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1991

David H. Bailey
Supercomputing Review, August 1991, p. 54-55 
“Twelve Ways to Fool the Masses When Giving Performance Results on ParallelTwelve Ways to Fool the Masses When Giving Performance Results on Parallel 
Computers”

1. Quote only 32-bit performance results, not 64-bit results.
2. Present performance figures for an inner kernel, and then represent these figures as the 

performance of the entire application.
3. Quietly employ assembly code and other low-level language constructs.
4. Scale up the problem size with the number of processors, but omit any mention of this fact.
5. Quote performance results projected to a full system.
6. Compare your results against scalar, unoptimized code on Crays.6. Compare your results against scalar, unoptimized code on Crays.
7. When direct run time comparisons are required, compare with an old code on an obsolete system.
8. If MFLOPS rates must be quoted, base the operation count on the parallel implementation, not on 

the best sequential implementationthe best sequential implementation.
9. Quote performance in terms of processor utilization, parallel speedups or MFLOPS per dollar.
10. Mutilate the algorithm used in the parallel implementation to match the architecture.
11. Measure parallel run times on a dedicated system, but measure conventional run times in a busy 

environment.
12. If all else fails, show pretty pictures and animated videos, and don't talk about performance.
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At that time…

The “oxen vs. chicken” debate was in full swing

Cray was dominating in the “oxen” department

People were more used/forced to system-specific optimizations

The question whether to use 32-bit or 64-bit FP arithmetic was 
more important than it was today

However GPUs have re opened this can (and somebody should have longHowever, GPUs have re-opened this can (and somebody should have long 
ago)
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Today we have…

Hybrid, hierarchical systems
Multi-socket, multi-core, ccNUMA, heterogeneous networks

Multi-core processors
Shared/separate caches, shared data paths

Fl d li ll th lFledglings all over the place
Cell, Clearspeed, GPUs... (peep, peep)

Commodity everywhereCommodity everywhere
x86-type processors, cost-effective interconnects, GNU/Linux 

The landscape of High Performance Computing and the way 
we think about HPC has changed over the last 19 years, and 

we need an update!

Still, many of Bailey’s points are valid without change
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Stunt 1

Report scalability, not absolute performance.

workerswithwork/time NSpeedup:
 worker  withwork/time
 workerswithwork/time
1

)( NNS =

“Good” scalability ↔ S(N) ≈ N ,  but there is no mention of how fast you 
l bl !can solve your problem!

Consequence: Comparing different systems is much easier when using 
scalability instead of work/time directlyscalability instead of work/time directly
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Stunt 1: Scalability vs. performance

And… instant success!
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Stunt 2

Slow down code execution.

This is useful whenever there is some noticeable “non-execution” 
overhead

Parallel speedup with work ~ Nα:
(α=0: strong α=1: weak scaling) )()1(

)1()( 1 NcNss
NssNS α

α

+−+
−+

= −
(α=0: strong, α=1: weak scaling)

Now let’s slow down execution by a factor of μ>1 (and set α=0):

)()1( NcNss α++

Now let s slow down execution by a factor of μ>1 (and set α=0):

( )
μ

σ /)(/)1(
1

)(/)1(
)(

NNNN
NS ==

I.e., if there is overhead, the slow code/machine scales better:

( ) μμσ /)(/)1()(/)1(
)(

NcNssNcNss +−++−+

I.e., if there is overhead, the slow code/machine scales better:

0)()()( 1 >> = NcNSNS   if   μμ
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Stunt 2: Slow computing

Corollaries:

1. Do not use high compiler optimization levels or the latest compiler 
versions.

2. If scalability is still bad, parallelize some short loops with OpenMP. That 
way you can get some extra bonus for a scalable hybrid code.

If someone asks for time to solution, answer that if you had a bigger 
machine, you could get the solution as fast as you want. This is of 
course due to the superior scalability of your codecourse due to the superior scalability of your code.
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Stunt 2: Slow computing

“Slow” machines have some surprises in store…
Let’s look at μ=2:

fast N=4 slow N=8 fast N=4 slow N=8

calc comm calc comm

Tf TfTf

Ts < Tf ?

Tf

1/Tf < 2/T ?

Ts

s f

This happens if
Ts

1/Tf < 2/Ts  ?

This happens ifThis happens if

00)( =<′ sNc   @  0)()( => s
µ
µNcNc   @  

What’s the 
catch?
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Stunt 2: Slow computing

Example for µ=4 and c(N)~N-2/3 at strong scaling:
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Stunt 3 (The power of obfuscation, part I)

If scalability doesn’t look good enough, use a logarithmic scale to 
drive your point home.

Everything looks OK if you plot it the right way!
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Stunt 3: Log scale

© Top500 `08
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Stunt 4

If you must report actual performance, quietly employ weak 
scaling to show off

It’s all in that bloody denominator… )()1(
)1()( 1 NcNss
NssNS α

α

+−+
−+

= −

At α=1 the world looks so much nicer:

)()1( NcNss α++

)1()( NssNS −+
=

)(1
)(

Nc
NS

+

… but keep in mind: Do not mention the term “weak scaling” or you will be 
asked nasty questions about parallel efficiency.asked nasty questions about parallel efficiency.
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Stunt 4: Weak scaling

But weak scaling gives us much more than just a “straight” graph. It 
gives us perfect scaling if we choose the right metric to look at!

Assumption: Weak scaling with parallel efficiency ε = S(N)/N << 1 and 
no other overheadno other overhead

has a small slopeNssNS )1()( −+= p

But: If we choose a metric for work that is 
applicable to the parallel part alone

)()(

applicable to the parallel part alone, 
work/time scales linearly.

So all you need to do is plot Mflop/s, MLUP/s,
or anything that doesn’t happen in the serial
part and you can even show real performance 
numbers!                          See also stunt #10
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Stunt 5 (The power of obfuscation, part II)

Instead of performance, plot absolute runtime vs. CPU count

Very, very popular indeed!
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Stunt 6 (The power of obfuscation, part III)

Compare different systems by showing the log of parallel 
efficiency vs. CPU count
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Stunt 7

Emphasize the quality of your shiny accelerator code by 
comparing it with scalar, unoptimized code on a single core of a 
t d d CPU A d GCC 2 7 2standard CPU. And use GCC 2.7.2.

This should be obvious! GPUs are leet and you can’t waste your preciousThis should be obvious! GPUs are leet, and you can’t waste your precious 
time on multi-core parallelization, OpenMP optmization, or even 
compiler flags. p g

And besides, don’t the compiler guys always say that the’re “multi-core 
enabled”?

Corollary:

Use single precision on the GPU but double precision on the CPU ThisUse single precision on the GPU but double precision on the CPU. This 
will cut on the effective bandwidths, cache size, and peak performance 
of the latter and let the former shine.
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Stunt 8

Always quote GFlops, MIps, Watts per Flop or any other irrelevant 
interesting metric instead of inverse time to solution.

Flops are so cool it hurts:
for(i=0; i<N; ++i)
for(j=0; j<N; ++j)

b[i][j] = 0.25*(a[i-1][j]+a[i+1][j]+a[i][j-1]+a[i][j+1]);

for(i=0; i<N; ++i)
for(j=0; j<N; ++j)

b[i][j] = 0.25*(a[i-1][j]+a[i+1][j]+a[i][j-1]+a[i][j+1]);

for(i=0; i<N; ++i)for(i=0; i<N; ++i)
for(j=0; j<N; ++j)

b[i][j] = 0.25*a[i-1][j]+0.25*a[i+1][j]
+0.25*a[i][j-1]+0.25*a[i][j+1];

for(j=0; j<N; ++j)
b[i][j] = 0.25*a[i-1][j]+0.25*a[i+1][j]

+0.25*a[i][j-1]+0.25*a[i][j+1];

“Floptimization”

Watts/Flop are an ingenious fallback – who would dare question a truly 
“green” application/system? Except maybe some investors…

18
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Stunt 9

Ignore affinity and topology issues. Real scientists are not 
bothered by such details.

Multi-core, cache groups, ccNUMA, SMT, network hierarchies etc. are just 
parts of a vicious plot to take the fun out of computing Ignoring thoseparts of a vicious plot to take the fun out of computing. Ignoring those 
issues will make them go away. If people ask specific questions about 
it, answer that it’s the OS’s or the compiler’s job., p j
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Stunt 9: Affinity issues

Re-using shared cache on multi-core CPUs? More cores mean 
more performance, do they not?
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Stunt 9: Affinity issues

Memory bandwidth saturation? ccNUMA effects? Shouldn’t the OS 
put the threads and pages where they are supposed to be? 

Parallel STREAM performance
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Stunt 9: Affinity issues

Intra-node MPI is infinitely fast! Look at those latencies!

7,4
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Stunt 9: Affinity issues

Intra-node MPI is infinitely fast! Low-level benchmarking is 
unreliable! 

Shared cache 
advantage

Between two cores 
of one socket

Between two nodes 
via interconnect 

fabricfabric
Between two sockets 
of one node (cache 
effects eliminated))
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Stunt 9: Affinity issues

Why should you reverse engineer the overcomplicated cache 
topology of those modern systems? 

Xeon E5420 shared L2 same socket different socket
2 Threads
pthreads_barrier_wait 5863 27032 27647
omp barrier (icc 11.0) 576 760 1269
Spin loop 259 485 11602

Nehalem
2 Threads

Shared SMT 
threads

shared L3 different socket

pthreads_barrier_wait 23352 4796 49237
omp barrier (icc 11.0) 2761 479 1206
Spin loop 17388 267 787
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Stunt 9: Affinity – if you still insist…

Command line tools for Linux:
easy to install
works with standard linux 2.6 kernel
simple and clear to use
support Intel and AMD CPUs

Current tools:
likwid-topology: Print thread and cache topology
likwid-perfCtr: Measure performance counters
likwid-features: View and enable/disable hardware prefetchers
likwid-pin: Pin threaded application without touching code

Open source project (GPL v2):
http://code.google.com/p/likwid/
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Stunt 10

If you really can’t reduce communication overhead, argue in favor 
of “reliable inefficiency.”

Even if you spend 80%
of time comm nicating

1
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Stunt 11 (The power of obfuscation, part IV)

Performance modeling is for wimps. Show real data. Plenty. 
And then some.

Don’t try to make sense
of o r data b fitting it
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Stunt 12

If they get you cornered, blame it all on OS jitter.

They will understand and nod knowingly.

Corollary:Corollary:
Depending on the audience, 
TLB misses may work just as fine

28

TLB misses may work just as fine.
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Stunt 13

If all else fails, show pretty pictures and animated videos, and 
don’t talk about performance.

In four decades of supercomputing, this was always the best-selling 
plan and it will stay that way foreverplan, and it will stay that way forever.
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THANK YOUTHANK YOU
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