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Welcome to the multi-/manycore era
The free lunch is over: But Moore’s law continues

I 1965 G d M l i dIn 1965 Gordon Moore claimed:
#transistors on chip doubles every ≈24 months 

Intel Nehalem EX: 2.3 Billion
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We are living in the multicore era Is really everyone aware of that?
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Welcome to the multi-/manycore era
The game is over: But Moore’s law continues

By courtesy of D. Vrsalovic, Intel
Power envelope:

Max 95 130 W
N transistors

1.73x Performance 1.73x
Dual-Core

Max. 95–130 W 
2N transistors

1 13

Power Power 
consumption:

1.00x
1.13x 1.02x P = f * (Vcore)2

Vcore ~ 0.9–1.2 V

Over clocked Max Frequency Dual core
Same process 
technology:Over-clocked

(+20%)
Max Frequency Dual-core

(-20%)
technology:

P ~ f3
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Welcome to the multi-/many-core era
The game is over: But Moore’s law continues

Required relative frequency reduction to run m cores (m times 
transistors) on a die at the same power envelope  

Y 2007/08Year: 2007/08
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ct

io
n 8 cores running at half speed of a single 

core CPU = same energy

65 nm technology :

R
ed 65 nm technology :

Sun T2 („Niagara“) 1.4 GHz 8 cores
Intel Woodcrest 3.0 GHz 2 cores

m: #cores per die
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The x86 multicore evolution so far
Intel Single-Dual-/Quad-/Hexa-/-Cores (one-socket view)
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Welcome to the multi-/many-core era
A new feature: shared on-chip resources

Shared outer-level cache

Data Coherency!
Fast data transfer

Fast thread synchronisation

ata Co e e cy
Increased intra-cache traffic?
Scalable bandwidth?
MPI ll li ti ?

AMD Opteron
Istanbul

Intel Xeon
Westmere

y
MPI parallelization?

P P P P P PIstanbul

6 cores @ 2.8 GHz

L1 64 KB

Westmere

6 cores @ 2.93 GHz
C
C

C
C

C
C

C
C

C
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C
C

C

MI
QPIHT

L1: 64 KB

L2: 512 KB

L1: 32 KB

L2: 256 KB

MI

Memory

L3: 6 MB

2 X DDR2-800

L3: 12MB

3 X DDR3-13332 X DDR2 800
12.8 GB/s

HT2000 8 GB/s/dir

3 X DDR3 1333
31.8 GB/s 
2 X QPI6.4
12 8 GB/s/dir

Memory bottleneck!
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From UMA to ccNUMA 
Basic architecture of commodity compute cluster nodes

Dual-socket Intel “Core2” node:
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Uniform Memory Architecture (UMA):

Flat memory ; symmetric MPsYe
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Memory
Flat memory ; symmetric MPs

But: system “anisotropy”

Y

Shared Address Space within the node!

Dual-socket AMD (Istanbul) / Intel (Westmere) node:
Cache coherent Non Uniform MemoryPPP PPP Cache-coherent Non-Uniform Memory 
Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at
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HT / QPI provide scalable bandwidth at 
the expense of ccNUMA architectures: 
Where does my data finally end up?Memory

MI

Memory

MITo
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Back to the 2-chip-per-case age:
AMD Magny-Cours – a 2x6-core socket

AMD: “Magny-Cours”
12-core socket comprising two 6-core chips 
connected via 1 5 HT linksconnected via 1.5 HT links

Main memory access: 2 DDR3-Channels per 6-core chip
1/3 DDR3-Channel per core

2 socket server 4 memory locality domainsy y
ccNUMA within a socket!

4 socket server:4 socket server:

Network balance (QDR+2P Magny Cours) ~ 240 GF/s / 3 GB/s = 80 F/B
(2003: Intel Xeon DP 2 66 GHz + GBit ~ 10 GF/s / 0 12 GB/s = 80 F/B)
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Parallel programming models
on multicore multisocket nodes

Shared-memory (intra-node)
Good old MPI (current standard: 2.2)
OpenMP (current standard: 3.0)
POSIX threads
Intel Threading Building BlocksIntel Threading Building Blocks
Cilk++, OpenCL, StarSs,… you name it All models require 

awareness of 
Distributed-memory (inter-node)

MPI (current standard: 2.2)

topology and affinity 
issues for getting 

PVM (gone) best performance 
out of the machine!

Hybrid
Pure MPI
MPI+OpenMPMPI+OpenMP
MPI + any shared-memory model
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Parallel programming models:
Pure MPI

Machine structure is invisible to user:
Very simple programming model
MPI “knows what to do”!?

Performance issues
I t d i t d MPIIntranode vs. internode MPI
Node/system topology
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Parallel programming models:
Pure threading on the node

Machine structure is invisible to user
Very simple programming model

Threading SW (OpenMP, pthreads,
TBB,…) should know about the details

Performance issuesPerformance issues
Synchronization overhead
Memory accessy
Node topology
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Parallel programming models:
Hybrid MPI+OpenMP on a multicore multisocket cluster

One MPI process / node

One MPI process / socket: 
OpenMP threads on same 

socket: “blockwise”socket: blockwise

OpenMP threads pinnedOpenMP threads pinned
“round robin” across 

cores in node

Two MPI processes / socket
OpenMP threads 
on same socket
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Section summary: What to take home

Multicore is here to stay
Shifting complexity form hardware back to software

Increasing core counts
4-12 today, 16-32 tomorrow?
2 4 dx2 or x4 per cores node

Shared vs. separate caches
Complex chip/node topologiesComplex chip/node topologies

UMA is practically gone; ccNUMA will prevailUMA is practically gone; ccNUMA will prevail
“Easy” bandwidth scalability, but programming implications (see later)
Bandwidth bottleneck prevails on the socket

Programming models that take care of those changes are still in 
h flheavy flux

We are left with MPI and OpenMP for now
This is complex enough as we will see
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Probing node topology

Standard toolsStandard tools
likwid-topology
hwlochwloc



How do we figure out the node topology?

Topology =
Where in the machine does core #n reside? And do I have to remember this 

k d b i ?awkward numbering anyway?
Which cores share which cache levels?
Which hardware threads (“logical cores”) share a physical core?Which hardware threads ( logical cores ) share a physical core?

Linux
cat /proc/cpuinfo is of limited usep p

Core numbers may change across kernels
and BIOSes even on identical hardware

$ numactl --hardware
available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5

numactl --hardware prints 
ccNUMA node information                 

node 0 size: 8189 MB
node 0 free: 3824 MB
node 1 cpus: 6 7 8 9 10 11
node 1 size: 8192 MBcc U ode o at o

Information on caches is harder

node 1 size: 8192 MB
node 1 free: 28 MB
node 2 cpus: 18 19 20 21 22 23
node 2 size: 8192 MB

to obtain node 2 free: 8036 MB
node 3 cpus: 12 13 14 15 16 17
node 3 size: 8192 MB
node 3 free: 7840 MB
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How do we figure out the node topology?

LIKWID tool suite:

Like
II
Knew
WhatWhat
I’m
DoingDoing

Open source tool collectionOpen source tool collection 
(developed at RRZE):

J. Treibig, G. Hager, G. Wellein: LIKWID: A 
lightweight performance-oriented tool suite 
for x86 multicore environments. Proc. 
PSTI2010, Sep 13-16, 2010, San Diego, CA

http://code.google.com/p/likwid
PSTI2010, Sep 13 16, 2010, San Diego, CA
http://arxiv.org/abs/1004.4431
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Likwid Tool Suite

Command line tools for Linux:
easy to install 
works with standard linux 2.6 kernel
simple and clear to use 
Supports current Intel and AMD CPUsSupports current Intel and AMD CPUs

Current tools:Current tools:
likwid-topology: Print thread and cache topology
likwid-pin: Pin threaded application without touching code
likwid-perfctr: Measure performance counters
likwid-features: View and enable/disable hardware prefetchers
likwid-bench: Low-level bandwidth benchmark generator tool
likwid-mpirun: mpirun wrapper script for easy LIKWID integration (alpha)
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likwid-topology – Topology information

Based on cpuid information
Functionality:Functionality:

Measured clock frequency 

Thread topologyThread topology

Cache topology

Cache parameters (-c command line switch)Cache parameters ( c command line switch)

ASCII art output (-g command line switch)

Currently supported (more under development):Currently supported (more under development):
Intel Core 2 (45nm + 65 nm)

Intel Nehalem + Westmere (Sandy Bridge in alpha phase)Intel Nehalem + Westmere (Sandy Bridge in alpha phase)

AMD K10 (Quadcore, Hexacore, Magny Cours)

AMD K8AMD K8

Linux OS, Windows port in alpha phase for likwid-pin
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Output of likwid-topology

CPU name:       Intel Core i7 processor
CPU clock:      2666683826 Hz
*************************************************************
Hardware Thread Topology
*************************************************************
Sockets:                2
Cores per socket:       4
Th d 2Threads per core:       2
-------------------------------------------------------------
HWThread        Thread          Core            Socket
0               0               0               0
1 1 0 01               1               0               0
2               0               1               0
3               1               1               0
4               0               2               0
5 1 2 05               1               2               0
6               0               3               0
7               1               3               0
8               0               0               1
9               1               0               1

Thread-to-core 
mapping

9 0
10              0               1               1
11              1               1               1
12              0               2               1
13              1               2               1
14              0               3               1
15              1               3               1
-------------------------------------------------------------
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Output of likwid-topology continued
Socket 0: ( 0 1 2 3 4 5 6 7 )
Socket 1: ( 8 9 10 11 12 13 14 15 )
-------------------------------------------------------------

*************************************************************
Cache Topology
*************************************************************
Level:   1
Size:    32 kBS e: 3
Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 )
-------------------------------------------------------------
Level:   2
Size:    256 kB
Cache groups: ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 )Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 )
-------------------------------------------------------------
Level:   3
Size:    8 MB
Cache groups:   ( 0 1 2 3 4 5 6 7 ) ( 8 9 10 11 12 13 14 15 )
-------------------------------------------------------------
*************************************************************
NUMA Topology
*************************************************************
NUMA domains: 2NUMA domains: 2
-------------------------------------------------------------
Domain 0:
Processors:  0 1 2 3 4 5 6 7
Memory: 5182.37 MB free of total 6132.83 MB

ccNUMA domain info 
(analogous to 

-------------------------------------------------------------
Domain 1:
Processors:  8 9 10 11 12 13 14 15
Memory: 5568.5 MB free of total 6144 MB
-------------------------------------------------------------

numactl –hardware)
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Output of likwid-topology

… and also try the ultra-cool 
-g option!

Socket 0:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| |  0  1| |  2  3| |  4  5| |  6  7| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| |  32kB| |  32kB| |  32kB| |  32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| | 8MB | || |                8MB              | |
| +---------------------------------+ |
+-------------------------------------+
Socket 1:
+ ++-------------------------------------+
| +------+ +------+ +------+ +------+ |
| |  8  9| |10  11| |12  13| |14  15| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ || + + + + + + + + |
| |  32kB| |  32kB| |  32kB| |  32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| || | | | | | | | | |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| |                8MB              | |
| +---------------------------------+ |
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hwloc

Alternative: http://www.open-mpi.org/projects/hwloc/
Successor to (and extension of) PLPA, part of OpenMPI 
development
Comprehensive API and
command line tool tocommand line tool to 
extract topology info
Supports severalSupports several
OSs and CPU types
Pinning API available
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Enforcing thread/process-core affinity 
under the Linux OS

Standard tools and OS affinity facilities Standard tools and OS affinity facilities 
under program control
likwid-pinp



Generic thread/process-core affinity under Linux

taskset [OPTIONS] [MASK | -c LIST ] \
[PID | command [args]...]

binds processes/threads to a set of CPUs. Examples:

taskset –c 0 2 mpirun –np 2 /a out # doesn’t always worktaskset –c 0,2 mpirun –np 2 ./a.out # doesn t always work
taskset 0x0006 ./a.out
taskset –c 4 33187

Processes/threads can still move within the set!
Alternative: let process/thread bind itself by executing syscally g y
#include <sched.h>
int sched_setaffinity(pid_t pid, unsigned int len, 

unsigned long *mask);

Disadvantage: which CPUs should you bind to on a non-exclusive 
machine?

Still of value on multicore/multisocket cluster nodes, UMA or ccNUMA
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Generic thread/process-core affinity under Linux

Complementary tool: numactl

E l tl h bi d 0 1 2 3 d [ ]Example: numactl --physcpubind=0,1,2,3 command [args]
Bind process to specified physical core numbers

Example: numactl --cpunodebind=1 command [args]
Bind process to specified ccNUMA node(s)

Many more options (e.g., interleave memory across nodes)
ti NUMA ti i tisee section on ccNUMA optimization

Diagnostic command (see earlier):Diagnostic command (see earlier):
numactl --hardware

Again, this is not suitable for a shared machine
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Thread/Process-core affinity (“pinning”) options

Highly OS-dependent system calls
But available on all systems

( )Linux: sched_setaffinity(), PLPA (see below) hwloc
Solaris: processor_bind()
Windows: SetThreadAffinityMask()
…

Support for “semi-automatic” pinning in some 
compilers/environmentsp

Intel compilers > V9.1 (KMP_AFFINITY environment variable)
PGI, Pathscale, GNU
SGI Alti d l ( k ith l i l CPU b !)SGI Altix dplace (works with logical CPU numbers!)
Generic Linux: taskset, numactl, likwid-pin (see below)

Affinity awareness in MPI librariesAffinity awareness in MPI libraries
SGI MPT
OpenMPI Example for program-controlled
Intel MPI
…

Example for program controlled 
affinity: Using PLPA under Linux!
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Explicit Process/Thread Binding With PLPA on Linux:
http://www.open-mpi.org/software/plpa/

Portable Linux Processor Affinity
Wrapper library for sched_*affinity() functions

Robust against changes in kernel API
Example for pure OpenMP: Pinning of threads Care about correct 

core numbering! 
#include <plpa.h>
...
#pragma omp parallel

Pinning 
il bl ?

g
0…N-1 is not always 
contiguous! If 
required reorder by#pragma omp parallel

{
#pragma omp critical
{

available? required, reorder by 
a map:
cpu = map[cpu];

if(PLPA_NAME(api_probe)()!=PLPA_PROBE_OK) {
cerr << "PLPA failed!" << endl; exit(1);

}
plpa cpu set t msk;

Which core to 
run on?p p _ p _ _ ;

PLPA_CPU_ZERO(&msk);
int cpu = omp_get_thread_num();
PLPA_CPU_SET(cpu,&msk);
PLPA NAME( h d t ffi it )(( id t)0 i f( t t) & k)

run on?

Similar for pure MPI and MPI+OpenMP hybrid code

PLPA_NAME(sched_setaffinity)((pid_t)0, sizeof(cpu_set_t), &msk);
}

Pin “me”

30PPoPP11 Tutorial Ingredients for good multicore performance

Similar for pure MPI and MPI+OpenMP hybrid code



Process/Thread Binding With PLPA

Example for pure MPI: Process pinning
Bind MPI processes to cores in a cluster P0 P1 P2 P3Bind MPI processes to cores in a cluster 
of 2x2-core machines

MPI Comm rank(MPI COMM WORLD &rank);

C C
C C

MI

C C
C C

MI

MPI_Comm_rank(MPI_COMM_WORLD,&rank);
int mask = (rank % 4);
PLPA_CPU_SET(mask,&msk);
PLPA_NAME(sched_setaffinity)((pid_t)0, 

Memory Memory

Hybrid case: 
sizeof(cpu_set_t), &msk);

MPI Comm rank(MPI COMM WORLD,&rank);_ _ ( _ _ , )
#pragma omp parallel
{
plpa_cpu_set_t msk;
PLPA CPU ZERO(&msk);PLPA_CPU_ZERO(&msk);
int cpu = (rank % MPI_PROCESSES_PER_NODE)*omp_num_threads

+ omp_get_thread_num();
PLPA_CPU_SET(cpu,&msk);
PLPA_NAME(sched_setaffinity)((pid_t)0, sizeof(cpu_set_t), &msk);

}
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Likwid-pin
Overview

Inspired by and based on ptoverride (Michael Meier, RRZE) and taskset
Pins processes and threads to specific cores without touching code
Directly supports pthreads, gcc OpenMP, Intel OpenMP
Allows user to specify skip mask (shepherd threads should not be pinned)
Based on combination of wrapper tool together with overloaded pthread 
library
Can also be used as a superior replacement for tasksetCan also be used as a superior replacement for taskset
Supports logical core numbering within a node and within an existing CPU 
set

Useful for running inside CPU sets defined by someone else, e.g., the MPI 
start mechanism or a batch system

Configurable colored output

Usage examples:
likwid-pin –t intel -c 0,2,4-6 ./myApp parameters 

i lik id i 0 3 0 3 5 6 /
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Likwid-pin
Example: Intel OpenMP

Running the STREAM benchmark with likwid-pin:

$ export OMP_NUM_THREADS=4  
$ likwid-pin -s 0x1 -c 0,1,4,5 ./stream
[likwid-pin] Main PID -> core 0 - OK
----------------------------------------------

Main PID always 
i dDouble precision appears to have 16 digits of accuracy

Assuming 8 bytes per DOUBLE PRECISION word
----------------------------------------------
[ STREAM t t itt d ]

pinned

[... some STREAM output omitted ...]
The *best* time for each test is used
*EXCLUDING* the first and last iterations
[pthread wrapper] PIN MASK: 0->1  1->4  2->5  [p pp ] _
[pthread wrapper] SKIP MASK: 0x1
[pthread wrapper 0] Notice: Using libpthread.so.0

threadid 1073809728 -> SKIP 
[pthread wrapper 1] Notice: Using libpthread so 0

Skip shepherd 
thread

[pthread wrapper 1] Notice: Using libpthread.so.0 
threadid 1078008128 -> core 1 - OK

[pthread wrapper 2] Notice: Using libpthread.so.0 
threadid 1082206528 -> core 4 - OK Pin all spawned

[pthread wrapper 3] Notice: Using libpthread.so.0 
threadid 1086404928 -> core 5 - OK

[... rest of STREAM output omitted ...]

Pin all spawned 
threads in turn
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Likwid-pin
Using logical core numbering

Core numbering may vary from system to system even with 
identical hardware

Likwid-topology delivers this information, which can then be fed into likwid-
pin

Alternatively likwid-pin can abstract this variation and provide aAlternatively, likwid-pin can abstract this variation and provide a 
purely logical numbering (physical cores first)

Socket 0:
+-------------------------------------+
| + + + + + + + + |

Socket 0:
+-------------------------------------+
| + + + + + + + + || +------+ +------+ +------+ +------+ |

| |  0  1| |  2  3| |  4  5| |  6  7| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| |  32kB| |  32kB| |  32kB| |  32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |

Socket 1:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| | 8 9| |10 11| |12 13| |14 15| |

| +------+ +------+ +------+ +------+ |
| |  0  8| |  1  9| |  2 10| |  3 11| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| |  32kB| |  32kB| |  32kB| |  32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |

Socket 1:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| | 4 12| | 5 13| | 6 14| | 7 15| || | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| |                8MB              | |
| +---------------------------------+ |
+-------------------------------------+

| |  8  9| |10  11| |12  13| |14  15| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| |  32kB| |  32kB| |  32kB| |  32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| + + + + + + + + |

| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| |                8MB              | |
| +---------------------------------+ |
+-------------------------------------+

| |  4 12| |  5 13| |  6 14| |  7 15| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| |  32kB| |  32kB| |  32kB| |  32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| + + + + + + + + |

Across all cores in the node:

| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| |                8MB              | |
| +---------------------------------+ |
+-------------------------------------+

| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| |                8MB              | |
| +---------------------------------+ |
+-------------------------------------+

likwid-pin -c N:0-7 ./a.out

Across the cores in each socket and across sockets in each node:
likwid-pin -c S0:0-3@S1:0-3 /a out
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Likwid-pin
Using logical core numbering

Possible unit prefixes

N dN node

S socket

M NUMA domain

C outer level cache group
Chipset

Memory
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More examples: Hybrid MPI+OpenMP
Using Intel MPI+compiler & home-grown mpirun wrapper

One MPI process 
per node (w/ explicit 
logical numbering)

One MPI process

env OMP_NUM_THREADS=8 mpirun -pernode \
likwid-pin –t intel -c N:0-7 ./a.out 

One MPI process 
per socket (no 
pinning inside socket 
required) env OMP NUM THREADS=4 mpirun npernode 2 \required)

OpenMP threads 

env OMP_NUM_THREADS=4 mpirun -npernode 2 \
-pin "0,1,2,3_4,5,6,7" ./a.out 

p
pinned “round 
robin” across 
cores

env OMP_NUM_THREADS=4 mpirun -npernode 2 \
-pin "0,1,4,5 2,3,6,7" \cores (logical core 

numbers due to cpu set 
established by mpirun)

T MPI

pin 0,1,4,5_2,3,6,7  \
likwid-pin –t intel -c 0,2,1,3 ./a.out 

Two MPI 
processes per 
socket (dito)

env OMP_NUM_THREADS=2 mpirun -npernode 4 \
-pin "0,1_2,3_4,5_6,7" \
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Example: STREAM benchmark on 12-core Intel Westmere:
Anarchy vs. thread pinning

C
C

C
C

C
C

C
C

C
C

C
C

C

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

C
C

C
C

C
C

C
C

C
C

C
C

C

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

C

MI

Memory

C

MI

MemoryMemory Memory

No pinning

Th l f i b t

Pinning (physical cores first)

There are several reasons for caring about 
affinity:

Eliminating performance variation

Making use of architectural features

Avoiding resource contention
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Monitoring the Binding
How can we see whether the measures for binding are really effective?

sched_getaffinity(), ...

top:

top - 16:05:03 up 24 days,  7:24, 32 users,  load average: 5.47, 4.92, 3.52
Tasks: 419 total,   4 running, 415 sleeping,   0 stopped,   0 zombie
Cpu(s):  95.7% us,  1.1% sy,  1.6% ni, 0.0% id,  1.4% wa,  0.0% hi,  0.2% si
M 8157028k t t l 8131252k d 25776k f 2772k b ffMem:   8157028k total,  8131252k used,    25776k free,     2772k buffers
Swap:  8393848k total,    93168k used,  8300680k free,  7160040k cached

PID USER      PR  VIRT  RES  SHR  NI P S %CPU %MEM   TIME COMMAND
23914 unrz55    25  277m 223m 2660   0 2 R 99.9  2.8  23:42 dmrg_0.26_WOODY
24284 unrz55    16  8580 1556  928   0 2 R  0.2  0.0   0:00 top
4789 unrz55    15 40220 1452 1448   0 0 S  0.0  0.0   0:00 sshd
4790 unrz55 15 7900 552 548 0 3 S 0 0 0 0 0:00 tcsh

P “H” f h i t th d physical CPU ID

4790 unrz55    15  7900  552  548   0 3 S  0.0  0.0   0:00 tcsh

Press “H” for showing separate threads physical CPU ID
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Probing performance behavior

How do we find out about the performance requirements of a 
parallel code?

Profiling via advanced tools is often overkill
A coarse overview is often sufficient

lik id perfctr (similar to “perfe ” on IRIX “hpmco nt” on AIX “lipfpm” onlikwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on 
Linux/Altix)
Simple end-to-end measurement of hardware performance metricsp p
“Marker” API for starting/stopping 
counters
M lti l t i

BRANCH: Branch prediction miss rate/ratio
CACHE: Data cache miss rate/ratio

Multiple measurement region 
support
Preconfigured and extensible 

CLOCK: Clock of cores
DATA: Load to store ratio
FLOPS_DP: Double Precision MFlops/s
FLOPS SP: Single Precision MFlops/sg

metric groups, list with
likwid-perfctr -a

_ g p /
FLOPS_X87: X87 MFlops/s
L2: L2 cache bandwidth in MBytes/s
L2CACHE: L2 cache miss rate/ratio
L3 L3 h b d idth i MB t /L3: L3 cache bandwidth in MBytes/s
L3CACHE: L3 cache miss rate/ratio
MEM: Main memory bandwidth in MBytes/s
TLB: TLB miss rate/ratio

39PPoPP11 Tutorial Ingredients for good multicore performance



likwid-perfctr
Example usage with preconfigured metric group 

$ env OMP_NUM_THREADS=4 likwid-perfctr -c 0-3 -g FLOPS_DP likwid-pin -c 0-3 –s 0x1 ./stream.exe
-------------------------------------------------------------
CPU type: Intel Core Lynnfield processor 
CPU clock: 2.93 GHz 
-------------------------------------------------------------
Measuring group FLOPS_DP
-------------------------------------------------------------
YOUR PROGRAM OUTPUT

Always 
measured

Configured metrics 
(this group)

YOUR PROGRAM OUTPUT
+--------------------------------------+-------------+-------------+-------------+-------------+
| Event | core 0 | core 1 | core 2 | core 3 |
+--------------------------------------+-------------+-------------+-------------+-------------+
| INSTR RETIRED ANY | 1.97463e+08 | 2.31001e+08 | 2.30963e+08 | 2.31885e+08 || _ _ | | | | |
| CPU_CLK_UNHALTED_CORE | 9.56999e+08 | 9.58401e+08 | 9.58637e+08 | 9.57338e+08 |
| FP_COMP_OPS_EXE_SSE_FP_PACKED | 4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |
| FP_COMP_OPS_EXE_SSE_FP_SCALAR | 882 | 0 | 0 | 0 |
| FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION | 0 | 0 | 0 | 0 |
| | 4 00303 07 | 3 08927 07 | 3 08866 07 | 3 08904 07 || FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION | 4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |
+--------------------------------------+-------------+-------------+-------------+-------------+
+--------------------------+------------+---------+----------+----------+
| Metric | core 0 | core 1 | core 2 | core 3 |
+--------------------------+------------+---------+----------+----------++ + + + + +
| Runtime [s] | 0.326242 | 0.32672 | 0.326801 | 0.326358 |
| CPI | 4.84647 | 4.14891 | 4.15061 | 4.12849 |
| DP MFlops/s (DP assumed) | 245.399 | 189.108 | 189.024 | 189.304 |
| Packed MUOPS/s | 122.698 | 94.554 | 94.5121 | 94.6519 |

Derived 
metrics

| Scalar MUOPS/s | 0.00270351 | 0 | 0 | 0 |
| SP MUOPS/s | 0 | 0 | 0 | 0 |
| DP MUOPS/s | 122.701 | 94.554 | 94.5121 | 94.6519 |
+--------------------------+------------+---------+----------+----------+ 
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likwid-perfctr
Best practices for runtime counter analysis 

Things to look at Caveats

Load balance (flops, instructions, 
BW)

Load imbalance may not show in 
CPI or # of instructions

Spin loops in OpenMP barriers/MPI 

In-socket memory BW saturation
blocking calls

In-socket performance saturation
Shared cache BW saturation

Fl / l d d t fl

In-socket performance saturation 
may have various reasons

Flop/s, loads and stores per flop
metrics

Cache miss metrics are overrated
If I really know my code, I can calculate
the misses

CPI metric Runtime and resource utilization is much 
more important

# of instructions, branches, 
mispredicted branches
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Section summary: What to take home

Figuring out the node topology is usually the hardest part
Virtual/physical cores, cache groups, cache parameters
This information is usually scattered across many sources

LIKWID-topology
O t l f ll t l tOne tool for all topology parameters
Supports Intel and AMD processors under Linux (currently)

Generic affinity tools
Taskset, numactl do not pin individual threads, p
Manual (explicit) pinning from within code

LIKWID-pin
Binds threads/processes to cores
Optional abstraction of strange numbering schemes (logical numbering)

LIKWID f tLIKWID-perfctr
End-to-end hardware performance metric measurement 
Finds out about basic architectural requirements of a program
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Tutorial outline

Introduction
Architecture of multisocket multicore 

t

Impact of processor/node 
topology on program 

fsystems
Nomenclature
Current developments

performance
Bandwidth saturation effects
Programming for ccNUMACurrent developments

Programming models
Programming for ccNUMA
OpenMP performance
Simultaneous multithreading (SMT)

Multicore performance tools
Finding out about system topology

g ( )
Intranode vs. internode MPI

Affinity enforcement
Performance counter 
measurements

New chances with multicore 
hardware

Wavefront parallelization of stencil codesmeasurements Wavefront parallelization of stencil codes
Explicit comm/calc overlap in sparse MVM

SSummary
Appendix
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General remarks on the performanceGeneral remarks on the performance 
properties of multicore multisocket 
systemssystems



The parallel vector triad benchmark
A “swiss army knife” for microbenchmarking

Simple streaming benchmark:

for(int j=0; j < NITER; j++){
#pragma omp parallel for
for(i=0; i < N; ++i)
a[i]=b[i]+c[i]*d[i];
if(OBSCURE)if(OBSCURE)

dummy(a,b,c,d);
}

Report performance for different N
Ch NITER th t t ti t i iblChoose NITER so that accurate time measurement is possible
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The parallel vector triad benchmark
Optimal code on x86 machines

timing(&wct_start, &cput_start); // size = multiple of 8
int vector_size(int n){  

t i t( (1 3 ))&( 8)

#pragma omp parallel private(j)
{
  for(j=0; j<niter; j++){
    if(size > CACHE_SIZE>>5) {
#pragma omp parallel for

return int(pow(1.3,n))&(-8); 
}

{

#pragma vector always
#pragma vector aligned
#pragma vector nontemporal

f (i 0 i< i ++i)

Large-N version (NT)

      for(i=0; i<size; ++i)
        a[i]=b[i]+c[i]*d[i];
    } else {
#pragma omp parallel for#pragma omp parallel for
#pragma vector always
#pragma vector aligned
      for(i=0; i<size; ++i)

Small-N version 
(noNT)

        a[i]=b[i]+c[i]*d[i];
    }
    if(a[5]<0.0)

[3] b[5] [10] d[6]

(noNT)

      cout << a[3] << b[5] << c[10] << d[6];
  }

timing(&wct end &cput end);
}
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The parallel vector triad benchmark
Performance results on Xeon 5160 node

P
C

P
C

C

P
C

P
C

C

(small) L2 
bottleneck

Team re-
start

Chipset

Memory

OMP 
overhead

y

Aggregate 
L2

Cross-
socket synch NT stores
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Bandwidth limitations: Memory
Some problems get even worse….

System balance = PeakBandwidth [MByte/s] / PeakFlops [MFlop/s] 
Typical balance ~ 0.25 Byte / Flop 4 Flop/Byte 32 Flop/double

Balance values:

Scalar product:
1 Flop/double

1/32 P k1/32 Peak

Dense 
Matrix·Vector:
2 Fl /d bl2 Flop/double

1/16 Peak

LLarge 
MatrixMatrix
(BLAS3)  
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Bandwidth saturation effects in cache and 
memory



Bandwidth limitations: Memory and cache
Scalability of shared data paths on a socket

L3 Load

L3 Load – L3 Store

PPPP P P
C
C

C
C

C
C

MI

C
C

C
C

C
C

L3 CACHE

Memory*
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Bandwidth limitations: Outer-level cache
L3 bandwidth may scale a bit better in future systems…

P
CC

P
CC

P
CC

P
CC

P
CC

P
CC

P
CC

P
CC

C
MI

Memory

Intel Nehalem EX
8-core chip; 24 MB L3p;
4 DDR3-channels per socket
4 sockets EA system: 
128 GB DDR3128 GB DDR3

Nehalem EX: New L3 design
8 segments connected by ring
Scalable bandwidth
Lesson learned from “Larrabee”?

Ideas for the future?:
Lesson learned from Larrabee ?
Has been retained in
“Sandy Bridge”

Intel Knights Ferry
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Ameliorating bandwidth limitations by on-socket ccNUMA 
AMD Magny-Cours – a ccNUMA 12-core socket

AMD “Magny-Cours” available as 8-core or 12-core !
12-core socket implemented as two 6-core chips 

t d i 1 5 HT li kconnected via 1.5 HT links

Main memory access: 2 DDR3-Channels per 6-core chipMain memory access: 2 DDR3-Channels per 6-core chip
1/3 DDR3-Channel per core

2 socket server 4 memory locality domains
ccNUMA within a socket!

4 socket server:

Network balance (QDR+2P Magny Cours) ~ 240 GF/s / 3 GB/s = 80 F/B
(2003: Intel Xeon DP 2 66 GHz + GBit ~ 10 GF/s / 0 12 GB/s = 80 B/F)
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Ameliorating bandwidth limitations by on-socket ccNUMA 
AMD Magny-Cours – a ccNUMA 12-core socket

Test system configuration:
2 x AMD Opteron 6172 (2x6 cores; 2x6MB L3; 2.1 GHz)
64 GB DDR3 1333 MHz64 GB DDR3-1333 MHz

Stream (triad w/ NT stores): 
1 0 0 0 0

1 2 0 0 0

1 4 0 0 0

1 socket (12 cores): 24.8 GB/s

2 sockets: 49 7 GB/s 6 0 0 0

8 0 0 0

1 0 0 0 0

C O P Y
T r i a d2 sockets: 49.7 GB/s

2 0 0 0

4 0 0 0
T r i a d

Local vs. remote data access
0

1  c o r e 2  c o r e s 6  c o r e s

Local / remote Single thread (triad)
P0 LD0 7,8 GB/s

G /P0 LD1 5,1 GB/s
P0 LD2 5,1 GB/s
P0 LD3 3 0 GB/s
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Case study: Sparse matrix-vector multiply

Important kernel in many applications (matrix diagonalization, 
solving linear systems)
Strongly memory-bound for large data sets

Streaming, with partially indirect access:

do i = 1,Nr
d j t (i) t (i+1) 1

!$OMP parallel do

do j = row_ptr(i), row_ptr(i+1) - 1
c(i) = c(i) + val(j) * b(col_idx(j)) 

enddo
enddo
!$OMP end parallel do

Usually many spMVMs required to solve a problem

Case study: Performance data on one 24-core AMD Magny Cours
node
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Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

Case 1: Large matrix

IntrasocketIntrasocket 
bandwidth 
bottleneck Good scaling 

across socketsacross sockets
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Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

Case 2: Medium size

Working set fits 
i tin aggregate 

cache

Intrasocket 
bandwidth 
bottleneck
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Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

Case 3: Small size

No bandwidth 
bottleneck

P ll li tiParallelization 
overhead 

dominates
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Efficient parallel programming 
on ccNUMA nodes

Performance characteristics of ccNUMA nodesPerformance characteristics of ccNUMA nodes
First touch placement policy
C++ issuesC++ issues
ccNUMA locality and dynamic scheduling
ccNUMA locality beyond first touchccNUMA locality beyond first touch



ccNUMA performance problems
“The other affinity” to care about

ccNUMA:
Whole memory is transparently accessible by all processors
but physically distributed
with varying bandwidth and latency
and potential contention (shared memory paths)and potential contention (shared memory paths)

How do we make sure that memory access is always as "local" 
and "distributed" as possible?and distributed  as possible?

C C C C C C C C

M M M M

Page placement is implemented in units of OS pages (often 4kB, possibly 
more)
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Example: HP DL585 G5 
4-socket ccNUMA Opteron 8220 Server

CPU
64 kB L1 per core
1 MB L2

P
C

P
C

P
C

P
C1 MB L2 per core

No shared caches
On-chip memory controller (MI)

C C
C C

MI

C C
C C

MI
HT

p y ( )
10.6 GB/s local memory bandwidth

HyperTransport 1000 network
Memory Memory

HTHT
4 GB/s per link per direction

3 distance categories for 
core-to-memory connections:

Memory Memory
core-to-memory connections:

same LD
1 hop P

C
P
C

C C

MI

P
C

P
C

C C

MI

HT

2 hops

Q1 Wh t th l lti f l l ?

P P P P

Q1: What are the real penalties for non-local accesses?
Q2: What is the impact of contention?
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Effect of non-local access on HP DL585 G5: 
Serial vector triad A(:)=B(:)+C(:)*D(:)

local

1 hop

2 hops
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Contention vs. parallel access on HP DL585 G5:
OpenMP vector triad A(:)=B(:)+C(:)*D(:)

T = # threads
S = # sockets

In-cache performance p
unharmed by ccNUMA

Single LD saturated 
by 2 cores!y

Perfect scaling 
across LDs

?
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ccNUMA locality tool numactl:
How do we enforce some locality of access?
numactl can influence the way a binary maps its memory pages:

numactl membind <nodes> a out # map pages only on <nodes>numactl --membind=<nodes> a.out # map pages only on <nodes>
--preferred=<node> a.out # map pages on <node> 

# and others if <node> is full
--interleave=<nodes> a out # map pages round robin across--interleave=<nodes> a.out # map pages round robin across

# all <nodes>

E lExamples:

env OMP_NUM_THREADS=2 numactl --membind=0 –cpunodebind=1 ./stream

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \
likwid-pin -c N:0,4,8,12 ./stream

But what is the default without numactl?
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ccNUMA default memory locality

"Golden Rule" of ccNUMA:

A t d i t th l l f thA memory page gets mapped into the local memory of the 
processor that first touches it!

Except if there is not enough local memory available
This might be a problem, see later

Caveat: "touch" means "write", not "allocate"
Example: Memory not 

mapped here yet

double *huge = (double*)malloc(N*sizeof(double));

//for(i=0; i<N; i++) // or i+=PAGE_SIZE
huge[i] = 0.0;

Mapping takes 

It is sufficient to touch a single item to map the entire page

place here
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Coding for Data Locality 

The programmer must ensure that memory pages get mapped 
locally in the first place (and then prevent migration)

Rigorously apply the "Golden Rule"
I.e. we have to take a closer look at initialization code

Some non locality at domain boundaries may be unavoidableSome non-locality at domain boundaries may be unavoidable
Stack data may be another matter altogether:

void f(int s) { // called many times with different s
double a[s]; // c99 feature
// where are the physical pages of a[] now???
…

}

Fine-tuning is possible (see later)

Prerequisite: Keep threads/processes where they arePrerequisite: Keep threads/processes where they are
Affinity enforcement (pinning) is key (see earlier section)
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Coding for ccNUMA data locality

integer parameter :: N=1000000 integer parameter :: N=1000000

Simplest case: explicit initialization 

integer,parameter :: N=1000000
real*8 A(N), B(N)

integer,parameter :: N=1000000
real*8 A(N),B(N)

A=0.d0

!$OMP parallel do schedule(static)
do i = 1, N

A(i)=0.d0

!$OMP ll l d

( )
end do

!$OMP ll l d h d l ( t ti )!$OMP parallel do
do i = 1, N

B(i) = function ( A(i) )

!$OMP parallel do schedule(static)
do i = 1, N

B(i) = function ( A(i) )
end do end do
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Coding for Data Locality

Sometimes initialization is not so obvious: I/O cannot be easily 
parallelized, so "localize" arrays before I/O

integer,parameter :: N=1000000
real*8 A(N), B(N)

integer,parameter :: N=1000000
real*8 A(N),B(N)ea 8 ( ), ( ) ( ), ( )

!$OMP parallel do schedule(static)
d I 1 Ndo I = 1, N
A(i)=0.d0
end do

READ(1000) A
!$OMP parallel do
do I = 1 N

READ(1000) A
!$OMP parallel do schedule(static)
do I = 1 Ndo I = 1, N

B(i) = function ( A(i) )
end do

do I = 1, N
B(i) = function ( A(i) )
end do
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Coding for Data Locality

Required condition: OpenMP loop schedule of initialization must 
be the same as in all computational loops

Best choice: static! Specify explicitly on all NUMA-sensitive loops, just to 
be sure…
Imposes some constraints on possible optimizations (e g load balancing)Imposes some constraints on possible optimizations (e.g. load balancing)
Presupposes that all worksharing loops with the same loop length have the 
same thread-chunk mapping

Guaranteed by OpenMP 3.0 only for loops in the same enclosing parallel region
In practice, it works with any compiler even across regions

If dynamic scheduling/tasking is unavoidable more advanced methods mayIf dynamic scheduling/tasking is unavoidable, more advanced methods may 
be in order

How about global objects?
Better not use them
If i ti t ti i f bl i ht id lIf communication vs. computation is favorable, might consider properly 
placed copies of global data
In C++, STL allocators provide an elegant solution
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Coding for Data Locality:
Placement of static arrays or arrays of objects

Speaking of C++: Don't forget that constructors tend to touch the 
data members of an object. Example:

class D {
double d;
blipublic:
D(double _d=0.0) throw() : d(_d) {}
inline D operator+(const D& o) throw() {
return D(d+o.d);

}
inline D operator*(const D& o) throw() {p ( ) () {
return D(d*o.d);

}
...
};

→ placement problem with 
D* array = new D[1000000];
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Coding for Data Locality:
Parallel first touch for arrays of objects

Solution: Provide overloaded new operator or special function that places 
the memory before constructors are called (PAGE_BITS = base-2 log of 
pagesize)pagesize)

template <class T> T* pnew(size_t n) {
size t st = sizeof(T);s e_t st s eo ( );
int ofs,len=n*st;
int i,pages = len >> PAGE_BITS;
char *p = new char[len];

parallel first touch

char *p = new char[len];
#pragma omp parallel for schedule(static) private(ofs)

for(i=0; i<pages; ++i) {
f t ti t< i t>(i) << PAGE BITSofs = static_cast<size_t>(i) << PAGE_BITS;

p[ofs]=0;
}

#pragma omp parallel for schedule(static) private(ofs)
for(ofs=0; ofs<n; ++ofs) {
new(static cast<void*>(p+ofs*st)) T;( _ (p ))

}
return static_cast<T*>(m);

}

placement 
new!
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Coding for Data Locality:
NUMA allocator for parallel first touch in std::vector<>

template <class T> class NUMA_Allocator {
public:
T* allocate(size_type numObjects, const void  

*localityHint=0) {
size_type ofs,len = numObjects * sizeof(T);_
void *m = malloc(len);
char *p = static_cast<char*>(m);
int i,pages = len >> PAGE BITS;int i,pages  len >> PAGE_BITS;

#pragma omp parallel for schedule(static) private(ofs)
for(i=0; i<pages; ++i) {
ofs = static cast<size t>(i) << PAGE BITS;ofs = static_cast<size_t>(i) << PAGE_BITS;
p[ofs]=0;

}
t t ti t< i t >( )return static_cast<pointer>(m);

}
...
}; Application:

vector<double,NUMA_Allocator<double> > x(1000000)
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Memory Locality Problems

Locality of reference is key to scalable performance on ccNUMA
Less of a problem with distributed memory (MPI) programming, but see below

What factors can destroy locality?

MPI programming:MPI programming:
Processes lose their association with the 
CPU the mapping took place on originally
OS kernel tries to maintain strong affinity butOS kernel tries to maintain strong affinity, but 
sometimes fails

Shared Memory Programming

P
C
C

P
C
C

P
C
C

MI

P
C
C

P
C
C

P
C
C

C

P
C
C

P
C
C

P
C
C

MI

P
C
C

P
C
C

P
C
C

C

(OpenMP,…):
Threads losing association with the CPU the 
mapping took place on originally Memory

MI

Memory

MI

mapping took place on originally
Improper initialization of distributed data

All cases: 
Other agents (e.g., OS kernel) may fill 
memory with data that prevents optimal 
placement of user data
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Diagnosing Bad Locality

If your code is cache-bound, you might not notice any locality 
problems

Otherwise, bad locality limits scalability at very low CPU numbers
(whenever a node boundary is crossed)(whenever a node boundary is crossed)

If the code makes good use of the memory interface
But there may also be a general problem in your codeBut there may also be a general problem in your code…

Consider using performance countersg p
LIKWID-perfCtr can be used to measure nonlocal memory accesses
Example for Intel Nehalem (Core i7):

env OMP_NUM_THREADS=8 likwid-perfCtr -g MEM –c 0-7 \
likwid-pin -t intel -c 0-7 ./a.out
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Using performance counters for diagnosing bad ccNUMA 
access locality

Intel Nehalem EP node:
“Uncore” events only 

t d k t

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------
|             Event             |   core 0    |   core 1    |   core 2    |   core 3    |   core 4    |   core 5    
+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------

counted once per socket

|       INSTR_RETIRED_ANY       | 5.20725e+08 | 5.24793e+08 | 5.21547e+08 | 5.23717e+08 | 5.28269e+08 | 5.29083e+08 
|     CPU_CLK_UNHALTED_CORE     | 1.90447e+09 | 1.90599e+09 | 1.90619e+09 | 1.90673e+09 | 1.90583e+09 | 1.90746e+09 
|   UNC_QMC_NORMAL_READS_ANY    | 8.17606e+07 |      0      |      0      |      0      | 8.07797e+07 |      0      
|    UNC_QMC_WRITES_FULL_ANY    | 5.53837e+07 |      0      |      0      |      0      | 5.51052e+07 |      0      
| UNC QHL REQUESTS REMOTE READS | 6.84504e+07 |      0      |      0      |      0      | 6.8107e+07 |      0      | _Q _ Q _ _ | | | | | |
| UNC_QHL_REQUESTS_LOCAL_READS  | 6.82751e+07 |      0      |      0      |      0      | 6.76274e+07 |      0      
+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------
RDTSC timing: 0.827196 s
+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+
|           Metric            |  core 0  |  core 1  | core 2  |  core 3  |  core 4  |  core 5  | core 6  | core 7  || | | | | | | | | |
+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+
|         Runtime [s]         | 0.714167 | 0.714733 | 0.71481 | 0.715013 | 0.714673 | 0.715286 | 0.71486 | 0.71515 |
|             CPI             | 3.65735  | 3.63188  | 3.65488 | 3.64076  | 3.60768  | 3.60521  | 3.59613 | 3.60184 |
| Memory bandwidth [MBytes/s] | 10610.8  |    0     |    0    |    0     | 10513.4  |    0     |    0    |    0    |
|  Remote Read BW [MBytes/s]  |   5296   |    0     |    0    |    0     | 5269.43  |    0     |    0    |    0    || a [ y / ] | | | | | | | | |
+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+

H lf f d BWHalf of read BW comes 
from other socket!
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If all fails…

Even if all placement rules have been carefully observed, you may 
still see nonlocal memory traffic. Reasons?

Program has erratic access patters may still achieve some access 
parallelism (see later)
OS has filled memory with buffer cache data:

# tl h d # idl d !# numactl --hardware    # idle node!
available: 2 nodes (0-1)
node 0 size: 2047 MB
node 0 free: 906 MB
node 1 size: 1935 MB
node 1 free: 1798 MB

top - 14:18:25 up 92 days,  6:07,  2 users,  load average: 0.00, 0.02, 0.00
Mem: 4065564k total, 1149400k used, 2716164k free, 43388k buffersMem:   4065564k total,  1149400k used,  2716164k free,    43388k buffers
Swap:  2104504k total,     2656k used,  2101848k free,  1038412k cached
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ccNUMA problems beyond first touch:
Buffer cache

OS uses part of main memory for
disk buffer (FS) cache P1 P2 P3 P4disk buffer (FS) cache

If FS cache fills part of memory, 
apps will probably allocate from 

P1
C

P2
C

C C

MI

P3
C

P4
C

C C

MIforeign domains
non-local access!

“sync” is not sufficient to

MI MI

d t (3)

dsync  is not sufficient to
drop buffer cache blocks

BC

data(3)

data(3)
data(1)

Remedies

BC

Drop FS cache pages after user job has run (admin’s job)
User can run “sweeper” code that allocates and touches all physical 
memory before starting the real applicationmemory before starting the real application
Linux: There is no way to limit the buffer cache size in standard kernels
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ccNUMA problems beyond first touch:
Buffer cache

Real-world example: ccNUMA vs. UMA and the Linux buffer cache
Compare two 4-way systems: AMD Opteron ccNUMA vs. Intel UMA, 4 GB 

imain memory

Run 4 concurrentRun 4 concurrent
triads (512 MB each)
after writing a large 
filefile

Report perfor-Report perfor
mance vs. file size

Drop FS cache after
each data point

78PPoPP11 Tutorial Ingredients for good multicore performance



ccNUMA placement and erratic access patterns

Sometimes access patterns are 
just not nicely grouped into 
contiguous chunks:

Or you have to use tasking/dynamic 
scheduling:

contiguous chunks:
double precision :: r, a(M)
!$OMP parallel do private(r)
d i 1 N

!$OMP parallel
!$OMP single
do i=1,N

ll ( )do i=1,N
call RANDOM_NUMBER(r)
ind = int(r * M) + 1
res(i) = res(i) + a(ind)

call RANDOM_NUMBER(r)
if(r.le.0.5d0) then

!$OMP task
ll d k ith( (i))res(i) = res(i) + a(ind)

enddo
!OMP end parallel do

call do_work_with(p(i))
!$OMP end task
endif

enddoenddo
!$OMP end single
!$OMP end parallel

In both cases page placement cannot easily be fixed for perfect parallel 
access
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ccNUMA placement and erratic access patterns

Worth a try: Interleave memory across ccNUMA domains to get at least 
some parallel access
1 E li it l t1. Explicit placement:

!$OMP parallel do schedule(static,512)
do i=1,M
a(i) = …

enddo
!$OMP end parallel do

Observe page alignment of 
array to get proper 

placement!

2. Using global control via numactl: This is for all memory, not 
just the problematic 

!numactl --interleave=0-3 ./a.out

Fi i d t ll d l t i (Li )

arrays!

Fine-grained program-controlled placement via libnuma (Linux) 
using, e.g., numa_alloc_interleaved_subset(), 
numa alloc interleaved() and othersnuma_alloc_interleaved() and others
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Performance impact of round-robin page 
placement with dynamic scheduling/tasking

OpenMP vector triad benchmark A(:)=B(:)+C(:)*D(:) with 
large array lengths on a 4-LD ccNUMA machine
Round-robin page placement (see previous slide)
Static vs. dynamic loop scheduling, varying chunk size

Static loop schedule matches 
initialization, but no page 

alignment of arrays

Asymptotic limit: 75% of all 
page accesses are nonlocal

HW prefetcher misfiring/ 
TLB misses
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OpenMP performance issues 
on multicore

Synchronization (barrier) overheadSynchronization (barrier) overhead
Work distribution overhead



Welcome to the multi-/many-core era
Synchronization of threads via shared caches
!$OMP PARALLEL …
…
!$OMP BARRIER

Threads are synchronized at 
explicit AND implicit barriers.!$OMP BARRIER

!$OMP DO
…

p p

Determine costs via modified OpenMP 
!$OMP ENDDO
!$OMP END PARALLEL

Microbenchmarks  testcase  (epcc)

On x86 systems there is no hardware support for synchronization.
Tested synchronization constructsTested synchronization constructs

OpenMP Barrier
pthreads Barrier
Spin waiting loop software solution 

Test machines (Linux OS):Test machines (Linux OS):
Intel Core 2 Quad Q9550 (2.83 GHz)
Intel Core i7 920 (2.66 GHz)
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Thread synchronization overhead 
Barrier overhead in CPU cycles: pthreads vs. OpenMP vs. spin loop

2 Th d Q9550 ( h d L2) i7 920 ( h d L3)

P
C

P
C

C

P
C

P
C

C

P
C

P
C

C C

P
C

P
C

C C
C

2 Threads Q9550 (shared L2) i7 920 (shared L3)
pthreads_barrier_wait 23739 6511
omp barrier (icc 11 0) 399 469omp barrier (icc 11.0) 399 469
Spin loop 231 270

4 Threads Q9550 i7 920 (shared L3)
pthreads_barrier_wait 42533 9820p _ _ 533 98 0
omp barrier (icc 11.0) 977 814
Spin loop 1106 475

pthreads OS kernel callpthreads OS kernel call
Spin loop does fine for shared cache sync

OpenMP & Intel compiler 
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Thread synchronization overhead 
Barrier overhead: OpenMP icc vs. gcc

gcc obviously uses a pthreads barrier for the OpenMP barrier:

P
C

P
C

C

P
C

P
C

C

P
C

P
C

C C

P
C

P
C

C C
C

2 Threads Q9550 (shared L2) i7 920 (shared L3)

gcc obviously uses a pthreads barrier for the OpenMP barrier:

gcc 4.3.3 22603 7333
icc 11.0 399 469

4 Threads Q9550 i7 920 (shared L3)
gcc 4.3.3 64143 10901g 64143 10901
icc 11.0 977 814

Affinity enforcement is vital for getting small, reproducible sync overhead!
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Thread synchronization overhead 
Barrier overhead: Topology influence

Xeon E5420 2 Threads shared L2 same socket different socket

P C
P C

P C
C

pthreads_barrier_wait 5863 27032 27647
omp barrier (icc 11.0) 576 760 1269C

hi
ps

et

M
em

or
y

P C
P C

C

P C
C

Spin loop 259 485 11602

P C
P C

C

Nehalem 2 Threads Shared SMT 
threads

shared L3 different socket

th d b i it 23352 4796 49237

P C
P C

C
C

P C
P C

C
C

C

M
em

or
y

pthreads_barrier_wait 23352 4796 49237
omp barrier (icc 11.0) 2761 479 1206
Spin loop 17388 267 787

P C C

P C
P C

C
C

C

M
em

or
y

Spin loop 17388 267 787

SMT can be a big performance problem for synchronizing threads

P C C

Well known for a long time see below
Roll-your-own sync mechanism may be better sometimes, but good compilers 
do a good job too
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Work distribution overhead
Influence of thread-core affinity

Overhead microbenchmark:
!$OMP PARALLEL DO SCHEDULE(RUNTIME) REDUCTION(+:s)

P
C

Chipset

P
C

C

P
C

P
C

C

do i=1,N
s = s + compute(i)

enddo

Chipset

Memory

!$OMP END PARALLEL DO

Choose N large so
that synchronization
overhead is negligibleoverhead is negligible
compute() implements
purely computationalp y p
workload 

no bandwidth
effectseffects

Run with 2 threads
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Simultaneous multi-threading

Principles and performance impactPrinciples and performance impact



SMT Makes a single physical core appear as two or more 
“logical” cores multiple threads/processes run concurrently

SMT principle (2-way example):
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SMT impact
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

SMT adds another layer of topology
(inside the physical core)

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Possible benefit: Better pipeline throughput
Filli th i d i li

Westmere EP 
Memory

Filling otherwise unused pipelines
Filling pipeline bubbles with other thread’s executing instructions:

Thread 0: Thread 1:Thread 0:
do i=1,N
a(i) = a(i-1)*c

Thread 1:
do i=1,N
b(i) = func(i)*d

enddo 

Dependency pipeline 
t ll til i MULT

enddo 

Unrelated work in other 
th d fill th i li

Beware: Executing it all in a single thread

stalls until previous MULT 
is over

thread can fill the pipeline 
bubbles

do i=1,NBeware: Executing it all in a single thread 
(if possible) may reach the same goal 
without SMT:

do i 1,N
a(i) = a(i-1)*c
b(i) = func(i)*d

enddo
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SMT impact

SMT is primarily suited for increasing processor throughput
With multiple threads/processes running concurrently

Scientific codes tend to utilize chip resources quite well
Standard optimizations (loop fusion, blocking, …) 
Hi h d t d i t ti l l ll liHigh data and instruction-level parallelism
Exceptions do exist

SMT is an important topology issue
SMT threads share almost all core
resources

Pipelines, caches, data paths
Affinity matters! P

T0

P
T0

P
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P
T0

P
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P
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P
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Affinity matters!
If SMT is not needed

pin threads to physical cores

C
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C
C

C
C

C
C

C
C

C
C

C

MI
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p p y
or switch it off via BIOS etc.

Memory Memory
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SMT: When it may help, and when not

Functional parallelization 

FP-only parallel loop code 

Frequent thread synchronization

Code sensitive to cache size

Strongly memory bound codeStrongly memory-bound code

Independent pipeline-unfriendly 
i t ti tinstruction streams 

93PPoPP11 Tutorial Ingredients for good multicore performance



Understanding MPI communication in 
multicore environments

Intra-node vs  inter-node MPIIntra-node vs. inter-node MPI
MPI Cartesian topologies and rank-subdomain 

mappingpp g



Intranode MPI

Common misconception: Intranode MPI is infinitely fast compared 
to internode

Reality
I t d l t i h ll th i t dIntranode latency is much smaller than internode
Intranode asymptotic bandwidth is surprisingly comparable to internode
Difference in saturation behaviorDifference in saturation behavior

Other issues
Mapping between ranks, subdomains and cores with Cartesian MPI 
topologies
O l i i t d ith i t d i tiOverlapping intranode with internode communication
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MPI and Multicores
Clusters: Unidirectional internode Ping-Pong bandwidth

QDR/GBit ~ 30X

96PPoPP11 Tutorial Ingredients for good multicore performance



MPI and Multicores
Clusters: Unidirectional intranode Ping-Pong bandwidth

Some BW 
scalability for 

multi-intranode 

Cross-Socket (CS)connections

P
C
C

P
C
C

P
C
C

P
C
C

P
C
C

P
C
C

P
C
C

P
C
C

MI
C

MI
C

Memory Memory

Intra-Socket (IS)

Single point-to-
point BW similar 

Mapping problem for most efficient communication paths!?

p
to internode
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“Best possible” MPI:
Minimizing cross-node communication

■ Example: Stencil solver with halo exchange

■ Goal: Reduce inter-node halo traffic
■ Subdomains exchange halo with neighbors

■ Populate a node's ranks with “maximum neighboring” subdomains
This minimizes a node's communication surface■ This minimizes a node s communication surface

■ Shouldn’t MPI CART CREATE (w/ reorder) take care of this?
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MPI rank-subdomain mapping in Cartesian topologies:
A 3D stencil solver and the growing number of cores per node

“Common” MPI 
library behavior
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MPI rank-subdomain mapping:
3D stencil solver – measurements for 8ppn and 4ppn GBE vs. IB

32 MPI processes

8 ppn QDR-IB

~ 1.5x 1.5x

4 ppn SDR-IB
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Section summary: What to take home
Bandwidth saturation is a reality, in 
cache and memory

U k l d t h th

OpenMP overhead
Barrier (synchronization) often 
dominates the loop overheadUse knowledge to choose the 

“right” number of 
threads/processes per node

dominates the loop overhead
Work distribution and sync 
overhead is strongly topology-

You must know where those 
threads/processes should run
You must know the architectural

g y gy
dependent
Strong influence of compiler
S h i i th d “l i lYou must know the architectural 

requirements of your application
ccNUMA architecture must be 

Synchronizing threads on “logical 
cores” (SMT threads) may be 
expensive

considered for bandwidth-bound 
code

Topology awareness again

Intranode MPI
May not be as fast as you 
thinkTopology awareness, again

First touch page placement
Problems with dynamic 

think…
Becomes more important as core 
counts increase

scheduling and tasking: Round-
robin placement is the “cheap 
way out”

May not be handled optimally by 
your MPI library

101PPoPP11 Tutorial Ingredients for good multicore performance

way out



Interlude:
What can software do for you?



Common Lore 
Performance/Parallelization at the node level: Software does it 

Automatic parallelization for moderate processor counts has been 
known for more than 15 years – simple testbed for modern 

ltimulticores:
allocate( x(0:N+1,0:N+1,0:N+1) )
allocate( y(0:N+1,0:N+1,0:N+1) )allocate( y(0:N+1,0:N+1,0:N+1) )
x=0.d0
y=0.d0
…
… somewhere in a subroutine …
do k = 1,N

1 Simple 3D 7 point stencil update(“Jacobi”)do j = 1,N
do i = 1,N

y(i,j,k) = b*(x(i-1,j,k)+x(i+1,j,k)+ x(i,j-1,k)+

Simple 3D 7-point stencil update( Jacobi”)

x(i,j+1,k)+x(i,j,k-1)+x(i,j,k+1))
enddo

enddo
enddo Performance Metric: Million Lattice Site Updates per second (MLUPs) 

Equivalent MFLOPs: 6 FLOP/LUP * MLUPs
Equivalent GByte/s: 24 Byte/LUP * MLUPs
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Common Lore 
Performance/Parallelization at the node level: Software does it

Intel Fortran compiler: 
ifort –O3 –xW –parallel –par-report2 …

Version 9.1 (admittedly an older one…)
Innermost i loop is SIMD vectorized which prevents compiler from autoInnermost i-loop is SIMD vectorized, which prevents compiler from auto-
parallelization: serial loop: line 141: not a parallel 
candidate due to loop already vectorized

No other loop is parallelized…

Version 11 1Version 11.1
Outermost k-loop is parallelized: Jacobi_3D.F(139): (col. 10) 
remark: LOOP WAS AUTO-PARALLELIZED.

Innermost i-loop is vectorized.
Most other loop structures are ignored by “parallelizer”, e.g. x=0.d0 and 
y=0 d0: Jacobi 3D F(37): (col 16) remark: loop was noty=0.d0: Jacobi_3D.F(37): (col. 16) remark: loop was not 
parallelized: insufficient computational work
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Common Lore 
Performance/Parallelization at the node level: Software does it

PGI compiler (V 10.6)
pgf90 –tp nehalem-64 –fastsse –Mconcur –Minfo=par,vect

Performs outer loop parallelization of k-loop
139, Parallel code generated with block distribution if 
trip count is greater than or equal to 33

and vectorization of inner i-loop: 
141, Generated 4 alternate loops for the loop Generated 
vector sse code for the loopvector sse code for the loop 

Also the array instructions (x=0.d0; y=0.d0) used for initialization are y ( y )
parallelized:
37, Parallel code generated with block distribution if 
trip count is greater than or equal to 50trip count is greater than or equal to 50 

Version 7.2. does the same job but some switches must be adapted 

gfortran: No automatic parallelization feature so far (?!)
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Common Lore 
Performance/Parallelization at the node level: Software does it

2-socket Intel Xeon 5550 (Nehalem; 2.66 GHz) node C
C

C
C

C
C

C
C

C

MI
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T1
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T1

C
C

C
C

C
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C
C

C
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P
T0

T1
P
T0

T1
P
T0

T1
P
T0

T1

STREAM bandwidth:

Memory Memory

STREAM bandwidth:

Node:    ~36-40 GB/s

Socket: ~17-20 GB/s

Performance 
variations 
Thread / core 
affinity?!y

Intel: No 
scalability 4 8 Cubic domain size: N=320 (blocking of j-loop)
threads?!

( g j p)
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Controlling thread affinity / binding 
Intel / PGI compilers

Intel compiler controls thread-core affinity via KMP_AFFINITY
environment variable

KMP_AFFINITY=“granularity=fine,compact,1,0” is packs the threads 
in a blockwise fashion ignoring the SMT threads. 
(equivalent to likwid-pin –c 0-7 )(equivalent to likwid-pin –c 0-7 )
Add ”verbose” to get information at runtime
Cf. extensive Intel documentation
Disable when using other tools (automatic w/ LIKWID): 
KMP_AFFINITY=disabled

B ilti ffi it d t k I t l h dBuiltin affinity does not work on non-Intel hardware

PGI compiler offers compiler options:PGI compiler offers compiler options:
Mconcur=bind (binds threads to cores; link time option)
Mconcur=numa (prevents OS from process / thread migration; link time option)Mconcur numa (prevents OS from process / thread migration; link time option)
No manual control of thread-core affinity
Interaction LIKWID PGI ?!
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Thread binding and ccNUMA effects 
7-point 3D stencil on 2-socket Intel Nehalem system

Performance drops if 8 threads instead of 4 access a single memory domain: 
Remote access of 4 through QPI!

C
C

C
C

C
C

C
C

C

P
T0

T1
P
T0

T1
P
T0

T1
P
T0

T1

C
C

C
C

C
C

C
C

C

P
T0

T1
P
T0

T1
P
T0

T1
P
T0

T1

Cubic domain size: N=320 (blocking of j-loop)
C

MI

Memory

C

MI

Memory
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Thread binding and ccNUMA effects 
7-point 3D stencil on 2-socket AMD Magny-Cours system

12-core Magny-Cours: A single socket holds two tightly HT-connected 6-core 
chips 2-socket system has 4 data locality domains

Cubic domain size: N=320 (blocking of j-loop)

Memory

MIMI

Memory

Cubic domain size: N=320 (blocking of j-loop)
OMP_SCHEDULE=“static”

Performance [MLUPs]

PPPPPP
C
C

C
C

C
C

C
C

C
C

C
C

C

PPPPPP
C
C

C
C

C
C

C
C

C
C

C
C

C

H
TPerformance [MLUPs]

P P P P P P
C
C

C
C

C
C

C
C

C
C

C
C

P P P P P P
C
C

C
C

C
C

C
C

C
C

C
C

1x
 H 0.5x HT

#threads #L3 #sockets Serial Parallel 
C C C C C C

C

MI

C C C C C C
C

MI
2x HT

#threads groups #sockets Init. Init.

1 1 1 221 221
Memory Memory

3 levels of HT connections: 
6 1 1 512 512

12 2 1 347 1005 1.5x HT – 1x HT – 0.5x HT12 2 1 347 1005

24 4 2 286 1860
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Common Lore 
Performance/Parallelization at the node level: Software does it 

Based on Jacobi performance results one could claim victory, but 
now we increase complexity a bit: Gauss-Seidel instead of Jacobi

… somewhere in a subroutine …
do k = 1,N,
do j = 1,N

do i = 1,N
x(i j k) = b*(x(i-1 j k)+x(i+1 j k)+ x(i j-1 k)+x(i,j,k) = b (x(i 1,j,k)+x(i+1,j,k)+ x(i,j 1,k)+

x(i,j+1,k)+x(i,j,k-1)+ x(i,j,k+1))
enddo

enddo 3D 7 point stencil update(“Gauss Seidel”) withenddo
enddo

3D 7-point stencil update( Gauss-Seidel”) with 
loop-carried dependencies

Performance Metric: Million Lattice Site Updates per second (MLUPs) 
Equivalent MFLOPs: 6 FLOP/LUP * MLUPs
Equivalent GByte/s: 16 Byte/LUP * MLUPsq y y

Performance of Gauß-Seidel should be up to 1.5x faster than Jacobi if main 
memory bandwidth is the limitation
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Common Lore 
Performance/Parallelization at the node level: Software does it 

State of the art compilers do not parallelize the Gauss-Seidel 
smoother: 
l t ll li d i t f ll lloop was not parallelized: existence of parallel 
dependence

That’s true but there are simple ways to remove the dependencyThat s true but there are simple ways to remove the dependency 
even for the lexicographic Gauss-Seidel
10 yrs+ ago Hitachi’s compiler supported “pipeline parallel y g p pp p p p
processing” (cf. later slides for more details on this technique)!
There seem to be major problems to optimize even the serial code

1 Intel Xeon X5550 (2.66 GHz) core
Reference: Jacobi
430 MLUPs Intel V9 1 290 MLUPs430 MLUPs Intel V9.1. 290 MLUPs

Intel V11.1.072 345 MLUPs

f90 V10 6 149 MLUPTarget Gauss-Seidel:
645 MLUPs 

pgf90 V10.6. 149 MLUPs

pgf90 V7.2.1 149 MLUPs
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Tutorial outline

Introduction
Architecture of multisocket multicore 

t

Impact of processor/node 
topology on program 

fsystems
Nomenclature
Current developments

performance
Bandwidth saturation effects
Programming for ccNUMACurrent developments

Programming models
Programming for ccNUMA
OpenMP performance
Simultaneous multithreading (SMT)

Multicore performance tools
Finding out about system topology

g ( )
Intranode vs. internode MPI

Affinity enforcement
Performance counter 
measurements

New chances with multicore 
hardware

Wavefront parallelization of stencil codesmeasurements Wavefront parallelization of stencil codes
Explicit comm/calc overlap in sparse MVM

Summary
Appendix
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New chances with multicore hardware

Leveraging shared caches:Leveraging shared caches:
Wavefront parallelization of stencil codes



Multicore awareness 
Classic Approaches: Parallelize & reduce memory pressure 

Multicore processors are still mostly programmed 
the same way as classic n-way SMP single-core

t d !

P
C
C

P
C
C

P
C
C

P
C
C

P
C
C

P
C
C

C
compute nodes!

Memory

MI

Simple 3D Jacobi stencil update (sweep): Memory

do k = 1 , Nk
d j 1 Nj

Simple 3D Jacobi stencil update (sweep):

do j = 1 , Nj
do i = 1 , Ni

y(i,j,k) = a*x(i,j,k) + b*
(x(i-1,j,k)+x(i+1,j,k)+ 
x(i,j-1,k)+x(i,j+1,k)+ 
x(i,j,k-1)+x(i,j,k+1))j j

enddo
enddo

enddoenddo

Performance Metric: Million Lattice Site Updates per second (MLUPs) 
Equivalent MFLOPs: 8 FLOP/LUP * MLUPs

114PPoPP11 Tutorial Ingredients for good multicore performance

qu a e t O s 8 O / U U s



Multicore awareness 
Standard sequential implementation

core0 core1

Cache

Memory

do t=1,tMax

x

ec
tio

n do k=1,N
do j=1,N

d i 1 N

j-d
ire do i=1,N

y(i,j,k) = …
enddo

k-direction enddo
enddo

enddo
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Multicore awareness 
Classical Approaches: Parallelize!

core0 core1

Cache

Memory

xx

do t=1,tMax

ire
ct

io
n !$OMP PARALLEL DO private(…)

do k=1,N
do j=1,N

d i 1 N

k di ti

j-d
i do i=1,N

y(i,j,k) = …
enddo

k-direction enddo
enddo

!$OMP END PARALLEL DO
dd
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Multicore awareness 
Parallelization – reuse data in cache between threads

Do not use domain 
decomposition!

core0 core1

Instead shift 2nd thread by 
three i-j planes and 

core0 core1

y(:,:,:)

proceed to the same 
domain

2nd thread loads input

on

y( , , )

Memory

2nd thread loads input 
data from shared OL cache!

Sync threads/cores after

j-d
ire

ct
io Memory

x(:,:,:)

Sync threads/cores after 
each k-iteration!

k-direction
“Wavefront 

Parallelization (WFP)”

core0: x(:,:,k-1:k+1)t y(:,:,k)t+1

core1: y(:,:,(k-3):(k-1))t+1 x(:,:,k-2)t+2
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Multicore awareness 
WF parallelization – reuse data in cache between threads

Use small ring buffer 
tmp(:,:,0:3)
which fits into the cache

Save main memory data 
transfers for y(:,:,:) !

16 Byte / 2 LUP !16 Byte / 2 LUP !

8 Byte / LUP !

Compare with optimal baseline (nontemporal stores on y): p p ( p y)
Maximum speedup of 2 can be expected

(assuming infinitely fast cache and 
no overhead for OMP BARRIER after each k iteration)
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Multicore awareness 
WF parallelization – reuse data in cache between threads

Thread 0: x(:,:,k-1:k+1)t tmp(:,:,mod(k,4))

Thread 1: tmp(: : mod(k-3 4):mod(k-1 4)) x(: : k-2)Thread 1: tmp(:,:,mod(k-3,4):mod(k-1,4)) x(:,:,k-2)t+2 

Performance model including finite cache bandwidth (BC)Performance model including finite cache bandwidth (BC)

Time for 2 LUP:

T 16 B t /B * 8 B t / B T ( 1 /2 * B /B )T2LUP = 16 Byte/BM + x * 8 Byte / BC = T0 ( 1 + x/2 * BM/BC)

core0 core1 Minimum value: x =2

tmp(:,:,0:3)
Speedup vs. baseline: 

SW = 2*T0/T2LUP= 2 / (1 +  BM/BC)

Memory

W 0 2LUP ( M C)

BC and BM are measured in saturation runs:

x
C M

Clovertown: BM/BC = 1/12 SW = 1.85

Nehalem : B /B = ¼ S = 1 6
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Jacobi solver
WFP: Propagating four wavefronts on native quadcores (1x4)

Running tb wavefronts requires tb-1
temporary arrays tmp to be held in 
cache!

Max. performance gain (vs. optimal 
baseline): tb = 4

Extensive use of cache bandwidth!
1 x 4 distribution

core0 core1

t 1(0 3) | t 2(0 3) | t 3(0 3)

core2 core3

tmp1(0:3) |  tmp2(0:3) |  tmp3(0:3)

x( : , : , : )
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Jacobi solver
WF parallelization: New choices on native quad-cores

Thread 0: x(:,:,k-1:k+1)t tmp1(mod(k,4))

Thread 1: tmp1(mod(k-3 4):mod(k-1 4)) tmp2(mod(k-2 4))Thread 1: tmp1(mod(k-3,4):mod(k-1,4)) tmp2(mod(k-2,4))

Thread 2: tmp2(mod(k-5,4:mod(k-3,4)) tmp3(mod(k-4,4))

Thread 3: tmp3(mod(k-7,4):mod(k-5,4)) x(:,:,k-6)t+4 

1 x 4 distribution 2 x 2 distribution

core0 core1 core2 core3

1 x 4 distribution

core0 core1 core2 core3

2 x 2 distribution

core0

tmp1(0:3) |  tmp2(0:3) |  tmp3(0:3)

co e0

tmp0(  : ,  : ,  0:3)

x( : , : , : ) x( :,1:N/2,:)     x(:,N/2+1:N,:) 
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Jacobi solver
Wavefront parallelization: L3 group Nehalem

P
CC

P
CC

P
CC

P
CC C

P
CC

P
CC

P
CC

P
CC C

MI

Memory

MI

Memory

4003

bj 40
MLUPs

bj=40

1 x 2 786

2 x 2 1230

P f d l i di t t ti l i il t t d

1 x 4 1254

Performance model indicates some potential gain new compiler tested.

Only marginal benefit when using 4 wavefronts A single copy stream does not 
achieve full bandwidth
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Multicore-aware parallelization
Wavefront – Jacobi on state-of-the art multicores

P
C

P
C

C

P
C

P
C

CBolc ~ 10

PPPP P
C
C

P
C
C

P
C
C

MI

P
C
C

C

PPPP P P

Bolc ~ 2-3

P
C
C

P
C
C

P
C
C

MI

P
C
C

P
C
C

P
C
C

C

Bolc ~ 10

P
CC

P
CC

P
CC

MI

P
CC

P
CC

P
CC

P
CC

P
CC

C
Compare against optimal baseline!

Performance gain B = L3 bandwidth / memory bandwidth

123PPoPP11 Tutorial Ingredients for good multicore performance

Performance gain ~ Bolc = L3 bandwidth / memory bandwidth



New chances with multicore hardware

Using spare cores:Using spare cores:
Overlapping computation and communication 
in hybrid sparse matrix-vector multiplication



Using cores for functional parallelism
Communication/computation overlap in sparse MVM

Sparse MVM is the dominant operation in many algorithms
Sparse eigenvalue solvers
Sparse linear systems solvers

Data storage format is crucial for performance properties
M t f l l f t C d R St (CRS)Most useful general format: Compressed Row Storage (CRS)
SpMVM is easily parallelizable in shared and distributed memory

Intranode sparse C=A*b

For large problems, spMVM is
inevitably memory-bound

Intranode sparse C A b

y y
Intra-LD saturation effect
on modern multicores

MPI-parallel spMVM is often 
communication-bound

Can surplus cores be put to
good use?

125

good use?
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Using cores for functional parallelism
Communication/computation overlap in sparse MVM

Naïve vs. explicit communication vs. computation overlap

“Vector mode with naïve overlap”

N ï l i bl ki MPI d

“Task mode”

E li it l ifi th dNaïve overlap using nonblocking MPI does 
not work with most implementations
MPI progress is limited to phases where 
MPI is executing

Explicit overlap sacrifices one thread
(core) for communication
Local MVM and nonlocal communication
are explicitly asynchronousg

Performance is similar to baseline with 
blocking MPI, but…

p y y
Many variations possible OpenMP tasking, 
manual work distribution,…

Both variants need to write twice to the result vector!
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Using cores for functional parallelism
Communication/computation overlap in sparse MVM

Performance results (strong scaling) on Westmere-based QDR IB cluster 
(vs. Cray XE6)

HM P t i (H l t i H bb d M d l 9 2 107 )HMeP matrix (Holstein-Hubbard Model, 9.2·107 nonzeros) 

50% parallel50% parallel 
efficiency 
points

Using SMT 
comm threadscomm threads

G. Schubert, G. Hager, H. Fehske and G. Wellein: Parallel sparse matrix-vector multiplication as a test 
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Using cores for functional parallelism
Communication/computation overlap in sparse MVM

Performance results (strong scaling) on Westmere-based QDR IB cluster 
(vs. Cray XE6)

AMG t i (P i bl l t 1 6 108 )sAMG matrix (Poisson problem on complex geometry, 1.6·108 nonzeros)

If communication is not the problem, overlap cannot pay off

128

If communication is not the problem, overlap cannot pay off 
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Section summary: What to take home

Shared caches are the interesting new feature on current 
multicore chips

Shared caches provide opportunities for fast synchronization (see sections 
on OpenMP and intra-node MPI performance)
Parallel software should leverage shared caches for performanceParallel software should leverage shared caches for performance
One approach: Shared cache reuse by WFP

WFP technique can easily be extended to many regular stencil q y y g
based iterative methods, e.g. 

Gauß-Seidel ( done)
f ( )Lattice-Boltzmann flow solvers ( work in progress)

Multigrid-smoother ( work in progress)

Surplus cores on multicore chips can be used for various 
purposes if they don’t pay off for pure computation

Explicit communication/computation overlap (example: sparse MVM) as an 
example of functional decomposition
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Tutorial outline
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Summary & Conclusions

Multicore/multisocket topology needs to be considered:
OpenMP performance
MPI communication parameters
Shared resources

B f th hit t l i t f dBe aware of the architectural requirements of your code
Bandwidth vs. compute
SynchronizationSynchronization
Communication

Use appropriate toolspp p
Node topology: likwid-pin, hwloc
Affinity enforcement: likwid-pin
Simple profiling: likwid-perfCtr

Try to leverage the new architectural feature and the abundant 
transistors of modern multicore chipstransistors of modern multicore chips

Shared caches
Unused cores
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BACKUP slides

Advanced OpenMP:Advanced OpenMP:
Pipeline parallel processing Eliminating 
recursionrecursion

Parallelizing a 3D Gauss-Seidel solverParallelizing a 3D Gauss-Seidel solver



The Gauss-Seidel algorithm in 3D

Not parallelizable by compiler or simple directives because ofNot parallelizable by compiler or simple directives because of 
loop-carried dependency
Is it possible to eliminate the dependency?
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3D Gauss-Seidel parallelized

Pipeline parallel principle: Wind-up phase
Parallelize middle j-loop and shift thread execution in k-direction to account 
f d t d d ifor data dependencies
Each diagonal (Wt) is executed 
by t threads concurrentlyby t t eads co cu e t y
Threads sync 
after each 
k updatek-update
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3D Gauss-Seidel parallelized

Full pipeline: All threads execute 
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3D Gauss-Seidel parallelized: The code
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Parallel 3D Gauß-Seidel

Gauß-Seidel can also be parallelized using a red-black scheme

But data dependency is representative for several linear (sparse) 
solvers Ax=b arising from regular discretization, 
e g Stone’s Strong Implicit (SIP) solver based on incompletee.g. Stone’s Strong Implicit (SIP) solver based on incomplete 
A ~ LU factorization

Still used in many CFD FV codes ( RRZE report)Still used in many CFD FV codes ( RRZE report)
L & U: Each contains 3 nonzero off-diagonals only! 
Solving Lx=b or Ux=c has loop carried data dependencies similar 
to GS PPP
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Abstract
Tutorial: Ingredients for Good Parallel Performance on Multicore-based 
systems
Presenter: Georg HagerPresenter: Georg Hager
Authors: Georg Hager, Gerhard Wellein

ABSTRACT:

This tutorial covers program optimization techniques for multi-core processors 
and the systems they are used in. It concentrates on the dominating parallel 
programming paradigms, MPI and OpenMP. We start by giving an architectural 
overview of multicore processors. Peculiarities like shared vs. separate caches, 
b d idth b ttl k d NUMA h t i ti i t d t W hbandwidth bottlenecks, and ccNUMA characteristics are pointed out. We show 
typical performance features like synchronization overhead, intranode MPI 
bandwidths and latencies, ccNUMA locality, and bandwidth saturation (in cache 

d ) i d t i i t th i fl f t t l d th dand memory) in order to pinpoint the influence of system topology and thread 
affinity on the performance of typical parallel programming constructs. Multiple 
ways of probing system topology and establishing affinity, either by explicit 
coding or separate tools are demonstrated Finally we elaborate oncoding or separate tools, are demonstrated. Finally we elaborate on 
programming techniques that help establish optimal parallel memory access 
patterns and/or cache reuse, with an emphasis on leveraging shared caches for 
improving performance
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