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An example from physics

Newtonian mechanics

Fails @ small scales!
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𝑖ℏ
𝜕

𝜕𝑡
𝜓  𝑟, 𝑡 = 𝐻𝜓  𝑟, 𝑡

 𝐹 = 𝑚  𝑎

Nonrelativistic 

quantum 

mechanics

Fails @ even smaller scales!

Relativistic 

quantum 

field theory

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐



White box performance engineering
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Set up an (analytical) model for a given 

algorithm/kernel/solver/application 

on a given architecture

Compare with measurements 

to validate the model

(Hopefully) identify optimization 

opportunities and start over



“White Box” Performance Modeling 

on the Chip Level: Roofline

D. Callahan et al.: Estimating interlock and improving balance for pipelined architectures. 
Journal for Parallel and Distributed Computing 5(4), 334 (1988). 
DOI: 10.1016/0743-7315(88)90002-0

W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed 
Memory Parallel Computers. Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers. 
UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

http://dx.doi.org/10.1016/0743-7315(88)90002-0
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf


Prelude: Modeling customer dispatch in a bank
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Revolving door 
throughput:

bS [customers/sec]

Processing 
capability:

Pmax [tasks/sec]

Intensity:
I [tasks/customer]
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Prelude: Modeling customer dispatch in a bank

How fast can tasks be processed? 𝑷 [tasks/sec]

The bottleneck is either

 The service desks (max. tasks/sec): 𝑃max
 The revolving door (max. customers/sec): 𝐼 ∙ 𝑏𝑆

This is the “Roofline Model”

 High intensity: P limited by “execution”

 Low intensity: P limited by “bottleneck”

 “Knee” at 𝑃𝑚𝑎𝑥 = 𝐼 ∙ 𝑏𝑆: 
Best use of resources

 Roofline is an “optimistic” model:
“light speed”
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𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

Intensity
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The Roofline Model

1. Pmax = Applicable peak performance of a loop, assuming that data 

comes from L1 cache (this is not necessarily Ppeak)

2. I = Computational intensity (“work” per byte transferred) over the 

slowest data path utilized (“the bottleneck”)

 Code balance BC = I -1

3. bS = Applicable peak bandwidth of the slowest data path utilized

Expected performance:
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𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

[B/s][F/B]
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Roofline Model assumptions (“machine model”) 

 There is a clear concept of “work” vs. “traffic”

 “work” = flops, updates, iterations…

 “traffic” = required data to do “work”

 No latency effects  perfect streaming mode

 One data transfer bottleneck is modeled only; all others are assumed to 

be infinitely fast

 Data transfer and core execution overlap perfectly!

 This is the main problem in situations where Roofline does not work!

 Remedy: Execution-Cache-Memory (ECM) model 
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G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance and power properties of modern 
multicore chips via simple machine models. Concurrency and Computation: Practice and Experience 
(2013), DOI: 10.1002/cpe.3180. Preprint: arXiv:1208.2908

H. Stengel, J. Treibig, G. Hager, and G. Wellein: Quantifying performance bottlenecks of stencil 
computations using the Execution-Cache-Memory model. 
Proc. ICS’15, DOI: 10.1145/2751205.2751240, Preprint: arXiv:1410.5010

http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908
http://dx.doi.org/10.1145/2751205.2751240
http://arxiv.org/abs/1410.5010


A “simple” Roofline example

Example: do i=1,N; s=s+a(i); enddo

in single precision on a 2.2 GHz Sandy Bridge socket @ “large” N
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ADD peak  

(best possible 

code)

no SIMD

worst code

P (worst loop code)

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

I = 1 flop / 4 byte (SP!)

141 GF/s

17.6 GF/s

5.9 GF/s

282 GF/s

Machine peak  
(ADD+MULT)
Out of reach for this 
code

P 
(better loop code)
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Typical code optimizations in the Roofline Model

1. Hit the BW bottleneck by good

serial code
(e.g., Ninja C++  Fortran)

2. Increase intensity to make

better use of BW bottleneck
(e.g., loop blocking [see later])

3. Increase intensity and go from

memory-bound to core-bound
(e.g., temporal blocking)

4. Hit the core bottleneck by good

serial code
(e.g., -fno-alias [see later])

5. Shift Pmax by accessing

additional hardware features or

using a different 

algorithm/implementation
(e.g., scalar  SIMD)
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Perl
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A simple power model for multicore 

processors

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance and 
power properties of modern multicore chips via simple machine models. 
Concurrency and Computation: Practice and Experience (2013),
DOI: 10.1002/cpe.3180. Preprint: arXiv:1208.2908

http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908


Prelude: There are two kinds of loops …
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Typical performance vs. cores behavior on multicore chips:

“LINPACK type” 

Limiting factor: core execution

“Flat roof” region

“STREAM type” 

Limiting factor: saturation (bandwidth)

“Sloped roof” region

Change 
clock speed:  

1.5 X 

0.6 X

13



A model for multicore chip power

 Goal: Establish model for chip power and program energy consumption 

with respect to

 Clock speed

 Number of cores used

 Single-thread program performance

 Choose different characteristic benchmark applications to measure a 

chip’s power behavior

 Matrix-matrix-multiply (“DGEMM”): “Hot” code, well scalable

 Ray tracer: Sensitive to SMT execution (15% speedup), well scalable

 2D Jacobi solver: 4000x4000 grid, strong saturation on the chip

 AVX variant

 Scalar variant

 Measure characteristics of those apps and establish a power model

July 6, 2015 14PACO 2015 | Performance and Power Engineering



App scaling behavior (DGEMM omitted)
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Chip power and performance vs. clock speed  

on full socket & single core

Sandy Bridge EP (8-core) processor:
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all cores used

single core

ignored



Chip power and cycles per instruction (CPI) vs. # of cores

Sandy Bridge EP (8-core) processor:
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ignored

CPI and power correlated, but 
not proportional



A simple power model for multicore chips

Model assumptions:

1. Power is a quadratic polynomial in the 

clock frequency: 𝑊 = 𝑊0 + 𝑤1𝑓 + 𝑤2𝑓
2

2. Dynamic power is linear in the number of 

active cores: 𝑊𝑑𝑦𝑛 = 𝑊1𝑓 + 𝑊2𝑓
2 𝑛

3. Performance is linear in the number of 

cores until it hits a bottleneck

4. Performance is linear in the clock 

frequency unless it hits a bottleneck 

(simplification from performance models!)

5. Energy to solution is power dissipation 

divided by performance

Model:                                                         
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𝐸 =
Power

Performance
=

𝑊0 + (𝑊1𝑓 + 𝑊2𝑓
2)𝑛

min(𝑛𝑃0 𝑓/𝑓0, 𝑃𝑚𝑎𝑥)
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Energy to solution model: Observations
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base = 2 GHz

Turbo = 3 GHz

W0 = 73 W 

W2 = 1 W / GHz2

LINPACK type STREAM type

Use all cores and high clock 

speed!
Run all cores at clock speed that 

still saturates performance

19



Model predictions

1. If performance is linear in n, use all available cores to minimize E
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Minimum E here

𝐸 =
𝑊0 + 𝑊1𝑓 + 𝑊2𝑓

2 𝑛

min(𝑛𝑃0 𝑓/𝑓0 , 𝑃𝑚𝑎𝑥)

𝜕𝐸

𝜕𝑛
= −

𝑊0

1 + Δ𝜈 𝑛2𝑃0
< 0



Model predictions

2. If performance is linear in 𝑛, there is an optimal frequency 𝑓𝑜𝑝𝑡 at 

which 𝐸 is minimal:

𝑓opt =
𝑊0

𝑊2𝑛
Energy-frequency convexity rule

 “Clock race to idle” if baseline power is large!

 If 𝑓opt < 𝑓0, other target metrics 

may be suitable, e.g., 

𝑪 = 𝑬/𝑷: “Energy-Delay Product”

July 6, 2015 21PACO 2015 | Performance and Power Engineering

𝜕𝐶

𝜕Δ𝜈
= −

2𝑊0 + 𝑊1𝑓𝑛

𝑓
𝑓0

3

𝑃0
2

< 0

𝐸 =
𝑊0 + 𝑊1𝑓 + 𝑊2𝑓

2 𝑛

min(𝑛𝑃0 𝑓/𝑓0 , 𝑃𝑚𝑎𝑥)

K. DeVogeleer, G. Memmi, P. Jouvelot, and F. Coelho: The Energy/Frequency Convexity Rule: 
modeling and experimental validation on mobile devices. In Proc. PPAM 2013, Springer, 2013.



Model predictions

3. If there is saturation, E is minimal at the saturation point
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Minimum E here

𝐸 =
𝑊0 + 𝑊1𝑓 + 𝑊2𝑓

2 𝑛

min(𝑛𝑃0 𝑓/𝑓0 , 𝑃𝑚𝑎𝑥)

𝑛𝑠 =
𝑃𝑚𝑎𝑥

𝑃0𝑓/𝑓0



Model predictions

4. If there is saturation, E shrinks if 𝑓 is reduced for later saturation

(larger 𝑛). E is minimal if 𝑓 is reduced so that the saturation point is at 

the number of available cores. 

July 6, 2015 23PACO 2015 | Performance and Power Engineering

Slower clock 
 more cores to saturation 

 smaller E

𝐸 =
𝑊0 + 𝑊1𝑓 + 𝑊2𝑓

2 𝑛

min(𝑛𝑃0 𝑓/𝑓0 , 𝑃𝑚𝑎𝑥)



Model predictions

5. Making code execute faster on the core saves energy since

 The time to solution is smaller if the code scales (“Code race to idle”)

 We can use fewer cores to reach saturation if there is a bottleneck
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Better code
 earlier saturation

 smaller E @ saturation

𝐸 =
𝑊0 + 𝑊1𝑓 + 𝑊2𝑓

2 𝑛

min(𝑛𝑃0 𝑓/𝑓0 , 𝑃𝑚𝑎𝑥)



Model validation with the benchmark apps
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2

3

1

5

4



Energy to Solution: A different way of presentation
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Energy vs. Performance (“Z-plot”)

“Isoline” of constant Energy delay product (𝑬 × ∆𝒕)

26

LINPACK type STREAM type



Case study: ILBDC Code

 Sparse representation lattice-Boltzmann flow solver

 Well suited for highly porous geometries, MPI parallel

 „AA pattern“ propagation  SIMD friendly, 304-376 bytes/LUP

 Saturating performance for vectorized code on modern Intel chips
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M. Wittmann, G. Hager, T. Zeiser, J. Treibig, and G. Wellein: Chip-level and multi-node analysis of
energy-optimized lattice-Boltzmann CFD simulations. Concurrency and Computation: Practice and
Experience (2015). DOI: 10.1002/cpe.3489 Preprint: arXiv:1304.7664

http://dx.doi.org/10.1002/cpe.3489
http://arxiv.org/abs/1304.7664


Energy to solution vs. performance on the socket (SNB) 

Model vs. Measurement at different clock speeds (PPC=proc.s per chip)

July 6, 2015 PACO 2015 | Performance and Power Engineering

Bandwidth
barrier

Optimization
region

PPC=1

PPC=2

PPC=3

PPC=2

PPC=3

PPC=4
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Energy to solution vs. performance on the cluster (SuperMUC)

How does that change when

going multi-node with substantial 

communication overhead?

 Dependence on socket-level 

concurrency?

 Dependence on clock speed?

Observations:

 Optimal PPC is crucial for

lowest energy!

 Higher clock speed yields

better performance without

energy penalty!
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Parallel efficiency ≈ 60%

29



Can we predict/calculate the model parameters?

Where do 𝑊1 and 𝑊2 come from?

Depend on hardware and code characteristics

Connection to microscopic models is possible, e.g.: 
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2.7 GHz SNB
8 cores

W
2

[W
/G

H
z2

]

J.W. Choi et al.: A Roofline Model of Energy. Proc. IPDPS 2013
DOI: 10.1109/IPDPS.2013.77

http://dx.doi.org/10.1109/IPDPS.2013.77


Conclusions & outlook

 White-box performance modeling generates insight into the interaction
of hardware and software

 Roofline model is a good start, but more advanced models exist

 100% accuracy is not required

 Multicore energy consumption is a function of very few parameters

 100% accuracy is not required

 Simple modeling techniques and patterns help us

 … understand the limits of our code on the given hardware

 … identify optimization opportunities

 … learn more, especially when they do not work!

 Problems of white-box analytical modeling

 Assumes steady state situation (loops)

 Complex code  lots of tedious work, but there is a reward!

 Simple tools get you 95% of the way!

 E.g., LIKWID: http://tiny.cc/LIKWID
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Most powerful 
tool?

http://tiny.cc/LIKWID


Thank you.
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OMI4papps 
hpcADD



Save the date!

ISC15 Workshop:

Performance Modeling: Methods and Applications

ISC15, Frankfurt, Germany, July 16, 9:00-18:00

Speakers: Bill Gropp (UIUC, keynote), Nathan Tallent (PNNL), Dimitrios 

Nikolopoulos (Belfast), Martin Schulz (LLNL), Laura Carrington (SDSC), 

Jeffrey Vetter (ORNL), Felix Wolf (Darmstadt), Alexander Grebhahn

(Passau), Robert Numrich (CUNY), Rich Vuduc (GATech), Brian van 

Straalen (LBNL), Georg Hager (RRZE)
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