

GHOST, Performance Engineering, SpMVM.

And 42.

Georg Hager Erlangen Regional Computing Center (RRZE) University of Erlangen-Nuremberg Germany

Workshop "Sparse Solvers for Exascale: From Building Blocks to Applications" March 23-25, 2015 Greifswald, Germany

Outline

Some words on the GHOST design

The SELL-C- σ matrix format

The Performance Engineering (PE) process

Analytically modeling spMVM performance

Software for sparse linear algebra

Requirements and possible solutions

Challenges for programming current & future systems

Heterogeneity

- CPU/GPU/Phi
- Addressed by multi-target building blocks & functional parallelism & load balancing & optimized data formats & MPI+X

System topology

- Memory hierarchy, bottlenecks, affinity, ccNUMA, distributed memory
- Addressed by bottleneck awareness & full control of affinity mechanisms & MPI+X

Communication

- Latency/bandwidth, network topology
- Addressed by bottleneck awareness & functional parallelism

GHOST design principles

Not reinventing the wheel

GHOST design guidelines

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG FACULTY OF ENGINEERING

- Enable fully heterogeneous operation
 - CPU + GPU + Phi
- Limit automation
 - The user needs to know what is going on
- Do not force dynamic tasking
 - Allow access locality optimizations
- Do not force C++ or an entirely new language
 - Think "pragmatic"
 - We need to get a job done
- Stick to the well-known "MPI+X" paradigm
 - X = OpenMP, CUDA for now
- Allow functional parallelism
 - Spawn asynchronous tasks for almost anything
- Allow for strict thread/process-core affinity
 - Affinity matters!

Heterogeneous node

"Minimum" process distribution to address this architecture

- Heterogeneity has to be considered for work distribution
 → more power = more work
- 2. Work distribution for data-parallel approach: Divide the matrix rowwise between workers
- 3. Example for memory-bound algorithm and a CPU-GPU node:
 - 1. GPU's memory bandwidth maybe 4x as large as CPU's
 - 2. Sparse matrix has, e.g., 10 million rows
 - → GPU gets assigned 8 million rows
 - → CPU gets assigned 2 million rows

// define task: checkpointing with 1 thread
ghost_task_create(&chkpTask, 1, curTask->LD, &chkp_func, \
 (void *)&chkp func args, GHOST TASK DEFAULT, NULL, 0);

// define task: compute with N-1 threads
ghost_task_create(&compTask, curTask->nThreads-1, \
 curTask->LD, &comp_func, (void *)&comp_func_args, \
 GHOST_TASK_DEFAULT, NULL, 0);

// initiate tasks

ghost_task_enqueue(chkpTask); ghost_task_enqueue(compTask);
// wait for completion

ghost_task_wait(chkpTask); ghost_task_wait(compTask);

10

11 🔳 🚅

SELL-C-σ

Constructing SELL-C-σ

Width of chunk *i*: l_i 1. Pick chunk size C (guided by SIMD/T widths) Pick sorting scope σ 2. 3. Sort rows by length within sorted each sorting scope Sorting scope σ Pad chunks with zeros to 4 make them rectangular Store matrix data in "chunk 5. column major order" Chunk size C sorted "Chunk occupancy": fraction 6. of "useful" matrix entries $\beta_{\text{worst}} = \frac{N+C-1}{CN} \xrightarrow{N \gg C} \frac{1}{C}$ $\beta = \frac{N_{nz}}{\sum_{i=1}^{N_c} C \cdot l_i}$ **SELL-6-12** $\beta = 0.66$

. . .

se" matrices	s from "William	ns Group":			
N	$N_{ m nz}$	N_{nzr}	density	$\beta_{\sigma=1}^{C=16}$	$\beta_{\sigma=256}^{C=16}$
$381,\!689$	$37,\!464,\!962$	98.16	2.57 e- 04	0.63	0.93
$2,\!063,\!494$	$14,\!612,\!663$	7.08	3.43e-06	0.54	0.92
$1,\!447,\!360$	$5,\!514,\!242$	3.81	2.63 e- 06	1.00	1.00
$1,\!504,\!002$	$110,\!879,\!972$	73.72	4.90e-05	1.00	1.00
matrices:					
$217,\!918$	$11,\!634,\!424$	53.39	2.45 e- 04	0.99	1.00
$140,\!874$	$7,\!813,\!404$	55.46	3.94e-04	0.89	0.98
$83,\!334$	$6,\!010,\!480$	72.13	8.65 e- 04	0.94	0.97
$36,\!417$	$4,\!344,\!765$	119.31	3.28e-03	0.84	0.97
$62,\!451$	$4,\!007,\!383$	64.17	1.03e-03	0.90	0.98
	se" matrices N 381,689 2,063,494 1,447,360 1,504,002 matrices: 217,918 140,874 83,334 36,417 62,451	se" matrices from "William N N_{nz} 381,68937,464,9622,063,49414,612,6631,447,3605,514,2421,504,002110,879,972matrices:11,634,424217,91811,634,424140,8747,813,40483,3346,010,48036,4174,344,76562,4514,007,383	se" matrices from "Williams Group": N N_{nz} N_{nzr} 381,68937,464,96298.162,063,49414,612,6637.081,447,3605,514,2423.811,504,002110,879,97273.72matrices:217,91811,634,42453.39140,8747,813,40455.4683,3346,010,48072.1336,4174,344,765119.3162,4514,007,38364.17	se" matrices from "Williams Group": N N_{nz} N_{nzr} density381,68937,464,96298.162.57e-042,063,49414,612,6637.083.43e-061,447,3605,514,2423.812.63e-061,504,002110,879,97273.724.90e-05matrices:217,91811,634,42453.392.45e-04140,8747,813,40455.463.94e-0483,3346,010,48072.138.65e-0436,4174,344,765119.313.28e-0362,4514,007,38364.171.03e-03	se" matrices from "Williams Group":N N_{nz} N_{nzr} density $\beta_{\sigma=1}^{C=16}$ 381,68937,464,96298.162.57e-040.632,063,49414,612,6637.083.43e-060.541,447,3605,514,2423.812.63e-061.001,504,002110,879,97273.724.90e-051.00matrices:217,91811,634,42453.392.45e-040.99140,8747,813,40455.463.94e-040.8983,3346,010,48072.138.65e-040.9436,4174,344,765119.313.28e-030.8462,4514,007,38364.171.03e-030.90

Variants of SELL-C- σ

SELL-6-1 β=0.51

The Performance Engineering (PE) process

Systematic performance analysis and pattern-guided optimization

Step 1 Analysis: Understanding observed performance

Step 2 Formulate Model: Validate pattern and get quantitative insight.

Models in physics

Newtonian mechanics

Fails @ small scales!

Nonrelativistic quantum mechanics

 $i\hbar \frac{\partial}{\partial t}\psi(\vec{r},t) = H\psi(\vec{r},t)$

Fails @ even smaller scales!

Consequences

- If models fail, we learn more
- A simple model can get us very far before we need to refine

Relativistic quantum field theory

 $U(1)_Y \otimes SU(2)_L \otimes SU(3)_c$

Performance Engineering Process: Optimization

The whole PE process at a glance

SpMVM Pattern: BW saturation

Corner case scenarios:

1.
$$\alpha = 0 \rightarrow \text{RHS}$$
 in cache

2.
$$\alpha = \frac{1}{N_{nzc}} \rightarrow \text{Load RHS vector exactly once}$$

If $N_{nzc} \gg 1$, RHS traffic is insignificant: $\overline{P} = \frac{b\beta}{6 \text{ bytes/flop}}$

3. $\alpha \approx 1$ \rightarrow Each RHS load goes to memory

4. $\alpha > 1$ \rightarrow Houston, we've got a problem \odot

Determine α by measuring actual spMVM memory traffic (HPM)

V_{meas} is the measured overall memory data traffic (using, e.g., likwid-perfctr)

Determine α : $\alpha = \frac{1}{4} \left(\frac{V_{meas}}{N_{nz} \cdot 2 \text{ bytes}} - 6 - \frac{8}{N_{nzr}} \right)$

Example: kkt_power matrix on one Intel SNB socket

- 1. $N_{nz} = 14.6 \cdot 10^6$, $N_{nzr} = 7.1$
- 2. $V_{meas} \approx 258 \text{ MB}$

3.
$$\rightarrow \alpha = 0.43, \alpha N_{nzr} = 3.1$$

4. \rightarrow RHS is loaded 3.1 times from memory

5. and:

$$\frac{B_{CRS}^{DP}(\alpha)}{B_{CRS}^{DP}(1/N_{nzc})} = 1.15$$

15% extra traffic → optimization potential!

Download our building block library and KPM application: http://tiny.cc/ghost

General, Hybrid, and Optimized Sparse Toolkit

- MPI + OpenMP + SIMD + CUDA
- Transparent data-parallel heterogeneous execution
- Task-parallelism (checkpointing, comm. hiding, etc.)
- Support for block vectors
 - Automatic code generation for common block vector sizes
 - Hand-implemented tall skinny dense matrix kernels
- Fused kernels ("augmented SpMV")
- SELL-C- σ heterogeneous sparse matrix format

Further information

1. About patterns in Performance Engineering

J. Treibig, G. Hager, and G. Wellein: Performance patterns and hardware metrics on modern multicore processors: Best practices for performance engineering. PROPER 2012, DOI: 10.1007/978-3-642-36949-0_50

2. About Performance Modeling in general

ISC15 Workshop "Performance Modeling: Methods and Applications", July 16, 2015, Frankfurt

3. About our holistic performance engineering approach

PRACE tutorials (July 6-7 @HLRS Stuttgart & December 10-11 @LRZ Garching) SWSC workshop (April 9/10 @U Leuven, Belgium) SC15 tutorial?

Thank you.

