
Thirteen modern ways to fool the massesThirteen modern ways to fool the massesThirteen modern ways to fool the masses Thirteen modern ways to fool the masses
with performance results on parallel with performance results on parallel
computerscomputerscomputerscomputers

Georg HagerGeorg HagerGeorg HagerGeorg Hager
Erlangen Regional Computing Center Erlangen Regional Computing Center (RRZE)(RRZE)
University of ErlangenUniversity of Erlangen--NurembergNurembergUniversity of ErlangenUniversity of Erlangen NurembergNuremberg

12th Teraflop Workshop12th Teraflop Workshop12th Teraflop Workshop12th Teraflop Workshop
HLRS, 15.03.2010HLRS, 15.03.2010

1991

David H. Bailey
Supercomputing Review, August 1991, p. 54-55
“Twelve Ways to Fool the Masses When Giving Performance Results on ParallelTwelve Ways to Fool the Masses When Giving Performance Results on Parallel
Computers”

1. Quote only 32-bit performance results, not 64-bit results.
2. Present performance figures for an inner kernel, and then represent these figures as the

performance of the entire application.
3. Quietly employ assembly code and other low-level language constructs.
4. Scale up the problem size with the number of processors, but omit any mention of this fact.
5. Quote performance results projected to a full system.
6. Compare your results against scalar, unoptimized code on Crays.6. Compare your results against scalar, unoptimized code on Crays.
7. When direct run time comparisons are required, compare with an old code on an obsolete system.
8. If MFLOPS rates must be quoted, base the operation count on the parallel implementation, not on

the best sequential implementationthe best sequential implementation.
9. Quote performance in terms of processor utilization, parallel speedups or MFLOPS per dollar.
10. Mutilate the algorithm used in the parallel implementation to match the architecture.
11. Measure parallel run times on a dedicated system, but measure conventional run times in a busy

environment.
12. If all else fails, show pretty pictures and animated videos, and don't talk about performance.

215.03.2010 Fooling the masses

At that time…

The “oxen vs. chicken” debate was in full swing

Cray was dominating in the “oxen” department

People were more used/forced to system-specific optimizations

The question whether to use 32-bit or 64-bit FP arithmetic was
more important than it was today

However GPUs have re opened this can (and somebody should have longHowever, GPUs have re-opened this can (and somebody should have long
ago)

315.03.2010 Fooling the masses

Today we have…

Hybrid, hierarchical systems
Multi-socket, multi-core, ccNUMA, heterogeneous networks

Multi-core processors
Shared/separate caches, shared data paths

Fl d li ll th lFledglings all over the place
Cell, Clearspeed, GPUs... (peep, peep)

Commodity everywhereCommodity everywhere
x86-type processors, cost-effective interconnects, GNU/Linux

The landscape of High Performance Computing and the way
we think about HPC has changed over the last 19 years, and

we need an update!

Still, many of Bailey’s points are valid without change

415.03.2010 Fooling the masses

Stunt 1

Report scalability, not absolute performance.

workerswithwork/time NSpeedup:
 worker withwork/time
 workerswithwork/time
1

)(NNS =

“Good” scalability ↔ S(N) ≈ N , but there is no mention of how fast you
l bl !can solve your problem!

Consequence: Comparing different systems is much easier when using
scalability instead of work/time directlyscalability instead of work/time directly

515.03.2010 Fooling the masses

Stunt 1: Scalability vs. performance

And… instant success!

160

180

40

45

120

140

30

35

or
k/

tim
e)

up

80

100

20

25

m
an

ce
 (w

o
Sp

ee
du

40

60

10

15

Pe
rf

or
m

0

20

0 10 20 30 40 50 60 70
0

5

0 10 20 30 40 50 60 70

NEC ClusterNEC Cluster
CPUs or nodes

615.03.2010 Fooling the masses

Stunt 2

Slow down code execution.

This is useful whenever there is some noticeable “non-execution”
overhead

Parallel speedup with work ~ Nα:
(α=0: strong α=1: weak scaling))()1(

)1()(1 NcNss
NssNS α

α

+−+
−+

= −
(α=0: strong, α=1: weak scaling)

Now let’s slow down execution by a factor of μ>1 (and set α=0):

)()1(NcNss α++

Now let s slow down execution by a factor of μ>1 (and set α=0):

()
μ

σ /)(/)1(
1

)(/)1(
)(

NNNN
NS ==

I.e., if there is overhead, the slow code/machine scales better:

() μμσ /)(/)1()(/)1(
)(

NcNssNcNss +−++−+

I.e., if there is overhead, the slow code/machine scales better:

0)()()(1 >> = NcNSNS if μμ

715.03.2010 Fooling the masses

Stunt 2: Slow computing

Corollaries:

1. Do not use high compiler optimization levels or the latest compiler
versions.

2. If scalability is still bad, parallelize some short loops with OpenMP. That
way you can get some extra bonus for a scalable hybrid code.

If someone asks for time to solution, answer that if you had a bigger
machine, you could get the solution as fast as you want. This is of
course due to the superior scalability of your codecourse due to the superior scalability of your code.

815.03.2010 Fooling the masses

Stunt 2: Slow computing

“Slow” machines have some surprises in store…
Let’s look at μ=2:

fast N=4 slow N=8 fast N=4 slow N=8

calc comm calc comm

Tf TfTf

Ts < Tf ?

Tf

1/Tf < 2/T ?

Ts

s f

This happens if
Ts

1/Tf < 2/Ts ?

This happens ifThis happens if

00)(=<′ sNc @ 0)()(=> s
µ
µNcNc @

What’s the
catch?

915.03.2010 Fooling the masses

µ

Stunt 2: Slow computing

Example for µ=4 and c(N)~N-2/3 at strong scaling:

35

40 The performance is
better with µN slow
CPUs than with N fast

25

30

an
ce

CPUs than with N fast
CPUs
“Slow computing” can

15

20

Pe
rf

or
m

a p g
effectively lessen the
impact of
comm nication

5

10

communication
overhead
We assume that the

0

5

0 10 20 30 40 50 60 70

We assume that the
network is the same in
both machines

fast slow # nodes

1015.03.2010 Fooling the masses

Stunt 3 (The power of obfuscation, part I)

If scalability doesn’t look good enough, use a logarithmic scale to
drive your point home.

Everything looks OK if you plot it the right way!

60

70100

60

70
1. Linear plot: bad

li t thi
50

60

40

50

60scaling, strange things
at N=32

30

40
10
30

402. Log-log plot: better
scaling, but still the
N=32 problem

10

20

10

20
p

3. Log-linear plot: N=32
problem gone

0
0 10 20 30 40 50 60 70

Speedup Ideal

1
1 10 100

Speedup Ideal

0
1 10 100

Speedup Ideal

problem gone

1115.03.2010 Fooling the masses

Stunt 3: Log scale

© Top500 `08

1215.03.2010 Fooling the masses

p

Stunt 4

If you must report actual performance, quietly employ weak
scaling to show off

It’s all in that bloody denominator…)()1(
)1()(1 NcNss
NssNS α

α

+−+
−+

= −

At α=1 the world looks so much nicer:

)()1(NcNss α++

)1()(NssNS −+
=

)(1
)(

Nc
NS

+

… but keep in mind: Do not mention the term “weak scaling” or you will be
asked nasty questions about parallel efficiency.asked nasty questions about parallel efficiency.

1315.03.2010 Fooling the masses

Stunt 4: Weak scaling

But weak scaling gives us much more than just a “straight” graph. It
gives us perfect scaling if we choose the right metric to look at!

Assumption: Weak scaling with parallel efficiency ε = S(N)/N << 1 and
no other overheadno other overhead

has a small slopeNssNS)1()(−+= p

But: If we choose a metric for work that is
applicable to the parallel part alone

)()(

applicable to the parallel part alone,
work/time scales linearly.

So all you need to do is plot Mflop/s, MLUP/s,
or anything that doesn’t happen in the serial
part and you can even show real performance
numbers! See also stunt #10

1415.03.2010 Fooling the masses

Stunt 5 (The power of obfuscation, part II)

Instead of performance, plot absolute runtime vs. CPU count

Very, very popular indeed!
1,2

Nobody will be able to tell
whether your code actually

1

re

Scales

0,6

0,8

???

un
tim

e
m

e
pe

r c
or

C ll

0,4
R

u
C

PU
 ti

m

Corollary:

CPU time per core is even 0

0,2

CPU time per core is even
better because it omits
most overheads…

0 10 20 30 40 50 60 70

CPUs

1515.03.2010 Fooling the masses

Stunt 6 (The power of obfuscation, part III)

Compare different systems by showing the log of parallel
efficiency vs. CPU count

Unusual ways of putting
1

0 10 20 30 40 50 60 70

nodes/CPUs

data together surprise
and confuse your

di nc
y

Cl taudience

Remember: Legends
0,1

el
 e

ffi
ci

en Cluster

NECRemember: Legends
can be any size you
like!

Pa
ra

lle NEC

like!

0,01

Cluster eff. NEC eff.

1615.03.2010 Fooling the masses

Stunt 7

Emphasize the quality of your shiny accelerator code by
comparing it with scalar, unoptimized code on a single core of a
t d d CPU A d GCC 2 7 2standard CPU. And use GCC 2.7.2.

This should be obvious! GPUs are leet and you can’t waste your preciousThis should be obvious! GPUs are leet, and you can’t waste your precious
time on multi-core parallelization, OpenMP optmization, or even
compiler flags. p g

And besides, don’t the compiler guys always say that the’re “multi-core
enabled”?

Corollary:

Use single precision on the GPU but double precision on the CPU ThisUse single precision on the GPU but double precision on the CPU. This
will cut on the effective bandwidths, cache size, and peak performance
of the latter and let the former shine.

1715.03.2010 Fooling the masses

Stunt 8

Always quote GFlops, MIps, Watts per Flop or any other irrelevant
interesting metric instead of inverse time to solution.

Flops are so cool it hurts:
for(i=0; i<N; ++i)
for(j=0; j<N; ++j)

b[i][j] = 0.25*(a[i-1][j]+a[i+1][j]+a[i][j-1]+a[i][j+1]);

for(i=0; i<N; ++i)
for(j=0; j<N; ++j)

b[i][j] = 0.25*(a[i-1][j]+a[i+1][j]+a[i][j-1]+a[i][j+1]);

for(i=0; i<N; ++i)for(i=0; i<N; ++i)
for(j=0; j<N; ++j)

b[i][j] = 0.25*a[i-1][j]+0.25*a[i+1][j]
+0.25*a[i][j-1]+0.25*a[i][j+1];

for(j=0; j<N; ++j)
b[i][j] = 0.25*a[i-1][j]+0.25*a[i+1][j]

+0.25*a[i][j-1]+0.25*a[i][j+1];

“Floptimization”

Watts/Flop are an ingenious fallback – who would dare question a truly
“green” application/system? Except maybe some investors…

18

g pp y p y

15.03.2010 Fooling the masses

Stunt 9

Ignore affinity and topology issues. Real scientists are not
bothered by such details.

Multi-core, cache groups, ccNUMA, SMT, network hierarchies etc. are just
parts of a vicious plot to take the fun out of computing Ignoring thoseparts of a vicious plot to take the fun out of computing. Ignoring those
issues will make them go away. If people ask specific questions about
it, answer that it’s the OS’s or the compiler’s job., p j

Shared cache re use

OpenMP overhead

P
C
C

P
C
C

P
C
C

P
C
C

C

P
C
C

P
C
C

P
C
C

P
C
C

C

Shared cache re-use

Bandwidth contention

OS buffer cache

MI

C

MI

C

Intra-node MPI

Memory Memory ccNUMA page placement

1915.03.2010 Fooling the masses

Stunt 9: Affinity issues

Re-using shared cache on multi-core CPUs? More cores mean
more performance, do they not?

core0 core1core0 core1

tmp(:,:,3)

on

p()

Memory

y-
di

re
ct

io Memory

x(:,:,:)

z-direction

2015.03.2010 Fooling the masses

Stunt 9: Affinity issues

Memory bandwidth saturation? ccNUMA effects? Shouldn’t the OS
put the threads and pages where they are supposed to be?

Parallel STREAM performance

2115.03.2010 Fooling the masses

Stunt 9: Affinity issues

Intra-node MPI is infinitely fast! Look at those latencies!

7,4
PPPP PPPP

MPI intra-node and inter-node latencies on Cray XT5

,

7

8 P
C
C

P
C
C

P
C
C

MI

P
C
C

C

P
C
C

P
C
C

P
C
C

MI

P
C
C

C

5

6

[µ
s]

MI

Memory

MI

Memory

3

4

La
te

nc
y Memory Memory

0,63 0,49
1

2

0
inter-node inter-socket intra-socket

22Fooling the masses15.03.2010

Stunt 9: Affinity issues

Intra-node MPI is infinitely fast! Low-level benchmarking is
unreliable!

Shared cache
advantage

Between two cores
of one socket

Between two nodes
via interconnect

fabricfabric
Between two sockets
of one node (cache
effects eliminated))

23Fooling the masses15.03.2010

Stunt 9: Affinity issues

Why should you reverse engineer the overcomplicated cache
topology of those modern systems?

Xeon E5420 shared L2 same socket different socket
2 Threads
pthreads_barrier_wait 5863 27032 27647
omp barrier (icc 11.0) 576 760 1269
Spin loop 259 485 11602

Nehalem
2 Threads

Shared SMT
threads

shared L3 different socket

pthreads_barrier_wait 23352 4796 49237
omp barrier (icc 11.0) 2761 479 1206
Spin loop 17388 267 787

2415.03.2010 Fooling the masses

Stunt 9: Affinity – if you still insist…

Command line tools for Linux:
easy to install
works with standard linux 2.6 kernel
simple and clear to use
support Intel and AMD CPUs

Current tools:
likwid-topology: Print thread and cache topology
likwid-perfCtr: Measure performance counters
likwid-features: View and enable/disable hardware prefetchers
likwid-pin: Pin threaded application without touching code

Open source project (GPL v2):
http://code.google.com/p/likwid/

2515.03.2010 Fooling the masses

Stunt 10

If you really can’t reduce communication overhead, argue in favor
of “reliable inefficiency.”

Even if you spend 80%
of time comm nicating

1

of time communicating,
that’s ok if the ratio
stays constant – it

0,8

im
e

stays constant it
means you can scale
to any size!

0,4

0,6

on
 o

f r
un

ti

And fill any machine. 0,2

0,4

Fr
ac

tio

0
1 10 100 1000

nodes/CPUsCalculation Computation

Efficiency constant
for large N

nodes/CPUs

2615.03.2010 Fooling the masses

Stunt 11 (The power of obfuscation, part IV)

Performance modeling is for wimps. Show real data. Plenty.
And then some.

Don’t try to make sense
of o r data b fitting it

300

of your data by fitting it
to a model. Instead, show
at least 8 graphs per plot, 200

250

Machine 1

eat least 8 graphs per plot,
all in bright pastel colors,
with different symbols. 150

200
Machine 2

Machine 3

Machine 4

Machine 5fo
rm

an
ce

If t ti

100

Machine 5

Machine 6

Machine 7

Machine 8

Pe
rf

If nasty questions pop up,
say your code is so
complex that no model

0

50

0 100 200 300 400 500 600complex that no model
can describe it.

0 100 200 300 400 500 600

nodes/CPUs

2715.03.2010 Fooling the masses

Stunt 12

If they get you cornered, blame it all on OS jitter.

They will understand and nod knowingly.

Corollary:Corollary:
Depending on the audience,
TLB misses may work just as fine

28

TLB misses may work just as fine.

15.03.2010 Fooling the masses

Stunt 13

If all else fails, show pretty pictures and animated videos, and
don’t talk about performance.

In four decades of supercomputing, this was always the best-selling
plan and it will stay that way foreverplan, and it will stay that way forever.

2915.03.2010 Fooling the masses

THANK YOUTHANK YOU

15.03.2010 Fooling the masses

