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Bandwidth saturation effects
Case study: OpenMP sparse MVM 
as an example for bandwidth-Current developments
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Multicore performance tools
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measurements
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Tutorial outline (2)

Hybrid MPI/OpenMP
MPI vs. OpenMP

Case studies for hybrid 
MPI/OpenMP

Thread-safety quality of MPI 
libraries 
Strategies for combining MPI

Overlap for hybrid sparse MVM 
The NAS parallel benchmarks 
(NPB-MZ)Strategies for combining MPI 

with OpenMP
Topology and mapping problems

(NPB MZ)
PIR3D – hybridization of a full 
scale CFD code

Potential opportunities
Practical “How-tos” for hybrid 

O li d lik id t l (2)
Summary: Opportunities and 
Pitf ll f H b idOnline demo: likwid tools (2) 

Advanced pinning
Making bandwidth maps

Pitfalls of Hybrid 
Programming

Making bandwidth maps
Using likwid-perfctr to find NUMA 
problems and load imbalance

Overall summary and goodbye

likwid-perfctr internals
likwid-perfscope
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Welcome to the multi-/manycore era
The free lunch is over: But Moore’s law continues

In 1965 Gordon Moore claimed:
# of transistors on chip doubles every ≈24 months 

Intel Nehalem EX: 2.3 Billion
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We are living in the multicore era Is really everyone aware of that?
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Welcome to the multi-/manycore era
The game is over: But Moore’s law continues

By courtesy of D. Vrsalovic, Intel
Power envelope:

Max 95 130 W
N transistors

1.73x1.73x PerformancePerformance 1.73x1.73x
DualDual--CoreCore

Max. 95–130 W 
2N transistors

1 131 13

PowerPower Power 
consumption:

1.00x1.00x
1.13x1.13x 1.02x1.02x P = f * (Vcore)2

Vcore ~ 0.9–1.2 V

OverOver clockedclocked Max FrequencyMax Frequency DualDual corecore
Same process 
technology:OverOver--clockedclocked

(+20%)(+20%)
Max FrequencyMax Frequency DualDual--corecore

((--20%)20%)
technology:

P ~ f3
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Welcome to the multi-/many-core era
The game is over: But Moore’s law continues

Required relative frequency reduction to run m cores (m times 
transistors) on a die at the same power envelope  

Y 2007/08Year: 2007/08

k 
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d

of
 c

lo
ck

8 i t h lf d f i l

du
ct

io
n 8 cores running at half speed of a single 

core CPU = same energy

65 nm technology :

R
ed 65 nm technology :

Sun T2 („Niagara“) 1.4 GHz 8 cores
Intel Woodcrest 3.0 GHz 2 cores

m: #cores per die
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Trading single thread performance for parallelism

Power consumption limits clock speed: P ~ f2 (worst case ~f3)
Core supply voltage approaches a lower limit: VC ~ 1V
TDP approaches economical limit: TDP ~ 80 W,…,130 W

P5 / 80586 (1993) Pentium3 (1999) Pentium4 (2003) Core i7–960 (2009)

66 MHz 600 MHz 2800 MHz 3200 MHz

16 W @ VC = 5 V 23 W @ VC = 2 V 68 W @ VC = 1.5 V 130 W @ VC = 1.3

800 / 3 M 250 / 28 M 130 / 55 M 45 / 730 M800 nm / 3 M 250 nm / 28 M 130 nm / 55 M 45 nm / 730 M

TDP /
Quad-Core

Moore’s law is still valid

Process technology / 
Number of transistors in million

TDP / 
Core supply voltage

Moore s law is still valid…
more cores + new on-chip functionality (PCIe, GPU) 

Be prepared for more cores with less complexity and slower clock!
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The x86 multicore evolution so far
Intel Single-Dual-/Quad-/Hexa-/-Cores (one-socket view)
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Welcome to the multicore era
A new feature: shared on-chip resources

Shared outer-level cache

Data Coherency!
Fast data transfer

Fast thread synchronisation

ata Co e e cy
Increased intra-cache traffic?
Scalable bandwidth?
MPI ll li ti ?

AMD Opteron
Istanbul

Intel Xeon
Westmere

y
MPI parallelization?

P P P P P PIstanbul

6 cores @ 2.8 GHz

L1 64 KB

Westmere

6 cores @ 2.93 GHz
C
C

C
C

C
C

C
C

C
C

C
C

C

MI
QPIHT

L1: 64 KB

L2: 512 KB

L1: 32 KB

L2: 256 KB

MI

Memory

L3: 6 MB

2 X DDR2-800

L3: 12MB

3 X DDR3-13332 X DDR2 800
12.8 GB/s

HT2000 8 GB/s/dir

3 X DDR3 1333
31.8 GB/s 
2 X QPI6.4
12 8 GB/s/dir

Memory bottleneck!
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From UMA to ccNUMA 
Basic architecture of commodity compute cluster nodes

Dual-socket Intel “Core2” node:
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Flat memory ; symmetric MPs

But: system “anisotropy”

Y

Shared Address Space within the node!

Dual-socket AMD (Istanbul) / Intel (Westmere) node:
Cache coherent Non Uniform MemoryPPP PPP Cache-coherent Non-Uniform Memory 
Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at
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HT / QPI provide scalable bandwidth at 
the expense of ccNUMA architectures: 
Where does my data finally end up?Memory

MI

Memory

MITo
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Back to the 2-chip-per-case age:
AMD Magny-Cours – a 2x6-core socket

AMD: “Magny-Cours”
12-core socket comprising two 6-core chips 
connected via 1 5 HT linksconnected via 1.5 HT links

Main memory access: 2 DDR3-Channels per 6-core chip
1/3 DDR3-Channel per core

2 socket server 4 memory locality domainsy y
ccNUMA within a socket!

4 socket server:4 socket server:

Network balance (QDR+2P Magny Cours) ~ 240 GF/s / 3 GB/s = 80 Bytes/Flop
(2003: Intel Xeon DP 2 66 GHz + GBit ~ 10 GF/s / 0 12 GB/s = 80 Bytes/Flop)
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Trading single thread performance for parallelism:
GPGPUs vs. CPUs

GPU vs. CPU 
light speed estimate:

1. Compute bound: 4-5 X
2. Memory Bandwidth: 2-5 X

Intel Core i5 – 2500 
(“Sandy Bridge”)

Intel X5650 DP node 
(“Westmere”)

NVIDIA C2070 
(“Fermi”)

Cores@Clock 4 @ 3.3 GHz 2 x 6 @ 2.66 GHz 448 @ 1.1 GHz
Performance+/core 52.8 GFlop/s 21.3 GFlop/s 2.2 GFlop/s
Threads@stream 4 12 8000 +

Total performance+ 210 GFlop/s 255 GFlop/s 1,000 GFlop/s
17 GB/ 41 GB/ 90 GB/Stream BW 17 GB/s 41 GB/s 90 GB/s (ECC=1)

Transistors / TDP 1 Billion* / 95 W 2 x (1.17 Billion / 95 W) 3 Billion / 238 W
* Includes on chip GPU and PCI Express+ Single Precision
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Parallel programming models
on multicore multisocket nodes

Shared-memory (intra-node)
Good old MPI (current standard: 2.2)
OpenMP (current standard: 3.0)
POSIX threads
Intel Threading Building BlocksIntel Threading Building Blocks
Cilk++, OpenCL, StarSs,… you name it All models require 

awareness of 
Distributed-memory (inter-node)

MPI (current standard: 2.2)

topology and affinity
issues for getting 

PVM (gone) best performance 
out of the machine!

Hybrid
Pure MPI
MPI+OpenMPMPI+OpenMP
MPI + any shared-memory model
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Parallel programming models:
Pure MPI

Machine structure is invisible to user:
Very simple programming model
MPI “knows what to do”!?

Performance issues
I t d i t d MPIIntranode vs. internode MPI
Node/system topology
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Parallel programming models:
Pure threading on the node

Machine structure is invisible to user
Very simple programming model

Threading SW (OpenMP, pthreads,
TBB,…) should know about the details

Performance issuesPerformance issues
Synchronization overhead
Memory accessy
Node topology
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Parallel programming models:
Hybrid MPI+OpenMP on a multicore multisocket cluster

One MPI process / node

One MPI process / socket: 
OpenMP threads on same 

socket: “blockwise”socket: blockwise

OpenMP threads pinnedOpenMP threads pinned
“round robin” across 

cores in node

Two MPI processes / socket
OpenMP threads 
on same socket
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Section summary: What to take home

Multicore is here to stay
Shifting complexity form hardware back to software

Increasing core counts per socket (package)
4-12 today, 16-32 tomorrow?
2 4 dx2 or x4 per cores node

Shared vs. separate caches
Complex chip/node topologiesComplex chip/node topologies

UMA is practically gone; ccNUMA will prevailUMA is practically gone; ccNUMA will prevail
“Easy” bandwidth scalability, but programming implications (see later)
Bandwidth bottleneck prevails on the socket

Programming models that take care of those changes are still in 
h flheavy flux

We are left with MPI and OpenMP for now
This is complex enough as we will see
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Probing node topologyProbing node topology

Standard toolsStandard toolsStandard toolsStandard tools
likwidlikwid--topologytopology
hwlochwlochwlochwloc



How do we figure out the node topology?

Topology =
Where in the machine does core #n reside? And do I have to remember this 

k d b i ?awkward numbering anyway?
Which cores share which cache levels?
Which hardware threads (“logical cores”) share a physical core?Which hardware threads ( logical cores ) share a physical core?

Linux
cat /proc/cpuinfo is of limited usep p

Core numbers may change across kernels
and BIOSes even on identical hardware

$ numactl --hardware
available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5

numactl --hardware prints 
ccNUMA node information                 

node 0 size: 8189 MB
node 0 free: 3824 MB
node 1 cpus: 6 7 8 9 10 11
node 1 size: 8192 MBcc U ode o at o

Information on caches is harder

node 1 size: 8192 MB
node 1 free: 28 MB
node 2 cpus: 18 19 20 21 22 23
node 2 size: 8192 MB

to obtain node 2 free: 8036 MB
node 3 cpus: 12 13 14 15 16 17
node 3 size: 8192 MB
node 3 free: 7840 MB
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How do we figure out the node topology?

LIKWID tool suite:

Like
II
Knew
WhatWhat
I’m
DoingDoing

Open source tool collectionOpen source tool collection 
(developed at RRZE):

J. Treibig, G. Hager, G. Wellein: LIKWID: A 
lightweight performance-oriented tool suite 
for x86 multicore environments. Accepted for 
PSTI2010, Sep 13-16, 2010, San Diego, CA

http://code.google.com/p/likwid
PSTI2010, Sep 13 16, 2010, San Diego, CA
http://arxiv.org/abs/1004.4431
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Likwid Tool Suite

Command line tools for Linux:
easy to install
works with standard linux 2.6 kernel
simple and clear to use
supports Intel and AMD CPUssupports Intel and AMD CPUs

Current tools:Current tools:
likwid-topology: Print thread and cache topology
likwid-pin: Pin threaded application without touching code
likwid-perfctr: Measure performance counters
likwid-mpirun: mpirun wrapper script for easy LIKWID integration
likwid-bench: Low-level bandwidth benchmark generator tool
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likwid-topology – Topology information

Based on cpuid information
Functionality:Functionality:

Measured clock frequency

Thread topologyThread topology

Cache topology

Cache parameters (-c command line switch)Cache parameters ( c command line switch)

ASCII art output (-g command line switch)

Currently supported (more under development):Currently supported (more under development):
Intel Core 2 (45nm + 65 nm)

Intel Nehalem + Westmere (Sandy Bridge in beta phase)Intel Nehalem + Westmere (Sandy Bridge in beta phase)

AMD K10 (Quadcore and Hexacore)

AMD K8AMD K8

Linux OS
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Output of likwid-topology

CPU name:       Intel Core i7 processor
CPU clock:      2666683826 Hz
*************************************************************
Hardware Thread Topology
*************************************************************
Sockets:                2
Cores per socket:       4
Th d 2Threads per core:       2
-------------------------------------------------------------
HWThread        Thread          Core            Socket
0               0               0               0
1 1 0 01               1               0               0
2               0               1               0
3               1               1               0
4               0               2               0
5 1 2 05               1               2               0
6               0               3               0
7               1               3               0
8               0               0               1
9               1               0               19 0
10              0               1               1
11              1               1               1
12              0               2               1
13              1               2               1
14              0               3               1
15              1               3               1
-------------------------------------------------------------
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Output of likwid-topology continued
Socket 0: ( 0 1 2 3 4 5 6 7 )
Socket 1: ( 8 9 10 11 12 13 14 15 )
-------------------------------------------------------------

*************************************************************
Cache Topology
*************************************************************
Level:   1
Size:    32 kBS e: 3
Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 )
-------------------------------------------------------------
Level:   2
Size:    256 kB
Cache groups: ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 )Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 )
-------------------------------------------------------------
Level:   3
Size:    8 MB
Cache groups:   ( 0 1 2 3 4 5 6 7 ) ( 8 9 10 11 12 13 14 15 )
-------------------------------------------------------------
*************************************************************
NUMA Topology
*************************************************************
NUMA domains: 2NUMA domains: 2
-------------------------------------------------------------
Domain 0:
Processors:  0 1 2 3 4 5 6 7
Memory: 5182.37 MB free of total 6132.83 MB
-------------------------------------------------------------
Domain 1:
Processors:  8 9 10 11 12 13 14 15
Memory: 5568.5 MB free of total 6144 MB
-------------------------------------------------------------
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Output of likwid-topology

… and also try the ultra-cool 
-g option!

Socket 0:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| |  0  1| |  2  3| |  4  5| |  6  7| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| |  32kB| |  32kB| |  32kB| |  32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| | 8MB | || |                8MB              | |
| +---------------------------------+ |
+-------------------------------------+
Socket 1:
+ ++-------------------------------------+
| +------+ +------+ +------+ +------+ |
| |  8  9| |10  11| |12  13| |14  15| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ || + + + + + + + + |
| |  32kB| |  32kB| |  32kB| |  32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| || | | | | | | | | |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| |                8MB              | |
| +---------------------------------+ |
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hwloc

Alternative: http://www.open-mpi.org/projects/hwloc/
Successor to (and extension of) PLPA, part of OpenMPI 
development
Comprehensive API and
command line tool tocommand line tool to 
extract topology info
Supports severalSupports several
OSs and CPU types
Pinning API available
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Enforcing thread/processEnforcing thread/process--core affinity core affinity 
under the Linux OSunder the Linux OS

Standard tools and OS affinity facilities Standard tools and OS affinity facilities Standard tools and OS affinity facilities Standard tools and OS affinity facilities 
under program controlunder program control
likwidlikwid--pinpinpp



Example: STREAM benchmark on 12-core Intel Westmere:
Anarchy vs. thread pinning
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Th l f i b t

Pinning (physical cores first)

There are several reasons for caring about 
affinity:

Eliminating performance variation

Making use of architectural features

Avoiding resource contention
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Generic thread/process-core affinity under Linux
Overview

taskset [OPTIONS] [MASK | -c LIST ] \
[PID | command [args]...]

taskset binds processes/threads to a set of CPUs. Examples:

taskset –c 0 2 mpirun –np 2 /a out # doesn’t always worktaskset –c 0,2 mpirun –np 2 ./a.out # doesn t always work
taskset 0x0006 ./a.out
taskset –c 4 33187

Processes/threads can still move within the set!
Alternative: let process/thread bind itself by executing syscally g y
#include <sched.h>
int sched_setaffinity(pid_t pid, unsigned int len, 

unsigned long *mask);

Disadvantage: which CPUs should you bind to on a non-exclusive 
machine?

Still of value on multicore/multisocket cluster nodes, UMA or ccNUMA
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Generic thread/process-core affinity under Linux

Complementary tool: numactl

E l tl h bi d 0 1 2 3 d [ ]Example: numactl --physcpubind=0,1,2,3 command [args]
Bind process to specified physical core numbers

Example: numactl --cpunodebind=1 command [args]
Bind process to specified ccNUMA node(s)

Many more options (e.g., interleave memory across nodes)
ti NUMA ti i tisee section on ccNUMA optimization

Diagnostic command (see earlier):Diagnostic command (see earlier):
numactl --hardware

Again, this is not suitable for a shared machine
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More thread/Process-core affinity (“pinning”) options

Highly OS-dependent system calls
But available on all systems

( )Linux: sched_setaffinity(), PLPA (see below) hwloc
Solaris: processor_bind()
Windows: SetThreadAffinityMask()
…

Support for “semi-automatic” pinning in some 
compilers/environmentsp

Intel compilers > V9.1 (KMP_AFFINITY environment variable)
PGI, Pathscale, GNU
SGI Alti d l ( k ith l i l CPU b !)SGI Altix dplace (works with logical CPU numbers!)
Generic Linux: taskset, numactl, likwid-pin (see below)

Affinity awareness in MPI librariesAffinity awareness in MPI libraries
SGI MPT
OpenMPI Example for program-controlled
Intel MPI
…

Example for program controlled 
affinity: Using PLPA under Linux!
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Explicit Process/Thread Binding With PLPA on Linux:
http://www.open-mpi.org/software/plpa/

Portable Linux Processor Affinity
Wrapper library for sched_*affinity() functions

Robust against changes in kernel API
Example for pure OpenMP: Pinning of threads Care about correct 

core numbering! 
#include <plpa.h>
...
#pragma omp parallel

Pinning 
il bl ?

g
0…N-1 is not always 
contiguous! If 
required reorder by#pragma omp parallel

{
#pragma omp critical
{

available? required, reorder by 
a map:
cpu = map[cpu];

if(PLPA_NAME(api_probe)()!=PLPA_PROBE_OK) {
cerr << "PLPA failed!" << endl; exit(1);

}
plpa cpu set t msk;

Which core to 
run on?p p _ p _ _ ;

PLPA_CPU_ZERO(&msk);
int cpu = omp_get_thread_num();
PLPA_CPU_SET(cpu,&msk);
PLPA NAME( h d t ffi it )(( id t)0 i f( t t) & k)

run on?

Similar for pure MPI and MPI+OpenMP hybrid code

PLPA_NAME(sched_setaffinity)((pid_t)0, sizeof(cpu_set_t), &msk);
}

Pin “me”
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Process/Thread Binding With PLPA

Example for pure MPI: Process pinning
Bind MPI processes to cores in a cluster P0 P1 P2 P3Bind MPI processes to cores in a cluster 
of 2x2-core machines

MPI Comm rank(MPI COMM WORLD &rank);

C C
C C

MI

C C
C C

MI

MPI_Comm_rank(MPI_COMM_WORLD,&rank);
int mask = (rank % 4);
PLPA_CPU_SET(mask,&msk);
PLPA_NAME(sched_setaffinity)((pid_t)0, 

Memory Memory

Hybrid case: 
sizeof(cpu_set_t), &msk);

MPI Comm rank(MPI COMM WORLD,&rank);_ _ ( _ _ , )
#pragma omp parallel
{
plpa_cpu_set_t msk;
PLPA CPU ZERO(&msk);PLPA_CPU_ZERO(&msk);
int cpu = (rank % MPI_PROCESSES_PER_NODE)*omp_num_threads

+ omp_get_thread_num();
PLPA_CPU_SET(cpu,&msk);
PLPA_NAME(sched_setaffinity)((pid_t)0, sizeof(cpu_set_t), &msk);

}
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Likwid-pin
Overview

Inspired by and based on ptoverride (Michael Meier, RRZE) and taskset
Pins processes and threads to specific cores without touching code
Directly supports pthreads, gcc OpenMP, Intel OpenMP
Allows user to specify skip mask (shepherd threads should not be pinned)
Based on combination of wrapper tool together with overloaded pthread
library
Can also be used as a superior replacement for tasksetCan also be used as a superior replacement for taskset
Supports logical core numbering within a node and within an existing CPU 
set

Useful for running inside CPU sets defined by someone else, e.g., the MPI 
start mechanism or a batch system

Configurable colored output

Usage examples:
likwid-pin –t intel -c 0,2,4-6 ./myApp parameters 

i lik id i 0 3 0 3 5 6 /
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Likwid-pin
Example: Intel OpenMP

Running the STREAM benchmark with likwid-pin:

$ export OMP_NUM_THREADS=4  
$ likwid-pin -s 0x1 -c 0,1,4,5 ./stream
[likwid-pin] Main PID -> core 0 - OK
----------------------------------------------

Main PID always 
i dDouble precision appears to have 16 digits of accuracy

Assuming 8 bytes per DOUBLE PRECISION word
----------------------------------------------
[ STREAM t t itt d ]

pinned

[... some STREAM output omitted ...]
The *best* time for each test is used
*EXCLUDING* the first and last iterations
[pthread wrapper] PIN MASK: 0->1  1->4  2->5  [p pp ] _
[pthread wrapper] SKIP MASK: 0x1
[pthread wrapper 0] Notice: Using libpthread.so.0

threadid 1073809728 -> SKIP 
[pthread wrapper 1] Notice: Using libpthread so 0

Skip shepherd 
thread

[pthread wrapper 1] Notice: Using libpthread.so.0 
threadid 1078008128 -> core 1 - OK

[pthread wrapper 2] Notice: Using libpthread.so.0 
threadid 1082206528 -> core 4 - OK Pin all spawned

[pthread wrapper 3] Notice: Using libpthread.so.0 
threadid 1086404928 -> core 5 - OK

[... rest of STREAM output omitted ...]

Pin all spawned 
threads in turn
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Likwid-pin
Using logical core numbering

Core numbering may vary from system to system even with 
identical hardware

Likwid-topology delivers this information, which can then be fed into likwid-
pin

Alternatively likwid-pin can abstract this variation and provide aAlternatively, likwid-pin can abstract this variation and provide a 
purely logical numbering (physical cores first)

Socket 0:
+-------------------------------------+
| + + + + + + + + |

Socket 0:
+-------------------------------------+
| + + + + + + + + || +------+ +------+ +------+ +------+ |

| |  0  1| |  2  3| |  4  5| |  6  7| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| |  32kB| |  32kB| |  32kB| |  32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |

Socket 1:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| | 8 9| |10 11| |12 13| |14 15| |

| +------+ +------+ +------+ +------+ |
| |  0  8| |  1  9| |  2 10| |  3 11| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| |  32kB| |  32kB| |  32kB| |  32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |

Socket 1:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| | 4 12| | 5 13| | 6 14| | 7 15| || | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| |                8MB              | |
| +---------------------------------+ |
+-------------------------------------+

| |  8  9| |10  11| |12  13| |14  15| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| |  32kB| |  32kB| |  32kB| |  32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| + + + + + + + + |

| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| |                8MB              | |
| +---------------------------------+ |
+-------------------------------------+

| |  4 12| |  5 13| |  6 14| |  7 15| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| |  32kB| |  32kB| |  32kB| |  32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| + + + + + + + + |

Across all cores in the node:

| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| |                8MB              | |
| +---------------------------------+ |
+-------------------------------------+

| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| |                8MB              | |
| +---------------------------------+ |
+-------------------------------------+

OMP_NUM_THREADS=8 likwid-pin -c N:0-7 ./a.out

Across the cores in each socket and across sockets in each node:
OMP NUM THREADS=8 likwid-pin -c S0:0-3@S1:0-3 /a out
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Likwid-pin
Using logical core numbering

Possible unit prefixes

N d
Default if –c is not 

specified!N node specified!

S socket

M NUMA domain

C outer level cache group
Chipset

Memory
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Likwid-pin
Using logical core numbering

… and: Logical numbering inside a pre-existing cpuset:

0 210 21
33

OMP_NUM_THREADS=4 likwid-pin -c L:0-3 ./a.out
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Examples for hybrid pinning with likwid-mpirun: 
1 MPI process per node
OMP_NUM_THREADS=12 likwid-mpirun –np 2 -pin N:0-11  ./a.out

Intel MPI+compiler:
OMP NUM THREADS=12 mpirun –ppn 1 –n 2 –env KMP AFFINITY scatter /a out
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Examples for hybrid pinning with likwid-mpirun: 
1 MPI process per socket
OMP_NUM_THREADS=6  likwid-mpirun –np 4 –pin S0:0-5_S1:0-5 ./a.out

Intel MPI+compiler: 
OMP_NUM_THREADS=6 mpirun –ppn 2 –np 4 \

I MPI PIN DOMAIN k t KMP AFFINITY tt / t
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Monitoring the Binding
How can we see whether the measures for binding are really effective?

sched_getaffinity(), ...

top:

top - 16:05:03 up 24 days,  7:24, 32 users,  load average: 5.47, 4.92, 3.52
Tasks: 419 total,   4 running, 415 sleeping,   0 stopped,   0 zombie
Cpu(s):  95.7% us,  1.1% sy,  1.6% ni, 0.0% id,  1.4% wa,  0.0% hi,  0.2% si
M 8157028k t t l 8131252k d 25776k f 2772k b ffMem:   8157028k total,  8131252k used,    25776k free,     2772k buffers
Swap:  8393848k total,    93168k used,  8300680k free,  7160040k cached

PID USER      PR  VIRT  RES  SHR  NI P S %CPU %MEM   TIME COMMAND
23914 unrz55    25  277m 223m 2660   0 2 R 99.9  2.8  23:42 dmrg_0.26_WOODY
24284 unrz55    16  8580 1556  928   0 2 R  0.2  0.0   0:00 top
4789 unrz55    15 40220 1452 1448   0 0 S  0.0  0.0   0:00 sshd
4790 unrz55 15 7900 552 548 0 3 S 0 0 0 0 0:00 tcsh

P “H” f h i t th d physical CPU ID

4790 unrz55    15  7900  552  548   0 3 S  0.0  0.0   0:00 tcsh

Press “H” for showing separate threads physical CPU ID
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Probing performance behavior

How do we find out about the performance requirements of a 
parallel code?

Profiling via advanced tools is often overkill
A coarse overview is often sufficient

lik id perfctr (similar to “perfe ” on IRIX “hpmco nt” on AIX “lipfpm” onlikwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on 
Linux/Altix)
Simple end-to-end measurement of hardware performance metricsp p
“Marker” API for starting/stopping 
counters
M lti l t i

BRANCH: Branch prediction miss rate/ratio
CACHE: Data cache miss rate/ratio

Multiple measurement region 
support
Preconfigured and extensible 

CLOCK: Clock of cores
DATA: Load to store ratio
FLOPS_DP: Double Precision MFlops/s
FLOPS SP: Single Precision MFlops/sg

metric groups, list with
likwid-perfctr -a

_ g p /
FLOPS_X87: X87 MFlops/s
L2: L2 cache bandwidth in MBytes/s
L2CACHE: L2 cache miss rate/ratio
L3 L3 h b d idth i MB t /L3: L3 cache bandwidth in MBytes/s
L3CACHE: L3 cache miss rate/ratio
MEM: Main memory bandwidth in MBytes/s
TLB: TLB miss rate/ratio
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likwid-perfctr
Example usage with preconfigured metric group 

$ env OMP_NUM_THREADS=4 likwid-perfctr -c 0-3 -g FLOPS_DP likwid-pin -c 0-3 –s 0x1 ./stream.exe
-------------------------------------------------------------
CPU type: Intel Core Lynnfield processor 
CPU clock: 2.93 GHz 
-------------------------------------------------------------
Measuring group FLOPS_DP
-------------------------------------------------------------
YOUR PROGRAM OUTPUT

Always 
measured

Configured metrics 
(this group)

YOUR PROGRAM OUTPUT
+--------------------------------------+-------------+-------------+-------------+-------------+
| Event | core 0 | core 1 | core 2 | core 3 |
+--------------------------------------+-------------+-------------+-------------+-------------+
| INSTR RETIRED ANY | 1.97463e+08 | 2.31001e+08 | 2.30963e+08 | 2.31885e+08 || _ _ | | | | |
| CPU_CLK_UNHALTED_CORE | 9.56999e+08 | 9.58401e+08 | 9.58637e+08 | 9.57338e+08 |
| FP_COMP_OPS_EXE_SSE_FP_PACKED | 4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |
| FP_COMP_OPS_EXE_SSE_FP_SCALAR | 882 | 0 | 0 | 0 |
| FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION | 0 | 0 | 0 | 0 |
| | 4 00303 07 | 3 08927 07 | 3 08866 07 | 3 08904 07 || FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION | 4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |
+--------------------------------------+-------------+-------------+-------------+-------------+
+--------------------------+------------+---------+----------+----------+
| Metric | core 0 | core 1 | core 2 | core 3 |
+--------------------------+------------+---------+----------+----------++ + + + + +
| Runtime [s] | 0.326242 | 0.32672 | 0.326801 | 0.326358 |
| CPI | 4.84647 | 4.14891 | 4.15061 | 4.12849 |
| DP MFlops/s (DP assumed) | 245.399 | 189.108 | 189.024 | 189.304 |
| Packed MUOPS/s | 122.698 | 94.554 | 94.5121 | 94.6519 |

Derived 
metrics

| Scalar MUOPS/s | 0.00270351 | 0 | 0 | 0 |
| SP MUOPS/s | 0 | 0 | 0 | 0 |
| DP MUOPS/s | 122.701 | 94.554 | 94.5121 | 94.6519 |
+--------------------------+------------+---------+----------+----------+ 
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likwid-perfctr
Best practices for runtime counter analysis 

Things to look at

Load balance (flops instructions

Caveats

Load balance (flops, instructions, 
BW)

I k t BW t ti

Load imbalance may not show in 
CPI or # of instructions

Spin loops in OpenMP barriers/MPI 
In-socket memory BW saturation

Shared cache BW saturation

blocking calls

In-socket performance saturation

Flop/s, loads and stores per flop
metrics

In-socket performance saturation 
may have various reasons

SIMD vectorization
Cache miss metrics are overrated

If I really know my code, I can often  
calculate the misses

CPI metric

# of instructions

calculate the misses
Runtime and resource utilization is 
much more important

# of instructions, 
branches, mispredicted branches
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Section summary: What to take home

Figuring out the node topology is usually the hardest part
Virtual/physical cores, cache groups, cache parameters
This information is usually scattered across many sources

LIKWID-topology
O t l f ll t l tOne tool for all topology parameters
Supports Intel and AMD processors under Linux (currently)

Generic affinity tools
Taskset, numactl do not pin individual threads, p
Manual (explicit) pinning from within code

LIKWID-pin
Binds threads/processes to cores
Optional abstraction of strange numbering schemes (logical numbering)

LIKWID f tLIKWID-perfctr
End-to-end hardware performance metric measurement 
Finds out about basic architectural requirements of a program
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Tutorial outline

Introduction
Architecture of multisocket

lti t

Impact of processor/node 
topology on performance

multicore systems
Nomenclature
Current developments

Bandwidth saturation effects
Case study: OpenMP sparse MVM 
as an example for bandwidth-Current developments

Programming models 
Multicore performance tools

as an example for bandwidth
bound code
Programming for ccNUMAp

Finding out about system topology
Affinity enforcement

OpenMP performance
Simultaneous multithreading (SMT)
Intranode vs internode MPIPerformance counter 

measurements
Online demo: likwid tools (1)

Intranode vs. internode MPI
Case studies for shared memory

Automatic parallelizationOnline demo: likwid tools (1)
topology
pin

Automatic parallelization
Pipeline parallel processing for 
Gauß-Seidel solverp

Monitoring the binding
perfctr basics and best practices

Wavefront temporal blocking of 
stencil solver

Summary: Node level issues
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Live demo:

LIKWID tools
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General remarks on the performanceGeneral remarks on the performanceGeneral remarks on the performance General remarks on the performance 
properties of multicore multisocket properties of multicore multisocket 
systemssystemssystemssystems



The parallel vector triad benchmark
A “swiss army knife” for microbenchmarking

Simple streaming benchmark:

for(int j=0; j < NITER; j++){
#pragma omp parallel for
for(i=0; i < N; ++i)
a[i]=b[i]+c[i]*d[i];
if(OBSCURE)if(OBSCURE)

dummy(a,b,c,d);
}

Report performance for different N
Ch NITER th t t ti t i iblChoose NITER so that accurate time measurement is possible
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The parallel vector triad benchmark
Optimal code on x86 machines

timing(&wct_start, &cput_start); // size = multiple of 8
int vector_size(int n){  

t i t( (1 3 ))&( 8)

#pragma omp parallel private(j)
{
  for(j=0; j<niter; j++){
    if(size > CACHE_SIZE>>5) {
#pragma omp parallel for

return int(pow(1.3,n))&(-8); 
}

{

#pragma vector always
#pragma vector aligned
#pragma vector nontemporal

f (i 0 i< i ++i)

Large-N version (NT)

      for(i=0; i<size; ++i)
        a[i]=b[i]+c[i]*d[i];
    } else {
#pragma omp parallel for#pragma omp parallel for
#pragma vector always
#pragma vector aligned
      for(i=0; i<size; ++i)

Small-N version 
(noNT)

        a[i]=b[i]+c[i]*d[i];
    }
    if(a[5]<0.0)

[3] b[5] [10] d[6]

(noNT)

      cout << a[3] << b[5] << c[10] << d[6];
  }

timing(&wct end &cput end);
}
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The parallel vector triad benchmark
Performance results on Xeon 5160 node

P
C

P
C

C

P
C

P
C

C

Chipset

MemoryOMP overhead

L1 performance model

yOMP overhead 
and/or lower 
optimization w/ 
OpenMP activep

L1 cache L2 cache memory
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The parallel vector triad benchmark
Performance results on Xeon 5160 node

( ll) L2

P
C

P
C

C

P
C

P
C

C

(small) L2 
bottleneck

Chipset

Memoryy

Aggregate 
L2

Cross-Cross
socket synch

55ISC11Tutorial Performance programming on multicore-based systems



The parallel vector triad benchmark
Performance results on Xeon 5160 node

P
C

P
C

C

P
C

P
C

C

Chipset

Memory

Team restart

y
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The parallel vector triad benchmark
Performance results on Xeon 5160 node

P
C

P
C

C

P
C

P
C

C

Chipset

Memoryy

NT stores

57ISC11Tutorial Performance programming on multicore-based systems



The parallel vector triad benchmark
Performance results on Xeon 5160 node

P
C

P
C

C

P
C

P
C

C

Chipset

Memoryy

Memory BW 
saturationsaturation
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Bandwidth limitations: Memory
Some problems get even worse….

System balance = PeakBandwidth [MByte/s] / PeakFlops [MFlop/s] 
Typical balance ~ 0.25 Byte / Flop 4 Flop/Byte 32 Flop/double

Balance values:

Scalar product:
1 Flop/double

1/32 P k1/32 Peak

Dense 
Matrix·Vector:
2 Fl /d bl2 Flop/double

1/16 Peak

LLarge 
MatrixMatrix
(BLAS3)  
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Bandwidth saturation effects in cache and Bandwidth saturation effects in cache and 
memorymemory

LowLow--levellevel benchmarkbenchmark resultsresultsLowLow--levellevel benchmarkbenchmark resultsresults



Bandwidth limitations: Main Memory
Scalability of shared data paths inside NUMA domain (A(:)=B(:))

Saturation withSaturation with 
3 threads1 thread saturates 

bandwidth

1 thread cannot 
saturate bandwidthsaturate bandwidth
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Bandwidth limitations: Outer-level cache
Scalability of shared data paths in L3 cache

Sandy Bridge:
New design with
segmented L3 cache
connected by wide ring 
bus. Bandwidth scales! Westmere:

Queue-based sequentialQueue based sequential
access. Bandwidth does
not scale.

Magny Cours:
Exclusive cache with
l h d flarger overhead for
streaming access. 
Bandwidth scales on 
low level. No difference
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Case study: Case study: yy
OpenMPOpenMP--parallel sparse matrixparallel sparse matrix--vector vector 
multiplication in depth multiplication in depth 

A simple (but sometimes notA simple (but sometimes not--soso--simple) simple) A simple (but sometimes notA simple (but sometimes not--soso--simple) simple) 
example for bandwidthexample for bandwidth--bound code and bound code and 
saturation effects in memorysaturation effects in memory



Case study: Sparse matrix-vector multiply

Important kernel in many applications (matrix diagonalization, 
solving linear systems)
Strongly memory-bound for large data sets

Streaming, with partially indirect access:

do i = 1,Nr
d j t (i) t (i+1) 1

!$OMP parallel do

do j = row_ptr(i), row_ptr(i+1) - 1
c(i) = c(i) + val(j) * b(col_idx(j)) 

enddo
enddo
!$OMP end parallel do

Usually many spMVMs required to solve a problem

Following slides: Performance data on one 24-core AMD Magny 
Cours node
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Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

Case 1: Large matrix

IntrasocketIntrasocket 
bandwidth 
bottleneck Good scaling 

across socketsacross sockets
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Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

Case 2: Medium size

Working set fits 
i tin aggregate 

cache

Intrasocket 
bandwidth 
bottleneck
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Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

Case 3: Small size

N b d idth P ll li tiNo bandwidth 
bottleneck

Parallelization 
overhead 

dominates
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Bandwidth-bound parallel algorithms:
Sparse MVM

Data storage format is crucial for performance properties
Most useful general format: Compressed Row Storage (CRS)
SpMVM is easily parallelizable in shared and distributed memory

F l bl MVM iFor large problems, spMVM is
inevitably memory-bound

Intra-LD saturation effectIntra-LD saturation effect
on modern multicores

MPI-parallel spMVM is often 
i ti b dcommunication-bound

See hybrid part for what we
can do about this…

68
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SpMVM node performance model

Double precision CRS:

8 8 8 48

8

DP CRS code balance
κ quantifies extra trafficκ quantifies extra traffic
for loading RHS more than
once
Predicted Performance = streamBW/BCRS

Determine κ by measuring performance and actual memory BW

G. Schubert, G. Hager, H. Fehske and G. Wellein: Parallel sparse matrix-vector multiplication as a test case 
for hybrid MPI+OpenMP programming. Workshop on Large-Scale Parallel Processing (LSPP 2011), May 20th, 
2011 Anchorage AK Preprint: arXiv:1101 0091
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Test matrices: Sparsity patterns

Analysis for HMeP matrix (Nnzr ≈15) on Nehalem EP socket
BW used by spMVM kernel = 18.1 GB/s should get ≈ 2.66 Gflop/s 

MVM fspMVM performance
Measured spMVM performance = 2.25 Gflop/s
Solve 2 25 Gflop/s = BW/BC S for κ ≈ 2 5Solve 2.25 Gflop/s = BW/BCRS for  κ ≈ 2.5

37.5 extra bytes per row 
RHS is loaded ≈6 times from memory but each element is used N ≈15RHS is loaded ≈6 times from memory, but each element is used Nnzr ≈15 
times
about 25% of BW goes into RHS

Special formats that exploit features of the sparsity pattern are not 
id d hconsidered here

Symmetry
Dense blocksDense blocks
Subdiagonals (possibly w/ constant entries)
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Test systems

Intel Westmere EP (Xeon 5650)
STREAM triad BW: 
20.6 GB/s per domain
QDR InfiniBand fully nonblocking fat-tree
interconnectinterconnect

AMD Magny Cours 
(Opteron 6172)(Opteron 6172)
STREAM triad BW: 
12.8 GB/s per domain
Cray Gemini 
interconnect
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Node-level performance for HMeP: Westmere EP 
(Xeon 5650) vs. Cray XE6 Magny Cours (Opteron 6172)

Good scaling 
across NUMAacross NUMA 
domains

Cores useless for 
computation!
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OpenMP sparse MVM:
Take-home messages

Yes, sparse MVM is usually memory-bound

This statement is insufficient for a full understanding of what’s 
going on

N ( t i d t ) t t k 100% f b d idthNonzeros (matrix data) may not take up 100% of bandwidth
We can figure out easily how often the RHS has to be loaded

A lot of research is put into bandwidth reduction optimizations for 
sparse MVMp

Symmetries, dense subblocks, subdiagonals,…

Bandwidth saturation using all cores may not be required
There are free resources – what can we do with them?

Turn off/reduce clock frequencyTurn off/reduce clock frequency
Put to better use see hybrid case studies
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Efficient parallel programming Efficient parallel programming 
on ccNUMA nodeson ccNUMA nodes

Performance characteristics of ccNUMA nodesPerformance characteristics of ccNUMA nodesPerformance characteristics of ccNUMA nodesPerformance characteristics of ccNUMA nodes
First touch placement policyFirst touch placement policy
C++ issuesC++ issuesC++ issuesC++ issues
ccNUMA locality and dynamic schedulingccNUMA locality and dynamic scheduling
ccNUMA locality beyond first touchccNUMA locality beyond first touchccNUMA locality beyond first touchccNUMA locality beyond first touch



ccNUMA performance problems
“The other affinity” to care about

ccNUMA:
Whole memory is transparently accessible by all processors
but physically distributed
with varying bandwidth and latency
and potential contention (shared memory paths)and potential contention (shared memory paths)

How do we make sure that memory access is always as "local" 
and "distributed" as possible?and distributed  as possible?

C C C C C C C C

M M M M

Page placement is implemented in units of OS pages (often 4kB, possibly 
more)

75ISC11Tutorial Performance programming on multicore-based systems



Intel Nehalem EX 4-socket system
ccNUMA bandwidth map

Bandwidth map created with likwid-bench. All cores used  in one 
NUMA domain, memory is placed in a different NUMA domain. 
Test case: simple copy A(:)=B(:) large arrays
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AMD Magny Cours 2-socket system
4 chips, two sockets

77ISC11Tutorial Performance programming on multicore-based systems



AMD Magny Cours 4-socket system
Topology at its best?
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ccNUMA locality tool numactl:
How do we enforce some locality of access?
numactl can influence the way a binary maps its memory pages:

numactl membind <nodes> a out # map pages only on <nodes>numactl --membind=<nodes> a.out # map pages only on <nodes>
--preferred=<node> a.out # map pages on <node> 

# and others if <node> is full
--interleave=<nodes> a out # map pages round robin across--interleave=<nodes> a.out # map pages round robin across

# all <nodes>

E lExamples:

env OMP_NUM_THREADS=2 numactl --membind=0 –cpunodebind=1 ./stream

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \
likwid-pin -c N:0,4,8,12 ./stream

But what is the default without numactl?
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ccNUMA default memory locality

"Golden Rule" of ccNUMA:

A t d i t th l l f thA memory page gets mapped into the local memory of the 
processor that first touches it!

Except if there is not enough local memory available
This might be a problem, see later

Caveat: "touch" means "write", not "allocate"
Example: Memory not 

mapped here yet

double *huge = (double*)malloc(N*sizeof(double));

//for(i=0; i<N; i++) // or i+=PAGE_SIZE
huge[i] = 0.0;

Mapping takes 

It is sufficient to touch a single item to map the entire page

place here
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Coding for Data Locality 

The programmer must ensure that memory pages get mapped 
locally in the first place (and then prevent migration)

Rigorously apply the "Golden Rule"
I.e. we have to take a closer look at initialization code

Some non locality at domain boundaries may be unavoidableSome non-locality at domain boundaries may be unavoidable
Stack data may be another matter altogether:

void f(int s) { // called many times with different s
double a[s]; // c99 feature
// where are the physical pages of a[] now???
…

}

Fine-tuning is possible (see later)

Prerequisite: Keep threads/processes where they arePrerequisite: Keep threads/processes where they are
Affinity enforcement (pinning) is key (see earlier section)
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Coding for ccNUMA data locality

integer parameter :: N=1000000 integer parameter :: N=1000000

Simplest case: explicit initialization 

integer,parameter :: N=1000000
real*8 A(N), B(N)

integer,parameter :: N=1000000
real*8 A(N),B(N)

A=0.d0

!$OMP parallel do schedule(static)
do i = 1, N

A(i)=0.d0

!$OMP ll l d

( )
end do

!$OMP ll l d h d l ( t ti )!$OMP parallel do
do i = 1, N

B(i) = function ( A(i) )

!$OMP parallel do schedule(static)
do i = 1, N

B(i) = function ( A(i) )
end do end do
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Coding for Data Locality

Sometimes initialization is not so obvious: I/O cannot be easily 
parallelized, so "localize" arrays before I/O

integer,parameter :: N=1000000
real*8 A(N), B(N)

integer,parameter :: N=1000000
real*8 A(N),B(N)ea 8 ( ), ( ) ( ), ( )

!$OMP parallel do schedule(static)
d I 1 Ndo I = 1, N
A(i)=0.d0
end do

READ(1000) A
!$OMP parallel do
do I = 1 N

READ(1000) A
!$OMP parallel do schedule(static)
do I = 1 Ndo I = 1, N

B(i) = function ( A(i) )
end do

do I = 1, N
B(i) = function ( A(i) )
end do

83ISC11Tutorial Performance programming on multicore-based systems



Coding for Data Locality

Required condition: OpenMP loop schedule of initialization must 
be the same as in all computational loops

Best choice: static! Specify explicitly on all NUMA-sensitive loops, just to 
be sure…
Imposes some constraints on possible optimizations (e g load balancing)Imposes some constraints on possible optimizations (e.g. load balancing)
Presupposes that all worksharing loops with the same loop length have the 
same thread-chunk mapping

Guaranteed by OpenMP 3.0 only for loops in the same enclosing parallel region
In practice, it works with any compiler even across regions

If dynamic scheduling/tasking is unavoidable more advanced methods mayIf dynamic scheduling/tasking is unavoidable, more advanced methods may 
be in order

How about global objects?
Better not use them
If i ti t ti i f bl i ht id lIf communication vs. computation is favorable, might consider properly 
placed copies of global data
In C++, STL allocators provide an elegant solution (see hidden slides)
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Coding for Data Locality:
Placement of static arrays or arrays of objects

Speaking of C++: Don't forget that constructors tend to touch the 
data members of an object. Example:

class D {
double d;
blipublic:
D(double _d=0.0) throw() : d(_d) {}
inline D operator+(const D& o) throw() {
return D(d+o.d);

}
inline D operator*(const D& o) throw() {p ( ) () {
return D(d*o.d);

}
...
};

→ placement problem with 
D* array = new D[1000000];
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Coding for Data Locality:
Parallel first touch for arrays of objects

Solution: Provide overloaded new operator or special function that places 
the memory before constructors are called (PAGE_BITS = base-2 log of 
pagesize)pagesize)

template <class T> T* pnew(size_t n) {
size t st = sizeof(T);s e_t st s eo ( );
int ofs,len=n*st;
int i,pages = len >> PAGE_BITS;
char *p = new char[len];

parallel first touch

char *p = new char[len];
#pragma omp parallel for schedule(static) private(ofs)

for(i=0; i<pages; ++i) {
f t ti t< i t>(i) << PAGE BITSofs = static_cast<size_t>(i) << PAGE_BITS;

p[ofs]=0;
}

#pragma omp parallel for schedule(static) private(ofs)
for(ofs=0; ofs<n; ++ofs) {
new(static cast<void*>(p+ofs*st)) T;( _ (p ))

}
return static_cast<T*>(m);

}

placement 
new!
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Coding for Data Locality:
NUMA allocator for parallel first touch in std::vector<>

template <class T> class NUMA_Allocator {
public:
T* allocate(size_type numObjects, const void  

*localityHint=0) {
size_type ofs,len = numObjects * sizeof(T);_
void *m = malloc(len);
char *p = static_cast<char*>(m);
int i,pages = len >> PAGE BITS;int i,pages  len >> PAGE_BITS;

#pragma omp parallel for schedule(static) private(ofs)
for(i=0; i<pages; ++i) {
ofs = static cast<size t>(i) << PAGE BITS;ofs = static_cast<size_t>(i) << PAGE_BITS;
p[ofs]=0;

}
t t ti t< i t >( )return static_cast<pointer>(m);

}
...
}; Application:

vector<double,NUMA_Allocator<double> > x(1000000)
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Memory Locality Problems

Locality of reference is key to scalable performance on ccNUMA
Less of a problem with distributed memory (MPI) programming, but see below

What factors can destroy locality?

MPI programming:MPI programming:
Processes lose their association with the 
CPU the mapping took place on originally
OS kernel tries to maintain strong affinity butOS kernel tries to maintain strong affinity, but 
sometimes fails

Shared Memory Programming

P
C
C

P
C
C

P
C
C

MI

P
C
C

P
C
C

P
C
C

C

P
C
C

P
C
C

P
C
C

MI

P
C
C

P
C
C

P
C
C

C

(OpenMP,…):
Threads losing association with the CPU the 
mapping took place on originally Memory

MI

Memory

MI

mapping took place on originally
Improper initialization of distributed data

All cases: 
Other agents (e.g., OS kernel) may fill 
memory with data that prevents optimal 
placement of user data
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Diagnosing Bad Locality

If your code is cache-bound, you might not notice any locality 
problems

Otherwise, bad locality limits scalability at very low CPU numbers
(whenever a node boundary is crossed)(whenever a node boundary is crossed)

If the code makes good use of the memory interface
But there may also be a general problem in your codeBut there may also be a general problem in your code…

Consider using performance countersg p
LIKWID-perfCtr can be used to measure nonlocal memory accesses
Example for Intel Nehalem (Core i7):

env OMP_NUM_THREADS=8 likwid-perfCtr -g MEM –c 0-7 \
likwid-pin -t intel -c 0-7 ./a.out
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Using performance counters for diagnosing bad ccNUMA 
access locality

Intel Nehalem EP node:
Uncore events only 

t d k t

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------
|             Event             |   core 0    |   core 1    |   core 2    |   core 3    |   core 4    |   core 5    
+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------

counted once per socket

|       INSTR_RETIRED_ANY       | 5.20725e+08 | 5.24793e+08 | 5.21547e+08 | 5.23717e+08 | 5.28269e+08 | 5.29083e+08 
|     CPU_CLK_UNHALTED_CORE     | 1.90447e+09 | 1.90599e+09 | 1.90619e+09 | 1.90673e+09 | 1.90583e+09 | 1.90746e+09 
|   UNC_QMC_NORMAL_READS_ANY    | 8.17606e+07 |      0      |      0      |      0      | 8.07797e+07 |      0      
|    UNC_QMC_WRITES_FULL_ANY    | 5.53837e+07 |      0      |      0      |      0      | 5.51052e+07 |      0      
| UNC QHL REQUESTS REMOTE READS | 6.84504e+07 |      0      |      0      |      0      | 6.8107e+07 |      0      | _Q _ Q _ _ | | | | | |
| UNC_QHL_REQUESTS_LOCAL_READS  | 6.82751e+07 |      0      |      0      |      0      | 6.76274e+07 |      0      
+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------
RDTSC timing: 0.827196 s
+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+
|           Metric            |  core 0  |  core 1  | core 2  |  core 3  |  core 4  |  core 5  | core 6  | core 7  || | | | | | | | | |
+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+
|         Runtime [s]         | 0.714167 | 0.714733 | 0.71481 | 0.715013 | 0.714673 | 0.715286 | 0.71486 | 0.71515 |
|             CPI             | 3.65735  | 3.63188  | 3.65488 | 3.64076  | 3.60768  | 3.60521  | 3.59613 | 3.60184 |
| Memory bandwidth [MBytes/s] | 10610.8  |    0     |    0    |    0     | 10513.4  |    0     |    0    |    0    |
|  Remote Read BW [MBytes/s]  |   5296   |    0     |    0    |    0     | 5269.43  |    0     |    0    |    0    || a [ y / ] | | | | | | | | |
+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+

H lf f d BWHalf of read BW comes 
from other socket!
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If all fails…

Even if all placement rules have been carefully observed, you may 
still see nonlocal memory traffic. Reasons?

Program has erratic access patters may still achieve some access 
parallelism (see later)
OS has filled memory with buffer cache data:

# tl h d # idl d !# numactl --hardware    # idle node!
available: 2 nodes (0-1)
node 0 size: 2047 MB
node 0 free: 906 MB
node 1 size: 1935 MB
node 1 free: 1798 MB

top - 14:18:25 up 92 days,  6:07,  2 users,  load average: 0.00, 0.02, 0.00
Mem: 4065564k total, 1149400k used, 2716164k free, 43388k buffersMem:   4065564k total,  1149400k used,  2716164k free,    43388k buffers
Swap:  2104504k total,     2656k used,  2101848k free,  1038412k cached
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ccNUMA problems beyond first touch:
Buffer cache

OS uses part of main memory for
disk buffer (FS) cache P1 P2 P3 P4disk buffer (FS) cache

If FS cache fills part of memory, 
apps will probably allocate from 

P1
C

P2
C

C C

MI

P3
C

P4
C

C C

MIforeign domains
non-local access!

“sync” is not sufficient to

MI MI

d t (3)

dsync  is not sufficient to
drop buffer cache blocks

BC

data(3)

data(3)
data(1)

Remedies

BC

Drop FS cache pages after user job has run (admin’s job)
User can run “sweeper” code that allocates and touches all physical 
memory before starting the real applicationmemory before starting the real application
numactl tool can force local allocation (where applicable)
Linux: There is no way to limit the buffer cache size in standard kernels

92ISC11Tutorial Performance programming on multicore-based systems

Linux: There is no way to limit the buffer cache size in standard kernels



ccNUMA problems beyond first touch:
Buffer cache

Real-world example: ccNUMA vs. UMA and the Linux buffer cache
Compare two 4-way systems: AMD Opteron ccNUMA vs. Intel UMA, 4 GB 

imain memory

Run 4 concurrentRun 4 concurrent
triads (512 MB each)
after writing a large 
filefile

Report perfor-Report perfor
mance vs. file size

Drop FS cache after
each data point
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ccNUMA placement and erratic access patterns

Sometimes access patterns are 
just not nicely grouped into 
contiguous chunks:

Or you have to use tasking/dynamic 
scheduling:

contiguous chunks:

double precision :: r, a(M)

!$OMP parallel
!$OMP single
do i=1,Np ,

!$OMP parallel do private(r)
do i=1,N
call RANDOM_NUMBER(r)

do i 1,N
call RANDOM_NUMBER(r)
if(r.le.0.5d0) then

!$OMP task
ind = int(r * M) + 1
res(i) = res(i) + a(ind)

enddo

$
call do_work_with(p(i))

!$OMP end task
endif

!OMP end parallel do enddo
!$OMP end single
!$OMP end parallel

In both cases page placement cannot easily be fixed for perfect parallel 
access
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ccNUMA placement and erratic access patterns

Worth a try: Interleave memory across ccNUMA domains to get at least 
some parallel access
1 E li it l t1. Explicit placement:

!$OMP parallel do schedule(static,512)
do i=1,M
a(i) = …

enddo
!$OMP end parallel do

Observe page alignment of 
array to get proper 

placement!

2. Using global control via numactl: This is for all memory, not 
just the problematic 

!numactl --interleave=0-3 ./a.out

Fi i d t ll d l t i (Li )

arrays!

Fine-grained program-controlled placement via libnuma (Linux) 
using, e.g., numa_alloc_interleaved_subset(), 
numa alloc interleaved() and othersnuma_alloc_interleaved() and others
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The curse and blessing of interleaved placement: 
OpenMP STREAM triad on 4-socket (48 core) Magny Cours node

Parallel init: Correct parallel initialization
LD0: Force data into LD0 via  numactl –m 0
Interleaved:  numactl --interleave <LD range>

120000
parallel init LD0 interleaved

100000

120000

]

80000

M
by

te
/s

]

40000

60000

dw
id

th
 [

20000B
an

d

0
1 2 3 4 5 6 7 8

# NUMA domains (6 threads per domain)
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OpenMP performance issues OpenMP performance issues 
on multicoreon multicore

Synchronization (barrier) overheadSynchronization (barrier) overheadSynchronization (barrier) overheadSynchronization (barrier) overhead
Work distribution overheadWork distribution overhead



Welcome to the multi-/many-core era
Synchronization of threads may be expensive!
!$OMP PARALLEL …
…
!$OMP BARRIER

Threads are synchronized at explicit AND 
implicit barriers. These are a main source of !$OMP BARRIER

!$OMP DO
…

p
overhead in OpenMP progams.

!$OMP ENDDO
!$OMP END PARALLEL

Determine costs via modified OpenMP
Microbenchmarks testcase (epcc)

On x86 systems there is no hardware support for synchronization.
Tested synchronization constructs:Tested synchronization constructs:

OpenMP Barrier
pthreads Barrier
Spin waiting loop software solution 

Test machines (Linux OS):Test machines (Linux OS):
Intel Core 2 Quad Q9550 (2.83 GHz)
Intel Core i7 920 (2.66 GHz)
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Thread synchronization overhead 
Barrier overhead in CPU cycles: pthreads vs. OpenMP vs. spin loop

4 Threads Q9550 i7 920 (shared L3)

P
C

P
C

C

P
C

P
C

C

P
C

P
C

C C

P
C

P
C

C C
C

Q9550 9 0 ( 3)
pthreads_barrier_wait 42533 9820
omp barrier (icc 11.0) 977 814
gcc 4.4.3 41154 8075
Spin loop 1106 475

pthreads OS kernel call
Spin loop does fine for shared cache sync

OpenMP & Intel compilerOpenMP & Intel compiler 

Nehalem 2 Threads Shared SMT 
threads

shared L3 different socket

P C C

P C
P C

C
C

C

em
or

y

threads
pthreads_barrier_wait 23352 4796 49237
omp barrier (icc 11.0) 2761 479 1206P C

P C
C

C

P C
P

C

or
y

M
e

Spin loop 17388 267 787P C
P C

C
C

C

M
em

SMT can be a big performance problem for synchronizing threads
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Work distribution overhead
Influence of thread-core affinity

Overhead microbenchmark:
!$OMP PARALLEL DO SCHEDULE(RUNTIME) REDUCTION(+:s)

P
C

Chipset

P
C

C

P
C

P
C

C

do i=1,N
s = s + compute(i)

enddo

Chipset

Memory

!$OMP END PARALLEL DO

Choose N large so
that synchronization
overhead is negligibleoverhead is negligible
compute() implements
purely computationalp y p
workload 

no bandwidth
effectseffects

Run with 2 threads
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Simultaneous multithreading (SMT)Simultaneous multithreading (SMT)

Principles and performance impactPrinciples and performance impactPrinciples and performance impactPrinciples and performance impact
Facts and fictionFacts and fiction



SMT Makes a single physical core appear as two or more 
“logical” cores multiple threads/processes run concurrently

SMT principle (2-way example):
rd

 c
or

e
St

an
da

w
ay

 S
M

T
2-

w
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SMT impact

SMT is primarily suited for increasing processor throughput
With multiple threads/processes running concurrently

Scientific codes tend to utilize chip resources quite well
Standard optimizations (loop fusion, blocking, …) 
Hi h d t d i t ti l l ll liHigh data and instruction-level parallelism
Exceptions do exist

SMT is an important topology issue
SMT threads share almost all core
resources

Pipelines, caches, data paths
Affinity matters! P

T0
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Affinity matters!
If SMT is not needed

pin threads to physical cores
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p p y
or switch it off via BIOS etc.

Memory Memory
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SMT impact
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
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T0

T1
P

T0

T1
P

T0

T1

SMT adds another layer of topology
(inside the physical core)

C
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C
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C
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C
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C
C

C
C

C

MI

Caveat: SMT threads share all caches!
Possible benefit: Better pipeline throughput

Filli th i d i li

Westmere EP 
Memory

Filling otherwise unused pipelines
Filling pipeline bubbles with other thread’s executing instructions:

Thread 0: Thread 1:Thread 0:
do i=1,N
a(i) = a(i-1)*c

Thread 1:
do i=1,N
b(i) = func(i)*d

enddo 

Dependency pipeline 
t ll til i MULT

enddo 

Unrelated work in other 
th d fill th i li

Beware: Executing it all in a single thread

stalls until previous MULT 
is over

thread can fill the pipeline 
bubbles

do i=1,NBeware: Executing it all in a single thread 
(if possible) may reach the same goal 
without SMT:

do i 1,N
a(i) = a(i-1)*c
b(i) = func(i)*d

enddo
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SMT impact

Interesting case: SMT as an alternative to outer loop unrolling
Original code (badly pipelined) “Optimized” code
do i=1,N
! Iterations of j loop indep.
do j=1,M

do i=1,N,2
! Iterations of j loop indep.
do j=1,M

!
! very complex loop body with
! many flops and massive  

!
! loop body, 2 copies
! interleaved better

! register dependencies
!
enddo

! pipeline utilization
!
enddo

This does not work!

e ddo
enddo

e ddo
enddo

This does not work!
Massive register use forbids outer loop unrolling: Register shortage/spill

Remedy: Parallelize one of the loops across virtual cores!y p
Each virtual core has its own register set, so SMT will fill the pipeline bubbles

J. Treibig, G. Hager, H. G. Hofmann, J. Hornegger, and G. Wellein: Pushing the limits for medical image 
t ti t t d d lti S b itt d P i t Xi 1104 5243
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SMT myths: Facts and fiction

Myth: “If the code is compute-bound, then the functional units 
should be saturated and SMT should show no improvement.”
Truth: A compute-bound loop does not necessarily saturate the 
pipelines; dependencies can cause a lot of bubbles, which may be 
filled by SMT threadsfilled by SMT threads.

Myth: “If the code is memory-bound SMT should help because itMyth: If the code is memory bound, SMT should help because it 
can fill the bubbles left by waiting for data from memory.”
Truth: If all SMT threads wait for memory, nothing is gained. SMT 
can help here only if the additional threads execute code that is 
not waiting for memory.

Myth: “SMT can help bridge the latency to memory (more 
outstanding references) ”outstanding references).
Truth: Outstanding loads are a shared resource across all SMT 
threads. SMT will not help.
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SMT: When it may help, and when not

Functional parallelization (see hybrid case studies)

FP-only parallel loop code 

Frequent thread synchronization

Code sensitive to cache size

Strongly memory bound codeStrongly memory-bound code

Independent pipeline-unfriendly instruction streamsIndependent pipeline unfriendly instruction streams 
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Understanding MPI communication in Understanding MPI communication in 
multicore environmentsmulticore environments

IntranodeIntranode vs  vs  internodeinternode MPIMPIIntranodeIntranode vs. vs. internodeinternode MPIMPI
MPI Cartesian topologies and rankMPI Cartesian topologies and rank--subdomainsubdomain

mappingmappingpp gpp g



Intranode MPI

Common misconception: Intranode MPI is infinitely fast compared 
to internode

Reality
I t d l t i h ll th i t dIntranode latency is much smaller than internode
Intranode asymptotic bandwidth is surprisingly comparable to internode
Difference in saturation behaviorDifference in saturation behavior

Other issues
Mapping between ranks, subdomains and cores with Cartesian MPI 
topologies
O l i i t d ith i t d i tiOverlapping intranode with internode communication
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MPI and Multicores
Clusters: Unidirectional internode Ping-Pong bandwidth

QDR/GBit ~ 30X
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MPI and Multicores
Clusters: Unidirectional intranode Ping-Pong bandwidth

Some BW 
scalability for 

multi-intranode 

Cross-Socket (CS)connections

P
C
C

P
C
C

P
C
C

P
C
C

P
C
C

P
C
C

P
C
C

P
C
C

MI
C

MI
C

Memory Memory

Intra-Socket (IS)

Single point-to-
point BW similar 

Mapping problem for most efficient communication paths!?

p
to internode
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“Best possible” MPI:
Minimizing cross-node communication

■ Example: Stencil solver with halo exchange

■ Goal: Reduce inter-node halo traffic
■ Subdomains exchange halo with neighbors

■ Populate a node's ranks with “maximum neighboring” subdomains
This minimizes a node's communication surface■ This minimizes a node s communication surface

■ Shouldn’t MPI CART CREATE (w/ reorder) take care of this?
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MPI rank-subdomain mapping in Cartesian topologies:
A 3D stencil solver and the growing number of cores per node

“Common” MPI 
library behavior
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Section summary: What to take home
Bandwidth saturation is a reality, in 
cache and memory

U k l d t h th

OpenMP overhead
Barrier (synchronization) often 
dominates the loop overheadUse knowledge to choose the 

“right” number of 
threads/processes per node

dominates the loop overhead
Work distribution and sync 
overhead is strongly topology-

You must know where those 
threads/processes should run
You must know the architectural

g y gy
dependent
Strong influence of compiler
S h i i th d “l i lYou must know the architectural 

requirements of your application
ccNUMA architecture must be 

Synchronizing threads on “logical 
cores” (SMT threads) may be 
expensive

considered for bandwidth-bound 
code

Topology awareness again

Intranode MPI
May not be as fast as you 
thinkTopology awareness, again

First touch page placement
Problems with dynamic 

think…
Becomes more important as core 
counts increase

scheduling and tasking: Round-
robin placement is the “cheap 
way out”

May not be handled optimally by 
your MPI library
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Tutorial outline

Introduction
Architecture of multisocket

lti t

Impact of processor/node 
topology on performance

multicore systems
Nomenclature
Current developments

Bandwidth saturation effects
Case study: OpenMP sparse MVM 
as an example for bandwidth-Current developments

Programming models 
Multicore performance tools

as an example for bandwidth
bound code
Programming for ccNUMAp

Finding out about system topology
Affinity enforcement

OpenMP performance
Simultaneous multithreading (SMT)
Intranode vs internode MPIPerformance counter 

measurements
Online demo: likwid tools (1)

Intranode vs. internode MPI
Case studies for shared memory

Automatic parallelizationOnline demo: likwid tools (1)
topology
pin

Automatic parallelization
Pipeline parallel processing for 
Gauß-Seidel solverp

Monitoring the binding
perfctr basics and best practices

Wavefront temporal blocking of 
stencil solver

Summary: Node level issues
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Automatic sharedAutomatic shared--memory parallelization: memory parallelization: 
What can the compiler do for you?What can the compiler do for you?



Common Lore 
Performance/Parallelization at the node level: Software does it 

Automatic parallelization for moderate processor counts is known 
for more than 15 years – simple testbed for modern multicores:

allocate( x(0:N+1,0:N+1,0:N+1) )
allocate( y(0:N+1,0:N+1,0:N+1) )( y( , , ) )
x=0.d0
y=0.d0
…
… somewhere in a subroutine …
do k = 1,N
do j 1 N Simple 3D 7 point stencil update( Jacobi“)do j = 1,N

do i = 1,N
y(i,j,k) = b*(x(i-1,j,k)+x(i+1,j,k)+ x(i,j-1,k)+

(i j+1 k)+ (i j k 1)+ (i j k+1) )

Simple 3D 7-point stencil update(„Jacobi )

x(i,j+1,k)+x(i,j,k-1)+x(i,j,k+1) )
enddo

enddo
enddo Performance Metric: Million Lattice Site Updates per second (MLUPs) 

Equivalent MFLOPs: 6 FLOP/LUP * MLUPs
Equivalent GByte/s: 24 Byte/LUP * MLUPs
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Common Lore 
Performance/Parallelization at the node level: Software does it

Intel Fortran compiler: 
ifort –O3 –xW –parallel –par-report2 …

Version 9.1. (admittedly an older one…)
Innermost i loop is SIMD vectorized which prevents compiler from autoInnermost i-loop is SIMD vectorized, which prevents compiler from auto-
parallelization: serial loop: line 141: not a parallel 
candidate due to loop already vectorized

No other loop is parallelized…

Version 11 1 (the latest one )Version 11.1. (the latest one…)
Outermost k-loop is parallelized: Jacobi_3D.F(139): (col. 10) 
remark: LOOP WAS AUTO-PARALLELIZED.

Innermost i-loop is vectorized.
Most other loop structures are ignored by “parallelizer”, e.g. x=0.d0 and 
y=0 d0: Jacobi 3D F(37): (col 16) remark: loop was noty=0.d0: Jacobi_3D.F(37): (col. 16) remark: loop was not 
parallelized: insufficient computational work
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Common Lore 
Performance/Parallelization at the node level: Software does it

PGI compiler (V 10.6)
pgf90 –tp nehalem-64 –fastsse –Mconcur –Minfo=par,vect

Performs outer loop parallelization of k-loop
139, Parallel code generated with block distribution if 
trip count is greater than or equal to 33

and vectorization of inner i-loop: 
141, Generated 4 alternate loops for the loop Generated 
vector sse code for the loopvector sse code for the loop 

Also the array instructions (x=0.d0; y=0.d0) used for initialization are y ( y )
parallelized:
37, Parallel code generated with block distribution if 
trip count is greater than or equal to 50trip count is greater than or equal to 50 

Version 7.2. does the same job but some switches must be adapted 

gfortran: No automatic parallelization feature so far (?!)
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Common Lore 
Performance/Parallelization at the node level: Software does it

2-socket Intel Xeon 5550 (Nehalem; 2.66 GHz) node C
C

C
C

C
C

C
C

C

MI

P
T0

T1
P
T0

T1
P
T0

T1
P
T0

T1

C
C

C
C

C
C

C
C

C

MI

P
T0

T1
P
T0

T1
P
T0

T1
P
T0

T1

STREAM bandwidth:

Memory Memory

STREAM bandwidth:

Node:    ~36-40 GB/s

Socket: ~17-20 GB/s

Performance 
variations 
Thread / core 
affinity?!y

Intel: No 
scalability 4 8 Cubic domain size: N=320 (blocking of j-loop)
threads?!

( g j p)
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Controlling thread affinity / binding 
Intel / PGI compilers

Intel compiler controls thread-core affinity via KMP_AFFINITY
environment variable

KMP_AFFINITY=“granularity=fine,compact,1,0” packs the threads in 
a blockwise fashion ignoring the SMT threads. 
(equivalent to likwid-pin –c 0-7 )(equivalent to likwid-pin –c 0-7 )
Add ”verbose” to get information at runtime
Cf. extensive Intel documentation
Disable when using other tools, e.g. likwid: KMP_AFFINITY=disabled
Builtin affinity does not work on non-Intel hardware

PGI compiler offers compiler options:
(bi d h d li k i i )Mconcur=bind (binds threads to cores; link time option)

Mconcur=numa (prevents OS from process / thread migration; link time option)
No manual control about thread core affinityNo manual control about thread-core affinity
Interaction likwid PGI ?!

121ISC11Tutorial Performance programming on multicore-based systems



Thread binding and ccNUMA effects 
7-point 3D stencil on 2-socket Intel Nehalem system

Performance drops if 8 threads instead of 4 access a single memory domain: 
Remote access of 4 through QPI!

C
C

C
C

C
C

C
C

C

P
T0

T1
P
T0

T1
P
T0

T1
P
T0

T1

C
C

C
C

C
C

C
C

C

P
T0

T1
P
T0

T1
P
T0

T1
P
T0

T1

Cubic domain size: N=320 (blocking of j-loop)
C

MI

Memory

C

MI

Memory
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Thread binding and ccNUMA effects 
7-point 3D stencil on 2-socket AMD Magny-Cours system

12-core Magny-Cours: A single socket holds two tightly HT-connected 6-core 
chips 2-socket system has 4 data locality domains

Cubic domain size: N=320 (blocking of j-loop)

Memory

MIMI

Memory

Cubic domain size: N=320 (blocking of j-loop)

OMP_SCHEDULE=“static”

Performance [MLUPs]

PPPPPP
C
C

C
C

C
C

C
C

C
C

C
C

C

PPPPPP
C
C

C
C

C
C

C
C

C
C

C
C

C

H
TPerformance [MLUPs]

P P P P P P
C
C

C
C

C
C

C
C

C
C

C
C

P P P P P P
C
C

C
C

C
C

C
C

C
C

C
C

1x
 H 0.5x HT

#threads #L3 #sockets Serial Parallel 
C C C C C C

C

MI

C C C C C C
C

MI
2x HT

#threads groups #sockets Init. Init.

1 1 1 221 221
Memory Memory

3 levels of HT connections: 
6 1 1 512 512

12 2 1 347 1005 1.5x HT – 1x HT – 0.5x HT12 2 1 347 1005

24 4 2 286 1860
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Common Lore 
Performance/Parallelization at the node level: Software does it 

Based on Jacobi performance results one could claim victory, but 
increase complexity a bit, e.g. simple Gauss-Seidel instead of Jacobi

… somewhere in a subroutine …
do k = 1,N,
do j = 1,N

do i = 1,N
x(i j k) = b*(x(i-1 j k)+x(i+1 j k)+ x(i j-1 k)+x(i,j,k) = b (x(i 1,j,k)+x(i+1,j,k)+ x(i,j 1,k)+

x(i,j+1,k)+x(i,j,k-1)+ x(i,j,k+1) )
enddo

enddo A bit more complex 3D 7 point stencilenddo
enddo

A bit more complex 3D 7-point stencil
update(„Gauss-Seidel“)

Performance Metric: Million Lattice Site Updates per second (MLUPs) 
Equivalent MFLOPs: 6 FLOP/LUP * MLUPs
Equivalent GByte/s: 16 Byte/LUP * MLUPsq y y

Performance of Gauss-Seidel should be up to 1.5x faster than Jacobi if main 
memory bandwidth is the limitation
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Common Lore 
Performance/Parallelization at the node level: Software does it 

State of the art compilers do not parallelize Gauß-Seidel iteration 
scheme: loop was not parallelized: existence of 

ll l d dparallel dependence

That’s true but there are simple ways to remove the dependency 
even for the lexicographic Gauss-Seideleven for the lexicographic Gauss-Seidel
10 yrs+ Hitachi’s compiler supported “pipeline parallel processing” 
(cf. later slides for more details on this technique)!( q )

There seem to be major problems to optimize even the serial code
1 Intel Xeon X5550 (2.66 GHz) core
Reference: Jacobi
430 MLUP430 MLUPs

Intel V9.1. 290 MLUPs

Intel V11.1.072 345 MLUPs

Target Gauß-Seidel:
645 MLUPs

pgf90 V10.6. 149 MLUPs

pgf90 V7.2.1 149 MLUPs
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Advanced Advanced OpenMPOpenMP: Eliminating recursion: Eliminating recursion

Parallelizing a 3D GaussParallelizing a 3D Gauss--Seidel solver by Seidel solver by Parallelizing a 3D GaussParallelizing a 3D Gauss--Seidel solver by Seidel solver by 
pipeline parallel processingpipeline parallel processing



The Gauss-Seidel algorithm in 3D

Not parallelizable by compiler or simple directives because of 
loop-carried dependencyloop-carried dependency
Is it possible to eliminate the dependency?
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3D Gauss-Seidel parallelized

Pipeline parallel principle: Wind-up phase
Parallelize middle j-loop and shift thread execution in k-direction to account 
f d t d d ifor data dependencies
Each diagonal (Wt) is executed 
by t threads concurrentlyby t t eads co cu e t y
Threads sync 
after each 
k updatek-update
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3D Gauss-Seidel parallelized

Full pipeline: All threads execute 
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3D Gauss-Seidel parallelized: The code

Global OpenMP barrier for 
thread sync better solutionsthread sync – better solutions 
exist! (see hybrid part)
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3D Gauss-Seidel parallelized: Performance results

7000
Performance model:

5000

6000

p/
s

6750 Mflop/s
(based on 18 GB/s
STREAM bandwidth)

2000

3000

4000

M
flo

p

Intel Core i7 2600

0

1000

2000 Intel Core i7-2600
(“Sandy Bridge”)

3.4 GHz; 4 cores

1 2 4

Threads

Optimized Gauss-Seidel kernel! See:
J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization strategies for iterative stencil 
computations. Journal of Computational Science 2 (2011) 130-137. DOI: 10.1016/j.jocs.2011.01.010, 
Preprint: arXiv:1004.1741

131

Preprint: arXiv:1004.1741
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Parallel 3D Gauss-Seidel

Gauss-Seidel can also be parallelized using a red-black scheme

But: Data dependency representative for several linear (sparse) 
solvers Ax=b arising from regular discretization

E l St ’ St l I li it l (SIP) b d i l tExample: Stone’s Strongly Implicit solver (SIP) based on incomplete 
A ~ LU factorization

Still used in many CFD FV codesy
L & U: Each contains 3 nonzero off-diagonals only! 
Solving Lx=b or Ux=c has loop carried data dependencies similar 
to GS PPP usefulto GS PPP useful
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WavefrontWavefront parallel temporal blocking forparallel temporal blocking forWavefrontWavefront--parallel temporal blocking for parallel temporal blocking for 
stencil algorithmsstencil algorithms

One example for truly “multicoreOne example for truly “multicore--aware” aware” One example for truly multicoreOne example for truly multicore--aware  aware  
programmingprogramming



Multicore awareness 
Classic Approaches: Parallelize & reduce memory pressure 

Multicore processors are still mostly programmed 
the same way as classic n-way SMP single-core

t d !

P
C
C

P
C
C

P
C
C

P
C
C

P
C
C

P
C
C

C
compute nodes!

Memory

MI

Simple 3D Jacobi stencil update (sweep): Memory

do k = 1 , Nk
d j 1 Nj

Simple 3D Jacobi stencil update (sweep):

do j = 1 , Nj
do i = 1 , Ni

y(i,j,k) = a*x(i,j,k) + b*
(x(i-1,j,k)+x(i+1,j,k)+ 
x(i,j-1,k)+x(i,j+1,k)+ 
x(i,j,k-1)+x(i,j,k+1))j j

enddo
enddo

enddoenddo

Performance Metric: Million Lattice Site Updates per second (MLUPs) 
Equivalent MFLOPs: 8 FLOP/LUP * MLUPs
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Multicore awareness 
Standard sequential implementation

core0 core1

Cache

Memory

do t=1,tMax

x

ec
tio

n do k=1,N
do j=1,N

d i 1 N

j-d
ire do i=1,N

y(i,j,k) = …
enddo

k-direction enddo
enddo

enddo
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Multicore awareness 
Classical Approaches: Parallelize!

core0 core1

Cache

Memory

xx

do t=1,tMax

ire
ct

io
n !$OMP PARALLEL DO private(…)

do k=1,N
do j=1,N

d i 1 N

k di ti

j-d
i do i=1,N

y(i,j,k) = …
enddo

k-direction enddo
enddo

!$OMP END PARALLEL DO
dd
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Multicore awareness 
Parallelization – reuse data in cache between threads

Do not use domain 
decomposition!

core0 core1

Instead shift 2nd thread by 
three i-j planes and 

core0 core1

y(:,:,:)

proceed to the same 
domain

2nd thread loads input

on

y( , , )

Memory

2nd thread loads input 
data from shared OL cache!

Sync threads/cores after

j-d
ire

ct
io Memory

x(:,:,:)

Sync threads/cores after 
each k-iteration!

k-direction
“Wavefront 

Parallelization (WFP)”

core0: x(:,:,k-1:k+1)t y(:,:,k)t+1

core1: y(:,:,(k-3):(k-1))t+1 x(:,:,k-2)t+2
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Multicore awareness 
WF parallelization – reuse data in cache between threads

Use small ring buffer 
tmp(:,:,0:3)
which fits into the cache

Save main memory data 
transfers for y(:,:,:) !

16 Byte / 2 LUP !16 Byte / 2 LUP !

8 Byte / LUP !

Compare with optimal baseline (nontemporal stores on y): p p ( p y)
Maximum speedup of 2 can be expected

(assuming infinitely fast cache and 
no overhead for OMP BARRIER after each k iteration)
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Multicore awareness 
WF parallelization – reuse data in cache between threads

Thread 0: x(:,:,k-1:k+1)t tmp(:,:,mod(k,4))

Thread 1: tmp(: : mod(k-3 4):mod(k-1 4)) x(: : k-2)Thread 1: tmp(:,:,mod(k-3,4):mod(k-1,4)) x(:,:,k-2)t+2 

Performance model including finite cache bandwidth (BC)Performance model including finite cache bandwidth (BC)

Time for 2 LUP:

T 16 B t /B * 8 B t / B T ( 1 /2 * B /B )T2LUP = 16 Byte/BM + x * 8 Byte / BC = T0 ( 1 + x/2 * BM/BC)

core0 core1 Minimum value: x =2

tmp(:,:,0:3)
Speed-Up vs. baseline: SW = 2*T0/T2LUP

= 2 / (1 +  BM/BC)

Memory

( M C)

BC and BM are measured in saturation runs:

x
C M

Clovertown: BM/BC = 1/12 SW = 1.85

Nehalem : B /B = 1/4 S = 1 6
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Jacobi solver
WFP: Propagating four wavefronts on native quadcores (1x4)

Running tb wavefronts requires tb-1
temporary arrays tmp to be held in 
cache!

Max. performance gain (vs. optimal 
baseline): tb = 4

Extensive use of cache bandwidth!
1 x 4 distribution

core0 core1

t 1(0 3) | t 2(0 3) | t 3(0 3)

core2 core3

tmp1(0:3) |  tmp2(0:3) |  tmp3(0:3)

x( : , : , : )

140ISC11Tutorial Performance programming on multicore-based systems



Jacobi solver
WF parallelization: New choices on native quad-cores

Thread 0: x(:,:,k-1:k+1)t tmp1(mod(k,4))

Thread 1: tmp1(mod(k-3 4):mod(k-1 4)) tmp2(mod(k-2 4))Thread 1: tmp1(mod(k-3,4):mod(k-1,4)) tmp2(mod(k-2,4))

Thread 2: tmp2(mod(k-5,4:mod(k-3,4)) tmp3(mod(k-4,4))

Thread 3: tmp3(mod(k-7,4):mod(k-5,4)) x(:,:,k-6)t+4 

1 x 4 distribution 2 x 2 distribution

core0 core1 core2 core3

1 x 4 distribution

core0 core1 core2 core3

2 x 2 distribution

core0

tmp1(0:3) |  tmp2(0:3) |  tmp3(0:3)

co e0

tmp0(  : ,  : ,  0:3)

x( : , : , : ) x( :,1:N/2,:)     x(:,N/2+1:N,:) 
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Jacobi solver
Wavefront parallelization: L3 group Nehalem

P
CC

P
CC

P
CC

P
CC C

P
CC

P
CC

P
CC

P
CC C

MI

Memory

MI

Memory

4003

bj 40
MLUPs

bj=40

1 x 2 786

2 x 2 1230

P f d l i di t t ti l i il t t d

1 x 4 1254

Performance model indicates some potential gain new compiler tested.

Only marginal benefit when using 4 wavefronts A single copy stream does not 
achieve full bandwidth
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Multicore-aware parallelization
Wavefront – Jacobi on state-of-the art multicores

P
C

P
C

C

P
C

P
C

CBolc ~ 10

PPPP P
C
C

P
C
C

P
C
C

MI

P
C
C

C

PPPP P P

Bolc ~ 2-3

P
C
C

P
C
C

P
C
C

MI

P
C
C

P
C
C

P
C
C

C

Bolc ~ 10

P
CC

P
CC

P
CC

MI

P
CC

P
CC

P
CC

P
CC

P
CC

C
Compare against optimal baseline!

Performance gain B = L3 bandwidth / memory bandwidth
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Multicore-specific features – Room  for new ideas:
Wavefront parallelization of Gauss-Seidel solver

Shared caches in Multi-Core processors
Fast thread synchronization
Fast access to shared data structures

FD discretization of 3D Laplace equation:
P ll l l i hi l G ß S id l iParallel lexicographical Gauß-Seidel using 
pipeline approach (“threaded”)
Combine threaded approach with wavefront 

threaded
pp

technique (“wavefront”)

1 6 0 0 0
1 8 0 0 0

Intel Core i7-2600

1 0 0 0 0
1 2 0 0 0
1 4 0 0 0
1 6 0 0 0

O
P/

s

Intel Core i7 2600

3.4 GHz; 4 cores

4 0 0 0
6 0 0 0
8 0 0 0

1 0 0 0 0 t h r e a d e d
w a v e f r o n tM

FL

wavefront
0

2 0 0 0
4 0 0 0

1 2 4 8

144

1 2 4 8
Threads SMT
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Section summary: What to take home

Auto-parallelization may work for simple problems, but it won’t 
make us jobless in the near future

There are enough loop structures the compiler does not understand

Sh d h th i t ti f t tShared caches are the interesting new feature on current 
multicore chips

Shared caches provide opportunities for fast synchronization (see sectionsShared caches provide opportunities for fast synchronization (see sections 
on OpenMP and intra-node MPI performance)
Parallel software should leverage shared caches for performance
One approach: Shared cache reuse by WFP

WFP t h i il b t d d t l t ilWFP technique can easily be extended to many regular stencil
based iterative methods, e.g. 

Gauß-Seidel ( done)Gauß Seidel ( done)
Lattice-Boltzmann flow solvers ( work in progress)
Multigrid-smoother ( work in progress)
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Tutorial outline

Introduction
Architecture of multisocket

lti t

Impact of processor/node 
topology on performance

multicore systems
Nomenclature
Current developments

Bandwidth saturation effects
Case study: OpenMP sparse MVM 
as an example for bandwidth-Current developments

Programming models 
Multicore performance tools

as an example for bandwidth
bound code
Programming for ccNUMAp

Finding out about system topology
Affinity enforcement

OpenMP performance
Simultaneous multithreading (SMT)
Intranode vs internode MPIPerformance counter 

measurements
Online demo: likwid tools (1)

Intranode vs. internode MPI
Case studies for shared memory

Automatic parallelizationOnline demo: likwid tools (1)
topology
pin

Automatic parallelization
Pipeline parallel processing for 
Gauß-Seidel solverp

Monitoring the binding
perfctr basics and best practices

Wavefront temporal blocking of 
stencil solver

Summary: Node level issues
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Summary & Conclusions on node-level issues

Multicore/multisocket topology needs to be considered:
OpenMP performance
MPI communication parameters
Shared resources

B f th hit t l i t f dBe aware of the architectural requirements of your code
Bandwidth vs. compute
SynchronizationSynchronization
Communication

Use appropriate toolspp p
Node topology: likwid-pin, hwloc
Affinity enforcement: likwid-pin
Simple profiling: likwid-perfCtr
Lowlevel benchmarking: likwid-bench

Try to leverage the new architectural feature of modern multicoreTry to leverage the new architectural feature of modern multicore 
chips

Shared caches!
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Tutorial outline (2)

Hybrid MPI/OpenMP
MPI vs. OpenMP

Case studies for hybrid 
MPI/OpenMP

Thread-safety quality of MPI 
libraries 
Strategies for combining MPI with

Overlap for hybrid sparse MVM 
The NAS parallel benchmarks 
(NPB-MZ)Strategies for combining MPI with 

OpenMP
Topology and mapping problems

(NPB MZ)
PIR3D – hybridization of a full 
scale CFD codep gy pp g p

Potential opportunities
Practical “How-tos” for hybrid Summary: Opportunities and 

Pitf ll f H b idOnline demo: likwid tools (2) 
Advanced pinning
Making bandwidth maps

Pitfalls of Hybrid 
Programming

Making bandwidth maps
Using likwid-perfctr to find NUMA 
problems and load imbalance

Overall summary and 
goodbyep

likwid-perfctr internals
likwid-perfscope

g y
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Tutorial outline

Hybrid MPI/OpenMP
MPI vs. OpenMP

Case studies for hybrid 
MPI/OpenMP

Thread-safety quality of MPI 
libraries 
Strategies for combining MPI with

Overlap for hybrid sparse MVM 
The NAS parallel benchmarks 
(NPB-MZ)Strategies for combining MPI with 

OpenMP
Topology and mapping problems

(NPB MZ)
PIR3D – hybridization of a full 
scale CFD codep gy pp g p

Potential opportunities
Practical “How-tos” for hybrid Summary: Opportunities and 

Pitf ll f H b idOnline demo: likwid tools (2) 
Advanced pinning
Making bandwidth maps

Pitfalls of Hybrid 
Programming

Making bandwidth maps
Using likwid-perfctr to find NUMA 
problems and load imbalance

Overall summary and 
goodbyep

likwid-perfctr internals
likwid-perfscope

g y
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Clusters of Multicore Nodes

Can hierarchical hardware benefit from a hierarchical 
programming model?

Socket 1

SMP node SMP node

Socket 1 Core

Quad‐core
CPU

Quad‐core
CPU

CPU(socket)

ccNUMA node

Socket 2 Socket 2

Cluster of ccNUMA/SMP nodes

Quad‐core
CPU

Quad‐core
CPU

L1 cache

L2 cache

Node Interconnect Intranode network

Internode network
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MPI vs. OpenMP



Programming Models for SMP Clusters

Pure MPI (one process on each core)
Hybrid MPI+OpenMPy p

Shared memory OpenMP
Distributed memory MPI

Other: Virtual shared memory systems, PGAS, HPF, …
Often hybrid programming (MPI+OpenMP) slower than pure MPI

Why?

some serial code

Master thread, 
other threads 

OpenMP    (shared data) MPI            local data in each process 

d tSequential some_serial_code  
#pragma omp parallel for 
for (j=…;…; j++) 

block to be parallelized

data Sequential 
program on  
each core 

block_to_be_parallelized
again_some_serial_code ••• sleeping ••• Explicit Message Passing 

by calling MPI_Send & MPI_Recv  
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MPI Parallelization of Jacobi Solver

Initialize MPI
Domain decomposition

...
CALL MPI_INIT(ierr)
! Compute number of procs and myrank

...
CALL MPI_INIT(ierr)
! Compute number of procs and myrank

Compute local data
Communicate shared 
data

CALL MPI_COMM_SIZE(comm, p, ierr)
CALL MPI_COMM_RANK(comm, myrank, ierr)
!Main Loop

CALL MPI_COMM_SIZE(comm, p, ierr)
CALL MPI_COMM_RANK(comm, myrank, ierr)
!Main Loop

data DO WHILE(.NOT.converged)
! compute
DO j=1, m_local

DO i 1

DO WHILE(.NOT.converged)
! compute
DO j=1, m_local

DO i 1DO i=1, n
BLOC(i,j)=0.25*(ALOC(i-1,j)+ 

ALOC(i+1,j)+ 
ALOC(i j 1)+

DO i=1, n
BLOC(i,j)=0.25*(ALOC(i-1,j)+ 

ALOC(i+1,j)+ 
ALOC(i j 1)+ALOC(i,j-1)+
ALOC(i,j+1))

END DO
END DO

ALOC(i,j-1)+
ALOC(i,j+1))

END DO
END DOEND DO

! Communicate
CALL MPI_SENDRECV(BLOC(1,1),n, 
MPI REAL, left, tag, ALOC(1,0),n,

END DO
! Communicate

CALL MPI_SENDRECV(BLOC(1,1),n, 
MPI REAL, left, tag, ALOC(1,0),n,

1D partitioning
MPI_REAL, left, tag, ALOC(1,0),n,  
MPI_REAL, left, tag, comm,
status, ierr)

MPI_REAL, left, tag, ALOC(1,0),n,  
MPI_REAL, left, tag, comm,
status, ierr)

ISC11 Tutorial 153Performance programming on multicore-based systems



OpenMP Parallelization of Jacobi Solver

!Main Loop
DO WHILE(.NOT.converged)

! Compute

!Main Loop
DO WHILE(.NOT.converged)

! Compute! Compute
!$OMP PARALLEL SHARED(A,B) PRIVATE(J,I)
!$OMP DO

DO j=1, m
DO i 1

! Compute
!$OMP PARALLEL SHARED(A,B) PRIVATE(J,I)
!$OMP DO

DO j=1, m
DO i 1DO i=1, n

B(i,j)=0.25*(A(i-1,j)+
A(i+1,j)+
A(i,j-1)+

DO i=1, n
B(i,j)=0.25*(A(i-1,j)+

A(i+1,j)+
A(i,j-1)+( ,j )
A(i,j+1))

END DO
END DO

!$OMP END DO

( ,j )
A(i,j+1))

END DO
END DO

!$OMP END DO

implicit 
removable  
b i !$OMP END DO

!$OMP DO
DO j=1, m

DO i=1, n

!$OMP END DO
!$OMP DO

DO j=1, m
DO i=1, n

barrier

A(i,j) = B(i,j)
END DO

END DO
!$OMP END DO

A(i,j) = B(i,j)
END DO

END DO
!$OMP END DO!$OMP END DO
!$OMP END PARALLEL 
...

!$OMP END DO
!$OMP END PARALLEL 
...
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Comparison of MPI and OpenMP

MPI
Memory Model

D t i t b d f lt

OpenMP
Memory Model

Data private  by default
Data accessed by multiple 
processes needs to be explicitly 

i t d

Data shared by default
Access to shared data requires 
explicit synchronization 

communicated
Program Execution

Parallel execution starts with 

p y
Private data needs to be explicitly 
declared

Program ExecutionMPI_Init, continues until 
MPI_Finalize

Parallelization Approach

Program Execution
Fork-Join Model

Parallelization Approach:
Typicall coarse grained, based on 
domain decomposition
Explicitly programmed by user

Typically fine grained on loop level
Based on compiler directives
Incremental approachp y p g y

All-or-nothing approach
Scalability possible across the 
whole cluster

Incremental approach
Scalability limited to one shared 
memory node
P f d d twhole cluster

Performance: Manual parallelization 
allows high optimization

Performance dependent on 
compiler quality
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Combining MPI and OpenMP: Jacobi Solver

Simple Jacobi Solver 
Example 

!Main Loop
DO WHILE(.NOT.converged)

! compute

!Main Loop
DO WHILE(.NOT.converged)

! compute
local length might be

MPI parallelization in 
j dimension
OpenMP on i loops

DO j=1, m_loc
!$OMP PARALLEL DO

DO i=1, n
BLOC(i,j)=0.25*(ALOC(i-1,j)+

DO j=1, m_loc
!$OMP PARALLEL DO

DO i=1, n
BLOC(i,j)=0.25*(ALOC(i-1,j)+

local length might be 
small for many MPI procs

OpenMP on i-loops
All calls to MPI outside 
of parallel regions

( ,j) ( ( ,j)
ALOC(i+1,j)+
ALOC(i,j-1)+
ALOC(i,j+1))

END DO

( ,j) ( ( ,j)
ALOC(i+1,j)+
ALOC(i,j-1)+
ALOC(i,j+1))

END DOp g END DO
!$OMP END PARALLEL DO

END DO
DO j=1, m

END DO
!$OMP END PARALLEL DO

END DO
DO j=1, mj

!$OMP PARALLEL DO
DO i=1, n

ALOC(i,j) = BLOC(i,j)
END DO

j
!$OMP PARALLEL DO

DO i=1, n
ALOC(i,j) = BLOC(i,j)

END DOEND DO
!$OMP END PARALLEL DO

END DO
CALL MPI_SENDRECV (ALOC,…

END DO
!$OMP END PARALLEL DO

END DO
CALL MPI_SENDRECV (ALOC,…

But what if it 
gets more CALL MPI_SENDRECV (BLOC,…

...
CALL MPI_SENDRECV (BLOC,…

...

gets more 
complicated?
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Support of Hybrid Programming

MPI
MPI-2:

OpenMP
API only for one execution 

MPI_Init_Thread unit, which is one MPI process
For example: No means to 
specify the total number ofspecify the total number of 
threads across several MPI 
processes.p

Request for 
thread safetyy
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Thread safety quality of MPI libraries



MPI2 MPI_Init_thread

Syntax:    
call MPI_Init_thread(                            irequired,     iprovided, ierr)
int MPI_Init_thread(int *argc, char ***argv, int required, int *provided)

Support Levels Descriptionpp p

MPI_THREAD_SINGLE Only one thread will execute

MPI_THREAD_FUNNELED Process may be multi-threaded, but only main 
thread will make MPI calls (calls are ’’funneled'' 
to main thread). Default

MPI_THREAD_SERIALIZED Process may be multi-threaded, any thread can 
make MPI calls, but threads cannot execute MPI 
calls concurrently (all MPI calls must 
be ’’serialized'').

MPI_THREAD_MULTIPLE Multiple threads may call MPI, no restrictions.

If supported, the call will return provided = required. 
Otherwise, the highest supported level will be provided.
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Funneling through OMP Master

Fortran C

include ‘mpif.h’
program hybmas

call mpi init thread(MPI THREAD FUNNELED

#include <mpi.h>
int main(int argc, char **argv){
int rank, size, ierr, i;
ierr = MPI Init thread (call mpi_init_thread(MPI_THREAD_FUNNELED,

...)

!$OMP parallel

ierr = MPI_Init_thread (...,
MPI_THREAD_FUNNELED,...);

#pragma omp parallel
{

!$OMP barrier
!$OMP master

#pragma omp barrier
#pragma omp master
{
ierr=MPI <Whatever>( );

call MPI_<whatever>(…,ierr)
!$OMP end master

$

ierr=MPI_<Whatever>(…);
}

#pragma omp barrier
!$OMP barrier

!$OMP end parallel
end

}
}$OMP master end

p
does not have 
implicit barrier
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Overlapping Communication and  Work

Fortran C

#include <mpi.h>
int main(int argc, char **argv){
int rank, size, ierr, I;
i MPI I it th d(

include ‘mpi.h’
program hybover

ll i i it th d(MPI THREAD FUNNELED ierr=MPI_Init_thread(...,
MPI_THREAD_FUNNELED,...);

#pragma omp parallel

call mpi_init_thread(MPI_THREAD_FUNNELED,
...)

!$OMP parallel
{

if (thread == 0){
ierr=MPI_<Whatever>(…);

}

if (ithread .eq. 0) then
call MPI_<whatever>(…,ierr)

else
<work> }

else {
<work>

}

<work>
endif

!$OMP end parallel

}
}

end
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Funneling through OMP SINGLE

Fortran C

include ‘mpif h’ #include <mpi h>include mpif.h
program hybsing
call 
mpi_init_thread(MPI_THREAD_FUNNELED,

#include <mpi.h>
int main(int argc, char **argv){
int rank, size, ierr, i;
mpi_init_thread(…,

...)
!$OMP parallel

!$OMP barrier

MPI_THREAD_FUNNELED,...)
#pragma omp parallel
{

#pragma omp barrier!$OMP barrier
!$OMP single

call MPI_<whatever>(…,ierr)
!$

#pragma omp barrier
#pragma omp single
{
ierr=MPI_<Whatever>(…)

!$OMP end single

!!!$OMP barrier

}

//#pragma omp barrier

!$OMP end parallel
end

}
}$OMP single has 

an implicit barrieran implicit barrier
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Thread-rank Communication

call mpi_init_thread( … MPI_THREAD_MULTIPLE, iprovided,ierr)
call mpi_comm_rank(MPI_COMM_WORLD,  irank, ierr)
call mpi_comm_size(MPI_COMM_WORLD, nranks, ierr)_ _ _ _

!$OMP parallel private(i, ithread, nthreads)

nthreads = OMP_GET_NUM_THREADS()
ithread = OMP_GET_THREAD_NUM()
call pwork(ithread, irank, nthreads, nranks…)   

Communicate between ranks.

if(irank == 0) then
call mpi_send(ithread,1,MPI_INTEGER, 1, ithread,MPI_COMM_WORLD, ierr)

else
ll i ( j 1 MPI INTEGER 0 ith d MPI COMM WORLDcall mpi_recv(     j,1,MPI_INTEGER, 0, ithread,MPI_COMM_WORLD, 

istatus,ierr)
print*, "Yep, this is ",irank," thread ", ithread,

" I received from " j" I received from ", j
endif

!$OMP END PARALLEL

Threads use tags to differentiate.

!$OMP END PARALLEL
end
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S i / i f C bi i MPIStrategies/options for Combining MPI 
with OpenMP

Topology and Mapping Problems
Potential Opportunities



Different Strategies to Combine MPI and OpenMP

pure MPI hybrid MPI+OpenMP OpenMP onlypure MPI
one MPI process

on each core

hybrid MPI OpenMP
MPI: inter/intra-node communication
OpenMP: inside of each SMP node

OpenMP only
distributed virtual 
shared memory

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computingof the numerical application code while other threads are computing

Masteronly Funneled Multiple

some serial code

Master thread,
other threads

OpenMP (shared data)MPI local data in each process

d tSequential

MPI only outside
of parallel regions

Funneled
MPI only 

on master-thread

Multiple
more than one thread 

may communicate
SINGLE

some_serial_code 
#pragma omp parallel for
for (j=…;…; j++)

block to be parallelized

dataSequential 
program on 
each core Funneled & 

Reserved
th d

Funneled 
with 

F ll L d

Multiple & 
Reserved

Multiple
with _ _ _p

again_some_serial_code ••• sleeping •••Explicit message transfers
by calling MPI_Send & MPI_Recv 

thread 
for communication

Full Load 
Balancing

threads for 
communication

Full Load 
Balancing

FUNNELED MULTIPLE
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Modes of Hybrid Operation

Pure MPI Fully Hybrid…… Mixed ……….

1 MPI Task4 MPI Tasks
16 MPI Tasks

1 MPI Task
16 Threads/Task

4 MPI Tasks
4Threads/Task

Master Thread of MPI Task
MPI Task on Core

Slave  Thread of MPI Task
Master Thread of MPI Task
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The Topology Problem with
pure MPI
one MPI process

on each core

Application example on 80 cores:
Cartesian application with 5 x 16 = 80 sub-domainspp
On system with 10 x dual socket x quad-core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6348 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Sequential ranking of
MPI COMM WORLD

17 x inter-node connections per node

1 x inter-socket connection per node _ _

Does it matter?

1 x inter socket connection per node
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The Topology Problem with
pure MPI
one MPI process

on each core

Application example on 80 cores:
Cartesian application with 5 x 16 = 80 sub-domains

AA
AA
AA

JJ
JJ
JJ

pp
On system with 10 x dual socket x quad-core

AA
AA

JJ
JJ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A

A

A

A

B

B

B

B

C

C

CD

D

DE

E

EF

F

FG

GG

H

HH

I

II

J

JJ

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

A

AA

B

BB

C

C C

CC

D D

DD

E E

E

F F

F

GG

G G

G

H H

H

I

I I

JJ

J

J J48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

AA

A

BB

B

CC

C

DD

DE

E

EF

F

FG

G

GH

H

H

I

I

I

I

J

J

J

J

32 x inter-node connections per node

0 x inter-socket connection per node
Round robin ranking of
MPI COMM WORLD0 x inter socket connection per node _ _
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The Topology Problem with
pure MPI
one MPI process

on each core

Application example on 80 cores:
Cartesian application with 5 x 16 = 80 sub-domainspp
On system with 10 x dual socket x quad-core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6348 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Two levels of 
domain decomposition

12 x inter-node connections per node

4 x inter-socket connection per node domain decomposition
Bad affinity of cores to thread ranks

4 x inter socket connection per node
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The Topology Problem with
pure MPI
one MPI process

on each core

Application example on 80 cores:
Cartesian application with 5 x 16 = 80 subdomainspp
On system with 10 x dual socket x quad-core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6348 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Two levels of 
domain decomposition

12 x inter-node connections per node

2 x inter-socket connection per node domain decomposition
Good affinity of cores to thread ranks
2 x inter socket connection per node
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Hybrid Mode: Sleeping threads and network saturation 
with

Masteronly
MPI only outside of 

parallel regions
Problem 1:

Can the master threadpa a e eg o s Can the master thread 
saturate the network?

Solution:
Use mixed 

for (iteration ….)
{
# ll l SMP node SMP node model, i.e., several MPI 

processes per SMP node

Problem 2:

#pragma omp parallel 
numerical code

/*end omp parallel */ Master
thread

Socket 1

SMP node SMP node

Master
thread

Socket 1
Master
thread

Master
thread

Sleeping threads are 
wasting CPU time

Solution:
If funneling is suported

/* on master thread only */
MPI_Send (original data
to halo areas 
i th SMP d ) Socket 2 Socket 2 If funneling is suported

use overlap of 
computation and 
communication

in other SMP nodes)
MPI_Recv (halo data 
from the neighbors)

} /*end for loop

Problem 1&2 together:
Producing more idle time 
through lousy bandwidth 

} p

Node Interconnect g y
of master thread
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Pure MPI and Mixed Model

Problem:
Contention for network access 16 MPI Tasks

MPI library must use appropriate
fabrics / protocol for intra/inter-node communication
Intra node bandwidth higher than inter node bandwidthIntra-node bandwidth higher than inter-node bandwidth
MPI implementation may cause unnecessary 
data copying waste of memory bandwidthpy g y
Increase memory requirements due to MPI buffer space
Mixed Model: 

4 MPI TasksNeed to control process and thread placement
Consider cache hierarchies to optimize thread execution 

4 MPI Tasks
4Threads/Task

... but maybe not as much as you 
think!
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Fully Hybrid Model

Problem 1: Can the master thread saturate
the network?

Problem 2: Many Sleeping threads are wasting
1 MPI Task
16Threads/TaskProblem 2: Many Sleeping threads are wasting 

CPU time during communication

Problem 1&2 together:

16Threads/Task

Problem 1&2 together:
Producing more idle time through lousy 
bandwidth of master thread

Possible solutions:
Use mixed model (several MPI per SMP)?
If funneling is supported: Overlap communication/computation?
Both of the above?

Problem 3: 
Remote memory access impacts the OpenMP performance

Possible solution:
Control memory  page placement to minimize impact of remote access
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Other challenges for Hybrid Programming

Multicore / multisocket anisotropy effects
Bandwidth bottlenecks, shared caches
Intra-node MPI performance

Core ↔ core  vs.  socket ↔ socket
OpenMP loop overhead depends on mutual position of threads in teamOpenMP loop overhead depends on mutual position of threads in team

Non-Uniform Memory Access:
Not all memory access is equalot a e o y access s equa

ccNUMA locality effects
Penalties for inter-LD access
Impact of contention
Consequences of file I/O for page placement
Pl t f MPI b ffPlacement of MPI buffers

Where do threads/processes and memory allocations go?
Scheduling Affinity and Memory Policy can be changed within code withScheduling Affinity and Memory Policy can be changed within code with 
(sched_get/setaffinity, get/set_memory_policy)
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Example: Sun Constellation Cluster Ranger (TACC)

Highly hierarchical
Shared Memory: 32

16 way cache-coherent, Non-uniform 
memory access (ccNUMA)  node

Distributed Memory:

Core Core

CoreCore

Core Core

CoreCore

Distributed Memory:
Network of ccNUMA nodes

Core-to-Core

Core Core

CoreCore

Core Core

CoreCore

01

netw
ork

Socket-to-Socket
Node-to-Node

01

Core Core Core Core

32

k

Chassis-to-chassis
Unsymmetric:
2 Sockets have 3 HT connected to neighbors

Core Core

CoreCore

Core Core

CoreCore

2 Sockets have 3 HT connected to neighbors
1 Socket has 2 connections to neighbors, 

1 to network

Core Core

CoreCore

Core Core

CoreCore

01
1 Socket has 2 connections to neighbors 
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MPI ping-pong microbenchmark
results on Ranger

Inside one node:
Ping-pong socket 0 with 1, 2, 3 
and 1, 2, or 4 simultaneous comm., ,
(quad-core)

Missing Connection: Communication 
between socket 0 and 3 is slower
Maximum bandwidth: 
1 x 1180, 2 x 730, 4 x 300 MB/s

Node-to-node inside one chassis
with 1-6 node-pairs (= 2-12 procs)

Perfect scaling for up to 6 simultaneous communications
Max. bandwidth : 6 x 900 MB/s

Chassis to chassis (distance: 7 hops) with 1 MPI process per node and 1-12 
simultaneous communication links

Max: 2 x 900 up to 12 x 450 MB/sa 900 up to 50 /s

Exploiting Multi-Level Parallelism on the Sun 
Constellation System”, L. Koesterke, et al., TACC, 
TeraGrid08 Paper
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Overlapping Communication and  Work

One core can saturate the PCIe network bus.  
Why use all to communicate?

Communicate with one or several cores.

Work with others during communication.

Need at least MPI_THREAD_FUNNELED support.

Can be difficult to manage and load balance!
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Overlapping communication and computation

Three problems
1. The application problem:

Overlapping 
Communication and 
C t tione must separate application into: 

code that can run before the halo data is 
received

Computation
MPI communication by one or a few 
threads while other threads are 
computing

code that needs halo data
very hard to do !!!

computing

2. The thread-rank problem:
comm. / comp. via thread-rank

t

if (my_thread_rank < 1) {
MPI_Send/Recv….

} else {cannot use
worksharing directives
loss of major

} else {
my_range = (high-low-1)/(num_threads-1)+1;
my_low = low + (my_thread_rank+1)*my_range;
my high=high+ (my thread rank+1+1)*my range;OpenMP support

(see next slide)

3 The load balancing

my_high=high+ (my_thread_rank+1+1)*my_range;
my_high = max(high, my_high)
for (i=my_low; i<my_high; i++) {

3. The load balancing 
problem

...
}

}
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New in New in OpenMPOpenMP 3.0: TASK Construct3.0: TASK Construct

Purpose is to support the 
OpenMP parallelization of while 
loops
Tasks are spawned when 
!$omp task or #pragma

#pragma omp parallel  {
#pragma omp single private(p) 
{!$omp task or #pragma

omp task is encountered
Tasks are executed in an

{
p = listhead ; 

while (p) {Tasks are executed in an 
undefined order
Tasks can be explicitly waited 

#pragma omp task 
process (p);

p=next (p) ;
for by the use of !$omp
taskwait

Sh d t ti l f

p=next (p) ;
}  // Implicit taskwait

Shows good potential for 
overlapping computation with 
communication and/or IO (seecommunication and/or IO (see 
examples later on)
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Case study:  Communication and Computation in Gyrokinetic
Tokamak Simulation (GTS) shifter

A K i t l A li ti A l ti C t d F t C Pl tfA. Koniges et. al.: Application Acceleration on Current and Future Cray Platforms.
Presented at  CUG 2010, Edinburgh, GB, May 24-27, 2010.
R. Preissl, et. al.: Overlapping communication with computation using OpenMP tasks 
on the GTS magnetic fusion code Scientific Programming IOS Press Vol 18 No 3 4on the GTS magnetic fusion code. Scientific Programming, IOS Press, Vol. 18, No. 3-4 
(2010)

OpenMP Tasking Model gives a new way to achieve more parallelism

Slides courtesy of Alice Koniges, NERSC, LBNL 

OpenMP Tasking Model gives a new way to achieve more parallelism
form hybrid computation. 
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Communication and Computation in Gyrokinetic Tokamak
Simulation (GTS) shift routine

IN
D
EPEN

D
EN

T

IN
D
EPE

T

SEM
I‐IEN

D
EN

T

IN
D
EPEN

D
EEN

T

GTS shift routineGTS shift routine

Slides courtesy of Alice Koniges, NERSC, LBNL 
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Overlapping can be achieved with OpenMP tasks (2nd part)

Overlapping particle reordering

Particle reordering of the remaining

Overlapping remaining MPI SendrecvOverlapping remaining MPI_Sendrecv

Slides, courtesy of Alice Koniges, NERSC, LBNL 
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Overlapping can be achieved with OpenMP tasks (1st part)

Overlapping MPI_Allreduce with particle work 

• Overlap: Master thread encounters (!$omp master) tasking statements and creates 
k f th th d t f d f d ti MPI All d ll i i di t lwork for the thread team for deferred execution. MPI Allreduce call is immediately 

executed.
• MPI implementation has to support at least MPI_THREAD_FUNNELED
• Subdividing tasks into smaller chunks to allow better load balancing and scalability 

among threads. Slides, courtesy of Alice Koniges, NERSC, LBNL 
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OpenMP tasking version outperforms original shifter, especially in 
larger poloidal domains

256 size run 2048 size run

Performance breakdown of GTS shifter routine using 4 OpenMP threads per MPIPerformance breakdown of GTS shifter routine using 4 OpenMP threads per MPI 
pro-cess with varying domain decomposition and particles per cell on Franklin 
Cray XT4.
MPI communication in the shift phase uses a toroidal MPI communicatorMPI communication in the shift phase uses a toroidal MPI communicator 
(constantly 128).
Large performance differences in the 256 MPI run compared to 2048 MPI run!
S d U i t d t b hi h l GTS ith h d d f th dSpeed-Up is expected to be higher on larger GTS runs with hundreds of thousands 
CPUs since MPI communication is more expensive.

Slides, courtesy of 
Alice Koniges, NERSC, LBNL 
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Other Hybrid Programming Opportunities

Exploit hierarchical parallelism within the application:
Coarse-grained parallelism implemented in MPIg p p
Fine-grained parallelism on loop level exploited through OpenMP

Increase parallelism if coarse-grained parallelism is limited

Improve load balancing, e.g. by restricting # MPI processes or 
assigning different # threads to different MPI processes

Lower the memory requirements by restricting the number of MPI 
processesprocesses

Lower requirements for replicated data
Lower requirements for MPI buffer spaceLower requirements for MPI buffer space

Examples for all of this will be presented in the case studies  p p
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Practical “How-Tos” for hybrid 



How to compile, link and run

Compiler usually invoked via a wrapper 
script, e.g., “mpif90”, “mpicc”
Use appropriate compiler flag to enable OpenMP
directives/pragmas: 
-openmp (Intel), -mp (PGI), -qsmp=omp (IBM)openmp (Intel), mp (PGI), qsmp omp (IBM)

Link with MPI library
Usually wrapped in MPI compiler script
If required, specify to link against thread-safe MPI library (Often 
automatic when OpenMP or auto-parallelization is switched on)

Running the code
Highly nonportable! Consult system docs! (if available )Highly nonportable! Consult system docs! (if available…)
If you are on your own, consider the following points
Make sure OMP NUM THREADS etc. is available on all MPI processes_ _ p

E.g., start “env VAR=VALUE … <YOUR BINARY>” instead of your binary alone
Figure out how to start less MPI processes than cores on your nodes
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Compiling/Linking Examples (1)

PGI (Portland Group compiler)
mpif90 –fast –mp

Pathscale :
mpif90 –Ofast –openmp

IBM P 6IBM Power 6: 
mpxlf_r -O4 -qarch=pwr6 -qtune=pwr6 -qsmp=omp

Intel Xeon Cluster:Intel Xeon Cluster:
mpif90 –openmp –O2

High optimization 
level is requiredlevel is required 
because enabling 
OpenMP interferes 
with compilerwith compiler 
optimization 
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Compile/Run/Execute Examples (2)

NEC SX9
NEC SX9 compilerNEC SX9 compiler
mpif90 –C hopt –P openmp … # –ftrace for profiling info
Execution:

$ export OMP_NUM_THREADS=<num_threads>
$ MPIEXPORT=“OMP_NUM_THREADS”
$ i <# MPI d > <# f d > t$ mpirun –nn <# MPI procs per node> -nnp <# of nodes> a.out

Standard x86 cluster:
Intel Compiler
mpif90 –openmp …

Execution (handling of OMP_NUM_THREADS, see next slide):

$ mpirun_ssh –np <num MPI procs> -hostfile machines a.out

ISC11 Tutorial 189Performance programming on multicore-based systems



Handling OMP_NUM_THREADS

without any support by mpirun:
Problem (e.g. with mpich-1): mpirun has no features to export environment 

i bl t th i h t ti ll t t d MPIvariables to the via ssh automatically started MPI processes
Solution:
export OMP_NUM_THREADS=<# threads per MPI process> _ _
in ~/.bashrc (if a bash is used as login shell)
Problem: Setting  OMP_NUM_THREADS individually for the MPI 
processes:p
Solution:
test -s ~/myexports && . ~/myexports
in your ~/ bashrcin your /.bashrc
echo '$OMP_NUM_THREADS=<# threads per MPI process>' > 
~/myexports
before invoking mpirun. Caution: Several invocations of mpirun cannotbefore invoking mpirun. Caution: Several invocations of mpirun cannot 
be executed at the same time with this trick!

with support, e.g. by OpenMPI –x option:
export OMP NUM THREADS= <# threads per MPI process>

Hybrid Parallel Programming

export OMP_NUM_THREADS= <# threads per MPI process> 
mpiexec –x OMP_NUM_THREADS –n <# MPI processes> ./a.out
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Example: Constellation Cluster Ranger (TACC)

Sun Constellation Cluster:
mpif90 -fastsse -tp barcelona-64 –mpmpif90 fastsse tp barcelona 64 mp …

SGE Batch System
ibrun numactl sh a outibrun numactl.sh a.out

Details see TACC Ranger User Guide 
(www.tacc.utexas.edu/services/userguides/ranger/#numactl)(www.tacc.utexas.edu/services/userguides/ranger/#numactl)

#!/bin/csh
#$ -pe 2way 512 2 MPI Procs per node

512 t t lsetenv OMP_NUM_THREADS 8
ibrun numactl.sh  bt-mz-64.exe

512 cores total

Hybrid Parallel Programming
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Example: Cray XT5

Cray XT5:
• 2 quad-core AMD Opteron per node• 2 quad-core AMD Opteron per node
• ftn –fastsse –mp (PGI compiler)

Maximum of 8 threads per 
MPI process on XT5

#!/bin/csh
#PBS -q standard
#PBS l idth 512

MPI process on XT5

#PBS -l mppwidth=512
#PBS -l walltime=00:30:00
module load xt-mpt
cd $PBS O WORKDIR 8 threads per MPI Process_ _
setenv OMP_NUM_THREADS 8
aprun –n 64 –N 1 –d 8./bt-mz.64
setenv OMP_NUM_THREADS 4
aprun n 128 S 1 d 4 /bt mz 128

Number of MPI Procs per Node:
1 Proc per node with up to 8 threads each

p

aprun –n 128 –S 1 –d 4 ./bt-mz.128 1 Proc per node with up to 8 threads each

4 threads per MPI Process

Hybrid Parallel Programming

Number of MPI Procs per Numa Node:
1 Proc per Numa Node => 2 Procs per Node
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Example: Different Number of MPI Processes per Node (XT5)

Usage Example:
Different Components of an application require different resources, eg. Community 
Climate System Model (CCSM)Climate System Model (CCSM)

aprun -n 8 -S 4 -d 1 ./ccsm.exe: -n 4 -S 2 -d 2 ccsm.exe : \
-n 2 -S 1 -d 4 .ccsm.exe: -n 2 -N 1 -d 8 ./ccsm.exe

8 MPI Procs with 1 thread

/

PE 0]: rank 0 is on nid00205 [PE 0]: 
4 MPI Procs with 2 threads
2 MPI Procs with 4 threads
2 MPI Procs with 8 threads

_ ] [ _ ]
rank 1 is on nid00205 [PE_0]: rank 2 
is on nid00205 [PE_0]: rank 3 is on 
nid00205 [PE_0]: rank 4 is on 
nid00205 [PE_0]: rank 5 is on 
nid00205 [PE_0]: rank 6 is on 
nid00205 [PE_0]: rank 7 is on 
nid00205 [PE_0]: rank 8 is on 
nid00208 [PE_0]: rank 9 is on export MPICH_RANK_REORDER_DISPLAY=1
nid00208 [PE_0]: rank 10 is on 
nid00208 [PE_0]: rank 11 is on 
nid00208 [PE_0]: rank 12 is on 
nid00209 [PE_0]: rank 13 is on 
id00209 [PE 0] k 14 inid00209 [PE_0]: rank 14 is on 
nid00210 [PE_0]: rank 15 is on 
nid00211

193ISC11 Tutorial Performance programming on multicore-based systems



Example : IBM Power 6

Hardware: 4.7GHz Power6 Processors, 150 Compute Nodes, 32 
Cores per Node, 4800 Compute Cores

enable OpenMP

p p
mpxlf_r -O4 -qarch=pwr6 -qtune=pwr6 -qsmp=omp

Crucial for full optimization in 
presence of OpenMP directives

enable OpenMP

#!/bin/csh
#PBS -N bt-mz-16x4#PBS N bt mz 16x4
#PBS -m be
#PBS -l walltime=00:35:00
#PBS -l select=2:ncpus=32:mpiprocs=8:ompthreads=4# p p p p
#PBS -q standard
cd $PBS_O_WORKDIR
setenv OMP_NUM_THREADS 4

Hybrid Parallel Programming

_ _
poe ./bin/bt-mz.B.16
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Example : Intel Linux Cluster

#!/bash ScaliMPI
#PBS -q standard
#PBS –l select=16:ncpus=4
#PBS -l walltime=8:00:00
#PBS -j oe

ScaliMPI

Use more than one core

Place 2 MPI Procs 
per node

#PBS j oe
cd $PBS_O_WORKDIR
export OMP_NUM_THREADS=2
mpirun –np 32 –npn 2 –affinity_mode none ./bt-mz.C.32

Use more than one core 
per MPI Proc

#!/bash
#PBS -q standard

OpenMPI

l d d b

#PBS –l select=16:ncpus=4
#PBS -l walltime=8:00:00
#PBS -j oe
cd $PBS O WORKDIR Processes placed round‐robin 

on nodes

cd $PBS_O_WORKDIR
export OMP_NUM_THREADS=2
mpirun –np 32 –bynode ./bt-mz.C.32      
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Topology  choices with MPI/OpenMP:
More examples using Intel MPI+compiler & home-grown mpirun (@RRZE)

One MPI process per node

One MPI process per socket

env OMP_NUM_THREADS=8 mpirun -pernode \
likwid-pin –t intel -c N:0-7 ./a.out

env OMP NUM THREADS=4 mpirun -npernode 2 \

OpenMP threads pinned 

env OMP_NUM_THREADS 4 mpirun npernode 2 \
-pin "0,1,2,3_4,5,6,7" ./a.out

“round robin” across cores 
in node env OMP_NUM_THREADS=4 mpirun -npernode 2 \

-pin "0,1,4,5_2,3,6,7" \
lik id i t i t l 0 2 1 3 / t

Two MPI processes per 
socket

likwid-pin –t intel -c L:0,2,1,3 ./a.out

socket
env OMP_NUM_THREADS=2 mpirun -npernode 4 \

-pin "0,1_2,3_4,5_6,7" \
likwid-pin –t intel -c L:0,1 ./a.outp ,
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NUMA Control: Process and Memory Placement

Affinity and Policy can be changed externally through numactl at 
the socket and core level.

32 12 13 14 158 9 10 11
Core Core

CoreCore

Core Core

CoreCore

Core Core

CoreCore

Core Core

CoreCore

32 12,13,14,158,9,10,11

Core Core Core Core Core Core Core Core

CoreCore CoreCore CoreCore CoreCore

01 0,1,2,34,5,6,7

Socket References Core References
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Caution:Caution: 
socket 
numbering 
system 
dependent!
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Example: Numactl on Ranger Cluster (TACC)

32
Running BT-MZ Class D 128 MPI Procs, 8 threads 

each, 2 MPI on each node on Ranger (TACC)
Core Core

CoreCore

Core Core

CoreCoreUse of numactl for affinity:

Core Core

CoreCore

Core Core

CoreCore

01

ne

if [ $localrank == 0 ]; then
exec numactl \ 01

32

etw
ork

exec numactl \
--physcpubind=0,1,2,3,4,5,6,7  \
-m 0,1 $*

lif [ $l l k 1 ] h Core Core

CoreCore

Core Core

CoreCore

Rank 1elif [ $localrank == 1 ]; then
exec numactl \

-–physcpubind=8,9,10,11,12,13,14,15 \
Core Core

CoreCore

Core Core

CoreCore

01
Rank 0

p y p , , , , , , , \
–m 2,3 $*

fi
01

0,1,2,34,5,6,7
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Example: numactl on Lonestar Cluster at TACC

CPU type: Intel Core Westmere processor 
************************************
Hardware Thread Topology

Running NPB BT-MZ Class D 128 MPI Procs,  6 
threads each 2MPI per node

Hardware Thread Topology
************************************
Sockets:                2 
Cores per socket: 6

Pinning A:
if [ $localrank == 0 ]; then
exec numactl --physcpubind=0,1,2,3,4,5 \Cores per socket:       6 

Threads per core:       1

p y p , , , , ,
-m 0 $*

elif [ $localrank == 1 ]; then
exec numactl \

--physcpubind=6,7,8,9,10,11 \
-m 1 $*

fi

---------------------------------
Socket 0: ( 1 3 5 7 9 11 )
Socket 1: ( 0 2 4 6 8 10 )

610 Gflop/s
Socket 1: ( 0 2 4 6 8 10 )
--------------------------------- Running 128 MPI Procs, 6 threads each

Pinning B:
if [ $localrank == 0 ]; then
exec numactl --physcpubind=0,2,4,6,8,10 \

-m 0 $*
lif [ $l l k 1 ] helif [ $localrank == 1 ]; then
exec numactl –physcpubind=1,3,5,7,9,11 \

-m 1 $*
fi 900 Gflop/s

Half of the threads 
access remote 
memory 
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Lonestar Node Topology 

likwid-topology p gy
output
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Performance Statistics

Important MPI Statistics:
Time spent in communication
Time spent in synchronization

Methods to Gather Statistics:
Sampling/Interrupt based via a profiler
I t t ti f dAmount of data communicated, length of 

messages, number of messages
Communication pattern
Time spent in communication vs computation

Instrumentation of user code
Use of instrumented libraries, e.g. 
instrumented MPI library

Workload balance between processes

Important OpenMP Statistics:
Ti t i ll l iTime spent in parallel regions
Time spent in work-sharing
Workload distribution between threads
Fork-Join Overhead

General Statistics:
Time spent in various subroutines
H d C t I f ti (CPUHardware Counter Information (CPU 
cycles, cache misses, TLB misses, etc.)
Memory Usage
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Examples of Performance Analysis Tools

Vendor Supported Software:
CrayPat/Cray Apprentice2: Offered by Cray for the XT Systems. 
pgprof: Portland Group Performance Profilerpgp p
Intel Tracing Tools 
IBM xprofiler

Public Domain Software: see Case
PAPI (Performance Application Programming Interface): 

Support for reading hardware counters in a portable way
Basis for many tools
http://icl.cs.utk.edu/papi/

see Case 
Studies

TAU:
Portable profiling and tracing toolkit for performance analysis of parallel programs written in Fortran, C, C++ and 
others
University of Oregon, http://www.cs.uoregon.edu/research/tau/home.phpUniversity of Oregon, http://www.cs.uoregon.edu/research/tau/home.php

IPM (Integrated Performance Monitoring):
Portable profiling infrastructure for parallel codes
Provides a low-overhead performance summary of the computation
http://ipm-hpc sourceforge net/http://ipm hpc.sourceforge.net/

Scalasca:
http://icl.cs.utk.edu/scalasca/index.html

Paraver:
Barcelona Supersomputing Center 
http://www.bsc.es/plantillaA.php?cat_id=488
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Performance Tools Support for Hybrid Code

Paraver tracing is done with 
linking against (closed-source)
omptrace or ompitrace

For Vampir/Vampirtrace performance analysis:
/configure –enable-omp \./configure enable omp \
–enable-hyb \
–with-mpi-dir=/opt/OpenMPI/1.3-icc \
CC=icc F77=ifort FC=ifort

(Attention: does not wrap MPI_Init_thread!)

ISC11 Tutorial 205Performance programming on multicore-based systems



Scalasca – Example “Wait at Barrier”

Indication of 
non-optimal load 

balance
Screenshots, courtesy of KOJAK JSC, FZ Jülich
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Scalasca – Example “Wait at Barrier”, Solution

Better load balancing 
with dynamic 
loop schedulep

Screenshots, courtesy of KOJAK JSC, FZ Jülich
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MPI/OpenMP hybrid “how-to”: Take-home messages

Be aware of inter/intra-node MPI behavior: 
available shared memory vs resource contentionavailable shared memory vs resource contention

Observe the topology dependence ofObserve the topology dependence of
Inter/Intra-node MPI
OpenMP overheadsOpenMP overheads

Enforce proper thread/process to core binding, using 
appropriate tools (whatever you use, but use 
SOMETHING)]SOMETHING)]

OpenMP processes on ccNUMA nodes require correct 
page placement
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Tutorial outline

Hybrid MPI/OpenMP
MPI vs. OpenMP

Case studies for hybrid 
MPI/OpenMP

Thread-safety quality of MPI 
libraries 
Strategies for combining MPI with

Overlap for hybrid sparse MVM 
The NAS parallel benchmarks 
(NPB-MZ)Strategies for combining MPI with 

OpenMP
Topology and mapping problems

(NPB MZ)
PIR3D – hybridization of a full 
scale CFD codep gy pp g p

Potential opportunities
Practical “How-tos” for hybrid Summary: Opportunities and 

Pitf ll f H b idOnline demo: likwid tools (2) 
Advanced pinning
Making bandwidth maps

Pitfalls of Hybrid 
Programming

Making bandwidth maps
Using likwid-perfctr to find NUMA 
problems and load imbalance

Overall summary and 
goodbyep

likwid-perfctr internals
likwid-perfscope

g y
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Live demo:Live demo:

LIKWID tools – advanced topics
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Tutorial outline

Hybrid MPI/OpenMP
MPI vs. OpenMP

Case studies for hybrid 
MPI/OpenMP

Thread-safety quality of MPI 
libraries 
Strategies for combining MPI with

Overlap for hybrid sparse MVM 
The NAS parallel benchmarks 
(NPB-MZ)Strategies for combining MPI with 

OpenMP
Topology and mapping problems

(NPB MZ)
PIR3D – hybridization of a full 
scale CFD codep gy pp g p

Potential opportunities
Practical “How-tos” for hybrid Summary: Opportunities and 

Pitf ll f H b idOnline demo: likwid tools (2) 
Advanced pinning
Making bandwidth maps

Pitfalls of Hybrid 
Programming

Making bandwidth maps
Using likwid-perfctr to find NUMA 
problems and load imbalance

Overall summary and 
goodbyep

likwid-perfctr internals
likwid-perfscope

g y
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Case study:Case study:
MPI/OpenMP hybrid parallel 
sparse matrix-vector multiplicationsparse matrix vector multiplication

A case for explicit overlap of communication and 
computation



SpMVM test cases

Matrices in our test cases: Nnzr ≈ 7…15 RHS and LHS do matter!
HM: Hostein-Hubbard Model (solid state physics) 6-site lattice 6 electronsHM: Hostein Hubbard Model (solid state physics), 6 site lattice, 6 electrons, 
15 phonons, Nnzr ≈15 
sAMG: Adaptive Multigrid method, irregular discretization of Poisson stencil 

t N 7on car geometry, Nnzr ≈ 7 

Nnzr ≈15 Nnzr ≈ 7 
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Distributed-memory parallelization of spMVM

Local operation – no 
communication 
required

P0

required

P0

P1

=

P2

⋅
Nonlocal 
RHS P2 elements 
for P0

P3
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Distributed-memory parallelization of spMVM

Variant 1: “Vector mode” without overlap

Standard concept
for “hybrid MPI+OpenMP”
Multithreaded computation
( ll th d )(all threads)

Communication onlyCommunication only 
outside of computation

Benefit of threaded MPI process only due to message aggregation 
and (probably) better load balancing

G. Hager, G. Jost, and R. Rabenseifner: Communication Characteristics and Hybrid MPI/OpenMP Parallel Programming on 
Clusters of Multi-core SMP Nodes.In: Proceedings of the Cray Users Group Conference 2009 (CUG 2009), Atlanta, GA, USA, 
May 4-7, 2009. PDF
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Distributed-memory parallelization of spMVM

Variant 2: “Vector mode” with naïve overlap (“good faith hybrid”)

Relies on MPI to support
asynchronous nonblocking
point-to-point
M ltith d d t tiMultithreaded computation
(all threads)

Still simple programming
Drawback: Result vectorDrawback: Result vector
is written twice to memory

modified performance
model
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Distributed-memory parallelization of spMVM

Variant 3: “Task mode” with dedicated communication thread
Explicit overlap, more complex to implementp p, p p
One thread missing in
team of compute threads

But that doesn’t hurt here…
Using tasking seems simpler
but may require somebut may require some 
work on NUMA locality

Drawbacks
Result vector is written 
twice to memory
No simple OpenMPNo simple OpenMP
worksharing (manual,
tasking)

R. Rabenseifner and G. Wellein: Communication and Optimization Aspects of Parallel Programming Models on Hybrid 
Architectures. International Journal of High Performance Computing Applications 17, 49-62, February 2003. 
DOI:10.1177/1094342003017001005
M. Wittmann and G. Hager: Optimizing ccNUMA locality for task-parallel execution under OpenMP and TBB on multicore-
b d t T h i l t P i t Xi 1101 0093based systems. Technical report. Preprint:arXiv:1101.0093
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Advanced hybrid pinning: One MPI process per socket,
communication thread on virtual core (SMT)

OMP_NUM_THREADS=5 likwid-mpirun –np 4 –pin S0:0-3,9_S1:0-3,9 ./a.out
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Results HMeP (strong scaling) on Westmere-based QDR 
IB cluster (vs. Cray XE6)

Task mode uses
virtual core for

50% efficiency
w/ respect to

communication
@ 1 process/core

p
best 1-node 
performance

Dominated by communication (and some load imbalance for large #procs)
Single-node Cray performance cannot be maintained beyond a few nodes
Task mode pays off esp. with one process (12 threads) per node
Task mode overlap (over-)compensates additional LHS trafficTask mode overlap (over )compensates additional LHS traffic
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Results sAMG

Much less communication-bound
XE6 outperforms Westmere cluster, can maintain good node performance
Hardly any discernible difference as to # of threads per process
If pure MPI is good enough, don’t bother going hybrid!If pure MPI is good enough, don t bother going hybrid!
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Case study:Case study:
The Multi-Zone NAS Parallel 
Benchmarks (NPB-MZ)



The Multi-Zone NAS Parallel Benchmarks

MPI/OpenMP Nested 
OpenMPMLP

MPI 

sequential

p

sequentialsequentialTime step

OpenMPMLP inter zones

OpenMP

Call MPI 

Processes

OpenMPdata copy+ 
sync.

exchange
boundaries

OpenMPProcessesinter-zones

OpenMP OpenMPOpenMPintra-zones

Multi-zone versions of the NAS Parallel Benchmarks 
LU,SP, and BT
Two hybrid sample implementationsTwo hybrid sample implementations
Load balance heuristics part of sample codes
www.nas.nasa.gov/Resources/Software/software.html
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MPI/OpenMP BT-MZ 

call omp_set_numthreads (weight)
do step = 1, itmax

call exch qbc(u, qbc, nx,…)

subroutine zsolve(u, rsd,…)

...
!$OMP PARALLEL DEFAULT(SHARED)call exch_qbc(u, qbc, nx,…) !$OMP PARALLEL DEFAULT(SHARED)

!$OMP& PRIVATE(m,i,j,k...)

do k = 2, nz-1

!$OMP DOcall mpi send/recv

do zone = 1 num zones

!$OMP DO

do j = 2, ny-1

do i = 2, nx-1

do m = 1 5

call mpi_send/recv

do zone = 1, num_zones

if (iam .eq. pzone_id(zone)) then

call zsolve(u,rsd,…)

d if

do m = 1, 5             
u(m,i,j,k)=

dt*rsd(m,i,j,k-1)

end do
end if

end do

e d do

end do

end do

!$OMP END DO nowait
end do

...

!$OMP END DO nowait
end do

...

!$OMP END PARALLEL!$OMP END PARALLEL
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MPI/OpenMP LU-MZ 

call omp_set_numthreads (weight)
do step = 1, itmax

ll h b ( b )call exch_qbc(u, qbc, nx,…)

call mpi_send/recv

do zone = 1, num_zones
if (iam .eq. pzone_id(zone)) then

call ssor
end if

end doend do

end do
...
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Pipelined Thread Execution in SSOR

subroutine  ssor
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP& PRIVATE(m,i,j,k...)

subroutine sync1
…neigh = iam -1
do while (isync(neigh) .eq. 0)$ ( , ,j, )

call sync1 (…)
do k = 2, nz-1

!$OMP DO

y g q
!$OMP FLUSH(isync)
end do
isync(neigh) = 0!$O O

do j = 2, ny-1
do i = 2, nx-1
do m = 1, 5

!$OMP FLUSH(isync)
…
subroutine sync2do m  1, 5             

rsd(m,i,j,k)=
dt*rsd(m,i-1,j-1,k-1)
end do

…
neigh = iam -1
do while (isync(neigh) .eq. 1)

end do
end do

!$OMP END DO nowait

!$OMP FLUSH(isync)
end do
isync(neigh) = 1

end do
call sync2 (…)
...

!$OMP END PARALLEL

!$OMP FLUSH(isync)

“PPP itho t global s nc”!$OMP END PARALLEL
...

“PPP without global sync” –
cf. Gauss-Seidel example in 
OpenMP section!
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Benchmark Characteristics

Aggregate sizes:
Class D: 1632 x 1216 x 34 grid points
Class E: 4224 x 3456 x 92 grid points Expectations:Class E: 4224 x 3456 x 92 grid points

BT-MZ: (Block tridiagonal simulated CFD application)
Alternative Directions Implicit (ADI) method Pure MPI: Load 

balancing problems!

Expectations:

#Zones: 1024 (D), 4096 (E)
Size of the zones varies widely:

large/small about 20
i lti l l ll li t hi d l d b l

balancing problems!
Good candidate for 

MPI+OpenMP
requires multi-level parallelism to achieve a good load-balance

LU-MZ: (LU decomposition simulated CFD application)
SSOR method (2D pipelined method) Limited MPI 

Parallelism:( p p )
#Zones: 16 (all Classes)

Size of the zones identical:
no load-balancing required

Parallelism:
MPI+OpenMP

increases Parallelism

limited parallelism on outer level

SP-MZ: (Scalar Pentadiagonal simulated CFD application)
#Zones: 1024 (D) 4096 (E) Load-balanced on #Zones: 1024 (D), 4096 (E)
Size of zones identical

no load-balancing required

MPI level: Pure MPI 
should perform best 
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Benchmark Architectures

Sun Constellation (Ranger)
Cray XT5
Cray XE6
IBM Power 6
Some miscellaneous othersSome miscellaneous others
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Sun Constellation Cluster Ranger 

Located at the Texas Advanced 
Computing Center (TACC), 
University of Texas at Austin

Compilation:
PGI pgf90 7.1
mpif90 –tp barcelona-64 –r8 -mp

Enable
OpenMP!

University of Texas at Austin 
(http://www.tacc.utexas.edu)
3936 Sun Blades, 4 AMD Quad-
core 64bit 2 3GHz processors per

mpif90 –tp barcelona-64 –r8 -mp

Cache optimized benchmarks 
Execution:

MPI i MVAPICH
Set number of 

threads!core 64bit 2.3GHz processors per 
node (blade), 62976 cores total 
InfiniBand Switch interconnect

MPI is MVAPICH
setenv OMP_NUM_THREADS \

nthreads

threads!

Sun Blade x6420 Compute Node:
4 Sockets per node
4 cores per socket

ibrun tacc_affinity bt-mz.exe
numactl controls

Socket affinity: select sockets to run 4 cores per socket
HyperTransport System Bus
32GB memory

y
Core affinity: select cores within socket
Memory policy:where to allocate 
memoryy

http://services.tacc.utexas.edu/index.php/ran
ger-user-guide

y
http://www.halobates.de/numaapi3.pdf

Control process
and memory

affinity!
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NPB-MZ Class E  Scalability on Ranger

NPB-MZ Class E Scalability on Sun Constellation BTNPB MZ Class E Scalability on Sun Constellation

4000000
4500000
5000000

SP-MZ (MPI)
SP-MZ MPI+OpenMP

Significant improve-
ment (235%):

Load balancing 

2500000
3000000
3500000
4000000

op
/s

SP MZ MPI OpenMP
BT-MZ (MPI)
BT-MZ MPI+OpenMP

g
issues solved with 

MPI+OpenMP

SP

1000000
1500000
2000000
2500000

M
Fl

o SP
Pure MPI is already 

load-balanced.
B t h b id

0
500000

1000000

1024 2048 4096 8192

But hybrid 
9.6% faster, due to 
smaller message 

t t NIC

Performance in Mflop/s
We report pure MPI and the highest achieved hybrid

1024 2048 4096 8192core# rate at NIC

8192  max # of MPI 
procsWe report pure MPI and the highest achieved hybrid 

performance 
MPI/OpenMP outperforms pure MPI
Use of numactl essential to achieve scalability

Hybrid:
SP: still scales

Use of numactl essential to achieve scalability
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Numactl – Pitfalls: 
Using Threads across Sockets

bt-mz.1024x8 yields best workload
balance BUT:
#$ -pe 2way 8192   # in batch script!

export OMP NUM THREADS=8 # in batch script

Rank 1

export OMP_NUM_THREADS 8 # in batch script

In tacc_affinity: Rank 0
my_rank=$PMI_RANK
local_rank=$(( $my_rank % $myway ))
numnode=$(( $local_rank + 1 ))

In original tacc_affinity:

numactl -N $numnode -m $numnode $*

Bad performance!
Processes bound to just one socket
Each process runs 8 threads on 4 cores
Memory allocated on one socket
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Numactl – Pitfalls:
Using Threads across Sockets

bt-mz.1024x8

export OMP_NUM_THREADS=8

my_rank=$PMI_RANK
local rank=$(( $my rank % $myway ))local_rank $(( $my_rank % $myway ))
numnode=$(( $local_rank + 1 ))

Original:
numactl -N $numnode -m $numnode $*

Modified:
if [ $local rank -eq 0 ]; thenif [ $local_rank eq 0 ]; then

numactl -N 0,3 -m 0,3 $*
else

numactl -N 1,2 -m 1,2 $*
fi

Achieves Scalability!
Process uses cores and memory across 2

Rank 0Rank 1
Process uses cores and memory across 2 
sockets
Suitable for  8 threads
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Using TAU on Ranger

module load papi kojak pdtoolkit tau
Compilation:

Use a TAU Makefile which supports profiling of MPI and OpenMP, eg:
export TAU_MAkEFILE=$TAU_LIB/Makefile.tau-icpc-papi-mpi-pdt-
openmp-oparip p p

Use tau_f90.sh to compile and link.
Execution :

export COUNTER1=GET_TIME_OF_DAY
export COUNTER2=PAPI_FP_OPS
export COUNER3=PAPI L2 DCMe po t COU 3 _ _ C
ibrun a.out /bt-mz.exe

Generates performance statisitics:
MULTI_LINUX_TIMERS
MULTI_PAPI_FP_OPS
MULTI_PAPI_L2_DCM_ _ _

View with paraprof (GUI) or pprof (text based)
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BT-MZ TAU Performance Statistics 

L2DCM for good placement
L2 DCM for bad placement

L2 DCM in different f nctions

ISC11 Tutorial 233Performance programming on multicore-based systems

L2 DCM in different functions



Cray XT5

Results obtained by the courtesy of the HPCMO Program and the Engineer 
Research and Development Center Major Shared Resource Center, Vicksburg, MS 
(http://www erdc hpc mil/index)(http://www.erdc.hpc.mil/index)

Cray XT5 is located at the Arctic Region Supercomputing 
Center (ARSC)  (http://www.arsc.edu/resources/pingo) Core Core

2
Node

432 Cray XT5 compute nodes with
32 GB of shared memory per node (4 GB per core)
2 quad core 2 3 GHz AMD Opteron processors

CoreCore

n2 quad core 2.3 GHz AMD Opteron processors 
per node.
1 Seastar2+ Interconnect Module per node.

C S t 2 I t t b t ll t

Core Core

CoreCore

1

netw
ork

Cray Seastar2+ Interconnect between all compute 
and login nodes

Core Core

2
NUMA Node

CoreCore

Core Core

(Socket)

Core Core

CoreCore

1
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Cray XT5:  NPB-MZ Class D Scalability

Results reported for 
Class D on 256‐2048 cores

Expected:  #MPI processes 
limited to 1024 2048 cores

Class D on 256‐2048 cores

SP‐MZ pure MPI scales up to 
1024 cores
SP MZ MPI/O MP l t

best of category

1024 cores

SP-MZ MPI/OpenMP scales to 
2048 cores
SP-MZ MPI/OpenMP
outperforms pure MPI for 1024

256 cores
512 cores

outperforms pure MPI for 1024 
cores

BT-MZ MPI does not scale

U d!

BT-MZ MPI/OpenMP scales to 
2048  cores, outperforms pure 
MPI

Unexpected!
Expected: Load 
Imbalance for pure 
MPI
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LU-MZ Class D 

Kraken: Cray XT5 
TeraGrid system at NICS/ 
U i it f TUniversity of Tennessee
Two 2.6 GHz six-core AMD 
Opteron processors p p
(Istanbul) per node
12-way SMP system
16 GB f

G
o
p 16 GB of memory per 

node
Cray SeaStar2+ 

p
s

y
interconnect
Intel compiler available!

Pure MPI limited to 16 processes
16x1 on 192 cores:
2x speed-up vs 16x1 on 16 

Hybrid MPI/OpenMP improves scalability 
considerably

cores
BUT: 11 idle cores per 
node!
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CrayPat Performance Analysis (1)

module load perftools

Compilation  (PrgEnv-pgi):
ftn –fastsse –tp barcelona–64  –r8  –mp=nonuma,[trace ]

I t tInstrument:
pat_build –w [ –T  TraceOmp], –g mpi,omp bt.exe bt.exe.inst

Execution :Execution :
export  PAT_RT_HWPC={0,1,2,..}
export  OMP_NUM_THREADS=4

NPROCS S 1 d 4 /bt i taprun –n NPROCS  –S  1  –d 4  ./bt.exe.inst

Generate report:
pat report \p _ p
–O load_balance,thread_times,program_time,mpi_callers \
–O profile_pe.th <tracefile>
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CrayPat Performance Analysis (2)

How to obtain guidance for profiling instrumentation:

1. Sampling-based profile with instrumentation suggestions:
pat_build –O apa a.out

2. Execution:
aprun –n NPROCS –S 1 –d 4  ./a.out+apa

3. Generate report:
pat_report tracefile.xf

4. This will produce a file tracefile.apa with instrumentation 
suggestions
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Cray XT5:  BT-MZ 32x4 Function Profile
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Cray XT5:  BT-MZ Load Balance 32x4 vs 128x1

bt‐mz‐C.128x1
maximum, median, minimum PE are shownmaximum, median, minimum PE are shown
bt-mz.C.128x1 shows large imbalance in User 
and MPI time
bt C 32 4 h ll b l d ti

bt‐mz‐C.32x4

bt-mz.C.32x4 shows well balanced times
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Cray XE6 (Hector)

Located at EPCC, Edinburgh, Scotland,  UK National Supercomputing 
Services, Hector Phase 2b (http://www.hector.ac.uk)
1856 XE6 t d1856 XE6 compute nodes. 
Around 373 Tflop/s theoretical peak performance 
Each node contains two AMD 2.1 GHz 12-core processors 
for a total of 44,544 cores
32 GB of memory per node
24-way shared memory system, four ccNUMA domainsy y y ,
Cray Gemini interconnect

Node layout:Node layout:
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Graphical likwid-topology output Cray XE6 (Hector)

CPU type:       AMD Magny Cours processor 
Hardware Thread Topology
Sockets:                2 4 NUMA domains
Cores per socket:       12 
Threads per core:       1 

no SMT
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SP-MZ Class E Pure MPI Scalability on Cray XE6

Observations:
Good Scalability for Pure MPI!
No need for hybrid approach

Observations: 
#used cores divides #zones
Not all allocated cores are used

24 way nodes <24 idle cores
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SP-MZ Class D Hybrid MPI/OpenMP Performance Cray XE6

#cores does not 
divide #zones!divide #zones!
Hybrid approach 
yields 
performance gain 
due to better load 
balancingg
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SP-MZ Class D Hybrid MPI/OpenMP Scalability Cray XE6

P MPI d tPure MPI does not 
scale from 384 to 768. 

Due to bad load 
balancingbalancing
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Craypat Statistics for SP-MZ Class D  

MPI Message Stats by Caller
MPI Msg |   MPI | MsgSz | 16B<= | 256B<= | 64KB<= | 1MB<= |Experiment=1

Bytes |   Msg |  <16B | MsgSz |  MsgSz |  MsgSz | MsgSz |Function
| Count | Count | <256B |   <4KB |   <1MB | <16MB | Caller

768 
MPI 

2616644.0 |   6.1 |   1.0 |   0.2 |    0.2 |    3.7 |   0.9 |Total
|--------------------------------------------------------------------------
|  2616533.0 |   4.6 |    -- |    -- |     -- |    3.7 |   0.9 |MPI_ISEND
|            |       |       |       |        |        |       | exch_qbc_

procs

3            |       |       |       |        |        |       |  MAIN_
||||-----------------------------------------------------------------------
4||| 26329600.0 |  44.0 |    -- |    -- |     -- |   33.0 |  11.0 |pe.33
4|||        0.0 |    -- |    -- |    -- |     -- |     -- |    -- |pe.610
4|||        0.0 |    -- |    -- |    -- |     -- |     -- |    -- |pe.242

||||=============================================================
==========

384MPI Msg |   MPI | MsgSz | 16B<= | 256B<= | 4KB<= | 64KB<= |Experiment=1
Bytes |   Msg |  <16B | MsgSz |  MsgSz | MsgSz |  MsgSz |Function

| Count | Count | <256B |   <4KB | <64KB |   <1MB | Caller
6156152.0 |  57.8 |   8.0 |   2.0 |    2.0 |   3.7 |   42.2 |Total
|

384 
MPI 
procs

|-------------------------------------------------------------------------
| 6152960.0 |  45.8 |    -- |    -- |     -- |   3.7 |   42.2 |MPI_ISEND
|           |       |       |       |        |       |        | exch_qbc_
3           |       |       |       |        |       |        |  MAIN_
||||----------------------------------------------------------------------||||----------------------------------------------------------------------
4||| 7180800.0 |  44.0 |    -- |    -- |     -- |    -- |   44.0 |pe.127
4||| 7180800.0 |  55.0 |    -- |    -- |     -- |  11.0 |   44.0 |pe.54
4||| 4421120.0 |  44.0 |    -- |    -- |     -- |  22.0 |   22.0 |pe.4
||||
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IBM Power 6

Results obtained by the courtesy of the HPCMO Program and the 
Engineer Research and Development Center Major Shared 
Resource Center Vicksburg MS (http://www erdc hpc mil/index)Resource Center, Vicksburg, MS (http://www.erdc.hpc.mil/index)
The IBM Power 6 System is located at 
(http://www.navo.hpc.mil/davinci about.html)( p p _ )
150 Compute Nodes
32   4.7 GHz Power6 Cores per Node (4800 cores total)
64 GBytes of memory per node
QLOGIC Infiniband DDR interconnect
IBM MPI: MPI 1.2 + MPI-IO

mpxlf_r  –O4  –qarch=pwr6  –qtune=pwr6  –qsmp=omp

Execution:

Flag was essential to achieve full 
compiler optimization in 
presence of OMP directives!

Execution:
poe launch  $PBS_O_WORKDIR/sp.C.16x4.exe
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LU-MZ Class D on Power6

LU-MZ significantly  benefits from hybrid mode:
Pure MPI limited to 16 cores, due to #zones = 16 
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NPB-MZ Class D on IBM Power 6:
Exploiting SMT for 2048 Core Results

Doubling the number of threads 
through hyperthreading (SMT):2048 

1024 cores
#!/bin/csh
#PBS -l select=32:ncpus=64:
mpiprocs=NP:ompthreads=NT

“cores”

best of category

Results for 128-2048 
cores
Only 1024 cores wereOnly 1024 cores were 
available for the 
experiments
BT-MZ and SP-MZ show

512 cores

BT-MZ and SP-MZ show 
benefit from 
Simultaneous 
Multithreading (SMT): 

128 cores

256 cores

2048 threads 
on 1024 cores

04
8x
1

20
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Performance Analysis with gprof on IBM Power 6

Compilation:
mpxlf_r  –O4  –qarch=pwr6  –qtune=pwr6  –qsmp=omp –pg

Execution :
export  OMP_NUM_THREADS  4
poe launch  $PBS_O_WORKDIR./sp.C.16x4.exe

Generates a file gmount.MPI_RANK.out for each MPI Process
G t tGenerate report:

gprof sp.C.16x4.exe  gmon*

%   cumulative   self              self total
time   seconds   seconds calls  ms/call  ms/call name
16.7     117.94   117.94 205245     0.57     0.57 .@10@x_solve@OL@1 [2]
14.6 221.14 103.20 205064 0.50 0.50 .@15@z solve@OL@1 [3]14.6     221.14   103.20   205064     0.50     0.50 .@15@z_solve@OL@1 [3]
12.1     307.14    86.00   205200     0.42     0.42 .@12@y_solve@OL@1 [4]
6.2     350.83    43.69   205300     0.21     0.21 .@8@compute_rhs@OL@1@OL@6 [5]
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Conclusions:

BT-MZ:
Inherent workload imbalance on MPI level
# # i ld f#nprocs = #nzones yields poor performance
#nprocs < #zones => better workload balance, but decreases parallelism
Hybrid MPI/OpenMP yields better load-balance, 
maintains amount of parallelismmaintains amount of parallelism

SP-MZ:
No workload imbalance on MPI level, pure MPI should perform best
MPI/OpenMP outperforms MPI on some platforms due contention to network access 
within a node

LU-MZ:LU MZ:
Hybrid MPI/OpenMP increases level of parallelism

“Best of category”
Depends on many factors
Hard to predictHard to predict
Good thread affinity is essential 
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Numerical Approach

Solve 3-D (or 2-D) Boussinesq
equations for incompressible fluid 
(ocean or atmosphere)

Start Time-Step Loop
(ocean or atmosphere)
FFT’s for horizontal derivatives 
(periodic BC)
Hi h d t h f

CALL DCALC (calculate time 
derivatives) 
DO ADVECTION LOOP 

Higher-order compact scheme for 
vertical derivatives
2nd order Adams-Bashforth time-

CALL DMOVE (derivs_2 => 
derivs_1)
CALL PCALC (solve Poisson’sstepping

(projection method to ensure 
incompressibility –

i l ti t P i ’

CALL PCALC (solve Poisson s 
equation)
DO PROJECTION LOOP 
CALL TAPER (apply boundaryrequires solution to Poisson’s 

Equation at every time step)
Sub-grid scale model

CALL TAPER (apply boundary 
conditions)

End Time-Step Loop
Periodic smoothing to control small-
scale energy – compact approach in 
vertical, FFT approach in horizontal

Multiple z-and y- derivatives in x
Multiple x-derivatives in y-plane, pp Multiple x derivatives in y plane

2D FFTs in z-plane

ISC11 Tutorial 253Performance programming on multicore-based systems



Development of MPI Parallelization

Initial code developed for vector processors
MPI Version: Aim for portability and scalability on clusters of SMPs

1D domain decomposition (based on scalar/vector code structure):
l b t d d d i ti l b t d d i ti l b fx-slabs to do z- and y-derivatives, y-slabs to do x-derivatives, z-slabs for 

Poisson solver
Each processor contains

x-slab (#planes=locnx=NX/nprocs)
y-slab (#planes=locny=NY/nprocs)
z-slab (#planes=locnz=NZ/nprocs)( p p )
for each variable

Redistribution of data (swapping) required during executionRedistribution of data (swapping) required during execution
Basic structure of code was be preserved
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Domain Decomposition for Parallel Derivative Computations

NX

NZ locnz

NZ NX

NZ

NY
NYlocnx

locny

locn[xyz] = N[XYZ] / nprocs
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Initial PIR3D Timings Case 512x256x256

Problem Size 512x256x256
Cray XT4: 4 cores per node
Cray XT5: 8 cores per node
Sun Constellation: 16 cores per nodeSun Constellation: 16 cores per node
Significant time decrease when using 2 cores 
per socket rather than 4

BUT: Using only 2 cores:
Increases resource requirement 
(#cores/nodes)

ISC11 Tutorial 256Performance programming on multicore-based systems

Leaves half of the requested cores idle 



PIR3D Performance

What causes performance decrease when using all cores per 
socket? 

Some increase in User CPU Time
Significant increase in MPI timeg
Swapping requires global all-to-all type communication 
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CrayPat Performance Statistics for Cray XT5
so

ck
et

1 c
or

es
 p

er
 core per 

4 
co

socket
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All-to-All Throughput

Intra-Node Communication only!
No network access required.Inter-Node Communication requires 

network accessnetwork access.
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Limitations of PIR3D MPI Implementation

Global MPI communication yields resource contention within a 
node (access to network) 

Miti t b i f MPI th dMitigate by using fewer MPI processes than cores per node
#MPI Procs restricted to shortest dimension due to 1D domain 
decompositiondecomposition

Possible solution: Use 3D Domain Composition, but would mean 
considerable implementation effort

Memory requirements may restrict run to use at most 1Memory requirements may restrict run to use at most 1 
core/socket

3D Data is distributed, each MPI Proc only holds a slab 
2D Work arrays are replicated
Necessary to use fewer MPI Procs than cores per node

All-the-cores-all-the-time: How can OpenMP help?
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OpenMP Parallelization of PIR3D (1)

Motivation: 
Increase performance by taking 
advantage of idle cores within one shared

DO 2500 IX=1,LOCNX
advantage of idle cores within one shared 
memory node

….
!$omp parallel do private(iy,rvsc)
DO 2220 IZ=1,NZ

DO 2220 IY=1 NYOpenMP Parallelization strategy:
Identify most time consuming routines
Place OpenMP directives on the time 

DO 2220 IY=1,NY
VYIX(IY,IZ) = YF(IY,IZ)
VY_X(IZ,IY,IX) = YF(IY,IZ)
RVSC = RVISC X(IZ,IY,IX)p

consuming loops
Only place directives on loops across 
undistributed dimension

_ ( , , )
DVY2_X(IZ,IY,IX) =          
DVY2_X(IZ,IY,IX) -
(VYIX(IY,IZ)+VBG(IZ)) * 
YDF(IY IZ)+RVSC*YDDF(IY IZ)MPI calls only occur outside of parallel 

regions: No thread safety is required for 
MPI library

YDF(IY,IZ)+RVSC*YDDF(IY,IZ)
2220 CONTINUE
!$omp end parallel do 
.….
2500 CONTINUE
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OpenMP Parallelization of PIR3D (2)

Thread safe LAPACK and FFTW 
routines required
FFTW initialization routine not

subroutine csfftm(isign,ny,…)
implicit none
integer isign n mFFTW initialization routine not 

thread safe: Execute outside of 
parallel region

integer isign, n, m, 
integer i, ny
integer omp_get_num_threads
real work, tabl

Limitation of current OpenMP
parallelization:

,
real a(1:m2,1:m)
complex f(1:m1,1:m)

!$omp parallel if(isign.ne.0)
Only a small subset of 
routines have been 
parallelized

p p g
!$omp do

do i = 1, m
CALL csfft (isign,ny,…)p

Computation time distributed 
across a large number of 
routines

end do
!$omp end do
!$omp end parallel

treturn
end
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Hybrid Timings for Case 512x256x256

Use all 4 cores/per socket
Benefits of OpenMP:

Increase the number of usableIncrease the number of usable 
cores
128x2 outperforms 256x1 on 
256 cores 128x4 better than256 cores,128x4 better than 
256x2 on 512 cores

But: Most of the 
performance due toperformance due to 

“spacing” of MPI. About 
12% improvement due 

to OpenMPto OpenMP
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Hybrid Timings for Case 1024x512x256

Only 1 MPI Process per 
socket due to memory 
consumptionconsumption
14%-10% performance 
increase on Cray XT5
13% to 22% 
performance increase on 
Sun Constellation
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Includes distributed and replicated data and 
MPI buffers for problem size 256x512x256
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Conclusions for PIR3D

Hybrid OpenMP parallelization of PIR3D was beneficial
Easy to implement when aiming for moderate speedup
Reduce MPI time for global communication:Reduce MPI time for global communication:

Lower number of MPI processors to mitigate network contention
Take advantage of idle cores allocated for memory requirements
L i t ( li t d d t MPI b ff )Lower memory requirements ( e.g., replicated data, MPI buffers)

Issues when using OpenMP:
Runtime libraries:  Are they thread-safe?  Are they multi-threaded? Are they 
compatible with OpenMP?
Easy for moderate scalability (4-8 threads), But for 10’s or 100’s of threads?
Are there sufficient parallelizable loops? Only moderate speed-up if not enough 
parallelizable loops
Good scalability may require to parallelize many loops!y y q p y p

Issues when running hybrid codes:
Placement of MPI processes and OpenMP threads onto available cores is:Placement of MPI processes and OpenMP threads onto available cores is:

critical for good performance
highly system dependent
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Tutorial outline

Hybrid MPI/OpenMP
MPI vs. OpenMP

Case studies for hybrid 
MPI/OpenMP

Thread-safety quality of MPI 
libraries 
Strategies for combining MPI with

Overlap for hybrid sparse MVM 
The NAS parallel benchmarks 
(NPB-MZ)Strategies for combining MPI with 

OpenMP
Topology and mapping problems

(NPB MZ)
PIR3D – hybridization of a full 
scale CFD codep gy pp g p

Potential opportunities
Practical “How-tos” for hybrid Summary: Opportunities and 

Pitf ll f H b idOnline demo: likwid tools (2) 
Advanced pinning
Making bandwidth maps

Pitfalls of Hybrid 
Programming

Making bandwidth maps
Using likwid-perfctr to find NUMA 
problems and load imbalance

Overall summary and 
goodbyep

likwid-perfctr internals
likwid-perfscope

g y
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Elements of Successful Hybrid Programming

System Requirements:
Some level of shared memory parallelism, such as within a multi-core node
Runtime libraries and environment to support both models

Thread-safe MPI library
Compiler support for OpenMP directives, OpenMP runtime libraries

Mechanisms to map MPI processes and threads onto cores and nodes
Application Requirements:

Expose multiple levels of parallelismExpose multiple levels of parallelism
Coarse-grained and fine-grained
Enough fine-grained parallelism to allow OpenMP scaling to the number of cores per node

Performance:Performance:
Highly dependent on optimal process and thread placement
No standard API to achieve optimal placementp p
Optimal placement may not be known beforehand (i.e. optimal number of 
threads per MPI process) or requirements may change during execution
Memory traffic yields resource contention on multicore nodesMemory traffic yields resource contention on multicore nodes
Cache optimization more critical than on single core nodes
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Recipe for Successful Hybrid Programming

Familiarize yourself with the layout of your system:
Blades, nodes, sockets, cores?
I t t ?Interconnects?
Level of Shared Memory Parallelism?

Check system softwarey
Compiler options, MPI library, thread support in MPI
Process placement

Anal e o r applicationAnalyze your application:
Architectural requirements (code balance, pipelining, cache space)
Does MPI scale? If yes, why bother about hybrid? If not, why not?y , y y , y

Load imbalance OpenMP might help
Too much time in communication? Workload too small?

Does OpenMP scale?Does OpenMP scale?
Performance Optimization

Optimal process and thread placement is important
Find out how to achieve it on your system
Cache optimization critical to mitigate resource contention
Creative use of surplus cores: Overlap functional decompositionCreative use of surplus cores: Overlap, functional decomposition,…
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Hybrid Programming: Does it Help?

Hybrid Codes provide these opportunities:
Lower communication overheadLower communication overhead 

Few multithreaded MPI processes vs many single-threaded processes 
Fewer number of calls and smaller amount of data communicated

Lower memory requirementsLower memory requirements
Reduced amount of replicated data
Reduced size of MPI internal buffer space
May become more important for systems of 100’s or 1000’s cores per node

Provide for flexible load-balancing on coarse and fine grain
Smaller #of MPI processes leave room to assign workload more evenp g
MPI processes with higher workload could employ more threads

Increase parallelism
Domain decomposition as well as loop level parallelism can be exploitedDomain decomposition as well as loop level parallelism can be exploited
Functional parallelization

YES, IT CAN!
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Thank youThank you
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Abstract

Tutorial: Performance-oriented programming on multicore-based clusters 
with MPI, OpenMP, and hybrid MPI/OpenMP

Presenters: Georg Hager, Gabriele Jost, Jan Treibig, Gerhard Wellein
Authors: Georg Hager, Gabriele Jost, Rolf Rabenseifner, Jan Treibig, 

Gerhard WelleinGerhard Wellein
Abstract: Most HPC systems are clusters of multicore, multisocket nodes. These 
systems are highly hierarchical, and there are several possible programming models; the 
most popular ones being shared memory parallel programming with OpenMP within a 

d di t ib t d ll l i ith MPI th f thnode, distributed memory parallel programming with MPI across the cores of the 
cluster, or a combination of both. Obtaining good performance for all of those models 
requires considerable knowledge about the system architecture and the requirements of 
the application. The goal of this tutorial is to provide insights about performance 
limitations and guidelines for program optimization techniques on all levels of the 
hierarchy when using pure MPI, pure OpenMP, or a combination of both.
We cover peculiarities like shared vs. separate caches, bandwidth bottlenecks, and 
ccNUMA locality. Typical performance features like synchronization overhead, intranodey yp p y ,
MPI bandwidths and latencies, ccNUMA locality, and bandwidth saturation (in cache and 
memory) are discussed in order to pinpoint the influence of system topology and thread 
affinity on the performance of parallel programming constructs. Techniques and tools for 
establishing process/thread placement and measuring performance metrics are g p p g p
demonstrated in detail. We also analyze the strengths and weaknesses of various hybrid 
MPI/OpenMP programming strategies. Benchmark results and case studies on several 
platforms are presented.
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