
Georg Hager, Ayesha Afzal

Erlangen Regional Computing Center (RRZE)

University of Erlangen-Nuremberg

Erlangen, Germany

PACO 2015

Max Planck Institute for Dynamics of Complex Technical Systems

Magdeburg, Germany

July 6, 2015

White-box modeling

for performance and energy:

Useful patterns for resource optimization

Outline

 Performance Modeling and Engineering

 Motivation

 Simple “White Box” modeling: Roofline

 A simple power model for multicore CPUs

 Observations

 Model construction

 Validation

July 6, 2015 2PACO 2015 | Performance and Power Engineering

An example from physics

Newtonian mechanics

Fails @ small scales!

July 6, 2015 3PACO 2015 | Performance and Power Engineering

𝑖ℏ
𝜕

𝜕𝑡
𝜓 𝑟, 𝑡 = 𝐻𝜓 𝑟, 𝑡

 𝐹 = 𝑚 𝑎

Nonrelativistic

quantum

mechanics

Fails @ even smaller scales!

Relativistic

quantum

field theory

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐

White box performance engineering

July 6, 2015 4PACO 2015 | Performance and Power Engineering

Set up an (analytical) model for a given

algorithm/kernel/solver/application

on a given architecture

Compare with measurements

to validate the model

(Hopefully) identify optimization

opportunities and start over

“White Box” Performance Modeling

on the Chip Level: Roofline

D. Callahan et al.: Estimating interlock and improving balance for pipelined architectures.
Journal for Parallel and Distributed Computing 5(4), 334 (1988).
DOI: 10.1016/0743-7315(88)90002-0

W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed
Memory Parallel Computers. Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers.
UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

http://dx.doi.org/10.1016/0743-7315(88)90002-0
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

Prelude: Modeling customer dispatch in a bank

July 6, 2015

Revolving door
throughput:

bS [customers/sec]

Processing
capability:

Pmax [tasks/sec]

Intensity:
I [tasks/customer]

PACO 2015 | Performance and Power Engineering 6

Prelude: Modeling customer dispatch in a bank

How fast can tasks be processed? 𝑷 [tasks/sec]

The bottleneck is either

 The service desks (max. tasks/sec): 𝑃max
 The revolving door (max. customers/sec): 𝐼 ∙ 𝑏𝑆

This is the “Roofline Model”

 High intensity: P limited by “execution”

 Low intensity: P limited by “bottleneck”

 “Knee” at 𝑃𝑚𝑎𝑥 = 𝐼 ∙ 𝑏𝑆:
Best use of resources

 Roofline is an “optimistic” model:
“light speed”

July 6, 2015

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

Intensity

Pe
rf

o
rm

an
ce

Pmax

PACO 2015 | Performance and Power Engineering 7

The Roofline Model

1. Pmax = Applicable peak performance of a loop, assuming that data

comes from L1 cache (this is not necessarily Ppeak)

2. I = Computational intensity (“work” per byte transferred) over the

slowest data path utilized (“the bottleneck”)

 Code balance BC = I -1

3. bS = Applicable peak bandwidth of the slowest data path utilized

Expected performance:

July 6, 2015

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

[B/s][F/B]

PACO 2015 | Performance and Power Engineering 8

Roofline Model assumptions (“machine model”)

 There is a clear concept of “work” vs. “traffic”

 “work” = flops, updates, iterations…

 “traffic” = required data to do “work”

 No latency effects perfect streaming mode

 One data transfer bottleneck is modeled only; all others are assumed to

be infinitely fast

 Data transfer and core execution overlap perfectly!

 This is the main problem in situations where Roofline does not work!

 Remedy: Execution-Cache-Memory (ECM) model

July 6, 2015 PACO 2015 | Performance and Power Engineering 9

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance and power properties of modern
multicore chips via simple machine models. Concurrency and Computation: Practice and Experience
(2013), DOI: 10.1002/cpe.3180. Preprint: arXiv:1208.2908

H. Stengel, J. Treibig, G. Hager, and G. Wellein: Quantifying performance bottlenecks of stencil
computations using the Execution-Cache-Memory model.
Proc. ICS’15, DOI: 10.1145/2751205.2751240, Preprint: arXiv:1410.5010

http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908
http://dx.doi.org/10.1145/2751205.2751240
http://arxiv.org/abs/1410.5010

A “simple” Roofline example

Example: do i=1,N; s=s+a(i); enddo

in single precision on a 2.2 GHz Sandy Bridge socket @ “large” N

July 6, 2015

ADD peak

(best possible

code)

no SIMD

worst code

P (worst loop code)

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

I = 1 flop / 4 byte (SP!)

141 GF/s

17.6 GF/s

5.9 GF/s

282 GF/s

Machine peak
(ADD+MULT)
Out of reach for this
code

P
(better loop code)

PACO 2015 | Performance and Power Engineering 10

Typical code optimizations in the Roofline Model

1. Hit the BW bottleneck by good

serial code
(e.g., Ninja C++ Fortran)

2. Increase intensity to make

better use of BW bottleneck
(e.g., loop blocking [see later])

3. Increase intensity and go from

memory-bound to core-bound
(e.g., temporal blocking)

4. Hit the core bottleneck by good

serial code
(e.g., -fno-alias [see later])

5. Shift Pmax by accessing

additional hardware features or

using a different

algorithm/implementation
(e.g., scalar SIMD)

July 6, 2015

Perl

PACO 2015 | Performance and Power Engineering 11

A simple power model for multicore

processors

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance and
power properties of modern multicore chips via simple machine models.
Concurrency and Computation: Practice and Experience (2013),
DOI: 10.1002/cpe.3180. Preprint: arXiv:1208.2908

http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908

Prelude: There are two kinds of loops …

July 6, 2015 PACO 2015 | Performance and Power Engineering

Typical performance vs. cores behavior on multicore chips:

“LINPACK type”

Limiting factor: core execution

“Flat roof” region

“STREAM type”

Limiting factor: saturation (bandwidth)

“Sloped roof” region

Change
clock speed:

1.5 X

0.6 X

13

A model for multicore chip power

 Goal: Establish model for chip power and program energy consumption

with respect to

 Clock speed

 Number of cores used

 Single-thread program performance

 Choose different characteristic benchmark applications to measure a

chip’s power behavior

 Matrix-matrix-multiply (“DGEMM”): “Hot” code, well scalable

 Ray tracer: Sensitive to SMT execution (15% speedup), well scalable

 2D Jacobi solver: 4000x4000 grid, strong saturation on the chip

 AVX variant

 Scalar variant

 Measure characteristics of those apps and establish a power model

July 6, 2015 14PACO 2015 | Performance and Power Engineering

App scaling behavior (DGEMM omitted)

July 6, 2015 15PACO 2015 | Performance and Power Engineering

Chip power and performance vs. clock speed

on full socket & single core

Sandy Bridge EP (8-core) processor:

July 6, 2015 16PACO 2015 | Performance and Power Engineering

all cores used

single core

ignored

Chip power and cycles per instruction (CPI) vs. # of cores

Sandy Bridge EP (8-core) processor:

July 6, 2015 17PACO 2015 | Performance and Power Engineering

ignored

CPI and power correlated, but
not proportional

A simple power model for multicore chips

Model assumptions:

1. Power is a quadratic polynomial in the

clock frequency: 𝑊 = 𝑊0 + 𝑤1𝑓 + 𝑤2𝑓
2

2. Dynamic power is linear in the number of

active cores: 𝑊𝑑𝑦𝑛 = 𝑊1𝑓 + 𝑊2𝑓
2 𝑛

3. Performance is linear in the number of

cores until it hits a bottleneck

4. Performance is linear in the clock

frequency unless it hits a bottleneck

(simplification from performance models!)

5. Energy to solution is power dissipation

divided by performance

Model:

July 6, 2015 18PACO 2015 | Performance and Power Engineering

𝐸 =
Power

Performance
=

𝑊0 + (𝑊1𝑓 + 𝑊2𝑓
2)𝑛

min(𝑛𝑃0 𝑓/𝑓0, 𝑃𝑚𝑎𝑥)

𝑾𝟎

𝑊
1
𝑓

+
𝑊

2
𝑓

2

...

𝑊
1
𝑓

+
𝑊

2
𝑓

2

𝑊
1
𝑓

+
𝑊

2
𝑓

2

Energy to solution model: Observations

July 6, 2015 PACO 2015 | Performance and Power Engineering

base = 2 GHz

Turbo = 3 GHz

W0 = 73 W

W2 = 1 W / GHz2

LINPACK type STREAM type

Use all cores and high clock

speed!
Run all cores at clock speed that

still saturates performance

19

Model predictions

1. If performance is linear in n, use all available cores to minimize E

July 6, 2015 20PACO 2015 | Performance and Power Engineering

Minimum E here

𝐸 =
𝑊0 + 𝑊1𝑓 + 𝑊2𝑓

2 𝑛

min(𝑛𝑃0 𝑓/𝑓0 , 𝑃𝑚𝑎𝑥)

𝜕𝐸

𝜕𝑛
= −

𝑊0

1 + Δ𝜈 𝑛2𝑃0
< 0

Model predictions

2. If performance is linear in 𝑛, there is an optimal frequency 𝑓𝑜𝑝𝑡 at

which 𝐸 is minimal:

𝑓opt =
𝑊0

𝑊2𝑛
Energy-frequency convexity rule

 “Clock race to idle” if baseline power is large!

 If 𝑓opt < 𝑓0, other target metrics

may be suitable, e.g.,

𝑪 = 𝑬/𝑷: “Energy-Delay Product”

July 6, 2015 21PACO 2015 | Performance and Power Engineering

𝜕𝐶

𝜕Δ𝜈
= −

2𝑊0 + 𝑊1𝑓𝑛

𝑓
𝑓0

3

𝑃0
2

< 0

𝐸 =
𝑊0 + 𝑊1𝑓 + 𝑊2𝑓

2 𝑛

min(𝑛𝑃0 𝑓/𝑓0 , 𝑃𝑚𝑎𝑥)

K. DeVogeleer, G. Memmi, P. Jouvelot, and F. Coelho: The Energy/Frequency Convexity Rule:
modeling and experimental validation on mobile devices. In Proc. PPAM 2013, Springer, 2013.

Model predictions

3. If there is saturation, E is minimal at the saturation point

July 6, 2015 22PACO 2015 | Performance and Power Engineering

Minimum E here

𝐸 =
𝑊0 + 𝑊1𝑓 + 𝑊2𝑓

2 𝑛

min(𝑛𝑃0 𝑓/𝑓0 , 𝑃𝑚𝑎𝑥)

𝑛𝑠 =
𝑃𝑚𝑎𝑥

𝑃0𝑓/𝑓0

Model predictions

4. If there is saturation, E shrinks if 𝑓 is reduced for later saturation

(larger 𝑛). E is minimal if 𝑓 is reduced so that the saturation point is at

the number of available cores.

July 6, 2015 23PACO 2015 | Performance and Power Engineering

Slower clock
 more cores to saturation

 smaller E

𝐸 =
𝑊0 + 𝑊1𝑓 + 𝑊2𝑓

2 𝑛

min(𝑛𝑃0 𝑓/𝑓0 , 𝑃𝑚𝑎𝑥)

Model predictions

5. Making code execute faster on the core saves energy since

 The time to solution is smaller if the code scales (“Code race to idle”)

 We can use fewer cores to reach saturation if there is a bottleneck

July 6, 2015 24PACO 2015 | Performance and Power Engineering

Better code
 earlier saturation

 smaller E @ saturation

𝐸 =
𝑊0 + 𝑊1𝑓 + 𝑊2𝑓

2 𝑛

min(𝑛𝑃0 𝑓/𝑓0 , 𝑃𝑚𝑎𝑥)

Model validation with the benchmark apps

July 6, 2015 25PACO 2015 | Performance and Power Engineering

2

3

1

5

4

Energy to Solution: A different way of presentation

July 6, 2015 PACO 2015 | Performance and Power Engineering

Energy vs. Performance (“Z-plot”)

“Isoline” of constant Energy delay product (𝑬 × ∆𝒕)

26

LINPACK type STREAM type

Case study: ILBDC Code

 Sparse representation lattice-Boltzmann flow solver

 Well suited for highly porous geometries, MPI parallel

 „AA pattern“ propagation SIMD friendly, 304-376 bytes/LUP

 Saturating performance for vectorized code on modern Intel chips

July 6, 2015 PACO 2015 | Performance and Power Engineering 27

M. Wittmann, G. Hager, T. Zeiser, J. Treibig, and G. Wellein: Chip-level and multi-node analysis of
energy-optimized lattice-Boltzmann CFD simulations. Concurrency and Computation: Practice and
Experience (2015). DOI: 10.1002/cpe.3489 Preprint: arXiv:1304.7664

http://dx.doi.org/10.1002/cpe.3489
http://arxiv.org/abs/1304.7664

Energy to solution vs. performance on the socket (SNB)

Model vs. Measurement at different clock speeds (PPC=proc.s per chip)

July 6, 2015 PACO 2015 | Performance and Power Engineering

Bandwidth
barrier

Optimization
region

PPC=1

PPC=2

PPC=3

PPC=2

PPC=3

PPC=4

28

Energy to solution vs. performance on the cluster (SuperMUC)

How does that change when

going multi-node with substantial

communication overhead?

 Dependence on socket-level

concurrency?

 Dependence on clock speed?

Observations:

 Optimal PPC is crucial for

lowest energy!

 Higher clock speed yields

better performance without

energy penalty!

July 6, 2015 PACO 2015 | Performance and Power Engineering

Parallel efficiency ≈ 60%

29

Can we predict/calculate the model parameters?

Where do 𝑊1 and 𝑊2 come from?

Depend on hardware and code characteristics

Connection to microscopic models is possible, e.g.:

July 6, 2015 30PACO 2015 | Performance and Power Engineering

2.7 GHz SNB
8 cores

W
2

[W
/G

H
z2

]

J.W. Choi et al.: A Roofline Model of Energy. Proc. IPDPS 2013
DOI: 10.1109/IPDPS.2013.77

http://dx.doi.org/10.1109/IPDPS.2013.77

Conclusions & outlook

 White-box performance modeling generates insight into the interaction
of hardware and software

 Roofline model is a good start, but more advanced models exist

 100% accuracy is not required

 Multicore energy consumption is a function of very few parameters

 100% accuracy is not required

 Simple modeling techniques and patterns help us

 … understand the limits of our code on the given hardware

 … identify optimization opportunities

 … learn more, especially when they do not work!

 Problems of white-box analytical modeling

 Assumes steady state situation (loops)

 Complex code lots of tedious work, but there is a reward!

 Simple tools get you 95% of the way!

 E.g., LIKWID: http://tiny.cc/LIKWID

July 6, 2015 31PACO 2015 | Performance and Power Engineering

Most powerful
tool?

http://tiny.cc/LIKWID

Thank you.

July 6, 2015 32PACO 2015 | Performance and Power Engineering

OMI4papps
hpcADD

Save the date!

ISC15 Workshop:

Performance Modeling: Methods and Applications

ISC15, Frankfurt, Germany, July 16, 9:00-18:00

Speakers: Bill Gropp (UIUC, keynote), Nathan Tallent (PNNL), Dimitrios

Nikolopoulos (Belfast), Martin Schulz (LLNL), Laura Carrington (SDSC),

Jeffrey Vetter (ORNL), Felix Wolf (Darmstadt), Alexander Grebhahn

(Passau), Robert Numrich (CUNY), Rich Vuduc (GATech), Brian van

Straalen (LBNL), Georg Hager (RRZE)

July 6, 2015 33PACO 2015 | Performance and Power Engineering

