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Introduction
Parallel Computing

Parallelism will substantially increase through the use of 
dual/multi-core chips in the future!

See later for some comments

Parallel computing is entering everyday life
Dual-core based system (Workstation, Laptop, etc…)

Basic design concepts for parallel computers:
Shared memory multi-processor systems: Multiple processors run 
in parallel but use the same (a single) address space (“shared 
memory”), e.g.: Dual-core workstations or Xeon/Opteron based 
servers.

Distributed memory systems: Multiple processors/compute nodes 
are connected via a network. Each processor has its own address 
space/ memory, e.g. GBit Clusters with Xeon/Opteron based servers.

Understanding Parallelism and theUnderstanding Parallelism and the
Limitations of Parallel ComputingLimitations of Parallel Computing
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Understanding Parallelism:
Sequential work

After 16 time steps: 4 cars
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Understanding Parallelism:
Parallel work

After 4 time steps: 4 cars

“perfect speedup”
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Understanding Parallelism:
Limits of Scalability

Unused resources due to 
load imbalance
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Limitations of Parallel Computing:
Amdahl's Law

serial serial

serial serial

seriellseriell serial

Ideal world: 
All work is perfectly parallelizable

Closer to reality: 
Purely serial parts limit maximum speedup

Reality is even worse: 
Communication processes hurt 

scalability even further
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Limitations of Parallel Computing:
Calculating Speedup in a Simple Model (“strong scaling”)

T(1) = s+p = serial compute time

purely serial
part s

parallelizable part: p = 1-s

fraction k for communication between
each two workers

parallel: T(N) = s+p/N+Nk

General formula for speedup
(worst case):
k=0: Amdahl's Law

"strong scaling"
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Limitations of Parallel Computing:
Amdahl's Law (“strong scaling”)

Reality: No task is perfectly parallelizable
Shared resources have to be used serially
Task interdependencies must be accounted for
Communication overhead

Benefit of parallelization is strongly limited
"Side effect": limited scalability leads to inefficient use of 
resources
Metric: Parallel Efficiency 
(what percentage of the workers/processors is efficiently 
used):

Amdahl case:
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Limitations of Parallel Computing:
Amdahl's Law (“strong scaling”)

Large N limits
at k=0, Amdahl's Law
predicts

at k≠0, our simplified
model of communication
overhead yields a 
beaviour of

s
NSpN

1)(lim 0 =
∞→

independent of N !

Problems in real world programming
Load imbalance
Shared resources have to be used serially (e.g. IO)
Task interdependencies must be accounted for
Communication overhead

Nk
NS Nk

p
1)( 1⎯⎯ →⎯ >>
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Limitations of Parallel Computing:
Amdahl´s Law (“strong scaling”)
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Limitations of Parallel Computing:
Amdahl´s Law (“strong scaling”)
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Limitations of Parallel Computing:
How to Circumvent Amdahl's Law

Communication is not necessarily purely serial
Non-blocking crossbar networks can transfer many messages 
concurrently – factor Nk in denominator becomes k (technical 
measure)
Sometimes, communication can be overlapped with useful work 
(implementation, algorithm):

Communication overhead may scale with a smaller power than 
problem size
"superlinear speedups“: data size per CPU decreases with 
increasing CPU count may fit into cache at large CPU counts
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Limitations of Parallel Computing:
Increasing Parallel Efficiency

Increasing problem size often helps to enlarge the parallel 
fraction p

Often p scales with problem size while s stays constant
Fraction of s relative to overall runtime decreases

s p

p/Ns

s

s

p

p/N

Scalability in terms of parallel 
speedup and parallel efficiency 
improves when scaling the 
problem size!
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Limitations of Parallel Computing:
Increasing Parallel Efficiency („weak scaling“)

When scaling a problem to more workers, the amount of 
work will often be scaled as well

Let s and p be the serial and parallel fractions so that s+p=1
Perfect situation: runtime stays constant while N increases
„Parallel Performance“ = 

work/time for problem size N with N workers
work/time for problem size 1 with 1 worker

Linear in N – but closely observe the meaning of the word 
"work"!

NsssNNpNs
ps
pNsNPs )1()1()( −+=−+=+=
+
+

=

Gustafsson's Law
("weak scaling")
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Shared memory computers:
Basic concepts

Shared Memory Computer provides 
single, shared address space for all parallel processors

Two basic categories of shared memory systems
Uniform Memory Access (UMA): 

Flat Memory: Memory is equally accessible to all processors with
the same performance (Bandwidth & Latency).
A.k.a Symmetric Multi Processor (SMP) system

Cache-Coherent Non Uniform Memory Access (ccNUMA):
Memory is physically distributed: Performance (Bandwidth & 
Latency) is different for local and remote memory access.

Cache-Coherence protocols and/or hardware provide 
consistency between data in caches (multiple copies of same 
data!) and data in memory
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Shared memory computers:
UMA

UMA architecture

Simplest implementation: Dual-Core 
Processor (e.g. AMD Opteron dual-core 
or Intel Core)

Multi-Processor servers use bus or switch to connect CPUs 
with main memory

Memory

CPU 1 CPU 2 CPU 3 CPU 4

Switch/Bus

Cache1 Cache2 Cache3 Cache4

MSMain Memory

register

L1 cache

L2 cache

register

L1 cache

Bus: Only one processor 
can access bus at a time! 

Switch: Cache-Coherency 
traffic can “pollute” switch

Scalability beyond 2–8 
CPUs is a problem

Dual core chips, small 
Itanium servers, NEC SX8 
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Shared memory computers:
ccNUMA
ccNUMA architecture

Proprietary hardware concepts (e.g. Hypertransport/Opteron
or NUMALink /SGI) provide single address space  & cache 
coherency  for physically distributed memory

Advantages:
Scalable concept (systems up 
to 1024 CPUs are available)

Disadvantages:
Cache Coherence hard to 
implement / expensive
Performance depends on 
access to local or remote 
memory 
(no flat view of memory!)

Memory

CPU CPU

Memory

CPU CPU

Memory

CPU CPU

Memory

CPU CPU
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Shared memory computers:
Some realistic examples

Dual CPU Intel Xeon node Dual Intel “Core2” QC node

Dual AMD Opteron (QC) node SGI Altix
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Memory

Shared memory computers
Cache coherence

Data in cache is only a copy of data in memory
Multiple copies of same data on multiprocessor systems
Cache coherence protocol/hardware ensure consistent data view
Without cache coherence, shared cache lines can become clobbered: 

C1

P1

A1, A2

C2

P2
P1 P2

Load A1
Write A1=0

A1, A2

Load A2

Write A2=0

A1, A2

Bus

Write-back to memory leads to 
incoherent data

A1, A2 A1, A2 A1, A2

C1 & C2 entry can not 
be merged to:

A1, A2
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Memory

Shared Memory Computers
Cache coherence

Cache coherence protocol must keep track of cache line (CL) 
status

C1

P1

A1, A2

C2

P2 Load A1
Write A1=0:

P1
Load A2

Write A2=0:

P2

A1, A2 A1, A2

Bus

t

1. Request exclusive
access to CL

2. Invalidate CL in C2

3. Modify A1 in C1

A1, A2

1. Request exclusive
CL access

2. CL write back+ Invalidate

3. Load CL to C2

4. Modify A2 in C2

A1, A2

A1, A2A1, A2

C2 is exclusive owner of CL
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Shared Memory Computers
Cache coherence

Cache coherence can cause substantial overhead
may reduce available bandwidth

Different implementations
Snoopy: On modifying a CL, a CPU must broadcast its address to the 
whole system
Directory, “snoop filter”: Chipset (“network”) keeps track of which 
CLs are where and filters coherence traffic

Directory-based ccNUMA can reduce pain of  additional 
coherence traffic

But always take care:

Multiple processors should never write frequently to the same 
cache line (“false sharing”)!
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Why Multi-Core?

Modern processors are highly complex
With each new generation, more transistors are required to 
achieve a certain performance gain

Even highly optimized software leaves more and more transistors
unused

All those transistors need energy (switching/leakage)

L2 Cache Data Cache

Instruction Cache

Register Set

Control

Execution Units

Memory

Task
© Intel
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Power dissipation in VLSI Circuits

In CMOS VLSIs, power dissipation
is proportional to clock frequency:

Moreover, it is proportional to 
supply voltage squared:

For reasons of noise immunity, 
supply voltage has to grow
linearly with frequency, so: 

cfW ∝

2
ccVW ∝

3
cfW ∝

Frequency reduction is the key to saving power with modern 
microprocessors

all other factors, e.g. manufacturing technology, unchanged
This seems to contradict the verdict of ever-growing chip
performance
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Multi-core processors
The party is over!

MS

arithmetic 
unit

Main Memory

FP 
register

L1 cache

L2 cache

„DRAM Gap“

Processor chip

FP 
register

L1 cache

arithmetic 
unitIn

te
l X

eo
n 

/ C
or

e2
 (“

W
oo

dc
re

st
”)

■ Problem: Moore’s law is still valid but increasing clock speed 
hits a technical wall (heat)

■ Solution: Reduce clock speed of processor but put 2 (or more) 
processors (cores) on a single silicon die

Clock speed of single core will decrease in future!
(Xeon/Netburst: max. 3.73 GHz -> Xeon/Core: max. 3.0 GHz)
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Max FrequencyMax Frequency

PowerPower

PerformancePerformance

1.00x1.00x

Multi-core processors
The party is over!

By courtesy of D. Vrsalovic, Intel
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OverOver--clockedclocked
(+20%)(+20%)

1.73x1.73x

1.13x1.13x
1.00x1.00x

Max FrequencyMax Frequency

PowerPower

PerformancePerformance

Multi-core processors
The party is over!

By courtesy of D. Vrsalovic, Intel
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OverOver--clockedclocked
(+20%)(+20%)

UnderUnder--clockedclocked
((--20%)20%)

0.51x0.51x

0.87x0.87x
1.00x1.00x

1.73x1.73x

1.13x1.13x

Max FrequencyMax Frequency

PowerPower

PerformancePerformance

Multi-core processors
The party is over!

By courtesy of D. Vrsalovic, Intel
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OverOver--clockedclocked
(+20%)(+20%)

1.00x1.00x

1.73x1.73x

1.13x1.13x

Max FrequencyMax Frequency

PowerPower

PerformancePerformance

DualDual--corecore
((--20%)20%)

1.02x1.02x

1.73x1.73x
DualDual--CoreCore

Multi-core processors
The party is over!

By courtesy of D. Vrsalovic, Intel
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Multi-Core Processors

Question: What fraction of 
performance must be sacrificed per 
core in order to benefit from m
cores?
Prerequisite: Overall power 
dissipation should be unchanged

W power dissipation
p performance (1 core)
pm performance (m cores)
εf rel. frequency change ∆fc/fc
εp rel. performance

change ∆p/p
m number of cores

WWW f
3)1( ε+=Δ+

1)1( 3 =+ mfε

pmp pm )1( ε+=

11
−≥⇒≥

m
pp pm ε

13/1 −= −mfε
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Why Multi-Core?

Required relative frequency reduction vs. core count

Available today
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Multi-core processors
A challenging future ahead?

Parallelization will be mandatory in the future !

Many-core array
• CMP with 10s-100s low 

power cores
• Scalar cores
• Capable of TFLOPS+
• Full System-on-Chip
• Servers, workstations, 

embedded…
Dual core
• Symmetric multithreading

Multi-core array
• CMP with ~10 cores

Evolution

Large, Scalar cores for 
high single-thread 
performance

Scalar plus many core for 
highly threaded workloads

Intel Tera-Scale Computing 
Research Program 

Courtesy of Intel
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Multi-Core
A Challenging Future or the Programmer‘s Waterloo?

Multi-core does not come for free
i.e., frequency reduction is not enough

Putting two cores on the same die requires either
changes in manufacturing technology (smaller structures), or
simplification of the core

Moore‘s Law is still valid, so multi-core must put the
transistors to good use

Simplify the core (better utilization of functional units)
Increase the cache sizes using the saved transistors

Are we giving up the „general-purpose“ processor for more
and more specialized solutions?

Caveat: While multi-core enhances chip performance, it
makes the DRAM gap more severe

Shared path to memory
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Parallel Programming with OpenMP

“Easy” and portable parallel programming of 
shared memory computers: OpenMP
Standardized set of compiler directives & library functions: 
http://www.openmp.org/

FORTRAN, C and C++ interfaces are defined
Supported by most/all commercial compilers, GNU starting with 4.2
Few free tools are available

OpenMP program can be written to compile and execute on a 
single-processor machine just by ignoring the directives

API calls must be masked out though
Supports data parallelism

R.Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, R. Menon:
Parallel programming in OpenMP.
Academic Press, San Diego, USA, 2000, ISBN 1-55860-671-8
B. Chapman, G. Jost, R. v. d. Pas:
Using OpenMP.
MIT Press, 2007, ISBN 978-0262533027 



20

hpc@rrze.uni-erlangen.de 39Parallelrechner SS 2009

privateprivate

Shared 
Memory
Shared 
Memory

Shared Memory Model used by OpenMP

T

T

T

T

Threads access globally 
shared memory
Data can be shared or 
private

shared data available 
to all threads (in 
principle)
private data only to 
thread that owns it

Data transfer transparent 
to programmer
Synchronization takes 
place, is mostly implicit

privateprivate

privateprivate
privateprivate

Central concept of OpenMP programming: Threads
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OpenMP Program Execution
Fork and Join

Program start: only 
master thread runs
Parallel region: team of 
worker threads is 
generated (“fork”)
synchronize when 
leaving parallel region 
(“join”)
Only master executes 
sequential part

worker threads persist, 
but are inactive

task and data distribution 
possible via directives
Usually optimal: 
1 Thread per ProcessorThread # 0    1    2    3    4    5
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Basic OpenMP functionalityBasic OpenMP functionality

About Directives and ClausesAbout Directives and Clauses

About DataAbout Data

About Parallel RegionsAbout Parallel Regions
and Work Sharingand Work Sharing
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program compute_pi
...  (declarations omitted)

! function to integrate
f(a)=4.0_8/(1.0_8+a*a)

w=1.0_8/n
sum=0.0_8

do i=1,n
x=w*(i-0.5_8)
sum=sum+f(x)

enddo
pi=w*sum

...   (printout omitted)
end program compute_pi

First example:
Numerical integration

Approximate by a discrete sum

where

We want

solve this in OpenMP

)(1)(
1

0 1
∫ ∑

=

≈
n

i
ixfn

dttf

),...,1(5.0 ni
n

ixi =
−

=

π=
+∫

1

0
21

4
x
dx
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First example:
Numerical integration

concurrent execution 
by “team of threads”

worksharing among 
threads

sequential execution

...
pi=0.0_8 
w=1.0_8/n              
!$OMP parallel private(x,sum)
sum=0.0_8 
!$OMP do
do i=1,n 

x=w*(i-0.5_8) 
sum=sum+f(x) 

enddo
!$OMP end do 
!$OMP critical 
pi=pi+w*sum
!$OMP end critical 
!$OMP end parallel
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Each directive starts with sentinel in column 1: 
fixed source: !$OMP or C$OMP or *$OMP
free source: !$OMP

followed by a directive and, optionally, clauses. 
For function calls:

conditional compilation of lines starting with !$ or C$ or *$
Example:

use include file for API call prototypes (or Fortran 90 module 
omp_lib if available) 

myid = 0
!$ myid = omp_get_thread_num()

OpenMP Directives
Syntax in Fortran



23

hpc@rrze.uni-erlangen.de 45Parallelrechner SS 2009

OpenMP Directives
Syntax in C/C++

Include file
#include <omp.h>

pragma preprocessor directive:

#pragma omp [directive [clause ...]]
structured block

Conditional compilation: Compiler’s OpenMP switch sets 
preprocessor macro

#ifdef _OPENMP

... do something

#endif
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OpenMP Syntax:
Clauses

Many (but not all) OpenMP directives support clauses
Clauses specify additional information with the directive
Integration example: 

private(x,sum) appears as clause to the parallel
directive

The specific clause(s) that can be used depend on the 
directive
Another example: schedule(…) clause 

static[,chunksize]: round-robin distribution of chunks across 
threads (no chunksize: max. chunk size – default!)
dynamic[,chunksize]: threads get assigned work chunks 
dynamically; used for load balancing
guided[,chunksize]: like dynamic, but with decreasing chunk 
size (minimal size = chunksize); used for load balancing when 
dynamic induces too much overhead
runtime: determine by OMP_SCHEDULE shell variable
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OpenMP parallel regions
How to generate a team of threads

!$OMP PARALLEL and !$OMP END PARALLEL

Encloses a parallel region: All code executed between 
start and  end of this region is executed by all threads. 
This includes subroutine calls within the region (unless 
explicitly sequentialized)
Both directives must appear in the same routine.

C/C++:
#pragma omp parallel
structured block

No END PARALLEL directive since block structure defines 
boundaries of parallel region
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OpenMP work sharing for loops

Requires thread distribution directive
!$OMP DO / !$OMP END DO encloses a loop which is to be 

divided up if within a parallel region (“sliced”).
all threads synchronize at the end of the loop body
this default behaviour can be changed ...

Only loop immediately following the directive is sliced
C/C++:
#pragma omp for [clause]
for ( ... )  {  

...
}

restrictions on parallel loops (especially in C/C++)
trip count must be computable  (no do while)
loop body with single entry and single exit point
Use integers, not iterators als loop variables  
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Directives for data scoping:
shared and private

Remember the OpenMP memory model?
Within a parallel region, 
data can either be
private to each executing thread

each thread has its own local copy of data
or be
shared between threads

there is only one instance of data available to all threads
this does not mean that the instance is always visible to all threads!

Integration example:
shared scope not desirable for x and sum since values 
computed on one thread must not be interfered with by another 
thread.
Hence: 

!$OMP parallel private(x,sum)

Shared 
Memory

Shared 
Memory

T

T

T

T
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Defaults for data scoping

All data in parallel region is shared
This includes global data (Module, COMMON)
Exceptions:

1. Local data within enclosed subroutine calls are private
(Note: Inlining must be treated correctly by compiler!) unless
declared with SAVE attribute (static in C)

2. Loop variables of parallel (“sliced”) loops are private

Due to stack size limits it may be necessary to make large 
arrays static

This presupposes it is safe to do so!
If not: make data dynamically allocated
For Intel Compilers: KMP_STACKSIZE may be set at run time 
(increase thread-specific stack size)
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Changing the scoping defaults

Default value for data scoping can be changed by using the 
default clause on a parallel region:

!$OMP parallel default(private)

Beware side effects of data scoping:
Incorrect shared attribute may lead to race conditions and/or 
performance issues (“false sharing”).

Use verification tools.
Scoping of local subroutine data and global data

is not (hereby) changed
compiler cannot be assumed to have knowledge 

Recommendation: Use
!$OMP parallel default(none)

to not overlook anything

Not in 
C/C++
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Compiling and running 
an OpenMP program

Compiler must be instructed to recognize OpenMP directives 
(Intel compiler: -openmp) 
Number of threads: Determined by shell variable 
OMP_NUM_THREADS

Loop scheduling: Determined by shell variable
OMP_SCHEDULE

Some implementation-specific environment variables exist 
(here for Intel):

KMP_STACKSIZE: configure thread-local stack size
KMP_LIBRARY: specify the strategy for releasing threads that 
have nothing to do

… and then: just type ./a.out
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SomeSome Details Details AboutAbout OpenMPOpenMP
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OpenMP Runtime Library

omp_get_num_threads Function
Returns the number of threads currently in the team executing 
the parallel region from which it is called

Fortran:
integer function omp_get_num_threads()
C/C++:
int omp_get_num_threads(void);

omp_get_thread_num Function
Returns the thread number, within the team, that lies between 0
and omp_get_num_threads()-1, inclusive. The master thread 
of the team is thread 0

Fortran:
integer function omp_get_thread_num()

C/C++:
int omp_get_thread_num(void);
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OpenMP Example: Hello World Program

program hello

!$    integer OMP_GET_THREAD_NUM

i = -1

!$OMP PARALLEL PRIVATE(i)

!$    i = OMP_GET_THREAD_NUM()

print *, 'hello world',i

!$OMP END PARALLEL

stop

end
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Work Sharing and Synchronization

Which thread executes which statement or operation?

… and in which sequence?

i.e., how is parallel work organized/scheduled?

Work-sharing constructs 

Master and synchronization constructs
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OpenMP Work Sharing Constructs

Distribute the execution of the enclosed code region 
among the members of the team

Must be enclosed dynamically within a parallel region
Threads do not (usually) launch new threads
No implied barrier on entry

Directives
section(s) directives
do directive (Fortran) 
for directive (C/C++)
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OpenMP sections Directives (1)

Several blocks are executed in parallel
Fortran:
!$OMP SECTIONS [ clause [ [ , ] clause ] ... ]

[!$OMP SECTION ]
block1

[!$OMP SECTION ]
block2 

...
!$OMP END SECTIONS [ nowait ]

C/C++:
#pragma omp sections [ clause [ clause ] ... ] new-line

{
[#pragma omp section new-line ]

structured-block1
[#pragma omp section new-line ]

structured-block2
...

}
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OpenMP sections Directives (2)

#pragma omp parallel
{
#pragma omp sections

{{ a=...;
b=...; }

#pragma omp section
{ c=...;
d=...; }

#pragma omp section
{ e=...;
f=...; }

#pragma omp section
{ g=...;
h=...; }

} /*omp end sections*/
} /*omp end parallel*/

C / C++:

a=...

b=...

c=...

d=...

e=...

f=...

g=...

h=...
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OpenMP do/for Directives (1)

Immediately following loop is executed in parallel

Fortran:
!$OMP do [ clause [ [ , ] clause ] ... ]

do_loop
[ !$OMP end do [ nowait ] ] 
If used, the end do directive must appear immediately after 
the end of the loop

C/C++:
#pragma omp for [ clause [ clause ] ... ] new-line

for-loop
The corresponding for loop must have "canonical shape":
for (i=start; i<=end; i++) { … }
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OpenMP do/for Directives (2)

#pragma omp parallel private(f)

{

f=7;

#pragma omp for

for (i=0; i<20; i++)

a[i] = b[i] + f * (i+1);

} /* omp end parallel */

C / C++:

i=
0,4

f=7

a(i)=
b(i)+...

i=
5,9

f=7

a(i)=
b(i)+...

i=
10,14

f=7

a(i)=
b(i)+...

i=
15,19

f=7

a(i)=
b(i)+...
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OpenMP do/for Directives (3)

clause can be one of the following:
private(list) [see later: Data Model]
reduction(operator:list) [see later: Data Model]
schedule( type [ , chunk ] )
nowait (C/C++:     on    #pragma omp for)

(Fortran: on    $!OMP END DO)
...

Implicit barrier at the end of do/for unless nowait is 
specified
If nowait is specified, threads do not synchronize at the 
end of the parallel loop
schedule clause specifies how iterations of the loop are 
distributed among the threads of the team. 

Default is implementation-dependent
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OpenMP schedule Clause

Within schedule( type [ , chunk ] ) type can be one of the following:
static: Iterations are divided into pieces of a size specified by chunk. The 
pieces are statically assigned to threads in the team in a round-robin fashion in 
the order of the thread number.
Default chunk size: one contiguous piece for each thread.
dynamic: Iterations are broken into pieces of a size specified by chunk. As 
each thread finishes a piece of the iteration space, it dynamically obtains the 
next set of iterations.   Default chunk size: 1.
guided: The chunk size is reduced in an exponentially decreasing manner with 
each dispatched piece of the iteration space. 
chunk specifies the smallest piece (except possibly the last).
Default chunk size:  1. Initial chunk size is implementation dependent. 
runtime: The decision regarding scheduling is deferred until run time. The 
schedule type and chunk size can be chosen at run time by setting the 
OMP_SCHEDULE environment variable.

Default schedule: implementation dependent.
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Loop scheduling

static dynamic(3) guided(1)
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Dense matrix vector multiplication

start_time = ...
!$OMP PARALLEL PRIVATE(N,J,I)
do n = 1 , loops
!$OMP DO SCHEDULE(RUNTIME)

do i=1,N
do j=1,N
y(i)=y(i)+a(j,i)*x(j)

end do
end do

!$OMP END DO
call obscure(…) ! Do not interchange n & (i,j) loops

enddo
!$OMP END PARALLEL
end_time = ...
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Dense matrix vector multiplication
SGI Origin; OMP_NUM_THREADS = 4
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Dense matrix vector multiplication
SGI Origin; OMP_NUM_THREADS = 4

0 500 1000 1500 2000
N

0

500

1000

1500

2000

M
F

lo
p/

s

SCHEDULE=STATIC
SCHEDULE=DYNAMIC,1
SCHEDULE=DYNAMIC,16

hpc@rrze.uni-erlangen.de 68Parallelrechner SS 2009

Dense matrix vector multiplication
SGI Origin; OMP_NUM_THREADS = 4
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Dense matrix vector multiplication
SGI Origin; OMP_SCHEDULE=STATIC
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Dense matrix vector multiplication
SGI Origin; OMP_SCHEDULE=STATIC
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Conditional parallelism: if clause

Allows execution of a code region in serial or parallel, 
depending on a condition

Fortran:
!$omp parallel if (condition)
... (block)

!$omp end parallel

C/C++:
#pragma omp parallel if(condition)

structured-block

Usage:
disable parallelism dynamically
define crossover points for optimal performance

may require manual or semi-automatic tuning
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Example for crossover points:
Vector triad with 4 threads on 4-CPU Itanium2

... if (N >= 7000)

thread 
startup 

latencies
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OpenMP reduction Clause

reduction (operator:list)
Performs a reduction on the variables that appear in list, with 
the operator operator
operator: one of

Fortran:
+, *, -, .and., .or., .eqv., .neqv. or 
max, min, iand, ior, or ieor

C/C++:
+, *, -, &, ^, |, &&, or || 

Variables must be shared in the enclosing context
At the end of the reduction, the shared variable is updated to 
reflect the result of combining the original value of the shared
reduction variable with the final value of each of the private 
copies using the operator specified
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OpenMP reduction  — an example (C/C++)

sm = 0;
#pragma parallel 
{
#pragma omp for private(r)  

reduction(+:sm)
for( i=0; i<20; i++)
{ r = work(i);

sm = sm + r ;
} /*end for*/

} /*end parallel*/
printf("sum=%f\n",sm);

i=
0,4

sm=0

i=
5,9

i=
10,14

i=
15,19

enddo enddo enddo enddo

r=... r=... r=... r=...
sm=
sm+r

sm=
sm+r

sm=
sm+r

sm=
sm+r

C / C++:
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Example: Solving the heat conduction equation

Square piece of metal
Temperature Φ(x,y,t)
Boundary values:
Φ(x,1,t) = 1, Φ(x,0,t) = 0,  
Φ(0,y,t) = y = Φ(1,y,t) 
Initial values for all x, y < 1 
are zero

Temporal evolution:
to stationary state
partial differential equation

x

y

1

1

2

2

2

2

yxt ∂
Φ∂

+
∂
Φ∂

=
∂
Φ∂
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Heat conduction (2): algorithm for solution

Interested in stationary state
discretization in space: xi, yi

2-D Array Φ
discretization in time:  

steps δt

repeatedly calculate 
increments

until δΦ=0 reached.

⎥
⎦

⎤
⎢
⎣

⎡ Φ−−Φ++Φ
+

Φ−−Φ++Φ
⋅=Φ 22

),(2)1,()1,(),(2),1(),1(),(
dy

kikiki
dx

kikikitki δδ

x1

y

1

dx

dy
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Heat Conduction (3): data structures

2-dimensional array phi for heat values
equally large phin, to which updates are written
Iterate updates until stationary value is reached
Both arrays shared
Tile grid area to OpenMP threads
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Heat Conduction (3): code for updates

! iteration 
do it=1,itmax 

dphimax=0. 
!$OMP parallel do private(dphi,i) reduction(max:dphimax)

do k=1,kmax-1 
do i=1,imax-1 

dphi=(phi(i+1,k)+phi(i-1,k)-2.0_8*phi(i,k))*dy2i  & 
+(phi(i,k+1)+phi(i,k-1)-2.0_8*phi(i,k))*dx2i 

dphi=dphi*dt
dphimax=max(dphimax,abs(dphi)) 
phin(i,k)=phi(i,k)+dphi

enddo
enddo

!$OMP end parallel do

!$OMP parallel do
do k=1,kmax-1 
do i=1,imax-1 

phi(i,k)=phin(i,k) 
enddo
enddo

!$OMP end parallel do
!required precision reached? 

if(dphimax.lt.eps) goto 10 
enddo
10 continue 
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OpenMP Synchronization

Implicit Barrier
beginning and end of parallel constructs
end of all other control constructs
implicit synchronization can be removed 
with nowait clause

Explicit synchronization
critical
atomic
single
master
barrier
flush
omp_set_lock() and similar API functions
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Synchronization Constructs:
single directive

The enclosed code is executed by 
exactly one thread, which one is 
unspecified

Fortran:
!$OMP SINGLE [clause[[,]clause]…]

block
!$OMP END SINGLE [NOWAIT]

C/C++:
#pragma omp single [clause[[,]clause]…] [nowait] new-line

structured-block
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Synchronization Constructs:
single directive

The other threads in the team skip the enclosed section of 
code and continue execution. There is an implied barrier 
at the exit of the single section!

may not appear within a parallel do (deadlock!)
nowait clause after end single (or at start of parallel 
region in C/C++) suppresses synchronization
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Synchronization Constructs:
barrier directive

Synchronizes all threads in the team
Fortran:
!$OMP BARRIER

C/C++:
#pragma omp barrier new-line

In C(++) the directive must appear inside a block or compound 
statement

After all threads have encountered the barrier, they 
continue to execute the code after it in parallel

Barrier is a collective operation: it must either be 
encountered by all threads in the team or none at all

else: deadlock!
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Synchronization Constructs:
API Locking Functions

OpenMP API provides some functions that allow explicit
locking (POSIX: „mutex“)
Explicit locking has user-defined semantics

The compiler knows nothing about the binding of a lock to a 
resource

Simple variables can be protected by directives
(atomic/critical), but how about more complicated
constructs?

User-defined data structures
Thread-unsafe library routines
Arrays of objects
…

API functions allow more flexible strategies when a 
resource is locked

Lock may be tested without blocking
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API Locking Functions

set lock resource

Lock

use resource

block or do some
other stuff

Thread 1

Thread 2

try to set lock

Threads must agree on 
which lock protects
which resource!

unset lock

set lock
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API Locking Functions:
Lock Definitions

A lock must be defined and initialized before it can be
used
Fortran:
INTEGER (KIND=OMP_LOCK_KIND) :: lockvar
CALL OMP_INIT_LOCK(lockvar)

C/C++:
#include <omp.h>
omp_lock_t lockvar;
omp_init_lock(&lockvar);

Initialization is required to use the lock afterwards
Lock can be removed (uninitialized) if not needed any more

OMP_DESTROY_LOCK subroutine, omp_destroy_lock()
function
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API Locking Functions:
Setting and Unsetting Locks

Setting and unsetting a lock is an atomic operation
Fortran:
CALL MP_SET_LOCK(lockvar)
CALL MP_UNSET_LOCK(lockvar)

C/C++:
omp_set_lock(&lockvar);
omp_unset_lock(&lockvar);

lockvar must be an initialized lock variable
Setting the lock implies blocking if the lock is not 
available (i.e. set by another thread)

threads waíts until lock becomes available
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API Locking Functions:
Testing Locks

Test a lock and set it if it is unlocked (non-blocking)
Fortran:
LOGICAL locked
locked = OMP_TEST_LOCK(lockvar)

C/C++:
int locked;
locked = omp_test_lock(&lockvar);

If the lock is already locked, returns with .FALSE. or zero, 
else sets it and returns .TRUE. or nonzero

Only way to overlap work and resource sharing
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API Locking Functions:
Example

program uselock
integer omp_get_thread_num
logical omp_test_lock
external omp_get_thread_num , omp_test_lock
integer LCK,id
call OMP_INIT_LOCK(LCK)

!$OMP PARALLEL SHARED(LCK) PRIVATE(ID)
id=OMP_GET_THREAD_NUM()
do while(.not. OMP_TEST_LOCK(LCK))

call dosomework(id)
end do
print*,'thread id=', id , 'calls work'
call work(id)
call OMP_UNSET_LOCK(LCK) 

!$OMP END PARALLEL
call OMP_DESTROY_LOCK
end

protected by LCK

Work while waiting for lock
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OpenMP library routines

Querying routines
how many threads are there?
who am I?
where am I?
what resources are available?

Controlling parallel execution
set number of threads
set execution mode
implement own synchronization constructs
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OpenMP library routines (1)

Function calls return type INTEGER unless specified

OMP_GET_NUM_THREADS()
yields number of threads in present environment
always 1 within sequentially executed region

call OMP_SET_NUM_THREADS(nthreads) (Subroutine call)
set number of threads to a definite value 

0 ≤ nthreads < omp_get_max_threads()
useful for specific algorithms
dynamic thread number assignment must be deactivated
overrides setting of OMP_NUM_THREADS

OMP_GET_THREAD_NUM()
yields index of executing thread (0, ..., nthreads-1)

OMP_GET_NUM_PROCS()
yields number of processors available for multithreading

Always 8 for SR8000, # of processors for SGI (28 at RRZE)

in serial 
part only!
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OpenMP library routines (2)

OMP_GET_MAX_THREADS()

maximum number of threads potentially available
(e.g., as set by operating environment/batch system)

OMP_IN_PARALLEL() (logical)
query whether program is executed in parallel or sequentially

In the example program, thread ID is used to distribute work
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OpenMP

Control Constructs Synchronization ConstructsData Constructs

Binding

Nesting

Conditional 
Compilation

Master

Critical

Barrier

Atomic

Ordered

ThreadPrivate OMP_SCHEDULE

Static

Dynamic,chunk

Guided,chunk

OMP_NUM_THREADS

OMP_DYNAMIC

OMP_NESTED

Environment Functions

Lock Functions

Work Sharing

Sections

Single

Do

Schedule

Ordered

Parallel Region

If Data Scope

Shared

Private

Reduction

CopyIn

Default

FirstPrivate

LastPrivate

Runtime Library

Directives

Environment Variables

OpenMP Constructs reviewed
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OpenMP Pitfalls:
Three Types of Shared-Memory Errors

Race Condition
Def.: Two threads access the same shared variable and

at least one thread modifies the variable and
the sequence of the accesses is undefined, i.e. 
unsynchronized

The result of a program depends on the detailed timing of the 
threads in the team.
This is often caused by unintended sharing of data

Deadlock
Threads lock up waiting on a locked resource that will never 
become free.

Avoid lock functions if possible
At least avoid nesting different locks

Livelock
multiple threads work forever on individual tasks
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Example for race condition (1)

The result varies un-
predictably based on specific 
order of execution for each 
section.
Wrong answers produced 
without warning!
Solution: Apply synchronization 
constructs

!$omp parallel sections
A = B + C

!$omp section
B = A + C

!$omp section
C = B + A

!$omp end parallel sections

ic = 0
!$omp parallel sections
!$omp section
a = b + c
ic = 1

!$omp section
do while (ic < 1)

!$omp flush(ic)
end do
b = a + c
ic = 2
... (etc)

!$omp end parallel sections

might effectively serialize
code!
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Example for race condition (2)

The result varies unpredictably because the value of X 
isn’t dependable until the barrier at the end of the do 
loop.
Solution: Be careful when using NOWAIT.

!$OMP PARALLEL SHARED (X), PRIVATE(TMP) 
ID = OMP_GET_THREAD_NUM()

!$OMP DO REDUCTION(+:X)
DO 100 I=1,100

TMP = WORK1(I)
X = X + TMP

100  CONTINUE
!$OMP END DO NOWAIT

Y(ID) = WORK2(X,ID)
!$OMP END PARALLEL   
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Peformance Pitfalls with OpenMP

Thread startup and synchronization overhead
Every parallel and worksharing region takes time for the threads 
to start

Do not parallelize short loops! (cf. if clause)
Locks, critical regions, barriers synchronize threads

If possible, privatize data and synchronize only at the end
False sharing

Avoid threads accessing data items close by in memory
False sharing can often be circumvented by padding

False sharing is disastrous, but can be fixed easily
ccNUMA locality problems

Memory pages are not where access for threads is most efficient
Non-locality and congestion
Fixed by first-touch initialization
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OpenMP Overhead

As with intra-node MPI, OpenMP loop start overhead 
varies with the mutual position of threads in a team
Possible variations

Intra-socket vs. inter-socket
Different overhead for “parallel for” vs. plain “for”
If one multi-threaded MPI process spans multiple sockets,

… are neighboring threads on neighboring cores?
… or are threads distributed “round-robin” across cores?

Test benchmark: Vector triad
#pragma omp parallel
for(int j=0; j < NITER; j++){
#pragma omp (parallel) for

for(i=0; i < N; ++i)
a[i]=b[i]+c[i]*d[i];
if(OBSCURE)

dummy(a,b,c,d);
}

Look at performance for small
array sizes!
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OpenMP overhead

Nomenclature:

1S/2S
1-/2-socket

RR
round-robin

SS
socket-
socket

inner
parallel on 
inner loop

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

Affinity matters!
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Memory Locality Problems

ccNUMA:
whole memory is transparently accessible by all processors
but physically distributed
with varying bandwidth and latency
and potential contention (shared memory paths)

How do we make sure that memory access is always as 
"local" and "distributed" as possible?

C C C C

M M

C C C C

M M
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Memory Locality Problems

"Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the 
processor that first touches it!

Except if there is not enough local memory available
this might be a problem, see later

Caveat: "touch" means "write", not "allocate"
Example: 

double *huge = (double*)malloc(N*sizeof(double));
// memory not mapped yet
for(i=0; i<N; i++) // or i+=PAGE_SIZE

huge[i] = 0.0; // mapping takes place here!

It is sufficient to touch a single item to map the entire OS page
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Memory locality effects on ccNUMA

OpenMP triad on 2-socket dual-core Opteron

Switch to NT 
store (no RFO)

>2GB memory usage

Contention effectNon-locality effect

In-cache perf. largely 
untouched
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Memory Locality Problems

Locality of reference is key to scalable performance on 
ccNUMA

Less of a problem with distributed memory (MPI) programming, but
see below

What factors can destroy locality?
MPI programming (see later):

processes lose their association with the CPU the mapping took place 
on originally
OS kernel tries to maintain strong affinity, but sometimes fails

Shared Memory Programming (OpenMP,…):
threads losing association with the CPU the mapping took place on 
originally
improper initialization of distributed data

All cases: 
Other agents (e.g., OS kernel) may fill memory with data that prevents 
optimal placement of user data
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Coding for Data Locality

Integer,parameter :: N=1000000
Real*8 A(N), B(N)

A=0.d0

!$OMP parallel do
do I = 1, N

B(i) = function ( A(i) )
end do

Integer,parameter :: N=1000000
Real*8 A(N),B(N)

!$OMP parallel do
do I = 1, N

A(i)=0.d0
dnd do

!$OMP parallel do
do I = 1, N

B(i) = function ( A(i) )
end do

Simplest case: explicit initialization 
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Coding for Data Locality

Sometimes initialization is not so obvious: I/O cannot be 
easily parallelized, so "localize" arrays before I/O

Integer,parameter :: N=1000000
Real*8 A(N), B(N)

READ(1000) A
!$OMP parallel do
Do I = 1, N

B(i) = function ( A(i) )
End do

Integer,parameter :: N=1000000
Real*8 A(N),B(N)

!$OMP parallel do
Do I = 1, N

A(i)=0.d0
End do
READ(1000) A
!$OMP parallel do
Do I = 1, N

B(i) = function ( A(i) )
End do
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Coding for Data Locality

Required condition: OpenMP loop schedule of 
initialization must be the same as in all computational 
loops

best choice: static! Specify explicitly on all NUMA-sensitive 
loops, just to be sure…
imposes some constraints on possible optimizations (e.g. load 
balancing) → see exercises

How about global objects?
better not use them
if communication vs. computation is favorable, might consider 
properly placed copies of global data
in C++, STL allocators provide an elegant solution
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Coding for Data Locality:
Placement of static arrays or arrays of objects

Speaking of C++: Don't forget that constructors tend to 
touch the data members of an object. Example:

class D {
double d;

public:
D(double _d=0.0) throw() : d(_d) {}
inline D operator+(const D& o) throw() {
return D(d+o.d);

}
inline D operator*(const D& o) throw() {
return D(d*o.d);

}
...
};

→ placement problem with 
D* array = new D[1000000];
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Coding for Data Locality:
Parallel first touch for arrays of objects

Solution: Provide overloaded new operator or special function 
that places the memory before constructors are called 
(PAGE_BITS = base-2 log of pagesize)

template <class T> T* pnew(size_t n) {
size_t st = sizeof(T);
int ofs,len=n*st;
int i,pages = len >> PAGE_BITS;
char *p = new char[len];

#pragma omp parallel for schedule(static) private(ofs)
for(i=0; i<pages; ++i) {
ofs = static_cast<size_t>(i) << PAGE_BITS;
p[ofs]=0;

}
#pragma omp parallel for schedule(static) private(ofs)

for(ofs=0; ofs<n; ++ofs) {
new(static_cast<void*>(p+ofs*st)) T;

}
return static_cast<T*>(m);

}

placement 
new!

parallel first touch
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Coding for Data Locality:
NUMA allocator for parallel first touch in STL vector
template <class T> class NUMA_Allocator {
public:

T* allocate(size_type numObjects, const void  
*localityHint=0) {

size_type ofs,len = numObjects * sizeof(T);
void *m = malloc(len);
char *p = static_cast<char*>(m);
int i,pages = len >> PAGE_BITS;

#pragma omp parallel for schedule(static) private(ofs)
for(i=0; i<pages; ++i) {
ofs = static_cast<size_t>(i) << PAGE_BITS;
p[ofs]=0;

}
return static_cast<pointer>(m);

}
...
}; Application:

vector<double,NUMA_Allocator<double> > x(1000000)
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ccNUMA problems beyond OpenMP

Can locality problems appear even with correct initialization?
Or even without using OpenMP?

OS uses part of main memory for
disk buffer (FS) cache

If FS cache fills part of memory, 
apps will probably allocate from 
foreign domains

non-local access!

Remedies
Drop FS cache pages after user job has run (admin’s job)
User can run “sweeper” code that allocates and touches all physical 
memory before starting the real application

P1
C

P2
C

C C

MI

P3
C

P4
C

C C

MI

BC

data(3)

BC

data(3)

data(1)
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ccNUMA problems beyond OpenMP

Real-world example: ccNUMA vs. UMA and the Linux 
buffer cache
Compare two 4-way systems: AMD Opteron ccNUMA vs. Intel 
UMA, 4 GB main memory

Run 4 concurrent
triads after writing
a large file

Report perfor-
mance vs. file size

Drop FS cache after
each data point
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