
ERLANGEN REGIONAL

COMPUTING CENTER

Georg Hager, Jan Treibig, Gerhard Wellein

DIMACS Workshop on Multicore and Cryptography

July 21, 2014

Stevens Institute of Technology, Hoboken, NJ

MULTICORE ARCHITECTURES

http://blogs.fau.de/hager

2

From a student seminar on “Efficient programming of modern multi- and

manycore processors”

Student: I have implemented this algorithm on the GPGPU, and it

 solves a system with 26546 unknowns is 0.12 seconds,

 so it is really fast.

Me: What makes you think that 0.12 seconds is fast?

Student (very confident): It is fast because my baseline C++ code

 on the CPU is about 20 times slower.

A conversation

2014/07/21 | Multicore Architectures

3

High performance computing is

computing at a bottleneck

This does not mean that there is no faster way to solve the problem!

A statement

2014/07/21 | Multicore Architectures

INTRODUCTION:

MODERN COMPUTER

ARCHITECTURE

The stored program computer and its inherent

bottlenecks

TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.: AAAAAA

5

Stored program computer:
Flexible, but optimization

is hard!

Computer Architecture

The evil of hardware optimizations

Architect’s view:

Make the common case fast !

 Provide improvements for relevant software

• What are the technical opportunities?

• Economical concerns

• Multi-way special purpose

EDSAC 1949

What is your relevant aspect of the

architecture?

2014/07/21 | Multicore Architectures

6

The machine view:

ISA (Machine code)

Hardware-Software Co-Design?

From algorithm to execution

The user’s view:

Algorithm

Programming language

Hardware = Black Box

Libraries Compiler

2014/07/21 | Multicore Architectures

7

1. Instruction execution

This is the primary resource of the processor. All efforts in hardware

design are targeted towards increasing the instruction throughput.

Instructions are the concept of “work” as seen by processor designers.

Not all instructions count as “work” as seen by application developers!

Example: Adding two arrays

do i=1, N

 A(i) = A(i) + B(i)

enddo

Basic Resources

Instruction throughput and data movement

User work:
N ops (ADDs)

Processor work:
LOAD r1 = A(i)

LOAD r2 = B(i)

ADD r1 = r1 + r2

STORE A(i) = r1

INCREMENT i

BRANCH  top if i<N

2014/07/21 | Multicore Architectures

8

2. Data transfer

Data transfers are a consequence of instruction execution and therefore a
secondary resource. Maximum bandwidth is determined by the request
rate of executed instructions and technical limitations (bus width, speed).

Example: Adding two arrays

do i=1, N

 A(i) = A(i) + B(i)

enddo

Crucial question: What is the bottleneck?
• Data transfer?
• Code execution?

Basic Resources

Instruction throughput and data movement

Data transfers:
8 byte: LOAD r1 = A(i)

8 byte: LOAD r2 = B(i)

8 byte: STORE A(i) = r2

Sum: 24 byte

2014/07/21 | Multicore Architectures

INTRODUCTION:

MODERN COMPUTER

ARCHITECTURE

Multi-cores – where and why

TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.: AAAAAA

10

Moore’s law

 1965: G. Moore claimed

#transistors on “microchip”

doubles every 12-24

months

Intel Sandy Bridge EP: 2.3 Billion

Nvidia Kepler: 7 Billion

"Transistor Count and Moore's Law - 2011" by Wgsimon - Own work. Licensed

under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-

_2011.svg#mediaviewer/File:Transistor_Count_and_Moore%27s_Law_-

_2011.svg

2014/07/21 | Multicore Architectures

11

1

10

100

1000

10000

Year

Frequency [MHz]

Moore’s law  transistors are getting smaller  run them faster

Faster clock speed  Higher Throughput (Ops/s)

Moore’s law: faster cycles and beyond

Intel x86 clock speed

Increasing transistor

count and clock speed

allows / requires

architectural changes:

 Pipelining

 Superscalarity

 SIMD / Vector ops

 Multi-Core/Threading

 Complex on-chip

caches

Power dissipation 𝑃 ∼ 𝑓3

2014/07/21 | Multicore Architectures

12

Xeon 2600 “Sandy Bridge EP”:

8 cores running at 2.7 GHz (max 3.2 GHz)

Simultaneous Multithreading

 reports as 16-way chip

2.3 Billion Transistors / 32 nm

Die size: 435 mm2

Multi-Core: Intel Xeon 2600 (2012)

2-socket server

2014/07/21 | Multicore Architectures

13

In-core code execution

2014/07/21 | Multicore Architectures

14

 (Almost) all execution units are

pipelined

 Throughput: minimum cycles per

retired instruction

 Latency: cycles for a single

instruction end-to-end

 Dependencies  stalls (“bubbles”)

 Multiple pipelines can work in parallel

 “Superscalarity”

 Maximum sustained throughput may be a bottleneck

 Out-of-order execution can automatically fill bubbles

 Instructions executed when operands are available

 Hyperthreading (SMT) may do the same

 Independent threads on same core may fill each other’s bubbles

Basics of superscalar pipelined execution
Instruction-level parallelism (ILP)

2014/07/21 | Multicore Architectures

A(i)=B(i)*C(i)

15

 Single Instruction Multiple Data (SIMD) operations allow the concurrent

execution of the same operation on “wide” registers

 x86 SIMD instruction sets: SSE (128 bit), AVX (256 bit)

 SIMD implements in-core data parallelism  fewer instructions for the

same amount of work

Core details: SIMD processing

A
[0

]
A

[1
]

A
[2

]
A

[3
]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

A
[0

]

B
[0

]

C
[0

]

64 Bit

256 Bit

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:

R2 ADD [R0,R1]

SIMD execution:

V64ADD [R0,R1] R2

2014/07/21 | Multicore Architectures

16

Caches help with getting instructions and data to the CPU “fast”

 How does data travel from memory to the CPU and back?

 Remember: Caches are organized

in cache lines (e.g., 64 bytes)

 Only complete cache lines are

transferred between memory

hierarchy levels (except registers)

 MISS: Load or store instruction does

not find the data in a cache level

 CL transfer required

Example: Array copy A(:)=C(:)

Registers and caches:
Data transfers in a memory hierarchy

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1) MISS

write

allocate

evict

(delayed)

3 CL

transfers

LD C(2..Ncl)

ST A(2..Ncl)

HIT

C(:) A(:)

2014/07/21 | Multicore Architectures

17

Cache-coherent Non-Uniform Memory Architecture (ccNUMA)

Multi-socket servers: scalable bandwidth at the price of ccNUMA

architectures  Where does my data finally end up?

Multiple cores and the memory bottleneck

2014/07/21 | Multicore Architectures

18

Parallel and shared resources within a shared-memory node

Parallelism in a modern compute node

GPU #1

GPU #2
PCIe link

 Parallel resources:

 Execution/SIMD units

 Cores

 Inner cache levels

 Sockets / ccNUMA domains

 Multiple accelerators

 Shared resources:

 Outer cache level per socket

 Memory bus per socket

 Intersocket link

 PCIe bus(es)

 Other I/O resources

Other I/O

1

2

3

4 5

1

2

3

4

5

6

6

7

7

8

8

9

9

10

10

Which of these resources are critical for your code?

2014/07/21 | Multicore Architectures

PERFORMANCE MODELING

The Roofline Model

2014/07/21 | Multicore Architectures

20

Prelude: Modeling customer dispatch in a bank

Revolving door

throughput:

bS [customers/sec]

Processing

capability:

Pmax [tasks/sec]

Intensity:

I [tasks/customer]

2014/07/21 | Multicore Architectures

21

How fast can tasks be processed? 𝑷 [tasks/sec]

The bottleneck is either

 The service desks (max. tasks/sec): 𝑃max

 The revolving door (max. customers/sec): 𝐼 ∙ 𝑏𝑆

This is the “Roofline Model”

 High intensity: P limited by “execution”

 Low intensity: P limited by “bottleneck”

Prelude: Modeling customer dispatch in a bank

𝑃 = min (𝑃max, 𝐼 ∙ 𝑏𝑆)

Intensity
P

e
rf

o
rm

a
n

c
e

Pmax

2014/07/21 | Multicore Architectures

The model is optimistic – P is like “lightspeed”!

22

1. Pmax = Applicable peak performance of a loop, assuming that data

comes from L1 cache (this is not necessarily Ppeak)

2. I = Computational intensity (“work” per byte transferred) over the

slowest data path utilized (“the bottleneck”)

 Code balance BC = I -1

3. bS = Applicable peak bandwidth of the slowest data path utilized

Expected performance:

The Roofline Model1,2

Loop-based performance modeling

𝑃 = min (𝑃max, 𝐼 ∙ 𝑏𝑆)

1 W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. (2000)
2 S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

2014/07/21 | Multicore Architectures

http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

23

1. Identify the time-consuming

loop constructs in your code

(profiling)

2. Define a suitable metric for

“work” and determine Pmax

3. Answer the question “What part

of the data comes from where?”

4. Identify the relevant data

transfer bottleneck in the

memory hierarchy & determine 𝐼

5. Apply 𝑃 = min (𝑃max, 𝐼 ∙ 𝑏𝑆)

Aplying the Roofline Model

2014/07/21 | Multicore Architectures

𝑃max =
16 substitutions

32 cy
∙ 3.0

Gcy

s
= 1.5

G subst.

s

 % cumulative self self total

time seconds seconds calls ms/call ms/call name

70.45 5.14 5.14 26074562 0.00 0.00 substitute

26.01 7.03 1.90 4000000 0.00 0.00 map

 3.72 7.30 0.27 100 2.71 73.03 shuffle

Level Bytes / subst.

L1 32+32

L2 32

L3 32

Memory 32

𝑃 = min 1.5
G subst.

s
,
1

32

subst.

byte
∙ 8

GByte

s
= 𝟎. 𝟐𝟓

𝐆 𝐬𝐮𝐛𝐬𝐭.

𝒔

𝐼 =
1

32

subst.

byte

24

 All data accesses are assumed to

come at no latency cost – bandwidth

is the only limitation

 Erratic/indexed data access may break

this assumption

 Data transfers and computation

overlap perfectly

 Good assumption for multi-core, not

true for single core

 Relevant data paths can be saturated

(used with full bandwidth)

 Good assumption for multi-core and

main memory. Not so good for caches

and single-core

Shortcomings and limitations of the Roofline Model

2014/07/21 | Multicore Architectures

A(:)=B(:)+C(:)*D(:)

Roofline predicts

full socket BW

G. Hager et al.: Exploring performance and

power properties of modern multicore chips

via simple machine models. Concurrency and

Computation: Practice and Experience (2013).

DOI: 10.1002/cpe.3180

http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180

25

Bandwidth-bound (simple case)

 Accurate traffic calculation (write-

allocate, strided access, …)

 Practical ≠ theoretical BW limits

 Erratic access patterns

Factors to consider in the Roofline Model

Core-bound (may be complex)

 Multiple bottlenecks: LD/ST,

arithmetic, pipelines, SIMD,

execution ports

 Limit is linear in # of cores

2014/07/21 | Multicore Architectures

26

Complexities of in-core execution

Possible bottlenecks:

 L1 Icache (LD/ST) bandwidth

 Decode/retirement throughput

 Port contention

(direct or indirect)

 Arithmetic pipeline stalls

(dependencies)

 Overall pipeline stalls

(branching)

 L1 Dcache bandwidth

(LD/ST throughput)

 Scalar vs. SIMD execution

 …

 Register pressure

 Alignment issues

2014/07/21 | Multicore Architectures

27

1. Hit the BW bottleneck by good

serial code

2. Increase intensity to make

better use of BW bottleneck

3. Increase intensity and go from

memory-bound to core-bound

4. Hit the core bottleneck by good

serial code

5. Shift Pmax by accessing

additional hardware features

(e.g., SIMD)

Typical code optimizations in the Roofline Model

2014/07/21 | Multicore Architectures

28

Nonrelativistic

quantum

mechanics

Newtonian mechanics

Fails @ small scales!

Why building models? An example from physics

𝑖ℏ
𝜕

𝜕𝑡
𝜓 𝑟 , 𝑡 = 𝐻𝜓 𝑟 , 𝑡

𝐹 = 𝑚𝑎
Fails @ even smaller scales!

Relativistic

quantum

field theory

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐

Consequences

 If models fail, we learn more

 A simple model can get us very far

before we need to refine

2014/07/21 | Multicore Architectures

29

Essentially, all models are wrong,

but some are useful.

Box, G. E. P., and Draper, N. R., (1987), Empirical

Model Building and Response Surfaces,

John Wiley & Sons, New York, NY.

2014/07/21 | Multicore Architectures

