an OpenMP program

Number of threads: Determined by shell variable

OMP_NUM_THREADS

Loop scheduling: Determined by shell variable

OMP_SCHEDULE

Some implementation-specific environment variables exist
(here for Intel):

KMP_STACKSIZE: configure thread-local stack size
KMP_LIBRARY: specify the strategy for releasing
threads that have nothing to do

25.09.06 hpc@rrze.uni-erlangen.de 30Shared-memory parallelization

Common OpenMP pitfalls

Correctness
Deadlock: Thread waits for resources that never become
available

Write correct programs (tools help to detect deadlocks)
Race condition: Uncontrolled writes to shared variable

Use private clause
Performance

False sharing: Frequent writes from different threads to
same cache line

Insert padding, choose appropriate OpenMP schedule
Load imbalance: Different workloads assigned to different
threads leads to idling CPUs

Use dynamic or guided schedule, rearrange workload
OpenMP loop overhead: Loop is too short to amortize the
cost of starting a team of threads

Use programming techniques to fatten loop body

OpenMPOpenMP parallelization of sparse MVMparallelization of sparse MVM

25.09.06 hpc@rrze.uni-erlangen.de 32Shared-memory parallelization

Data parallelism for sparse MVM

Parallelize the loop that treats consecutive elements of
result vector (or consecutive matrix rows)
General idea:

+=

RHS vector is accessed by all threads
… but this is shared memory, so it does not have to be
stored multiple times!

•

T0

T1

T2

T3

T4

25.09.06 hpc@rrze.uni-erlangen.de 33Shared-memory parallelization

OpenMP parallelization of CRS MVM

Parallelized loop is outer loop

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1
c(i) = c(i) + val(j) * b(col_idx(j))
enddo
enddo

Features
Long outer loop

small OpenMP overhead
Variable length of inner loop

possible load imbalance

!$OMP parallel do

!$OMP end parallel do

25.09.06 hpc@rrze.uni-erlangen.de 34Shared-memory parallelization

OpenMP parallelization of JDS MVM

Parallelized loop is inner loop

do diag=1, zmax
diagLen = jd_ptr(diag+1) - jd_ptr(diag)
offset = jd_ptr(diag)

do i=1, diagLen
c(i) = c(i) + val(offset+i) * b(col_idx(offset+i))

enddo

enddo

!$OMP parallel private(diag,diagLen,offset,i)

!$OMP do

!$OMP end do

!$OMP end parallel

Features
Long inner loop
No load imbalance problems

25.09.06 hpc@rrze.uni-erlangen.de 35Shared-memory parallelization

OpenMP parallelization of blocked
JDS MVM

Parallelization can now be pulled to outer loop

do ib=1, maxDiagLen, blocklen
block_start = ib
block_end = min(ib+blocklen-1, maxDiagLen)
do diag=1, zmax
diagLen = jd_ptr(diag+1)-jd_ptr(diag)
offset = jd_ptr(diag)
if(diagLen .ge. block_start) then
do i=block_start, min(block_end,diagLen)
c(i) = c(i)+val(offset+i)*b(col_idx(offset+i))

enddo
endif

enddo
enddo

!$OMP parallel do private(block_start,block_end,i,diag,
!$OMP& diagLen,offset)

!$OMP end parallel do

Features
Least OpenMP overhead
Some load imbalance possible

25.09.06 hpc@rrze.uni-erlangen.de 36Shared-memory parallelization

Parallel sparse MVM:
Scalability

Scalability data for OpenMP version

0

100

200

300

400

500

600

700

800

1 2 4 6 8

Threads

M
Fl

op
/s

Altix JDS Altix CRS Opteron JDS Opteron CRS Core JDS Core CRS

Something is
obviously
wrong…

Data locality in Data locality in ccNUMAccNUMA systemssystems

25.09.06 hpc@rrze.uni-erlangen.de 38Shared-memory parallelization

Memory Locality Problems

ccNUMA:
whole memory is transparently accessible by all processors
but physically distributed
with varying bandwidth and latency
and potential congestion (shared memory paths)

How do we make sure that memory access is always as
"local" and "distributed" as possible?

C C C C

M M

C C C C

M M

25.09.06 hpc@rrze.uni-erlangen.de 39Shared-memory parallelization

Coding for Data Locality

In OpenMP the programmer must ensure that memory pages
get mapped locally, i.e. data that is accessed from CPU n
should reside in a local memory block
rigorously apply the "Golden Rule":

A memory page gets mapped into the local memory of
the processor that first touches (reads or writes to) it!

i.e. we have to take a closer look at initialization code

Locality is always observed on the page level
Page sizes: 4kB, 16kB, sometimes larger

Some false (page) sharing at domain boundaries may be
unavoidable

25.09.06 hpc@rrze.uni-erlangen.de 40Shared-memory parallelization

Coding for Data Locality

Integer,parameter :: N=1000000
Real*8 A(N), B(N)

A=0.d0

!$OMP parallel do
Do I = 1, N

B(i) = function (A(i))
End do

Integer,parameter :: N=1000000
Real*8 A(N),B(N)

!$OMP parallel do
Do I = 1, N

A(i)=0.d0
End do

!$OMP parallel do
Do I = 1, N

B(i) = function (A(i))
End do

Simplest case: explicit initialization

25.09.06 hpc@rrze.uni-erlangen.de 41Shared-memory parallelization

Coding for Data Locality

Sometimes initialization is not so obvious: I/O cannot be
easily parallelized, so "localize" arrays before I/O

Integer,parameter :: N=1000000
Real*8 A(N), B(N)

READ(1000) A
!$OMP parallel do
Do I = 1, N

B(i) = function (A(i))
End do

Integer,parameter :: N=1000000
Real*8 A(N),B(N)

!$OMP parallel do
Do I = 1, N

A(i)=0.d0
End do
READ(1000) A
!$OMP parallel do
Do I = 1, N

B(i) = function (A(i))
End do

25.09.06 hpc@rrze.uni-erlangen.de 42Shared-memory parallelization

Coding for Data Locality

Required condition: OpenMP loop schedule of
initialization must be the same as in all computational
loops

best choice: static! Specify explicitly on all NUMA-sensitive
loops, just to be sure…
imposes some constraints on possible optimizations (e.g.
load balancing) → some sensibly large chunk size may be
better than plain static

How about global objects?
better not use them
if communication vs. computation is favorable, might
consider properly placed copies of global data
in C++, STL allocators provide an elegant solution

25.09.06 hpc@rrze.uni-erlangen.de 43Shared-memory parallelization

Data locality in parallel sparse MVM

No code change in MVM loop required (apart from static
schedule)
CRS

Initialization of arrays val[], c[], b[], row_ptr[] and
col_idx[] must be done in parallel

do i=1,Nr
start = row_ptr(i)
end = row_ptr(i+1)
do j=start,end-1

val(j) = 0.d0
col_idx(j)= 0

enddo
enddo

!$OMP parallel do private(start,end,j)
!$OMP& schedule(static)

Similar for JDS

25.09.06 hpc@rrze.uni-erlangen.de 44Shared-memory parallelization

Parallel sparse MVM
Doing it right on ccNUMA

Correct placement leads to acceptable scalability

0

500

1000

1500

2000

2500

1 2 4 6 8

Threads

M
Fl

op
/s

Altix JDS Altix CRS Opteron JDS Opteron CRS

No difference for Core
architecture (UMA)

JDS scalability worse
than CRS – why?

25.09.06 hpc@rrze.uni-erlangen.de 45Shared-memory parallelization

Coding for Data Locality:
C++ issues

Bck to C++: Don't forget that constructors tend to touch
the data members of an object. Example:

class D {
double d;

public:
D(double _d=0.0) throw() : d(_d) {}
inline D operator+(const D& o) throw() {

return D(d+o.d);
}
inline D operator*(const D& o) throw() {

return D(d*o.d);
}

...
};

→ placement problem with
D* array = new D[1000000];

25.09.06 hpc@rrze.uni-erlangen.de 46Shared-memory parallelization

Coding for Data Locality:
C++ issues

Solution: Provide overloaded new operator or special function
that places the memory before constructors are called
(PAGE_BITS = base-2 log of pagesize)

template <class T> T* pnew(size_t n) {
size_t st = sizeof(T);
int ofs,len=n*st;
int i,pages = len >> PAGE_BITS;
char *p = new char[len];

#pragma omp parallel for schedule(static) private(ofs)
for(i=0; i<pages; ++i) {
ofs = static_cast<size_t>(i) << PAGE_BITS;
p[ofs]=0;

}
#pragma omp parallel for schedule(static) private(ofs)

for(ofs=0; ofs<n; ++ofs) {
new(static_cast<void*>(p+ofs*st)) T;

}
return static_cast<T*>(m);

}

placement
new!

parallel first touch

25.09.06 hpc@rrze.uni-erlangen.de 47Shared-memory parallelization

Coding for Data Locality:
NUMA allocator for parallel first touch
template <class T> class NUMA_Allocator {
public:
T* allocate(size_type numObjects, const void

*localityHint=0) {
size_type ofs,len = numObjects * sizeof(T);
void *m = malloc(len);
char *p = static_cast<char*>(m);
int i,pages = len >> PAGE_BITS;

#pragma omp parallel for schedule(static) private(ofs)
for(i=0; i<pages; ++i) {
ofs = static_cast<size_t>(i) << PAGE_BITS;
p[ofs]=0;

}
return static_cast<pointer>(m);

}
...
}; Application:

vector<double,NUMA_Allocator<double> > x(1000000)

25.09.06 hpc@rrze.uni-erlangen.de 48Shared-memory parallelization

References

OpenMP Home: Specifications, resources, mailing list, events
http://www.openmp.org/
G. Hager, T. Zeiser, J. Treibig and G. Wellein:
Optimizing performance on modern HPC systems: learning from
simple kernel benchmarks.
In: Proceedings of the 2nd Russian-German Advanced Research
Workshop on Computational Science and High Performance
Computing, HLRS, Stuttgart, March 14 - 16, 2005.
G. Hager, E. Jeckelmann, H. Fehske and G. Wellein:
Parallelization Strategies for Density Matrix Renormalization
Group Algorithms on Shared-Memory Systems.
cond-mat/0305463, J. Comput. Phys. 194(2), 795 (2004)
M. Austern:
What are allocators good for?
Dr Dobb’s Journal, April 2003
http://www.ddj.com/dept/cpp/184403759

BACKUPBACKUP

25.09.06 hpc@rrze.uni-erlangen.de 50Shared-memory parallelization

Application: DMRG – Parallelization of sparse MVM
in superblock diagonalization

Sparse MVM: Sum over dense matrix-matrix multiplies!

However, A and B may contain only a few nonzero
elements, e.g. if conservation laws (quantum numbers)
have to be obeyed
To minimize overhead
an additional loop (running
over nonzero blocks only)
is introduced

25.09.06 hpc@rrze.uni-erlangen.de 51Shared-memory parallelization

Sparse MVM in DMRG

Implementation of sparse MVM - pseudocode

// W: wavevector ; R: result
for (α=0; α < number_of_hamiltonian_terms; α++) {

term = hamiltonian_terms[α];

for (k=0 ; k < term.number_of_blocks; k++) {

li = term[k].left_index;
ri = term[k].right_index;

temp_matrix = term[k].B.transpose() * W[ri];

R[li] += term[k].A * temp_matrix;

}} Matrix-matrix multiply
Data dependency !

Parallel loop !?

Parallel loop !?

25.09.06 hpc@rrze.uni-erlangen.de 52Shared-memory parallelization

DMRG: OpenMP Parallelization

Parallelization of innermost k loop: Scales badly
loop too short
collective thread operations within outer loop

Parallelization of outer α loop: Scales badly
even shorter
load imbalance (trip count of k loop depends on α)

Solution:
“Fuse” both loops (α & k)
Protect write operation R[li] with lock mechanism
Use list of OpenMP locks for each block li

25.09.06 hpc@rrze.uni-erlangen.de 53Shared-memory parallelization

DMRG: OpenMP Parallelization

// store all block references in block_array
ics=0;
for (α=0; α < number_of_hamiltonian_terms; α++) {

term = hamiltonian_terms[α];
for (k=0 ; k < term.number_of_blocks; k++) {

block_array[ics]=&term[q];
ics++;

}}
icsmax=ics;

// set up lock lists
for(i=0; i < MAX_NUMBER_OF_THREADS; i++)

mm[i] = new Matrix // temp.matrix

for (i=0; I < MAX_NUMBER_OF_LOCKS; i++) {
locks[i]= new omp_lock_t;
omp_init_lock(locks[i]);
}

Preparation

25.09.06 hpc@rrze.uni-erlangen.de 54Shared-memory parallelization

DMRG: OpenMP Parallelization

// W: wavevector ; R: result
#pragma omp parallel private(mymat, li, ri, myid, ics)
{

myid = omp_get_thread_num();
mytmat = mm[myid]; // temp thread local matrix

#pragma omp for
for (ics=0; ics< icsmax; ics++) {

li = block_array[ics]->left_index;
ri = block_array[ics]->right_index;

mytmat = block_array[ics]->B.transpose() * W[ri];

omp_set_lock(locks[li]);
R[li] += block_array[ics]->A * mytmat;
omp_unset_lock(locks[li]);
}

}

Fused (α,k) loop

Protect each block of
result vector R with
locks

25.09.06 hpc@rrze.uni-erlangen.de 55Shared-memory parallelization

DMRG : OpenMP Parallelization

Scalability on SGI Origin

OMP_SCHEDULE=STATIC

OpenMP scales
significantly better than
parallel DGEMM

Serial overhead in
parallel MVM is only
about 5%

25.09.06 hpc@rrze.uni-erlangen.de 56Shared-memory parallelization

DMRG : OpenMP Parallelization
Further improvements

Chose best distribution strategy for parallel for loop:
OMP_SCHEDULE=“dynamic,2”
(reduces serial overhead in MVM to 2%)

Re-link with parallel LAPACK/BLAS to speed up density-
matrix diagonalization (DSYEV)

Observe vendor advice

