
GHOST, Performance Engineering, SpMVM.

Georg Hager

Erlangen Regional Computing Center (RRZE)

University of Erlangen-Nuremberg

Germany

Workshop “Sparse Solvers for Exascale: From Building Blocks to Applications”

March 23-25, 2015

Greifswald, Germany

And 42.

Some words on the GHOST design

The SELL-C-σ matrix format

The Performance Engineering (PE) process

Analytically modeling spMVM performance

Outline

Software for sparse linear algebra

Requirements and possible solutions

Challenges for programming current & future systems

• Heterogeneity

• CPU/GPU/Phi

• Addressed by multi-target building blocks &

functional parallelism & load balancing &

optimized data formats & MPI+X

• System topology

• Memory hierarchy, bottlenecks, affinity, ccNUMA, distributed memory

• Addressed by bottleneck awareness & full control of affinity mechanisms & MPI+X

• Communication

• Latency/bandwidth, network topology

• Addressed by bottleneck awareness & functional parallelism

GHOST design principles

Not reinventing the wheel

• Enable fully heterogeneous operation

• CPU + GPU + Phi

• Limit automation

• The user needs to know what is going on

• Do not force dynamic tasking

• Allow access locality optimizations

• Do not force C++ or an entirely new language

• Think “pragmatic”

• We need to get a job done

• Stick to the well-known “MPI+X” paradigm

• X = OpenMP, CUDA for now

• Allow functional parallelism

• Spawn asynchronous tasks for almost anything

• Allow for strict thread/process-core affinity

• Affinity matters!

GHOST design guidelines

Example: Hardware Affinity

“Minimum” process distribution to

address this architecture

Heterogeneous node

1. Heterogeneity has to be considered for work distribution

 more power = more work

2. Work distribution for data-parallel approach: Divide the matrix row-

wise between workers

3. Example for memory-bound algorithm and a CPU-GPU node:

1. GPU‘s memory bandwidth maybe 4x as large as CPU‘s

2. Sparse matrix has, e.g., 10 million rows

 GPU gets assigned 8 million rows

 CPU gets assigned 2 million rows

Example: Work Distribution

9

// define task: checkpointing with 1 thread

ghost_task_create(&chkpTask, 1, curTask->LD, &chkp_func, \

(void *)&chkp_func_args, GHOST_TASK_DEFAULT, NULL, 0);

// define task: compute with N-1 threads

ghost_task_create(&compTask, curTask->nThreads-1, \

curTask->LD, &comp_func, (void *)&comp_func_args, \

GHOST_TASK_DEFAULT, NULL, 0);

// initiate tasks

ghost_task_enqueue(chkpTask); ghost_task_enqueue(compTask);

// wait for completion

ghost_task_wait(chkpTask); ghost_task_wait(compTask);

Example: Async task model

10

GHOST internals: Thread startup & task enqueue

11

GHOST internals: Task execute & finalize

SELL-C-σ

1. Pick chunk size 𝐶 (guided by

SIMD/T widths)

2. Pick sorting scope 𝜎

3. Sort rows by length within

each sorting scope

4. Pad chunks with zeros to

make them rectangular

5. Store matrix data in “chunk

column major order”

6. “Chunk occupancy”: fraction

of “useful” matrix entries

Constructing SELL-C-σ

SELL-6-12

β=0.66

𝛽 =
𝑁𝑛𝑧

𝑖=0
𝑁𝑐 𝐶 ⋅ 𝑙𝑖

Sorting scope 𝜎

Chunk size 𝐶

Width of chunk 𝑖: 𝑙𝑖

𝛽worst =
𝑁 + 𝐶 − 1

𝐶𝑁

𝑁≫𝐶 1

𝐶

“Corner case” matrices from “Williams Group”:

Remaining matrices:

…

Matrix characterization

Variants of SELL-C-σ

SELL-6-1

β=0.51

SELL-6-24

β=0.84

SELL-6-12

β=0.66

The Performance Engineering (PE) process

Systematic performance analysis and pattern-guided optimization

Performance Engineering Process: Analysis

Pattern

Microbenchmarking
Hardware/Instruction

set architecture

Algorithm/Code

Analysis

Application

Benchmarking

Step 1 Analysis: Understanding observed performance

Performance

patterns are

typical

performance

limiting motifs

The set of input data indicating

a pattern is its signature

Performance Engineering Process: Modelling

Pattern

Performance Model

Qualitative view

Quantitative view

Step 2 Formulate Model: Validate pattern and get quantitative insight.

Validation Traces/HW metrics

W
ro

n
g

 p
a

tt
e

rn

Models in physics

Newtonian mechanics

Fails @ small scales!

𝑖ℏ
𝜕

𝜕𝑡
𝜓 𝑟, 𝑡 = 𝐻𝜓 𝑟, 𝑡

 𝐹 = 𝑚 𝑎

Nonrelativistic

quantum

mechanics

Fails @ even smaller scales!

Relativistic

quantum

field theory

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐

Consequences

 If models fail, we learn more

 A simple model can get us very

far before we need to refine

Performance Engineering Process: Optimization

Optimize for better

resource utilization

Eliminate non-

expedient activity

Pattern

Performance Model

Performance

improves until next

bottleneck is hit

Improves

Performance

Step 3 Optimization: Improve utilization of offered resources.

The whole PE process at a glance

SpMVM Pattern: BW saturation

Code balance (double precision FP, 4-byte index):

Roofline performance model for SELL-C-σ

𝐵𝑆𝐸𝐿𝐿 𝛼, 𝛽, 𝑁𝑛𝑧𝑟 =
1

𝛽

8 + 4

2
+

8𝛼 + 16/𝑁𝑛𝑧𝑟

2

bytes

flop

=
6

𝛽
+ 4𝛼 +

8

𝑁𝑛𝑧𝑟

bytes

flop

Matrix data &

column index

RHS access
LHS update

𝑃 𝛼, 𝛽, 𝑁𝑛𝑧𝑟 , 𝑏 =
𝑏

𝐵𝑆𝐸𝐿𝐿(𝛼, 𝛽, 𝑁𝑛𝑧𝑟)

Corner case scenarios:

1. 𝛼 = 0  RHS in cache

2. 𝛼 =
1

𝑁𝑛𝑧𝑐
 Load RHS vector exactly once

If 𝑁𝑛𝑧𝑐 ≫ 1, RHS traffic is insignificant: 𝑃 =
𝑏𝛽

6bytes/flop

3. 𝛼 ≈ 1  Each RHS load goes to memory

4. 𝛼 > 1  Houston, we’ve got a problem 

Determine 𝛼 by measuring actual spMVM memory traffic (HPM)

The 𝜶 parameter

𝑉𝑚𝑒𝑎𝑠 is the measured overall memory data traffic

(using, e.g., likwid-perfctr)

Determine 𝛼:

Example: kkt_power matrix on one Intel SNB socket

1. 𝑁𝑛𝑧 = 14.6 ∙ 106, 𝑁𝑛𝑧𝑟 = 7.1

2. 𝑉𝑚𝑒𝑎𝑠 ≈ 258 MB

3.  𝛼 = 0.43, 𝛼𝑁𝑛𝑧𝑟 = 3.1

4.  RHS is loaded 3.1 times from memory

5. and:

Determine RHS traffic

𝛼 =
1

4

𝑉𝑚𝑒𝑎𝑠

𝑁𝑛𝑧 ∙ 2 bytes
− 6 −

8

𝑁𝑛𝑧𝑟

𝐵𝐶𝑅𝑆
𝐷𝑃 (𝛼)

𝐵𝐶𝑅𝑆
𝐷𝑃 (1/𝑁𝑛𝑧𝑐)

= 1.15
15% extra traffic

 optimization potential!

Download our building block library and KPM
application: http://tiny.cc/ghost

• MPI + OpenMP + SIMD + CUDA

• Transparent data-parallel heterogeneous execution

• Task-parallelism (checkpointing, comm. hiding, etc.)

• Support for block vectors

• Automatic code generation for common block vector sizes

• Hand-implemented tall skinny dense matrix kernels

• Fused kernels (“augmented SpMV”)

• SELL-C-σ heterogeneous sparse matrix format

· · ·

General, Hybrid, and Optimized Sparse Toolkit

Further information

1. About patterns in Performance Engineering

J. Treibig, G. Hager, and G. Wellein: Performance patterns and hardware metrics on

modern multicore processors: Best practices for performance engineering. PROPER

2012, DOI: 10.1007/978-3-642-36949-0_50

2. About Performance Modeling in general

ISC15 Workshop “Performance Modeling: Methods and Applications”, July 16, 2015,

Frankfurt

3. About our holistic performance engineering approach

PRACE tutorials (July 6-7 @HLRS Stuttgart & December 10-11 @LRZ Garching)

SWSC workshop (April 9/10 @U Leuven, Belgium)

SC15 tutorial?

http://dx.doi.org/10.1007/978-3-642-36949-0_50

Thank you.

