

| 0 | utline                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| • | <ul> <li>Part 1 <ul> <li>Introduction, motivation</li> <li>Understanding parallelism</li> <li>Limitations of parallelism</li> </ul> </li> <li>Part 2 <ul> <li>Shared Memory architectures</li> <li>Some comments about multi-core</li> <li>Cache coherence</li> <li>Introduction to OpenMP as an example for shared memory programming</li> <li>Programming guidelines for ccNUMA architecture</li> </ul> </li> </ul> |   |
|   | hpc@rrze.uni-erlangen.de Parallelrechner SS 2009                                                                                                                                                                                                                                                                                                                                                                      | 2 |











































































































































## Dense matrix vector multiplication SGI Origin: OMP SCHEDULE=STATIC



69



70






























































| M                                                                 | emory Locality Problems                                                                                                | ГГЗ                       |      |  |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------|------|--|
|                                                                   | "Golden Rule" of ccNUMA:<br>A memory page gets mapped into the local memory of the<br>processor that first touches it! |                           |      |  |
|                                                                   |                                                                                                                        |                           |      |  |
|                                                                   | <ul> <li>Except if there is not enough local me</li> </ul>                                                             | mory available            |      |  |
|                                                                   | <ul> <li>this might be a problem, see later</li> </ul>                                                                 |                           |      |  |
|                                                                   | Caveat: "touch" means "write", not "allocate"                                                                          |                           |      |  |
| -                                                                 | Example:                                                                                                               |                           |      |  |
|                                                                   | <pre>// memory not mapped yet for(i=0; i<n; i+="PAG&lt;/pre" i++)="" or=""></n;></pre>                                 | ; i++) // or i+=PAGE_SIZE |      |  |
|                                                                   | <pre>huge[i] = 0.0; // mapping t</pre>                                                                                 | akes place here!          |      |  |
| It is sufficient to touch a single item to map the entire OS page |                                                                                                                        |                           | bage |  |
|                                                                   | hpc@rrze.uni-erlangen.de                                                                                               | Parallelrechner SS 2009   | 102  |  |





















