
Performance-oriented programming on
multicore-based clusters with MPI,
OpenMP, and hybrid MPI/OpenMP
Georg Hager(a), Gabriele Jost(b), Rolf Rabenseifner(c),
Jan Treibig(a), and Gerhard Wellein(a,d)

(a)HPC Services, Erlangen Regional Computing Center (RRZE), Germany
(b)Advanced Micro Devices (AMD), USA
(c)High Performance Computing Center Stuttgart (HLRS), Germany
(d)Department for Computer Science

Friedrich-Alexander-University Erlangen-Nuremberg, Germany
ISC12 Tutorial, June 17th, 2012, Hamburg, Germany

http://blogs.fau.de/hager/tutorials/isc12/

2ISC12 Tutorial Performance programming on multicore-based systems

Tutorial outline (1)

Introduction
Architecture of multisocket
multicore systems
Nomenclature
Current developments
Programming models

Multicore performance tools
Finding out about system topology
Affinity enforcement
Performance counter
measurements

Online demo: likwid tools
topology
pin
Monitoring the binding
perfctr basics and best practices

Impact of processor/node
topology on performance

Microbenchmarking with simple
parallel loops
Bandwidth saturation effects in
cache and memory
Case study: OpenMP sparse MVM
as an example for bandwidth-
bound code
ccNUMA effects and how to
circumvent performance penalties
Simultaneous multithreading (SMT)

Summary: Node-level issues

3

Tutorial outline (2)

Hybrid MPI/OpenMP
MPI vs. OpenMP
Thread-safety quality of MPI
libraries
Strategies for combining MPI
with OpenMP
Topology and mapping problems
Potential opportunities

Case studies for hybrid
MPI/OpenMP

Overlap of communication and
computation for hybrid sparse
MVM
The NAS parallel benchmarks
(NPB-MZ)
Hybrid computing with
accelerators and compiler
directives

Summary: Opportunities and
Pitfalls of Hybrid
Programming

Overall summary and goodbye

ISC12 Tutorial Performance programming on multicore-based systems

4ISC12 Tutorial Performance programming on multicore-based systems

Tutorial outline (1)

Introduction
Architecture of multisocket
multicore systems
Nomenclature
Current developments
Programming models

Multicore performance tools
Finding out about system topology
Affinity enforcement
Performance counter
measurements

Online demo: likwid tools
topology
pin
Monitoring the binding
perfctr basics and best practices

Impact of processor/node
topology on performance

Microbenchmarking with simple
parallel loops
Bandwidth saturation effects in
cache and memory
Case study: OpenMP sparse MVM
as an example for bandwidth-
bound code
ccNUMA effects and how to
circumvent performance penalties
Simultaneous multithreading (SMT)

Summary: Node-level issues

5ISC12 Tutorial Performance programming on multicore-based systems

Frequency [MHz]

0,1

1

10

100

1000

10000

19
71

19
75

19
79

19
83

19
87

19
91

19
95

19
99

20
03

20
09

Year

Welcome to the multi-/manycore era
The free lunch is over: But Moore’s law continues

In 1965 Gordon Moore claimed:
of transistors on chip doubles every ≈24 months

We are living in the multicore era Is really everyone aware of that?

Intel x86 clock speed

Intel Nehalem EX: 2.3 Billion

6ISC12 Tutorial Performance programming on multicore-based systems

Over-clocked
(+20%)

1.00x

1.73x

1.13x

Max Frequency

Power

Performance

Dual-core
(-20%)

1.02x

1.73x
Dual-Core

By courtesy of D. Vrsalovic, Intel

Welcome to the multi-/manycore era
The game is over: But Moore’s law continues

Power envelope:

Max. 95–130 W

Power
consumption:

P = f * (Vcore)2

Vcore ~ 0.9–1.2 V

Same process
technology:

P ~ f3

N transistors

2N transistors

7ISC12 Tutorial Performance programming on multicore-based systems

Required relative frequency reduction to run m cores (m times
transistors) on a die at the same power envelope

Year: 2007/08

m: #cores per die

R
ed

uc
tio

n
of

 c
lo

ck
 s

pe
ed

8 cores running at half speed of a single
core CPU = same energy

65 nm technology :
Sun T2 („Niagara“) 1.4 GHz 8 cores
Intel Woodcrest 3.0 GHz 2 cores

Welcome to the multi-/many-core era
The game is over: But Moore’s law continues

8

Trading single thread performance for parallelism

P5 / 80586 (1993) Pentium3 (1999) Pentium4 (2003) Core i7–960 (2009)

66 MHz 600 MHz 2800 MHz 3200 MHz

16 W @ VC = 5 V 23 W @ VC = 2 V 68 W @ VC = 1.5 V 130 W @ VC = 1.3

800 nm / 3 M 250 nm / 28 M 130 nm / 55 M 45 nm / 730 M

ISC12 Tutorial Performance programming on multicore-based systems

Power consumption limits clock speed: P ~ f2 (worst case ~f3)
Core supply voltage approaches a lower limit: VC ~ 1V
TDP approaches economical limit: TDP ~ 80 W,…,130 W

Moore’s law is still valid…
more cores + new on-chip functionality (PCIe, GPU)

Be prepared for more cores with less complexity and slower clock!

Process technology /
Number of transistors in million

TDP /
Core supply voltage

Quad-Core

9

The x86 multicore evolution so far
Intel Single-Dual-/Quad-/Hexa-/-Cores (one-socket view)

Sandy Bridge EP
“Core i7”

32nm

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

2012: Wider SIMD units
AVX: 256 Bit

P
C

P
C

C

P
C

P
C

C

W
oo

dc
re

st

“C
or

e2
 D

uo
” 6

5n
m

H
ar

pe
rt

ow
n

“C
or

e2
 Q

ua
d”

 4
5n

m

Memory

Chipset

P
C

P
C

C

Memory

Chipset

O
th

er

so
ck

et

O
th

er

so
ck

et

2006: True dual-core

P
C
C

Memory

Chipset

Memory

Chipset

P
C
C

P
C
C

2005: “Fake” dual-core

Nehalem EP
“Core i7”

45nm

Westmere EP
“Core i7”
32nm

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

2008:
Simultaneous

Multi Threading (SMT)

O
th

er

so
ck

et

O
th

er

so
ck

et

C
C

C
C

C
C

C
C

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

2010:
6-core chip

ISC12 Tutorial Performance programming on multicore-based systems

10

There is no longer a single driving force
for chip performance!

Floating Point (FP) Performance:

P = ncore * F * S * ν

ncore number of cores: 8

F FP instructions per cycle: 2
(1 MULT and 1 ADD)

S FP ops / instruction: 4 (dp) / 8 (sp)
(256 Bit SIMD registers – “AVX”)

ν Clock speed : 2.5 GHz

P = 160 GF/s (dp) / 320 GF/s (sp)

Intel Xeon
“Sandy Bridge EP” socket

4,6,8 core variants available

But: P=5 GF/s (dp) for serial, non-SIMD code

ISC12 Tutorial Performance programming on multicore-based systems

TOP500 rank 1 (1996)

11

Today: Dual-socket Intel “Core i7” node:

Yesterday (2006): Dual-socket Intel “Core2” node:

From UMA to ccNUMA
Basic architecture of commodity Intel-based compute cluster nodes

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

But: system “anisotropy”

Cache-coherent Non-Uniform Memory
Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at
the price of ccNUMA architectures:
Where does my data finally end up?

On AMD it is even more complicated ccNUMA within a socket!

ISC12 Tutorial Performance programming on multicore-based systems

NUMA locality domain (LD)

12

Back to the 2-chip-per-case age
12 core AMD Magny-Cours – a 2x6-core ccNUMA socket

AMD: single-socket ccNUMA since Magny Cours

1 socket: 12-core Magny-Cours built from two 6-core chips
2 NUMA domains

2 socket server 4 NUMA domains

4 socket server: 8 NUMA domains

WHY? Shared resources are hard two scale:
2 x 2 memory channels vs. 1 x 4 memory channels per socket

ISC12 Tutorial Performance programming on multicore-based systems

13

Another flavor of “SMT”
AMD Interlagos / Bulldozer

Up to 16 cores (8 Bulldozer modules) in a single socket
Max. 2.6 GHz (+ Turbo Core)
Pmax = (2.6 x 8 x 8) GF/s

= 166.4 GF/s

Each Bulldozer module:
2 “lightweight” cores
1 FPU: 4 MULT & 4 ADD
(double precision) / cycle
Supports AVX
Supports FMA4

2 NUMA domains per socket

16 kB
dedicated
L1D cache

2 DDR3 (shared) memory
channel > 15 GB/s

2048 kB
shared

L2 cache
8 (6) MB
shared

L3 cache

ISC12 Tutorial Performance programming on multicore-based systems

14

32-core dual socket “Interlagos” node

Two 8- (integer-) core chips per
socket
Separate DDR3 memory
interface per chip

ccNUMA on the socket!

Shared FP unit per pair of
integer cores (“module”)

“256-bit” FP unit
SSE4.2, AVX, FMA4

16 kB L1 data cache per core
2 MB L2 cache per module
8 MB L3 cache per chip
(6 MB usable)

ISC12 Tutorial Performance programming on multicore-based systems

15

Trading single thread performance for parallelism:
GPGPUs vs. CPUs – speedup mythbusting

GPU vs. CPU
light speed estimate:

1. Compute bound: 4-5 X
2. Memory Bandwidth: 2-5 X

Intel Core i5 – 2500
(“Sandy Bridge”)

Intel X5650 DP node
(“Westmere”)

NVIDIA C2070
(“Fermi”)

Cores@Clock 4 @ 3.3 GHz 2 x 6 @ 2.66 GHz 448 @ 1.1 GHz
Performance+/core 52.8 GFlop/s 21.3 GFlop/s 2.2 GFlop/s
Threads@stream 4 12 8000 +

Total performance+ 210 GFlop/s 255 GFlop/s 1,000 GFlop/s
Stream BW 17 GB/s 41 GB/s 90 GB/s (ECC=1)

Transistors / TDP 1 Billion* / 95 W 2 x (1.17 Billion / 95 W) 3 Billion / 238 W
* Includes on-chip GPU and PCI-Express+ Single Precision

ISC12 Tutorial Performance programming on multicore-based systems

Complete compute device

16ISC12 Tutorial Performance programming on multicore-based systems

Parallel programming models
on multicore multisocket nodes

Shared-memory (intra-node)
Good old MPI (current standard: 2.2)
OpenMP (current standard: 3.0)
POSIX threads
Intel Threading Building Blocks
Cilk++, OpenCL, StarSs,… you name it

Distributed-memory (inter-node)
MPI (current standard: 2.2)
PVM (gone)

Hybrid
Pure MPI
MPI+OpenMP
MPI + any shared-memory model

All models require
awareness of
topology and affinity
issues for getting
best performance
out of the machine!

17ISC12 Tutorial Performance programming on multicore-based systems

Parallel programming models:
Pure MPI

Machine structure is invisible to user:
Very simple programming model
MPI “knows what to do”!?

Performance issues
Intranode vs. internode MPI
Node/system topology

18ISC12 Tutorial Performance programming on multicore-based systems

Parallel programming models:
Pure threading on the node

Machine structure is invisible to user
Very simple programming model

Threading SW (OpenMP, pthreads,
TBB,…) should know about the details

Performance issues
Synchronization overhead
Memory access
Node topology

19ISC12 Tutorial Performance programming on multicore-based systems

Parallel programming models:
Hybrid MPI+OpenMP on a multicore multisocket cluster

One MPI process / node

One MPI process / socket:
OpenMP threads on same

socket: “blockwise”

OpenMP threads pinned
“round robin” across

cores in node

Two MPI processes / socket
OpenMP threads
on same socket

20ISC12 Tutorial Performance programming on multicore-based systems

Section summary: What to take home

Multicore is here to stay
Shifting complexity form hardware back to software

Increasing core counts per socket (package)
4-12 today, 16-32 tomorrow?
x2 or x4 per cores node

Shared vs. separate caches
Complex chip/node topologies

UMA is practically gone; ccNUMA will prevail
“Easy” bandwidth scalability, but programming implications (see later)
Bandwidth bottleneck prevails on the socket

Programming models that take care of those changes are still in
heavy flux

We are left with MPI and OpenMP for now
This is complex enough, as we will see…

21ISC12 Tutorial Performance programming on multicore-based systems

Tutorial outline (1)

Introduction
Architecture of multisocket
multicore systems
Nomenclature
Current developments
Programming models

Multicore performance tools
Finding out about system topology
Affinity enforcement
Performance counter
measurements

Online demo: likwid tools
topology
pin
Monitoring the binding
perfctr basics and best practices

Impact of processor/node
topology on performance

Microbenchmarking with simple
parallel loops
Bandwidth saturation effects in
cache and memory
Case study: OpenMP sparse MVM
as an example for bandwidth-
bound code
ccNUMA effects and how to
circumvent performance penalties
Simultaneous multithreading (SMT)

Summary: Node-level issues

LIKWID: Lightweight Performance Tools

23ISC12 Tutorial

Contribution

Lightweight command line tools for Linux
Help to face the challenges without getting in the way
Focus on X86 architecture
Philosophy:

Simple
Efficient
Portable
Extensible

Open source project (GPL v2):
http://code.google.com/p/likwid/

Performance programming on multicore-based systems

Scenario 1: Dealing with node topology and
thread affinity

likwid-topology
likwid-pin
likwid-mpirun

25ISC12 Tutorial

likwid-topology
Single source of node information

Node information is usually scattered in various places
likwid-topology provides all information in a single reliable
source
All information is based on cpuid directly
Features:

Thread topology

Cache topology

ccNUMA topology

Detailed cache parameters (-c command line switch)

Processor clock (measured)

ASCII art output (-g command line switch)

Performance programming on multicore-based systems

26

Usage: likwid-topology

CPU type: Intel Core Westmere processor

Sockets: 2
Cores per socket: 6
Threads per core: 2

HWThread Thread Core Socket
0 0 0 0
1 0 1 0
2 0 2 0

Socket 0: (0 12 1 13 2 14 3 15 4 16 5 17)
Socket 1: (6 18 7 19 8 20 9 21 10 22 11 23)

Cache Topology

Level: 3
Size: 12 MB
Type: Unified cache
Associativity: 16
Number of sets: 12288
Cache line size: 64
Non Inclusive cache
Shared among 12 threads
Cache groups: (0 12 1 13 2 14 3 15 4 16 5 17) (6 18 7 19 8

NUMA Topology
NUMA domains: 2

Domain 0:
Processors: 0 1 2 3 4 5 12 13 14 15 16 17
Memory: 11615.9 MB free of total 12276.3 MB

Domain 1:
Processors: 6 7 8 9 10 11 18 19 20 21 22 23
Memory: 12013.9 MB free of total 12288 MB

ISC12 Tutorial

+---+
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| | 0 12 | | 1 13 | | 2 14 | | 3 15 | | 4 16 | | 5 17 | |
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | |
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | |
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| +---+ |
| | 12MB | |
| +---+ |
+---+

+---+
| +-----+ +-----+ +-----+ +-----+ +-----+ +-----+ |
| | 0 | | 12 | | 1 | | 13 | | 2 | | 14 | |
| +-----+ +-----+ +-----+ +-----+ +-----+ +-----+ |
| +-----+ +-----+ +-----+ +-----+ +-----+ +-----+ |
| | 32kB| | 32kB| | 32kB| | 32kB| | 32kB| | 32kB| |
| +-----+ +-----+ +-----+ +-----+ +-----+ +-----+ |
| +-------------+ +-------------+ +-------------+ |
| | 3MB | | 3MB | | 3MB | |
| +-------------+ +-------------+ +-------------+ |
| +---+ |
| | 16MB | |
| +---+ |
+---+

Information can also be queried via API.

Performance programming on multicore-based systems

27ISC12 Tutorial

Example: STREAM benchmark on 12-core Intel Westmere:
Anarchy vs. thread pinning

No pinning

Pinning (physical cores first)

There are several reasons for caring about
affinity:

Eliminating performance variation

Making use of architectural features

Avoiding resource contention

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

Performance programming on multicore-based systems

28ISC12 Tutorial

Likwid-pin
Using logical core numbering

Core numbering may vary from system to system even with
identical hardware

likwid-topology delivers this information, which can then be fed into likwid-
pin

Alternatively, likwid-pin can abstract this variation and provide a
purely logical numbering (physical cores first)

Across all cores in the node (OMP_NUM_THREADS set automatically):
likwid-pin -c N:0-7 ./a.out

Across the cores in each socket and across sockets in each node:
likwid-pin -c S0:0-3@S1:0-3 ./a.out

Socket 0:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| | 0 1| | 2 3| | 4 5| | 6 7| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 32kB| | 32kB| | 32kB| | 32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| | 8MB | |
| +---------------------------------+ |
+-------------------------------------+

Socket 1:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| | 8 9| |10 11| |12 13| |14 15| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 32kB| | 32kB| | 32kB| | 32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| | 8MB | |
| +---------------------------------+ |
+-------------------------------------+

Socket 0:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| | 0 8| | 1 9| | 2 10| | 3 11| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 32kB| | 32kB| | 32kB| | 32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| | 8MB | |
| +---------------------------------+ |
+-------------------------------------+

Socket 1:
+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| | 4 12| | 5 13| | 6 14| | 7 15| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 32kB| | 32kB| | 32kB| | 32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| | 8MB | |
| +---------------------------------+ |
+-------------------------------------+

Performance programming on multicore-based systems

29

Likwid-pin
Using logical core numbering

Possible unit prefixes

N node

S socket

M NUMA domain

C outer level cache group

ISC12 Tutorial

Chipset

Memory

Default if –c is not
specified!

Performance programming on multicore-based systems

30

Likwid-pin
Using logical core numbering

… and: Logical numbering inside a pre-existing cpuset:

(OMP_NUM_THREADS=4) likwid-pin -c L:0-3 ./a.out

ISC12 Tutorial

0 21
3

Performance programming on multicore-based systems

31ISC12 Tutorial

likwid-pin

Pins process and threads to specific cores without touching code
Directly supports pthreads, gcc OpenMP, Intel OpenMP
Allows user to specify skip mask (hybrid OpenMP/MPI)
Can also be used as replacement for taskset

Supported usage modes:
Physical numbering: likwid-pin –c 0,2,5-8

Logical numbering (node): likwid-pin –c N:3-7

Logical numbering (socket): likwid-pin –c S0:0,2@S2:0-3

Logical numbering (NUMA): likwid-pin –c M0:1-3@M2:1-3

All logical numberings use physical cores first.

Performance programming on multicore-based systems

32

likwid-pin
Interleaving of memory pages

ISC12 Tutorial

Effective improvement without any code change possible
Memory policy is set to interleave with likwid-pin:

likwid-pin –c N:0-7 -i likwid-bench –g 2 –i 1000 –t
copy –w S0:500MB:4 –w S1:500MB:4-0:S0,1:S0

Bandwidth nearly doubled

Performance programming on multicore-based systems

33

likwid-mpirun
MPI startup and Hybrid pinning

In the long run a unified standard is needed
Till then, likwid-mpirun provides a portable/flexible solution
The examples here are for Intel MPI/OpenMP programs, but are
also applicable to other threading models

Pure MPI:
$ likwid-mpirun -np 16 -nperdomain S:2 ./a.out

Hybrid:
$ likwid-mpirun -np 16 -pin S0:0,1_S1:0,1 ./a.out

ISC12 Tutorial Performance programming on multicore-based systems

34

likwid-mpirun
1 MPI process per node

likwid-mpirun –np 2 -pin N:0-11 ./a.out

ISC12 Tutorial

Intel MPI+compiler:
OMP_NUM_THREADS=12 mpirun –ppn 1 –np 2 –env KMP_AFFINITY scatter ./a.out

Performance programming on multicore-based systems

35

likwid-mpirun
1 MPI process per socket

likwid-mpirun –np 4 –pin S0:0-5_S1:0-5 ./a.out

ISC12 Tutorial

Intel MPI+compiler:
OMP_NUM_THREADS=6 mpirun –ppn 2 –np 4 \

–env I_MPI_PIN_DOMAIN socket –env KMP_AFFINITY scatter ./a.out

Performance programming on multicore-based systems

36

likwid-mpirun
Integration of likwid-perfctr

ISC12 Tutorial

likwid-mpirun can optionally set up likwid-perfctr for you
$ likwid-mpirun –np 16 –nperdomain S:2 –perf FLOPS_DP \

-marker –mpi intelmpi ./a.out

likwid-mpirun generates an intermediate perl script which is called
by the native MPI start mechanism
According the MPI rank the script pins the process and threads

If you use perfctr after the run for each process a file in the format
Perf-<hostname>-<rank>.txt

Its output which contains the perfctr results.

In the future analysis scripts will be added which generate reports
of the raw data (e.g. as html pages)

Performance programming on multicore-based systems

Scenario 2: Hardware performance monitoring
and Node performance characteristics

likwid-perfctr
likwid-bench
likwid-powermeter

38ISC12 Tutorial

likwid-perfctr
Probing performance behavior

A coarse overview of hardware performance monitoring data is
often sufficient

likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on
Linux/Altix, “craypat” on Cray systems)
Simple end-to-end measurement of hardware performance metrics
Operating modes:

Wrapper
Stethoscope
Timeline
Marker API

Preconfigured and extensible
metric groups, list with
likwid-perfctr -a

BRANCH: Branch prediction miss rate/ratio
CACHE: Data cache miss rate/ratio
CLOCK: Clock of cores
DATA: Load to store ratio
FLOPS_DP: Double Precision MFlops/s
FLOPS_SP: Single Precision MFlops/s
FLOPS_X87: X87 MFlops/s
L2: L2 cache bandwidth in MBytes/s
L2CACHE: L2 cache miss rate/ratio
L3: L3 cache bandwidth in MBytes/s
L3CACHE: L3 cache miss rate/ratio
MEM: Main memory bandwidth in MBytes/s
TLB: TLB miss rate/ratio

Performance programming on multicore-based systems

39ISC12 Tutorial

likwid-perfctr
Example usage for Wrapper mode

$ env OMP_NUM_THREADS=4 likwid-perfctr -C N:0-3 –t intel -g FLOPS_DP ./stream.exe

CPU type: Intel Core Lynnfield processor
CPU clock: 2.93 GHz

Measuring group FLOPS_DP

YOUR PROGRAM OUTPUT
+--------------------------------------+-------------+-------------+-------------+-------------+
| Event | core 0 | core 1 | core 2 | core 3 |
+--------------------------------------+-------------+-------------+-------------+-------------+
INSTR_RETIRED_ANY	1.97463e+08	2.31001e+08	2.30963e+08	2.31885e+08
CPU_CLK_UNHALTED_CORE	9.56999e+08	9.58401e+08	9.58637e+08	9.57338e+08
FP_COMP_OPS_EXE_SSE_FP_PACKED	4.00294e+07	3.08927e+07	3.08866e+07	3.08904e+07
FP_COMP_OPS_EXE_SSE_FP_SCALAR	882	0	0	0
FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION	0	0	0	0
FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION	4.00303e+07	3.08927e+07	3.08866e+07	3.08904e+07
+--------------------------------------+-------------+-------------+-------------+-------------+				
+--------------------------+------------+---------+----------+----------+				
Metric	core 0	core 1	core 2	core 3
+--------------------------+------------+---------+----------+----------+				
Runtime [s]	0.326242	0.32672	0.326801	0.326358
CPI	4.84647	4.14891	4.15061	4.12849
DP MFlops/s (DP assumed)	245.399	189.108	189.024	189.304
Packed MUOPS/s	122.698	94.554	94.5121	94.6519
Scalar MUOPS/s	0.00270351	0	0	0
SP MUOPS/s	0	0	0	0
DP MUOPS/s	122.701	94.554	94.5121	94.6519
+--------------------------+------------+---------+----------+----------+

Always
measured

Derived
metrics

Configured metrics
(this group)

Performance programming on multicore-based systems

40

likwid-perfctr measures what happens on the cores; no
connection to the running binary/ies exists

This allows to listen on what currently happens without any
overhead:

$ likwid-perfctr –c N:0-11 –g FLOPS_DP -s 10

It can be used as cluster/server monitoring tool
A frequent use is to measure a certain part of a long running
parallel application from outside

ISC12 Tutorial

likwid-perfctr
Stethoscope mode

Performance programming on multicore-based systems

41

likwid-perfctr
Timeline mode

likwid-perfctr supports time resolved measurements of full node:
$ likwid-perfctr –c N:0-11 -g MEM –d 50ms > out.txt

ISC12 Tutorial Performance programming on multicore-based systems

42

likwid-perfctr
Marker API

To measure only parts of an application a marker API is available.
The API only turns counters on/off. The configuration of the
counters is still done by likwid-perfctr application.
Multiple named regions can be measured
Results on multiple calls are accumulated
Inclusive and overlapping Regions are allowed

ISC12 Tutorial

likwid_markerInit(); // must be called from serial region

likwid_markerStartRegion(“Compute”);
. . .
likwid_markerStopRegion(“Compute”);

likwid_markerStartRegion(“postprocess”);
. . .
likwid_markerStopRegion(“postprocess”);

likwid_markerClose(); // must be called from serial region

Performance programming on multicore-based systems

43

likwid-perfctr
Group files
SHORT PSTI
EVENTSET
FIXC0 INSTR_RETIRED_ANY
FIXC1 CPU_CLK_UNHALTED_CORE
FIXC2 CPU_CLK_UNHALTED_REF
PMC0 FP_COMP_OPS_EXE_SSE_FP_PACKED
PMC1 FP_COMP_OPS_EXE_SSE_FP_SCALAR
PMC2 FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION
PMC3 FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION
UPMC0 UNC_QMC_NORMAL_READS_ANY
UPMC1 UNC_QMC_WRITES_FULL_ANY
UPMC2 UNC_QHL_REQUESTS_REMOTE_READS
UPMC3 UNC_QHL_REQUESTS_LOCAL_READS
METRICS
Runtime [s] FIXC1*inverseClock
CPI FIXC1/FIXC0
Clock [MHz] 1.E-06*(FIXC1/FIXC2)/inverseClock
DP MFlops/s (DP assumed) 1.0E-06*(PMC0*2.0+PMC1)/time
Packed MUOPS/s 1.0E-06*PMC0/time
Scalar MUOPS/s 1.0E-06*PMC1/time
SP MUOPS/s 1.0E-06*PMC2/time
DP MUOPS/s 1.0E-06*PMC3/time
Memory bandwidth [MBytes/s] 1.0E-06*(UPMC0+UPMC1)*64/time;
Remote Read BW [MBytes/s] 1.0E-06*(UPMC2)*64/time;
LONG
Formula:
DP MFlops/s = (FP_COMP_OPS_EXE_SSE_FP_PACKED*2 + FP_COMP_OPS_EXE_SSE_FP_SCALAR)/ runtime.

ISC12 Tutorial

• Groups are architecture specific
• They are defined in simple text files
• During recompile the code is generated
• likwid-perfctr -a outputs list of groups
• For every group an extensive
documentation is available

Performance programming on multicore-based systems

44

likwid-perfctr
Output filters

Likwid supports to specify an output file with placeholder for:
%j - PBS_JOBID taken from environment
%r - MPI Rank as specified by newer Intel MPI versions
%h - hostname
%p - process id

Example:
likwid-perfctr -C L:0 -g FLOPS_DP -o test_%h_%p.txt ./a.out

Depending on the file suffix an optional converter script is called:
txt Direct output without conversion
csv Convert to comma separated values format
xml Convert to xml format

Useful for integration in other tool chains or automated frameworks.

ISC12 Tutorial Performance programming on multicore-based systems

45

likwid-perfctr
More information

Implemented completely in user space (uses msr kernel module)
For security-sensitive environments a small proxy application
managing a controlled access to the msr device files is available
Supported processors:

Intel Core 2
Intel Nehalem /Westmere (all variants) supporting Uncore events
Intel NehalemEX/WestmereEX (with Uncore)
Intel Sandy Bridge (without Uncore)
AMD K8/K10
AMD Interlagos

likwid-perfctr allows to specify arbitrary event sets on the
command line:

$ likwid-perfctr –c N:0-11 –g
INSTR_RETIRED_ANY:FIXC0,CPU_CLK_UNHALTED_CORE:FIXC1,\
FP_COMP_OPS_EXE_SSE_FP_PACKED:PMC0,\
UNC_L3_LINES_IN_ANY:UPMC0 -s 10

ISC12 Tutorial Performance programming on multicore-based systems

46

likwid-perfctr
Usage with MPI

likwid-perfctr can be used with MPI if processes are pinned
For hybrid usage you can pin logically inside a cpuset
To distinguish the output it can be written to separate files

$ likwid-perfctr –C L:0 –g FLOPS_DP –o myTag_%r_%h ./app

There are efforts to add likwid support in Scalasca (and Vampir ?)
likwid-mpirun provides integrates perfctr support

ISC12 Tutorial Performance programming on multicore-based systems

47

likwid-bench
Microbenchmarking application/platform

To know the performance properties of a machine is essential
for any optimization effort
Microbenchmarking is an important method to gain this
information

Extensible, flexible benchmarking framework
Rapid development of low-level kernels
Already includes many ready to use threaded benchmark
kernels

Benchmarking runtime cares for:
Thread management and placement
Data allocation and NUMA-aware initialization
Timing and result presentation

ISC12 Tutorial Performance programming on multicore-based systems

48

likwid-bench Example

Implement micro benchmark in abstract assembly
Add meta information
The benchmark file is automatically converted, compiled
and added to the benchmark application

STREAMS 2
TYPE DOUBLE
FLOPS 0
BYTES 16
LOOP 32
movaps FPR1, [STR0 + GPR1 * 8]
movaps FPR2, [STR0 + GPR1 * 8 + 64]
movaps FPR3, [STR0 + GPR1 * 8 + 128]
movaps FPR4, [STR0 + GPR1 * 8 + 192]
movaps [STR1 + GPR1 * 8], FPR1
movaps [STR1 + GPR1 * 8 + 64], FPR2
movaps [STR1 + GPR1 * 8 + 128], FPR3
movaps [STR1 + GPR1 * 8 + 192], FPR4

$likwid-bench –t clcopy –g 1 –i 1000 –w S0:1MB:2
$likwid-bench –t load –g 2 –i 100 –w S1:1GB –w S0:1GB-0:S1,1:S0

ISC12 Tutorial Performance programming on multicore-based systems

49

Measuring node bandwidths 1

ISC12 Tutorial

1 thread group on socket 0

likwid-bench –g 1 –i 50 –t copy –w S0:1GB:6

Performance programming on multicore-based systems

50

Detecting NUMA problems 4

ISC12 Tutorial

1 thread group with 6 threads on socket 0
Memory placed on socket 1

likwid-bench –g 1 –i 50 –t copy –w S0:1GB:6-0:S1,1:S1

Performance programming on multicore-based systems

51

Measuring energy consumption
likwid-powermeter

Implements Intel RAPL interface (Sandy Bridge)
RAPL (Running average power limit)

CPU name: Intel Core SandyBridge processor
CPU clock: 3.49 GHz

Base clock: 3500.00 MHz
Minimal clock: 1600.00 MHz
Turbo Boost Steps:
C1 3900.00 MHz
C2 3800.00 MHz
C3 3700.00 MHz
C4 3600.00 MHz

Thermal Spec Power: 95 Watts
Minimum Power: 20 Watts
Maximum Power: 95 Watts
Maximum Time Window: 0.15625 micro sec

ISC12 Tutorial Performance programming on multicore-based systems

52

Likwid-perfctr example
RAPL Integration

$ likwid-perfctr -c S1:0-3 -g ENERGY -m likwid-bench \
-g 1 -i 50 -t stream_avx -w S1:1GB:4

Shortened output:
+-------------------+---------+---------+---------+---------+
| Metric | core 8 | core 9 | core 10 | core 11 |
+-------------------+---------+---------+---------+---------+
Runtime [s]	2.39535	2.39481	2.39494	2.39493
Runtime rdtsc [s]	2.03051	2.03051	2.03051	2.03051
Clock [MHz]	3192.14	3192.13	3192.14	3192.12
CPI	10.0977	10.1713	10.2047	10.2526
Energy [J]	146	0	0	0
Power [W]	71.9031	0	0	0
+-------------------+---------+---------+---------+---------+

ISC12 Tutorial Performance programming on multicore-based systems

53

Live demo:

LIKWID tools

ISC12 Tutorial Performance programming on multicore-based systems

54ISC12 Tutorial Performance programming on multicore-based systems

Tutorial outline (1)

Introduction
Architecture of multisocket
multicore systems
Nomenclature
Current developments
Programming models

Multicore performance tools
Finding out about system topology
Affinity enforcement
Performance counter
measurements

Online demo: likwid tools
topology
pin
Monitoring the binding
perfctr basics and best practices

Impact of processor/node
topology on performance

Microbenchmarking with simple
parallel loops
Bandwidth saturation effects in
cache and memory
Case study: OpenMP sparse MVM
as an example for bandwidth-
bound code
ccNUMA effects and how to
circumvent performance penalties
Simultaneous multithreading (SMT)

Summary: Node-level issues

General remarks on the performance
properties of multicore multisocket
systems

56

Parallelism in modern computer systems

Parallel and shared resources within a shared-memory node

GPU #1

GPU #2
PCIe link

Parallel resources:
Execution/SIMD units
Cores
Inner cache levels
Sockets / memory domains
Multiple accelerators

Shared resources:
Outer cache level per socket
Memory bus per socket
Intersocket link
PCIe bus(es)
Other I/O resources

Other I/O

1
2

3
4 5

1
2

3
4

5

6

6

7

7

8

8

9

9

10

10

How does your application react to all of those details?

ISC12 Tutorial Performance programming on multicore-based systems

57ISC12 Tutorial Performance programming on multicore-based systems

The parallel vector triad benchmark
A “swiss army knife” for microbenchmarking

Simple streaming benchmark:

Report performance for different N
Choose NITER so that accurate time measurement is possible
This kernel is limited by data transfer performance for all memory
levels on all current architectures!

double precision, dimension(N) :: A,B,C,D
A=1.d0; B=A; C=A; D=A

do j=1,NITER
do i=1,N

A(i) = B(i) + C(i) * D(i)
enddo
if(.something.that.is.never.true.) then

call dummy(A,B,C,D)
endif

enddo

Prevents smarty-pants
compilers from doing
“clever” stuff

58ISC12 Tutorial Performance programming on multicore-based systems

The parallel vector triad benchmark
Optimal code on x86 machines

timing(&wct_start, &cput_start);

 for(j=0; j<niter; j++){
 if(size > CACHE_SIZE>>5) {
#pragma omp parallel for
#pragma vector always
#pragma vector aligned
#pragma vector nontemporal
 for(i=0; i<size; ++i)
 a[i]=b[i]+c[i]*d[i];
 } else {
#pragma omp parallel for
#pragma vector always
#pragma vector aligned
 for(i=0; i<size; ++i)
 a[i]=b[i]+c[i]*d[i];
 }
 if(a[5]<0.0)
 cout << a[3] << b[5] << c[10] << d[6];
 }

timing(&wct_end, &cput_end);

Large-N version (NT)

Small-N version
(noNT)

// size = multiple of 8
int vector_size(int n){

return int(pow(1.3,n))&(-8);
}

#pragma omp parallel private(j)
{

}

59ISC12 Tutorial Performance programming on multicore-based systems

The parallel vector triad benchmark
Single thread on Interlagos node

OMP overhead
and/or lower
optimization w/
OpenMP active

L1 cache L2 cache memoryL3 cache

Team restart is
expensive!

use only
outer parallel
from now on!

60ISC12 Tutorial Performance programming on multicore-based systems

The parallel vector triad benchmark
Intra-chip scaling on Interlagos node

L2
bottleneck

Aggregate
L2, exclusive
L3

sync
overhead

Memory BW
saturated @
4 threads

Per-module
L2 caches

61ISC12 Tutorial Performance programming on multicore-based systems

The parallel vector triad benchmark
Nontemporal stores on Interlagos node

slow L3

NT stores
hazardous if data

in cache

25% speedup for
vector triad in
memory via NT
stores

62ISC12 Tutorial Performance programming on multicore-based systems

The parallel vector triad benchmark
Topology dependence on Interlagos node

sync overhead nearly
topology-independent
@ constant thread count

more aggregate
L3 with more

chips
bandwidth
scalability across
memory
interfaces

63ISC12 Tutorial Performance programming on multicore-based systems

The parallel vector triad benchmark
Inter-chip scaling on Interlagos node

sync overhead grows
with core/chip count

bandwidth
scalability across
memory
interfaces

Bandwidth saturation effects in cache and
memory

Low-level benchmark results

65ISC12 Tutorial Performance programming on multicore-based systems

Bandwidth limitations: Main Memory
Scalability of shared data paths inside NUMA domain (A(:)=B(:))

1 thread cannot
saturate bandwidth

Saturation with
3 threads

Saturation with
2 threads

Saturation with
4 threads

66ISC12 Tutorial Performance programming on multicore-based systems

Bandwidth limitations: Outer-level cache
Scalability of shared data paths in L3 cache

Case study:
OpenMP-parallel sparse matrix-vector
multiplication in depth

A simple (but sometimes not-so-simple)
example for bandwidth-bound code and
saturation effects in memory

68ISC12 Tutorial Performance programming on multicore-based systems

Case study: Sparse matrix-vector multiply

Important kernel in many applications (matrix diagonalization,
solving linear systems)
Strongly memory-bound for large data sets

Streaming, with partially indirect access:

Usually many spMVMs required to solve a problem

Following slides: Performance data on one 24-core AMD Magny
Cours node

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1
c(i) = c(i) + val(j) * b(col_idx(j))
enddo
enddo

!$OMP parallel do

!$OMP end parallel do

69ISC12 Tutorial Performance programming on multicore-based systems

Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

Case 1: Large matrix

Intrasocket
bandwidth
bottleneck Good scaling

across sockets

70ISC12 Tutorial Performance programming on multicore-based systems

Case 2: Medium size

Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

Intrasocket
bandwidth
bottleneck

Working set fits
in aggregate

cache

71ISC12 Tutorial Performance programming on multicore-based systems

Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

Case 3: Small size

No bandwidth
bottleneck

Parallelization
overhead

dominates

72

Bandwidth-bound parallel algorithms:
Sparse MVM

Data storage format is crucial for performance properties
Most useful general format: Compressed Row Storage (CRS)
SpMVM is easily parallelizable in shared and distributed memory

For large problems, spMVM is
inevitably memory-bound

Intra-LD saturation effect
on modern multicores

MPI-parallel spMVM is often
communication-bound

See hybrid part for what we
can do about this…

ISC12 Tutorial Performance programming on multicore-based systems

73

SpMVM node performance model

Double precision CRS:

DP CRS code balance
κ quantifies extra traffic
for loading RHS more than
once
Predicted Performance = streamBW/BCRS

Determine κ by measuring performance and actual memory BW

8 8 8 48

8

ISC12 Tutorial Performance programming on multicore-based systems

G. Schubert, G. Hager, H. Fehske and G. Wellein: Parallel sparse matrix-vector multiplication as a test case
for hybrid MPI+OpenMP programming. Workshop on Large-Scale Parallel Processing (LSPP 2011), May 20th,
2011, Anchorage, AK. Preprint: arXiv:1101.0091

74

Test matrices: Sparsity patterns

Analysis for HMeP matrix (Nnzr ≈15) on Nehalem EP socket
BW used by spMVM kernel = 18.1 GB/s should get ≈ 2.66 Gflop/s
spMVM performance
Measured spMVM performance = 2.25 Gflop/s
Solve 2.25 Gflop/s = BW/BCRS for κ ≈ 2.5

37.5 extra bytes per row
RHS is loaded ≈6 times from memory, but each element is used Nnzr ≈15
times
about 25% of BW goes into RHS

Special formats that exploit features of the sparsity pattern are not
considered here

Symmetry
Dense blocks
Subdiagonals (possibly w/ constant entries)

ISC12 Tutorial Performance programming on multicore-based systems

75

Test systems

Intel Westmere EP (Xeon 5650)
STREAM triad BW:
20.6 GB/s per domain
QDR InfiniBand fully nonblocking fat-tree
interconnect

AMD Magny Cours
(Opteron 6172)
STREAM triad BW:
12.8 GB/s per domain
Cray Gemini
interconnect

ISC12 Tutorial Performance programming on multicore-based systems

76

Node-level performance for HMeP: Westmere EP
(Xeon 5650) vs. Cray XE6 Magny Cours (Opteron 6172)

Cores useless for
computation!

ISC12 Tutorial Performance programming on multicore-based systems

Good scaling
across NUMA
domains

77

OpenMP sparse MVM:
Take-home messages

Yes, sparse MVM is usually memory-bound

This statement is insufficient for a full understanding of what’s
going on

Nonzeros (matrix data) may not take up 100% of bandwidth
We can figure out easily how often the RHS has to be loaded

A lot of research is put into bandwidth reduction optimizations for
sparse MVM

Symmetries, dense subblocks, subdiagonals,…

Bandwidth saturation using all cores may not be required
There are free resources – what can we do with them?

Turn off/reduce clock frequency
Put to better use see hybrid case studies

ISC12 Tutorial Performance programming on multicore-based systems

Efficient parallel programming
on ccNUMA nodes

Performance characteristics of ccNUMA nodes
First touch placement policy
C++ issues
ccNUMA locality and dynamic scheduling
ccNUMA locality beyond first touch

79ISC12 Tutorial Performance programming on multicore-based systems

ccNUMA performance problems
“The other affinity” to care about

ccNUMA:
Whole memory is transparently accessible by all processors
but physically distributed
with varying bandwidth and latency
and potential contention (shared memory paths)

How do we make sure that memory access is always as "local"
and "distributed" as possible?

Page placement is implemented in units of OS pages (often 4kB, possibly
more)

C C C C

M M

C C C C

M M

80ISC12 Tutorial Performance programming on multicore-based systems

Intel Nehalem EX 4-socket system
ccNUMA bandwidth map

Bandwidth map created with likwid-bench. All cores used in one
NUMA domain, memory is placed in a different NUMA domain.
Test case: simple copy A(:)=B(:), large arrays

81ISC12 Tutorial Performance programming on multicore-based systems

AMD Magny Cours 2-socket system
4 chips, two sockets

82ISC12 Tutorial Performance programming on multicore-based systems

AMD Magny Cours 4-socket system
Topology at its best?

83ISC12 Tutorial Performance programming on multicore-based systems

ccNUMA locality tool numactl:
How do we enforce some locality of access?
numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out # map pages only on <nodes>
--preferred=<node> a.out # map pages on <node>

and others if <node> is full
--interleave=<nodes> a.out # map pages round robin across

all <nodes>

Examples:

env OMP_NUM_THREADS=2 numactl --membind=0 –cpunodebind=1 ./stream

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \
likwid-pin -c N:0,4,8,12 ./stream

But what is the default without numactl?

84ISC12 Tutorial Performance programming on multicore-based systems

ccNUMA default memory locality

"Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the
processor that first touches it!

Except if there is not enough local memory available
This might be a problem, see later

Caveat: "touch" means "write", not "allocate"
Example:

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE
huge[i] = 0.0;

It is sufficient to touch a single item to map the entire page

Memory not
mapped here yet

Mapping takes
place here

85ISC12 Tutorial Performance programming on multicore-based systems

Coding for Data Locality

The programmer must ensure that memory pages get mapped
locally in the first place (and then prevent migration)

Rigorously apply the "Golden Rule"
I.e. we have to take a closer look at initialization code

Some non-locality at domain boundaries may be unavoidable
Stack data may be another matter altogether:

void f(int s) { // called many times with different s
double a[s]; // c99 feature
// where are the physical pages of a[] now???
…

}

Fine-tuning is possible (see later)

Prerequisite: Keep threads/processes where they are
Affinity enforcement (pinning) is key (see earlier section)

86ISC12 Tutorial Performance programming on multicore-based systems

Coding for ccNUMA data locality

integer,parameter :: N=10000000
double precision A(N), B(N)

A=0.d0

!$OMP parallel do
do i = 1, N

B(i) = function (A(i))
end do
!$OMP end parallel do

integer,parameter :: N=10000000
double precision A(N),B(N)
!$OMP parallel
!$OMP do schedule(static)
do i = 1, N

A(i)=0.d0
end do
!$OMP end do
...
!$OMP do schedule(static)
do i = 1, N

B(i) = function (A(i))
end do
!$OMP end do
!$OMP end parallel

Most simple case: explicit initialization

87ISC12 Tutorial Performance programming on multicore-based systems

Coding for ccNUMA data locality

integer,parameter :: N=10000000
double precision A(N), B(N)

READ(1000) A

!$OMP parallel do
do i = 1, N

B(i) = function (A(i))
end do
!$OMP end parallel do

integer,parameter :: N=10000000
double precision A(N),B(N)
!$OMP parallel
!$OMP do schedule(static)
do i = 1, N

A(i)=0.d0
end do
!$OMP end do
!$OMP single
READ(1000) A
!$OMP end single
!$OMP do schedule(static)
do i = 1, N

B(i) = function (A(i))
end do
!$OMP end do
!$OMP end parallel

Sometimes initialization is not so obvious: I/O cannot be easily
parallelized, so “localize” arrays before I/O

88ISC12 Tutorial Performance programming on multicore-based systems

Coding for Data Locality

Required condition: OpenMP loop schedule of initialization must
be the same as in all computational loops

Best choice: static! Specify explicitly on all NUMA-sensitive loops, just to
be sure…
Imposes some constraints on possible optimizations (e.g. load balancing)
Presupposes that all worksharing loops with the same loop length have the
same thread-chunk mapping

Guaranteed by OpenMP 3.0 only for loops in the same enclosing parallel region
In practice, it works with any compiler even across regions

If dynamic scheduling/tasking is unavoidable, more advanced methods may
be in order

How about global objects?
Better not use them
If communication vs. computation is favorable, might consider properly
placed copies of global data
In C++, STL allocators provide an elegant solution (see hidden slides)

89ISC12 Tutorial Performance programming on multicore-based systems

Coding for Data Locality:
Placement of static arrays or arrays of objects

Speaking of C++: Don't forget that constructors tend to touch the
data members of an object. Example:

class D {
double d;

public:
D(double _d=0.0) throw() : d(_d) {}
inline D operator+(const D& o) throw() {
return D(d+o.d);

}
inline D operator*(const D& o) throw() {
return D(d*o.d);

}
...
};

→ placement problem with
D* array = new D[1000000];

90ISC12 Tutorial Performance programming on multicore-based systems

Coding for Data Locality:
Parallel first touch for arrays of objects

Solution: Provide overloaded new operator or special function that places
the memory before constructors are called (PAGE_BITS = base-2 log of
pagesize)

template <class T> T* pnew(size_t n) {
size_t st = sizeof(T);
int ofs,len=n*st;
int i,pages = len >> PAGE_BITS;
char *p = new char[len];

#pragma omp parallel for schedule(static) private(ofs)
for(i=0; i<pages; ++i) {
ofs = static_cast<size_t>(i) << PAGE_BITS;
p[ofs]=0;

}
#pragma omp parallel for schedule(static) private(ofs)

for(ofs=0; ofs<n; ++ofs) {
new(static_cast<void*>(p+ofs*st)) T;

}
return static_cast<T*>(m);

}

placement
new!

parallel first touch

91ISC12 Tutorial Performance programming on multicore-based systems

Coding for Data Locality:
NUMA allocator for parallel first touch in std::vector<>

template <class T> class NUMA_Allocator {
public:
T* allocate(size_type numObjects, const void

*localityHint=0) {
size_type ofs,len = numObjects * sizeof(T);
void *m = malloc(len);
char *p = static_cast<char*>(m);
int i,pages = len >> PAGE_BITS;

#pragma omp parallel for schedule(static) private(ofs)
for(i=0; i<pages; ++i) {
ofs = static_cast<size_t>(i) << PAGE_BITS;
p[ofs]=0;

}
return static_cast<pointer>(m);

}
...
}; Application:

vector<double,NUMA_Allocator<double> > x(1000000)

92ISC12 Tutorial Performance programming on multicore-based systems

Memory Locality Problems

Locality of reference is key to scalable performance on ccNUMA
Less of a problem with distributed memory (MPI) programming, but see below

What factors can destroy locality?

MPI programming:
Processes lose their association with the
CPU the mapping took place on originally
OS kernel tries to maintain strong affinity, but
sometimes fails

Shared Memory Programming
(OpenMP,…):

Threads losing association with the CPU the
mapping took place on originally
Improper initialization of distributed data

All cases:
Other agents (e.g., OS kernel) may fill
memory with data that prevents optimal
placement of user data

Memory

P
C
C

P
C
C

P
C
C

MI

P
C
C

P
C
C

P
C
C

C

Memory

P
C
C

P
C
C

P
C
C

MI

P
C
C

P
C
C

P
C
C

C

93ISC12 Tutorial Performance programming on multicore-based systems

Diagnosing Bad Locality

If your code is cache-bound, you might not notice any locality
problems

Otherwise, bad locality limits scalability at very low CPU numbers
(whenever a node boundary is crossed)

If the code makes good use of the memory interface
But there may also be a general problem in your code…

Consider using performance counters
LIKWID-perfCtr can be used to measure nonlocal memory accesses
Example for Intel Nehalem (Core i7):

env OMP_NUM_THREADS=8 likwid-perfCtr -g MEM –c 0-7 \
likwid-pin -t intel -c 0-7 ./a.out

94ISC12 Tutorial Performance programming on multicore-based systems

Using performance counters for diagnosing bad ccNUMA
access locality

Intel Nehalem EP node:

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------
| Event | core 0 | core 1 | core 2 | core 3 | core 4 | core 5
+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------
| INSTR_RETIRED_ANY | 5.20725e+08 | 5.24793e+08 | 5.21547e+08 | 5.23717e+08 | 5.28269e+08 | 5.29083e+08
| CPU_CLK_UNHALTED_CORE | 1.90447e+09 | 1.90599e+09 | 1.90619e+09 | 1.90673e+09 | 1.90583e+09 | 1.90746e+09
| UNC_QMC_NORMAL_READS_ANY | 8.17606e+07 | 0 | 0 | 0 | 8.07797e+07 | 0
| UNC_QMC_WRITES_FULL_ANY | 5.53837e+07 | 0 | 0 | 0 | 5.51052e+07 | 0
| UNC_QHL_REQUESTS_REMOTE_READS | 6.84504e+07 | 0 | 0 | 0 | 6.8107e+07 | 0
| UNC_QHL_REQUESTS_LOCAL_READS | 6.82751e+07 | 0 | 0 | 0 | 6.76274e+07 | 0
+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------
RDTSC timing: 0.827196 s
+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+
| Metric | core 0 | core 1 | core 2 | core 3 | core 4 | core 5 | core 6 | core 7 |
+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+
Runtime [s]	0.714167	0.714733	0.71481	0.715013	0.714673	0.715286	0.71486	0.71515
CPI	3.65735	3.63188	3.65488	3.64076	3.60768	3.60521	3.59613	3.60184
Memory bandwidth [MBytes/s]	10610.8	0	0	0	10513.4	0	0	0
Remote Read BW [MBytes/s]	5296	0	0	0	5269.43	0	0	0
+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+

Uncore events only
counted once per socket

Half of read BW comes
from other socket!

95ISC12 Tutorial Performance programming on multicore-based systems

ccNUMA placement and erratic access patterns

Sometimes access patterns are
just not nicely grouped into
contiguous chunks:

In both cases page placement cannot easily be fixed for perfect parallel
access

double precision :: r, a(M)
!$OMP parallel do private(r)
do i=1,N

call RANDOM_NUMBER(r)
ind = int(r * M) + 1
res(i) = res(i) + a(ind)

enddo
!OMP end parallel do

Or you have to use tasking/dynamic
scheduling:

!$OMP parallel
!$OMP single
do i=1,N

call RANDOM_NUMBER(r)
if(r.le.0.5d0) then

!$OMP task
call do_work_with(p(i))

!$OMP end task
endif

enddo
!$OMP end single
!$OMP end parallel

96ISC12 Tutorial Performance programming on multicore-based systems

ccNUMA placement and erratic access patterns

Worth a try: Interleave memory across ccNUMA domains to get at least
some parallel access
1. Explicit placement:

2. Using global control via numactl:

numactl --interleave=0-3 ./a.out

Fine-grained program-controlled placement via libnuma (Linux)
using, e.g., numa_alloc_interleaved_subset(),
numa_alloc_interleaved() and others

!$OMP parallel do schedule(static,512)
do i=1,M

a(i) = …
enddo
!$OMP end parallel do

This is for all memory, not
just the problematic

arrays!

Observe page alignment of
array to get proper

placement!

97

The curse and blessing of interleaved placement:
OpenMP STREAM triad on 4-socket (48 core) Magny Cours node

Parallel init: Correct parallel initialization
LD0: Force data into LD0 via numactl –m 0
Interleaved: numactl --interleave <LD range>

ISC12 Tutorial Performance programming on multicore-based systems

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8

parallel init LD0 interleaved

NUMA domains (6 threads per domain)

B
an

dw
id

th
 [M

by
te

/s
]

98ISC12 Tutorial Performance programming on multicore-based systems

If all fails…

Even if all placement rules have been carefully observed, you may
still see nonlocal memory traffic. Reasons?

Program has erratic access patters may still achieve some access
parallelism (see later)
OS has filled memory with buffer cache data:

numactl --hardware # idle node!
available: 2 nodes (0-1)
node 0 size: 2047 MB
node 0 free: 906 MB
node 1 size: 1935 MB
node 1 free: 1798 MB

top - 14:18:25 up 92 days, 6:07, 2 users, load average: 0.00, 0.02, 0.00
Mem: 4065564k total, 1149400k used, 2716164k free, 43388k buffers
Swap: 2104504k total, 2656k used, 2101848k free, 1038412k cached

99ISC12 Tutorial Performance programming on multicore-based systems

ccNUMA problems beyond first touch:
Buffer cache

OS uses part of main memory for
disk buffer (FS) cache

If FS cache fills part of memory,
apps will probably allocate from
foreign domains

non-local access!
“sync” is not sufficient to
drop buffer cache blocks

Remedies
Drop FS cache pages after user job has run (admin’s job)
User can run “sweeper” code that allocates and touches all physical
memory before starting the real application
numactl tool can force local allocation (where applicable)
Linux: There is no way to limit the buffer cache size in standard kernels

P1
C

P2
C

C C

MI

P3
C

P4
C

C C

MI

BC

data(3)

BC

data(3)
data(1)

100ISC12 Tutorial Performance programming on multicore-based systems

ccNUMA problems beyond first touch:
Buffer cache

Real-world example: ccNUMA vs. UMA and the Linux buffer cache
Compare two 4-way systems: AMD Opteron ccNUMA vs. Intel UMA, 4 GB
main memory

Run 4 concurrent
triads (512 MB each)
after writing a large
file

Report perfor-
mance vs. file size

Drop FS cache after
each data point

OpenMP performance issues
on multicore

Synchronization (barrier) overhead
Work distribution overhead

102ISC12 Tutorial Performance programming on multicore-based systems

Welcome to the multi-/many-core era
Synchronization of threads may be expensive!
!$OMP PARALLEL …
…
!$OMP BARRIER
!$OMP DO
…
!$OMP ENDDO
!$OMP END PARALLEL

On x86 systems there is no hardware support for synchronization.
Tested synchronization constructs:

OpenMP Barrier
pthreads Barrier
Spin waiting loop software solution

Test machines (Linux OS):
Intel Core 2 Quad Q9550 (2.83 GHz)
Intel Core i7 920 (2.66 GHz)

Threads are synchronized at explicit AND
implicit barriers. These are a main source of
overhead in OpenMP progams.

Determine costs via modified OpenMP
Microbenchmarks testcase (epcc)

103ISC12 Tutorial Performance programming on multicore-based systems

Thread synchronization overhead
Barrier overhead in CPU cycles: pthreads vs. OpenMP vs. spin loop

4 Threads Q9550 i7 920 (shared L3)
pthreads_barrier_wait 42533 9820
omp barrier (icc 11.0) 977 814
gcc 4.4.3 41154 8075
Spin loop 1106 475

pthreads OS kernel call
Spin loop does fine for shared cache sync

OpenMP & Intel compiler

P
C

P
C

C

P
C

P
C

C

P
C

P
C

C C

P
C

P
C

C C
C

Nehalem 2 Threads Shared SMT
threads

shared L3 different socket

pthreads_barrier_wait 23352 4796 49237
omp barrier (icc 11.0) 2761 479 1206
Spin loop 17388 267 787P C

P C
C

C

P C
P C

C
C

C

P C
P C

C
C

P C
P C

C
C

C

M
em

or
y

M
em

or
y

SMT can be a big performance problem for synchronizing threads

104ISC12 Tutorial Performance programming on multicore-based systems

Work distribution overhead
Influence of thread-core affinity

Overhead microbenchmark:

Choose N large so
that synchronization
overhead is negligible
compute() implements
purely computational
workload

no bandwidth
effects

Run with 2 threads

!$OMP PARALLEL DO SCHEDULE(RUNTIME) REDUCTION(+:s)
do i=1,N
s = s + compute(i)

enddo
!$OMP END PARALLEL DO

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

Simultaneous multithreading (SMT)

Principles and performance impact
SMT vs. independent instruction streams
Facts and fiction

106ISC12 Tutorial Performance programming on multicore-based systems

SMT Makes a single physical core appear as two or more
“logical” cores multiple threads/processes run concurrently

SMT principle (2-way example):
St

an
da

rd
 c

or
e

2-
w

ay
 S

M
T

107ISC12 Tutorial Performance programming on multicore-based systems

SMT impact

SMT is primarily suited for increasing processor throughput
With multiple threads/processes running concurrently

Scientific codes tend to utilize chip resources quite well
Standard optimizations (loop fusion, blocking, …)
High data and instruction-level parallelism
Exceptions do exist

SMT is an important topology issue
SMT threads share almost all core
resources

Pipelines, caches, data paths
Affinity matters!
If SMT is not needed

pin threads to physical cores
or switch it off via BIOS etc.

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

108ISC12 Tutorial Performance programming on multicore-based systems

SMT impact

SMT adds another layer of topology
(inside the physical core)
Caveat: SMT threads share all caches!
Possible benefit: Better pipeline throughput

Filling otherwise unused pipelines
Filling pipeline bubbles with other thread’s executing instructions:

Beware: Executing it all in a single thread
(if possible) may reach the same goal
without SMT:

Thread 0:
do i=2,N
a(i) = a(i-1)*c

enddo

Dependency pipeline
stalls until previous MULT

is over

Westmere EP

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

Thread 1:
do i=2,N
b(i) = b(i-1)*d+s

enddo

Unrelated work in other
thread can fill the pipeline

bubbles

do i=2,N
a(i) = a(i-1)*c
b(i) = b(i-1)*d+s

enddo

109

a(2)*c

Thread 0:
do i=1,N
a(i)=a(i-1)*c
enddo

a(2)*c

a(7)*c

Thread 0:
do i=1,N
a(i)=a(i-1)*c
enddo

Thread 1:
do i=1,N
a(i)=a(i-1)*c
enddo

B(7)*d

A(2)*c

A(7)*d

B(2)*c

Thread 0:
do i=1,N
A(i)=A(i-1)*c
B(i)=B(i-1)*d
enddo

Thread 1:
do i=1,N
A(i)=A(i-1)*c
B(i)=B(i-1)*d
enddo

Simultaneous recursive updates with SMT

ISC12 Tutorial Performance programming on multicore-based systems

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT
MULT Pipeline depth: 5 stages 1 F / 5 cycles for recursive update

Fill bubbles via:
SMT
Multiple streams

M
U

LT
 p

ip
e

110

Simultaneous recursive updates with SMT

ISC12 Tutorial Performance programming on multicore-based systems

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT
MULT Pipeline depth: 5 stages 1 F / 5 cycles for recursive update

5 independent updates on a single thread do the same job!

B(2)*s

A(2)*s

E(1)*s

D(1)*s

C(1)*s

Thread 0:
do i=1,N
A(i)=A(i-1)*s
B(i)=B(i-1)*s
C(i)=C(i-1)*s
D(i)=D(i-1)*s
E(i)=E(i-1)*s

enddo

M
U

LT
 p

ip
e

111

Simultaneous recursive updates with SMT

ISC12 Tutorial Performance programming on multicore-based systems

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT
Pure update benchmark can be vectorized 2 F / cycle (store limited)

Recursive update:

SMT can fill pipeline
bubles

A single thread can
do so as well

Bandwidth does not
increase through
SMT

SMT can not
replace SIMD!

112

SMT myths: Facts and fiction (1)

Myth: “If the code is compute-bound, then the functional units
should be saturated and SMT should show no improvement.”

Truth
1. A compute-bound loop does not

necessarily saturate the pipelines;
dependencies can cause a lot of bubbles,
which may be filled by SMT threads.

2. If a pipeline is already full, SMT will not improve its
utilization

ISC12 Tutorial Performance programming on multicore-based systems

B(7)*d

A(2)*c

A(7)*d

B(2)*c

Thread 0:
do i=1,N
A(i)=A(i-1)*c
B(i)=B(i-1)*d
enddo

Thread 1:
do i=1,N
A(i)=A(i-1)*c
B(i)=B(i-1)*d
enddo

M
U

LT
 p

ip
e

113

SMT myths: Facts and fiction (2)

Myth: “If the code is memory-bound, SMT should help because it
can fill the bubbles left by waiting for data from memory.”
Truth:
1. If the maximum memory bandwidth is already reached, SMT will not

help since the relevant
resource (bandwidth)
is exhausted.

2. If the maximum
memory bandwidth is
not reached, SMT may
help since it can fill
bubbles in the LOAD
pipeline.

ISC12 Tutorial Performance programming on multicore-based systems

114

SMT myths: Facts and fiction (3)

Myth: “SMT can help bridge the latency to
memory (more outstanding references).”

Truth:
Outstanding references may or may not be
bound to SMT threads; they may be a resource
of the memory interface and shared by all
threads. The benefit of SMT with memory-bound
code is usually due to better utilization of the
pipelines so that less time gets “wasted” in the
cache hierarchy.

ISC12 Tutorial Performance programming on multicore-based systems

115ISC12 Tutorial Performance programming on multicore-based systems

SMT: When it may help, and when not

Functional parallelization

FP-only parallel loop code

Frequent thread synchronization

Code sensitive to cache size

Strongly memory-bound code

Independent pipeline-unfriendly instruction streams

Understanding MPI communication in
multicore environments

Intranode vs. internode MPI
MPI Cartesian topologies and rank-subdomain

mapping

117ISC12 Tutorial Performance programming on multicore-based systems

Intranode MPI

Common misconception: Intranode MPI is infinitely fast compared
to internode

Reality
Intranode latency is much smaller than internode
Intranode asymptotic bandwidth is surprisingly comparable to internode
Difference in saturation behavior

Other issues
Mapping between ranks, subdomains and cores with Cartesian MPI
topologies
Overlapping intranode with internode communication

118ISC12 Tutorial Performance programming on multicore-based systems

MPI and Multicores
Clusters: Unidirectional internode Ping-Pong bandwidth

QDR/GBit ~ 30X

119ISC12 Tutorial Performance programming on multicore-based systems

MPI and Multicores
Clusters: Unidirectional intranode Ping-Pong bandwidth

Mapping problem for most efficient communication paths!?

P
C
C

P
C
C

P
C
C

MI

P
C
C

C

Memory Memory

P
C
C

P
C
C

P
C
C

MI

P
C
C

C

Cross-Socket (CS)

Intra-Socket (IS)

Single point-to-
point BW similar

to internode

Some BW
scalability for

multi-intranode
connections

120ISC12 Tutorial Performance programming on multicore-based systems

“Best possible” MPI:
Minimizing cross-node communication

■ Example: Stencil solver with halo exchange

■ Goal: Reduce inter-node halo traffic
■ Subdomains exchange halo with neighbors

■ Populate a node's ranks with “maximum neighboring” subdomains
■ This minimizes a node's communication surface

■ Shouldn’t MPI_CART_CREATE (w/ reorder) take care of this?

121ISC12 Tutorial Performance programming on multicore-based systems

MPI rank-subdomain mapping in Cartesian topologies:
A 3D stencil solver and the growing number of cores per node

“Common” MPI
library behavior

N
eh

al
em

 E
P

2-
so

ck
et

Is
ta

nb
ul

 2
-s

oc
ke

t

Sh
an

gh
ai

 4
-s

oc
ke

t

M
ag

ny
 C

ou
rs

 2
-s

oc
ke

t

Nehalem EX
4-socket

Magny Cours
4-socket

W
oo

dc
re

st
 2

-s
oc

ke
t

Su
n

N
ia

ga
ra

 2

Fo
r m

or
e

de
ta

ils
 s

ee

hy
br

id
 p

ar
t!

122ISC12 Tutorial Performance programming on multicore-based systems

Summary: Multicore performance properties

Bandwidth saturation is a reality, in
cache and memory

Use knowledge to choose the
“right” number of
threads/processes per node
You must know where those
threads/processes should run
You must know the architectural
requirements of your application

ccNUMA architecture must be
considered for bandwidth-bound
code

Topology awareness, again
First touch page placement
Problems with dynamic
scheduling and tasking: Round-
robin placement is the “cheap
way out”

OpenMP overhead is ubiquitous
Barrier (synchronization) often
dominates the loop overhead
Work distribution and sync
overhead is strongly topology-
dependent
Strong influence of compiler
Synchronizing threads on “logical
cores” (SMT threads) may be
expensive

123ISC12 Tutorial Performance programming on multicore-based systems

Tutorial outline

Introduction
Architecture of multisocket
multicore systems
Nomenclature
Current developments
Programming models

Multicore performance tools
Finding out about system topology
Affinity enforcement
Performance counter
measurements

Online demo: likwid tools (1)
topology
pin
Monitoring the binding
perfctr basics and best practices

Impact of processor/node
topology on performance

Bandwidth saturation effects
Case study: OpenMP sparse MVM
as an example for bandwidth-
bound code
Programming for ccNUMA
OpenMP performance
Simultaneous multithreading (SMT)
Intranode vs. internode MPI

Case studies for shared memory
Automatic parallelization
Pipeline parallel processing for
Gauß-Seidel solver
Wavefront temporal blocking of
stencil solver

Summary: Node-level issues

Wavefront-parallel temporal blocking for
stencil algorithms

One example for truly “multicore-aware”
programming

125ISC12 Tutorial Performance programming on multicore-based systems

Multicore awareness
Classic Approaches: Parallelize & reduce memory pressure

Multicore processors are still mostly programmed
the same way as classic n-way SMP single-core
compute nodes!

Memory

P
C
C

P
C
C

P
C
C

MI

P
C
C

P
C
C

P
C
C

C

do k = 1 , Nk
do j = 1 , Nj

do i = 1 , Ni
y(i,j,k) = a*x(i,j,k) + b*

(x(i-1,j,k)+x(i+1,j,k)+
x(i,j-1,k)+x(i,j+1,k)+
x(i,j,k-1)+x(i,j,k+1))

enddo
enddo

enddo

Simple 3D Jacobi stencil update (sweep):

Performance Metric: Million Lattice Site Updates per second (MLUPs)
Equivalent MFLOPs: 8 FLOP/LUP * MLUPs

126ISC12 Tutorial Performance programming on multicore-based systems

Multicore awareness
Standard sequential implementation

k-direction

j-d
ire

ct
io

n

do t=1,tMax

do k=1,N
do j=1,N

do i=1,N
y(i,j,k) = …

enddo
enddo

enddo

enddo

core0 core1

Cache

Memory

x

127ISC12 Tutorial Performance programming on multicore-based systems

Multicore awareness
Classical Approaches: Parallelize!

k-direction

j-d
ire

ct
io

n

core0 core1

Cache

Memory

x

do t=1,tMax
!$OMP PARALLEL DO private(…)

do k=1,N
do j=1,N

do i=1,N
y(i,j,k) = …

enddo
enddo

enddo
!$OMP END PARALLEL DO
enddo

128ISC12 Tutorial Performance programming on multicore-based systems

Multicore awareness
Parallelization – reuse data in cache between threads

k-direction

j-d
ire

ct
io

n

core0: x(:,:,k-1:k+1)t y(:,:,k)t+1

core1: y(:,:,(k-3):(k-1))t+1 x(:,:,k-2)t+2

core0 core1

y(:,:,:)

Memory

x(:,:,:)

Do not use domain
decomposition!

Instead shift 2nd thread by
three i-j planes and
proceed to the same
domain

2nd thread loads input
data from shared OL cache!

Sync threads/cores after
each k-iteration!

“Wavefront
Parallelization (WFP)”

129ISC12 Tutorial Performance programming on multicore-based systems

Use small ring buffer
tmp(:,:,0:3)
which fits into the cache

Save main memory data
transfers for y(:,:,:) !

16 Byte / 2 LUP !

8 Byte / LUP !

Multicore awareness
WF parallelization – reuse data in cache between threads

Compare with optimal baseline (nontemporal stores on y):
Maximum speedup of 2 can be expected

(assuming infinitely fast cache and
no overhead for OMP BARRIER after each k-iteration)

130ISC12 Tutorial Performance programming on multicore-based systems

Multicore awareness
WF parallelization – reuse data in cache between threads

Thread 0: x(:,:,k-1:k+1)t tmp(:,:,mod(k,4))

Thread 1: tmp(:,:,mod(k-3,4):mod(k-1,4)) x(:,:,k-2)t+2

Performance model including finite cache bandwidth (BC)

Time for 2 LUP:

T2LUP = 16 Byte/BM + x * 8 Byte / BC = T0 (1 + x/2 * BM/BC)

core0 core1

tmp(:,:,0:3)

Memory

x

Minimum value: x =2

Speed-Up vs. baseline: SW = 2*T0/T2LUP
= 2 / (1 + BM/BC)

BC and BM are measured in saturation runs:

Clovertown: BM/BC = 1/12 SW = 1.85

Nehalem : BM/BC = 1/4 SW = 1.6

131ISC12 Tutorial Performance programming on multicore-based systems

Jacobi solver
WFP: Propagating four wavefronts on native quadcores (1x4)

core0 core1

tmp1(0:3) | tmp2(0:3) | tmp3(0:3)

x(: , : , :)

core2 core3

1 x 4 distribution

Running tb wavefronts requires tb-1
temporary arrays tmp to be held in
cache!

Max. performance gain (vs. optimal
baseline): tb = 4

Extensive use of cache bandwidth!

132ISC12 Tutorial Performance programming on multicore-based systems

Jacobi solver
WF parallelization: New choices on native quad-cores

Thread 0: x(:,:,k-1:k+1)t tmp1(mod(k,4))

Thread 1: tmp1(mod(k-3,4):mod(k-1,4)) tmp2(mod(k-2,4))

core0 core1

tmp1(0:3) | tmp2(0:3) | tmp3(0:3)

x(: , : , :)

core2 core3

Thread 2: tmp2(mod(k-5,4:mod(k-3,4)) tmp3(mod(k-4,4))

Thread 3: tmp3(mod(k-7,4):mod(k-5,4)) x(:,:,k-6)t+4

1 x 4 distribution

core0 core1

tmp0(: , : , 0:3)

x(:,1:N/2,:) x(:,N/2+1:N,:)

core2 core3

2 x 2 distribution

133ISC12 Tutorial Performance programming on multicore-based systems

Jacobi solver
Wavefront parallelization: L3 group Nehalem

Performance model indicates some potential gain new compiler tested.

Only marginal benefit when using 4 wavefronts A single copy stream does not
achieve full bandwidth

P
CC

P
CC

P
CC

MI

Memory

P
CC C

P
CC

P
CC

P
CC

MI

Memory

P
CC C

4003

bj=40
MLUPs

1 x 2 786

2 x 2 1230

1 x 4 1254

134ISC12 Tutorial Performance programming on multicore-based systems

Multicore-aware parallelization
Wavefront – Jacobi on state-of-the art multicores

P
C

P
C

C

P
C

P
C

C

P
CC

P
CC

P
CC

MI

P
CC

P
CC

P
CC

P
CC

P
CC

C

P
C
C

P
C
C

P
C
C

MI

P
C
C

C

P
C
C

P
C
C

P
C
C

MI

P
C
C

P
C
C

P
C
C

C

Compare against optimal baseline!

Performance gain ~ Bolc = L3 bandwidth / memory bandwidth

Bolc ~ 10

Bolc ~ 2-3

Bolc ~ 10

135

Multicore-specific features – Room for new ideas:
Wavefront parallelization of Gauss-Seidel solver

Shared caches in Multi-Core processors
Fast thread synchronization
Fast access to shared data structures

FD discretization of 3D Laplace equation:
Parallel lexicographical Gauß-Seidel using
pipeline approach (“threaded”)
Combine threaded approach with wavefront
technique (“wavefront”)

wavefront

threaded

0
2 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0

1 0 0 0 0
1 2 0 0 0
1 4 0 0 0
1 6 0 0 0
1 8 0 0 0

1 2 4 8

t h r e a d e d
w a v e f r o n t

Threads

M
FL

O
P/

s

Intel Core i7-2600

3.4 GHz; 4 cores

SMT

ISC12 Tutorial Performance programming on multicore-based systems

136ISC12 Tutorial Performance programming on multicore-based systems

Section summary: What to take home

Shared caches are the interesting new feature on current
multicore chips

Shared caches provide opportunities for fast synchronization (see sections
on OpenMP and intra-node MPI performance)
Parallel software should leverage shared caches for performance
One approach: Shared cache reuse by WFP

WFP technique can easily be extended to many regular stencil
based iterative methods, e.g.

Gauß-Seidel (done)
Lattice-Boltzmann flow solvers (work in progress)
Multigrid-smoother (work in progress)

137ISC12 Tutorial Performance programming on multicore-based systems

Tutorial outline (1)

Introduction
Architecture of multisocket
multicore systems
Nomenclature
Current developments
Programming models

Multicore performance tools
Finding out about system topology
Affinity enforcement
Performance counter
measurements

Online demo: likwid tools
topology
pin
Monitoring the binding
perfctr basics and best practices

Impact of processor/node
topology on performance

Microbenchmarking with simple
parallel loops
Bandwidth saturation effects in
cache and memory
Case study: OpenMP sparse MVM
as an example for bandwidth-
bound code
ccNUMA effects and how to
circumvent performance penalties
Simultaneous multithreading (SMT)

Summary: Node-level issues

138ISC12 Tutorial Performance programming on multicore-based systems

Summary & Conclusions on node-level issues

Multicore/multisocket topology needs to be considered:
OpenMP performance
MPI communication parameters
Shared resources

Be aware of the architectural requirements of your code
Bandwidth vs. compute
Synchronization
Communication

Use appropriate tools
Node topology: likwid-pin, hwloc
Affinity enforcement: likwid-pin
Simple profiling: likwid-perfctr
Lowlevel benchmarking: likwid-bench

Tutorial outline (2)

Hybrid MPI/OpenMP
MPI vs. OpenMP

Case studies for hybrid
MPI/OpenMP

Thread-safety quality of MPI
libraries
Strategies for combining MPI with

Overlap of communication and
computation for hybrid sparse
MVMStrategies for combining MPI with

OpenMP
Topology and mapping problems

MVM
The NAS parallel benchmarks
(NPB-MZ)p gy pp g p

Potential opportunities Hybrid computing with
accelerators and compiler
directives

Summary: Opportunities and y pp
Pitfalls of Hybrid Programming

Overall summary and goodbye

ISC12 Tutorial 139Performance programming on multicore-based systems

Tutorial outline (2)

Hybrid MPI/OpenMP
MPI vs. OpenMP

Case studies for hybrid
MPI/OpenMP

Thread-safety quality of MPI
libraries
Strategies for combining MPI with

Overlap of communication and
computation for hybrid sparse
MVMStrategies for combining MPI with

OpenMP
Topology and mapping problems

MVM
The NAS parallel benchmarks
(NPB-MZ)p gy pp g p

Potential opportunities Hybrid computing with
accelerators and compiler
directives

Summary: Opportunities and y pp
Pitfalls of Hybrid Programming

Overall summary and goodbye

ISC12 Tutorial 140Performance programming on multicore-based systems

Clusters of Multicore Nodes

Can hierarchical hardware benefit from a hierarchical
programming model?

Socket 1

SMP node SMP node

Socket 1 Core

Quad‐core
CPU

Quad‐core
CPU

CPU(socket)

ccNUMA node

Socket 2 Socket 2

Cluster of ccNUMA/SMP nodes

Quad‐core
CPU

Quad‐core
CPU

L1 cache

L2 cache

Node Interconnect Intranode network

Internode network

ISC12 Tutorial 141Performance programming on multicore-based systems

MPI vs. OpenMP

ISC12 Tutorial Performance programming on multicore-based systems 142

Programming Models for SMP Clusters

Pure MPI (one process on each core)
Hybrid MPI+OpenMPy p

Shared memory OpenMP
Distributed memory MPI

Other: Virtual shared memory systems, PGAS, HPF, …
Often hybrid programming (MPI+OpenMP) slower than pure MPI

Why?
Are there “safe bets” where it should really be faster?
Do you really understand what your code is doing???

some serial code

Master thread,
other threads

OpenMP (shared data) MPI local data in each process

d tSequential

Do you really understand what your code is doing???

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block to be parallelized

data Sequential
program on
each core

block_to_be_parallelized
again_some_serial_code ••• sleeping ••• Explicit Message Passing

by calling MPI_Send & MPI_Recv

ISC12 Tutorial 143Performance programming on multicore-based systems

MPI Parallelization of Jacobi Solver

Initialize MPI
Domain decomposition

...
CALL MPI_INIT(ierr)
! Compute number of procs and myrank

...
CALL MPI_INIT(ierr)
! Compute number of procs and myrank

Compute local data
Communicate shared
data

CALL MPI_COMM_SIZE(comm, p, ierr)
CALL MPI_COMM_RANK(comm, myrank, ierr)
!Main Loop

CALL MPI_COMM_SIZE(comm, p, ierr)
CALL MPI_COMM_RANK(comm, myrank, ierr)
!Main Loop

data DO WHILE(.NOT.converged)
! compute
DO j=1, m_local

DO i 1

DO WHILE(.NOT.converged)
! compute
DO j=1, m_local

DO i 1DO i=1, n
BLOC(i,j)=0.25*(ALOC(i-1,j)+

ALOC(i+1,j)+
ALOC(i j 1)+

DO i=1, n
BLOC(i,j)=0.25*(ALOC(i-1,j)+

ALOC(i+1,j)+
ALOC(i j 1)+ALOC(i,j-1)+
ALOC(i,j+1))

END DO
END DO

ALOC(i,j-1)+
ALOC(i,j+1))

END DO
END DOEND DO

! Communicate
CALL MPI_SENDRECV(BLOC(1,1),n,
MPI REAL, left, tag, ALOC(1,0),n,

END DO
! Communicate

CALL MPI_SENDRECV(BLOC(1,1),n,
MPI REAL, left, tag, ALOC(1,0),n,

1D partitioning
MPI_REAL, left, tag, ALOC(1,0),n,
MPI_REAL, left, tag, comm,
status, ierr)

MPI_REAL, left, tag, ALOC(1,0),n,
MPI_REAL, left, tag, comm,
status, ierr)

ISC12 Tutorial 144Performance programming on multicore-based systems

OpenMP Parallelization of Jacobi Solver

!Main Loop
DO WHILE(.NOT.converged)

! Compute

!Main Loop
DO WHILE(.NOT.converged)

! Compute! Compute
!$OMP PARALLEL SHARED(A,B) PRIVATE(J,I)
!$OMP DO

DO j=1, m
DO i 1

! Compute
!$OMP PARALLEL SHARED(A,B) PRIVATE(J,I)
!$OMP DO

DO j=1, m
DO i 1DO i=1, n

B(i,j)=0.25*(A(i-1,j)+
A(i+1,j)+
A(i,j-1)+

DO i=1, n
B(i,j)=0.25*(A(i-1,j)+

A(i+1,j)+
A(i,j-1)+(,j)
A(i,j+1))

END DO
END DO

!$OMP END DO

(,j)
A(i,j+1))

END DO
END DO

!$OMP END DO

implicit
removable
b i !$OMP END DO

!$OMP DO
DO j=1, m

DO i=1, n

!$OMP END DO
!$OMP DO

DO j=1, m
DO i=1, n

barrier

A(i,j) = B(i,j)
END DO

END DO
!$OMP END DO

A(i,j) = B(i,j)
END DO

END DO
!$OMP END DO!$OMP END DO
!$OMP END PARALLEL
...

!$OMP END DO
!$OMP END PARALLEL
...

ISC12 Tutorial 145Performance programming on multicore-based systems

Comparison of MPI and OpenMP

MPI
Memory Model

D t i t b d f lt

OpenMP
Memory Model

Data private by default
Data accessed by multiple
processes needs to be explicitly

i t d

Data shared by default
Access to shared data requires
explicit synchronization

communicated
Program Execution

Parallel execution starts with

p y
Private data needs to be explicitly
declared

Program ExecutionMPI_Init, continues until
MPI_Finalize

Parallelization Approach

Program Execution
Fork-Join Model

Parallelization Approach:
Typicall coarse grained, based on
domain decomposition
Explicitly programmed by user

Typically fine grained on loop level
Based on compiler directives
Incremental approachp y p g y

All-or-nothing approach
Scalability possible across the
whole cluster

Incremental approach
Scalability limited to one shared
memory node
P f d d twhole cluster

Performance: Manual parallelization
allows high optimization

Performance dependent on
compiler quality

ISC12 Tutorial 146Performance programming on multicore-based systems

Combining MPI and OpenMP: Jacobi Solver

Simple Jacobi Solver
Example

!Main Loop
DO WHILE(.NOT.converged)

! compute

!Main Loop
DO WHILE(.NOT.converged)

! compute
local length might be

MPI parallelization in
j dimension
OpenMP on i loops

DO j=1, m_loc
!$OMP PARALLEL DO

DO i=1, n
BLOC(i,j)=0.25*(ALOC(i-1,j)+

DO j=1, m_loc
!$OMP PARALLEL DO

DO i=1, n
BLOC(i,j)=0.25*(ALOC(i-1,j)+

local length might be
small for many MPI procs

OpenMP on i-loops
All calls to MPI outside
of parallel regions

(,j) ((,j)
ALOC(i+1,j)+
ALOC(i,j-1)+
ALOC(i,j+1))

END DO

(,j) ((,j)
ALOC(i+1,j)+
ALOC(i,j-1)+
ALOC(i,j+1))

END DOp g END DO
!$OMP END PARALLEL DO

END DO
DO j=1, m

END DO
!$OMP END PARALLEL DO

END DO
DO j=1, mj

!$OMP PARALLEL DO
DO i=1, n

ALOC(i,j) = BLOC(i,j)
END DO

j
!$OMP PARALLEL DO

DO i=1, n
ALOC(i,j) = BLOC(i,j)

END DOEND DO
!$OMP END PARALLEL DO

END DO
CALL MPI_SENDRECV (ALOC,…

END DO
!$OMP END PARALLEL DO

END DO
CALL MPI_SENDRECV (ALOC,…

But what if it
gets more CALL MPI_SENDRECV (BLOC,…

...
CALL MPI_SENDRECV (BLOC,…

...

gets more
complicated?

ISC12 Tutorial 147Performance programming on multicore-based systems

Support of Hybrid Programming

MPI
MPI-2:

OpenMP
API only for one execution

MPI_Init_Thread unit, which is one MPI process
For example: No means to
specify the total number ofspecify the total number of
threads across several MPI
processes.p

Request for
thread safetyy

ISC12 Tutorial 148Performance programming on multicore-based systems

Thread safety quality of MPI libraries

ISC12 Tutorial Performance programming on multicore-based systems 149

MPI2 MPI_Init_thread

Syntax:
call MPI_Init_thread(irequired, iprovided, ierr)
int MPI_Init_thread(int *argc, char ***argv, int required, int *provided)

Support Levels Descriptionpp p

MPI_THREAD_SINGLE Only one thread will execute

MPI_THREAD_FUNNELED Process may be multi-threaded, but only main
thread will make MPI calls (calls are “funneled” to
main thread). Default

MPI_THREAD_SERIALIZED Process may be multi-threaded, any thread can
make MPI calls, but threads cannot execute MPI
calls concurrently (all MPI calls must be
“serialized”).

MPI_THREAD_MULTIPLE Multiple threads may call MPI, no restrictions.

If supported, the call will return provided = required.
Otherwise, if possible, a higher level (stronger support).
Otherwise the highest supported level will be provided

ISC12 Tutorial 150Performance programming on multicore-based systems

Otherwise, the highest supported level will be provided.

Funneling through OMP Master

Fortran C

include ’mpif.h’
program hybmas

call mpi init thread(MPI THREAD FUNNELED

#include <mpi.h>
int main(int argc, char **argv){
int rank, size, ierr, i;
ierr = MPI Init thread (call mpi_init_thread(MPI_THREAD_FUNNELED,

...)

!$OMP parallel

ierr = MPI_Init_thread (...,
MPI_THREAD_FUNNELED,...);

#pragma omp parallel
{

<OMP parallel work>
!$OMP barrier
!$OMP master

<OMP parallel work>
#pragma omp barrier
#pragma omp master
{!$OMP master

call MPI_<whatever>(…,ierr)
!$OMP end master
$

{
ierr=MPI_<whatever>(…);

}
#pragma omp barrier

!$OMP barrier

!$OMP end parallel
end

}
}$OMP master end

p
does not have
implicit barrier

ISC12 Tutorial 151Performance programming on multicore-based systems

Overlapping Communication and Work

Fortran C

#include <mpi.h>
int main(int argc, char **argv){
int rank, size, ierr, I;
i MPI I it th d(

include ’mpif.h’
program hybover

ll i i it th d(MPI THREAD FUNNELED ierr=MPI_Init_thread(...,
MPI_THREAD_FUNNELED,...);

#pragma omp parallel

call mpi_init_thread(MPI_THREAD_FUNNELED,
...)

!$OMP parallel
{

if (thread == 0){
ierr=MPI_<Whatever>(…);

}

if (ithread .eq. 0) then
call MPI_<whatever>(…,ierr)

else
<OMP parallel work> }

else {
<OMP parallel work>

}

<OMP parallel work>
endif

!$OMP end parallel

}
}

end

ISC12 Tutorial 152Performance programming on multicore-based systems

Funneling through OMP SINGLE

Fortran C

include ’mpif h’ #include <mpi h>include mpif.h
program hybsing
call
mpi_init_thread(MPI_THREAD_SERIALIZED,

#include <mpi.h>
int main(int argc, char **argv){
int rank, size, ierr, i;
mpi_init_thread(…,

...)
!$OMP parallel

<OMP parallel work>

MPI_THREAD_SERIALIZED,...)
#pragma omp parallel
{

<OMP parallel work><OMP parallel work>
!$OMP barrier
!$OMP single

()

<OMP parallel work>
#pragma omp barrier
#pragma omp single
{

()call MPI_<whatever>(…,ierr)
!$OMP end single

!!!$OMP barrier

ierr=MPI_<Whatever>(…)
}

//#pragma omp barrier$

!$OMP end parallel
end

//#p g p

}
}$OMP single has

an implicit barrieran implicit barrier

ISC12 Tutorial 153Performance programming on multicore-based systems

Thread-rank Communication

call mpi_init_thread(… MPI_THREAD_MULTIPLE, iprovided,ierr)
call mpi_comm_rank(MPI_COMM_WORLD, irank, ierr)
call mpi_comm_size(MPI_COMM_WORLD, nranks, ierr)_ _ _ _

!$OMP parallel private(i, ithread, nthreads)

nthreads = OMP_GET_NUM_THREADS()
ithread = OMP_GET_THREAD_NUM()
call pwork(ithread, irank, nthreads, nranks…)

Communicate between ranks.

if(irank == 0) then
call mpi_send(ithread,1,MPI_INTEGER, 1, ithread,MPI_COMM_WORLD, ierr)

else
ll i (j 1 MPI INTEGER 0 ith d MPI COMM WORLDcall mpi_recv(j,1,MPI_INTEGER, 0, ithread,MPI_COMM_WORLD,

istatus,ierr)
print*, "Yep, this is ",irank," thread ", ithread,

" I received from " j" I received from ", j
endif

!$OMP END PARALLEL

Threads use tags to differentiate.

!$OMP END PARALLEL
end

ISC12 Tutorial 154Performance programming on multicore-based systems

S i / i f C bi i MPIStrategies/options for Combining MPI
with OpenMP

Topology and Mapping Problems
Potential Opportunities

ISC12 Tutorial Performance programming on multicore-based systems 155

Different Strategies to Combine MPI and OpenMP

pure MPI hybrid MPI+OpenMP OpenMP onlypure MPI
one MPI process

on each core

hybrid MPI OpenMP
MPI: inter/intra-node communication
OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computingof the numerical application code while other threads are computing

Masteronly Funneled Multiple

some serial code

Master thread,
other threads

OpenMP (shared data)MPI local data in each process

d tSequential

MPI only outside
of parallel regions

Funneled
MPI only

on master-thread

Multiple
more than one thread

may communicate
SINGLE

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block to be parallelized

dataSequential
program on
each core Funneled &

Reserved
th d

Funneled
with

F ll L d

Multiple &
Reserved

Multiple
with _ _ _p

again_some_serial_code ••• sleeping •••Explicit message transfers
by calling MPI_Send & MPI_Recv

thread
for communication

Full Load
Balancing

threads for
communication

Full Load
Balancing

FUNNELED MULTIPLE
ISC12 Tutorial 156Performance programming on multicore-based systems

FUNNELED MULTIPLE

Modes of Hybrid Operation

Pure MPI Fully Hybrid…… Mixed ……….

16 MPI processes 1 MPI process4 MPI processes16 MPI processes
(i.e. 1 MPI process
per core)

1 MPI process
16 threads/process
(i.e. 1 MPI process
per ccNUMA node)

4 MPI processes
4 threads/process
(i.e. 1 MPI process

NUMA d i) per ccNUMA node)per NUMA domain)

Master Thread of MPI Process
MPI Process on Core

Slave Thread of MPI Process
Master Thread of MPI Process

ISC12 Tutorial 157Performance programming on multicore-based systems

The Topology Problem with
pure MPI
one MPI process

on each core

Application example on 80 cores:
Cartesian application with 5 x 16 = 80 sub-domainspp
On system with 10 x dual socket x quad-core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6348 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Sequential ranking of
MPI COMM WORLD

17 x inter-node connections per node

1 x inter-socket connection per node _ _

Does it matter?

1 x inter socket connection per node

ISC12 Tutorial Performance programming on multicore-based systems 158

The Topology Problem with
pure MPI
one MPI process

on each core

Application example on 80 cores:
Cartesian application with 5 x 16 = 80 sub-domains

AA
AA

JJ
JJpp

On system with 10 x dual socket x quad-core
AA
AA

JJ
JJ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A

A

A

A

B

B

B

B

C

C

CD

D

DE

E

EF

F

FG

GG

H

HH

I

II

J

JJ

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

A

AA

B

BB

C

C C

CC

D D

DD

E E

E

F F

F

GG

G G

G

H H

H

I

I I

JJ

J

J J48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

AA

A

BB

B

CC

C

DD

DE

E

EF

F

FG

G

GH

H

H

I

I

I

I

J

J

J

J

32 x inter-node connections per node

0 x inter-socket connection per node
Round robin ranking of
MPI COMM WORLD0 x inter socket connection per node _ _

ISC12 Tutorial 159Performance programming on multicore-based systems

The Topology Problem with
pure MPI
one MPI process

on each core

Application example on 80 cores:
Cartesian application with 5 x 16 = 80 sub-domainspp
On system with 10 x dual socket x quad-core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6348 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Two levels of
domain decomposition

12 x inter-node connections per node

4 x inter-socket connection per node domain decomposition
Bad affinity of cores to thread ranks

4 x inter socket connection per node

ISC12 Tutorial Performance programming on multicore-based systems 160

The Topology Problem with
pure MPI
one MPI process

on each core

Application example on 80 cores:
Cartesian application with 5 x 16 = 80 subdomainspp
On system with 10 x dual socket x quad-core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6348 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Two levels of
domain decomposition

12 x inter-node connections per node

2 x inter-socket connection per node domain decomposition
Good affinity of cores to thread ranks
2 x inter socket connection per node

ISC12 Tutorial 161Performance programming on multicore-based systems

Hybrid Mode: Sleeping threads and network saturation
with

Masteronly
MPI only outside of

parallel regions
Problem 1:

Can the master threadpa a e eg o s Can the master thread
saturate the network?

Solution:
Use mixed model, i.e.,

for (iteration ….)
{
ll l SMP node SMP node several MPI processes

per SMP node

Problem 2:

#pragma omp parallel
numerical code

/*end omp parallel */ Master
thread

Socket 1

SMP node SMP node

Master
thread

Socket 1
Master
thread

Master
thread

Sleeping threads are
wasting CPU time

Solution:
If funneling is supported

/* on master thread only */
MPI_Send (original data
to halo areas
i th SMP d) Socket 2 Socket 2 If funneling is supported

use overlap of
computation and
communication

in other SMP nodes)
MPI_Recv (halo data
from the neighbors)

} /*end for loop

Problem 1&2 together:
Producing more idle time
through lousy bandwidth

} p

Node Interconnect g y
of master thread

ISC12 Tutorial Performance programming on multicore-based systems 162

Pure MPI and Mixed Model

Problem:
Contention for network access 16 MPI Processes

MPI library must use appropriate
fabrics / protocol for intra/inter-node communication
Intra node bandwidth higher than inter node bandwidthIntra-node bandwidth higher than inter-node bandwidth
MPI implementation may cause unnecessary
data copying waste of memory bandwidthpy g y
Increase memory requirements due to MPI buffer space
Mixed Model:

4 MPI ProcessesNeed to control process and thread placement
Consider cache hierarchies to optimize thread execution

4 MPI Processes
4Threads/Process

... but maybe not as much as you
think!

ISC12 Tutorial 163Performance programming on multicore-based systems

Fully Hybrid Model

Problem 1: Can the master thread saturate
the network?

Problem 2: Many Sleeping threads are wasting
1 MPI Process
16Threads/ProcessProblem 2: Many Sleeping threads are wasting

CPU time during communication

Problem 1&2 together:

16Threads/Process

Problem 1&2 together:
Producing more idle time through lousy
bandwidth of master thread

Possible solutions:
Use mixed model (several MPI per SMP)?
If funneling is supported: Overlap communication/computation?
Both of the above?

Problem 3:
Remote memory access impacts the OpenMP performance

Possible solution:
Control memory page placement to minimize impact of remote access

ISC12 Tutorial 164Performance programming on multicore-based systems

Other challenges for Hybrid Programming
on multicore systems see also first part of tutorial!

Multicore / multisocket anisotropy effects
Bandwidth bottlenecks, shared caches
Intra-node MPI performance

Core ↔ core vs. socket ↔ socket
OpenMP loop overhead depends on mutual position of threads in teamOpenMP loop overhead depends on mutual position of threads in team

Non-Uniform Memory Access:
Not all memory access is equalot a e o y access s equa

ccNUMA locality effects
Penalties for access across NUMA domain boundaries
Impact of contention
Consequences of file I/O for page placement
Pl t f MPI b ffPlacement of MPI buffers

Where do threads/processes and memory allocations go?
Scheduling Affinity and Memory Policy can be changed within code withScheduling Affinity and Memory Policy can be changed within code with
(sched_get/setaffinity, get/set_memory_policy)
Tools are available: taskset, numactl, LIKWID

ISC12 Tutorial 165Performance programming on multicore-based systems

Example for anisotropy effects:
Sun Constellation Cluster Ranger (TACC)

Highly hierarchical
Shared Memory: 32

16 way cache-coherent, Non-uniform
memory access (ccNUMA) node

Distributed Memory:

Core Core

CoreCore

Core Core

CoreCore

Distributed Memory:
Network of ccNUMA nodes

Core-to-Core

Core Core

CoreCore

Core Core

CoreCore

01

netw
ork

Socket-to-Socket
Node-to-Node

01

Core Core Core Core

32

k

Chassis-to-chassis
Unsymmetric:
2 Sockets have 3 HT connected to neighbors

Core Core

CoreCore

Core Core

CoreCore

2 Sockets have 3 HT connected to neighbors
1 Socket has 2 connections to neighbors,

1 to network

Core Core

CoreCore

Core Core

CoreCore

01
1 Socket has 2 connections to neighbors

ISC12 Tutorial 166Performance programming on multicore-based systems

MPI ping-pong microbenchmark
results on Ranger

Inside one node:
Ping-pong socket 0 with 1, 2, 3
and 1, 2, or 4 simultaneous comm., ,
(quad-core)

Missing Connection: Communication
between socket 0 and 3 is slower
Maximum bandwidth:
1 x 1180, 2 x 730, 4 x 300 MB/s

Node-to-node inside one chassis
with 1-6 node-pairs (= 2-12 procs)

Perfect scaling for up to 6 simultaneous
communications
Max. bandwidth : 6 x 900 MB/s

Chassis to chassis (distance: 7 hops) with 1
MPI process per node and 1-12 simultaneous
communication links

Max: 2 x 900 up to 12 x 450 MB/s

Exploiting Multi-Level Parallelism on the SunExploiting Multi-Level Parallelism on the Sun
Constellation System”, L. Koesterke, et al., TACC,
TeraGrid08 Paper

ISC12 Tutorial Slide 167
/ 151Performance programming on multicore-based systems

Overlapping Communication and Work

One core can saturate the PCIe network bus.
Why use all to communicate?

Communicate with one or several cores.

Work with others during communication.

Need at least MPI_THREAD_FUNNELED support.

Can be difficult to manage and load balance!

ISC12 Tutorial 168Performance programming on multicore-based systems

Overlapping communication and computation

Three problems
1. The application problem:

Overlapping
Communication and
C t tione must separate application into:

code that can run before the halo data is
received

Computation
MPI communication by one or a few
threads while other threads are
computing

code that needs halo data
very hard to do !!!

computing

2. The thread-rank problem:
comm. / comp. via thread-rank

t

if (my_thread_rank < 1) {
MPI_Send/Recv….

} else {cannot use
worksharing directives
loss of major

} else {
my_range = (high-low-1)/(num_threads-1)+1;
my_low = low + (my_thread_rank+1)*my_range;
my high=high+ (my thread rank+1+1)*my range;OpenMP support

(see next slide)

3 The load balancing

my_high=high+ (my_thread_rank+1+1)*my_range;
my_high = max(high, my_high)
for (i=my_low; i<my_high; i++) {

3. The load balancing
problem

...
}

}

ISC12 Tutorial 169Performance programming on multicore-based systems

New in New in OpenMPOpenMP 3.0: TASK Construct3.0: TASK Construct

Purpose is to support the
OpenMP parallelization of while
loops
Tasks are spawned when
!$omp task or #pragma

#pragma omp parallel {
#pragma omp single private(p)
{!$omp task or #pragma

omp task is encountered
Tasks are executed in an

{
p = listhead ;

while (p) {Tasks are executed in an
undefined order
Tasks can be explicitly waited

#pragma omp task
process (p);

p=next (p) ;
for by the use of !$omp
taskwait

Sh d t ti l f

p=next (p) ;
} // Implicit taskwait

Shows good potential for
overlapping computation with
communication and/or IO (seecommunication and/or IO (see
examples later on)

ISC12 Tutorial 170Performance programming on multicore-based systems

Case study: Communication and Computation in Gyrokinetic
Tokamak Simulation (GTS) shifter

A K i t l A li ti A l ti C t d F t C Pl tfA. Koniges et. al.: Application Acceleration on Current and Future Cray Platforms.
Presented at CUG 2010, Edinburgh, GB, May 24-27, 2010.
R. Preissl, et. al.: Overlapping communication with computation using OpenMP tasks
on the GTS magnetic fusion code Scientific Programming IOS Press Vol 18 No 3 4on the GTS magnetic fusion code. Scientific Programming, IOS Press, Vol. 18, No. 3-4
(2010)

OpenMP Tasking Model gives a new way to achieve more parallelism

Slides courtesy of Alice Koniges, NERSC, LBNL

OpenMP Tasking Model gives a new way to achieve more parallelism
form hybrid computation.

ISC12 Tutorial 171Performance programming on multicore-based systems

Case Study: Communication and Computation in
Gyrokinetic Tokamak Simulation (GTS) shift routine

IN
D

EEPEN
D

EN

IN
D

EP

N
T

SEM
I-PEN

D
EN

T

-IN
D

EPENT N
D

EN
T

GTS shift routine

Work on particle array (packing for sending, reordering, adding after sending)
can be overlapped with data independent MPI communication

GTS shift routine

Slides courtesy of Alice Koniges NERSC LBNL

pp p
using OpenMP tasks.

ISC12 Tutorial 172Performance programming on multicore-based systems

Slides courtesy of Alice Koniges, NERSC, LBNL

Overlapping can be achieved with OpenMP tasks (1st part)

Overlapping MPI_Allreduce with particle work

• Overlap: Master thread encounters (!$omp master) tasking statements and creates
k f th th d t f d f d ti MPI All d ll i i di t lwork for the thread team for deferred execution. MPI Allreduce call is immediately

executed.
• MPI implementation has to support at least MPI_THREAD_FUNNELED
• Subdividing tasks into smaller chunks to allow better load balancing and scalability

among threads. Slides, courtesy of Alice Koniges, NERSC, LBNL

ISC12 Tutorial 173Performance programming on multicore-based systems

Overlapping can be achieved with OpenMP tasks (2nd part)

Overlapping particle reordering

fParticle reordering of remaining
particles (above) and adding sent
particles into array (right) & sending

Overlapping remaining MPI Sendrecv

y (g) g
or receiving of shifted particles can
be independently executed.

Overlapping remaining MPI_Sendrecv

Slides, courtesy of Alice Koniges, NERSC, LBNL

ISC12 Tutorial 174Performance programming on multicore-based systems

OpenMP tasking version outperforms original shifter, especially in
larger poloidal domains

256 size run 2048 size run

Performance breakdown of GTS shifter routine using 4 OpenMP threads per MPIPerformance breakdown of GTS shifter routine using 4 OpenMP threads per MPI
pro-cess with varying domain decomposition and particles per cell on Franklin
Cray XT4.
MPI communication in the shift phase uses a toroidal MPI communicatorMPI communication in the shift phase uses a toroidal MPI communicator
(constantly 128).
Large performance differences in the 256 MPI run compared to 2048 MPI run!
S d U i t d t b hi h l GTS ith h d d f th dSpeed-Up is expected to be higher on larger GTS runs with hundreds of thousands
CPUs since MPI communication is more expensive.

Slides, courtesy of
Alice Koniges, NERSC, LBNL

ISC12 Tutorial

ce o ges, SC,

175Performance programming on multicore-based systems

Other Hybrid Programming Opportunities

Exploit hierarchical parallelism within the application:
Coarse-grained parallelism implemented in MPIg p p
Fine-grained parallelism on loop level exploited through
OpenMP

st
ud

ie
s!

Increase parallelism if coarse-grained parallelism is limited

e
ca

se
s

Improve load balancing, e.g. by restricting # MPI
processes or assigning different # threads to different MPI

S
ee

processes or assigning different # threads to different MPI
processes

Lower the memory requirements by restricting the number
of MPI processes

Lower requirements for replicated data
Lower requirements for MPI buffer space

ISC12 Tutorial 176Performance programming on multicore-based systems
… maybe one of the major reasons
for using hybrid MPI/OpenMP

Case study: MPI+OpenMP memory usage of NPB

Using moreUsing more
OpenMP threads
could reduce the
memory usage
substantially,
up to five times on
Hopper Cray XT5
(eight-core nodes).

Always same
number of cores

Hongzhang Shan, Haoqiang Jin, Karl Fuerlinger, Alice Koniges, Nicholas J. Wright:
Analyzing the Effect of Different Programming Models Upon Performance and Memory Usage on
Cray XT5 PlatormsCray XT5 Platorms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Slide, courtesy of

ISC12 Tutorial 177Performance programming on multicore-based systems

Alice Koniges, NERSC, LBLN

Practical “How-To” for hybrid

ISC12 Tutorial Performance programming on multicore-based systems 178

How to compile, link and run

Compiler usually invoked via a wrapper script, e.g., “mpif90”,
“mpicc”
Use appropriate compiler flag to enable OpenMP
directives/pragmas:
-openmp (Intel), -mp (PGI), -qsmp=omp (IBM)openmp (Intel), mp (PGI), qsmp omp (IBM)

Link with MPI library
Usually wrapped in MPI compiler script
If required, specify to link against thread-safe MPI library (Often
automatic when OpenMP or auto-parallelization is switched on)

Running the code
Highly nonportable! Consult system docs! (if available)Highly nonportable! Consult system docs! (if available…)
If you are on your own, consider the following points
Make sure OMP NUM THREADS etc. is available on all MPI processes_ _ p

E.g., start “env VAR=VALUE … <YOUR BINARY>” instead of your binary alone
Figure out how to start less MPI processes than cores on your nodes

ISC12 Tutorial 179Performance programming on multicore-based systems

Compiling/Linking Examples (1)

PGI (Portland Group compiler)
mpif90 –fast –mp

Pathscale :
mpif90 –Ofast –openmp

IBM P 6IBM Power 6:
mpxlf_r -O4 -qarch=pwr6 -qtune=pwr6 -qsmp=omp

Intel Xeon Cluster:Intel Xeon Cluster:
mpif90 –openmp –O2

High optimization
level is requiredlevel is required
because enabling
OpenMP interferes
with compilerwith compiler
optimization

180Performance programming on multicore-based systemsISC12 Tutorial

Compile/Run/Execute Examples (2)

NEC SX9
NEC SX9 compilerNEC SX9 compiler
mpif90 –C hopt –P openmp … # –ftrace for profiling info
Execution:

$ export OMP_NUM_THREADS=<num_threads>
$ MPIEXPORT=“OMP_NUM_THREADS”
$ i <# MPI d > <# f d > t$ mpirun –nn <# MPI procs per node> -nnp <# of nodes> a.out

Standard x86 cluster:
Intel Compiler
mpif90 –openmp …

Execution (handling of OMP_NUM_THREADS, see next slide):

$ mpirun_ssh –np <num MPI procs> -hostfile machines a.out

ISC12 Tutorial 181Performance programming on multicore-based systems

Handling OMP_NUM_THREADS

without any support by mpirun:
Problem (e.g. with mpich-1): mpirun has no features to export environment

i bl t th i h t ti ll t t d MPIvariables to the via ssh automatically started MPI processes
Solution:
export OMP_NUM_THREADS=<# threads per MPI process> _ _
in ~/.bashrc (if a bash is used as login shell)
Problem: Setting OMP_NUM_THREADS individually for the MPI
processes:p
Solution:
test -s ~/myexports && . ~/myexports
in your ~/ bashrcin your /.bashrc
echo '$OMP_NUM_THREADS=<# threads per MPI process>' >
~/myexports
before invoking mpirun. Caution: Several invocations of mpirun cannotbefore invoking mpirun. Caution: Several invocations of mpirun cannot
be executed at the same time with this trick!

with support, e.g. by OpenMPI –x option:
export OMP NUM THREADS= <# threads per MPI process>

Hybrid Parallel Programming

export OMP_NUM_THREADS= <# threads per MPI process>
mpiexec –x OMP_NUM_THREADS –n <# MPI processes> ./a.out

ISC12 Tutorial 182Performance programming on multicore-based systems

Example: Constellation Cluster Ranger (TACC)

Sun Constellation Cluster:
mpif90 -fastsse -tp barcelona-64 –mpmpif90 fastsse tp barcelona 64 mp …

SGE Batch System
ibrun numactl sh a outibrun numactl.sh a.out

Details see TACC Ranger User Guide
(www.tacc.utexas.edu/services/userguides/ranger/#numactl)(www.tacc.utexas.edu/services/userguides/ranger/#numactl)

#!/bin/csh
#$ -pe 2way 512 2 MPI Procs per node

512 t t lsetenv OMP_NUM_THREADS 8
ibrun numactl.sh bt-mz-64.exe

512 cores total

Hybrid Parallel Programming

ISC12 Tutorial 183Performance programming on multicore-based systems

Example: Cray XT5

Cray XT5:
• 2 quad-core AMD Opteron per node• 2 quad-core AMD Opteron per node
• ftn –fastsse –mp (PGI compiler)

Maximum of 8 threads per
MPI process on XT5

#!/bin/csh
#PBS -q standard
#PBS l idth 512

MPI process on XT5

#PBS -l mppwidth=512
#PBS -l walltime=00:30:00
module load xt-mpt
cd $PBS O WORKDIR 8 threads per MPI Process_ _
setenv OMP_NUM_THREADS 8
aprun –n 64 –N 1 –d 8./bt-mz.64
setenv OMP_NUM_THREADS 4
aprun n 128 S 1 d 4 /bt mz 128

Number of MPI Procs per Node:
1 Proc per node with up to 8 threads each

p

aprun –n 128 –S 1 –d 4 ./bt-mz.128 1 Proc per node with up to 8 threads each

4 threads per MPI Process

Hybrid Parallel Programming

Number of MPI Procs per Numa Node:
1 Proc per Numa Node => 2 Procs per Node

ISC12 Tutorial 184Performance programming on multicore-based systems

Example: Different Number of MPI Processes per Node (XT5)

Usage Example:
Different Components of an application require different resources, eg. Community
Climate System Model (CCSM)Climate System Model (CCSM)

aprun -n 8 -S 4 -d 1 ./ccsm.exe: -n 4 -S 2 -d 2 ccsm.exe : \
-n 2 -S 1 -d 4 .ccsm.exe: -n 2 -N 1 -d 8 ./ccsm.exe

8 MPI Procs with 1 thread

/

PE 0]: rank 0 is on nid00205 [PE 0]:
4 MPI Procs with 2 threads
2 MPI Procs with 4 threads
2 MPI Procs with 8 threads

_] [_]
rank 1 is on nid00205 [PE_0]: rank 2
is on nid00205 [PE_0]: rank 3 is on
nid00205 [PE_0]: rank 4 is on
nid00205 [PE_0]: rank 5 is on
nid00205 [PE_0]: rank 6 is on
nid00205 [PE_0]: rank 7 is on
nid00205 [PE_0]: rank 8 is on
nid00208 [PE_0]: rank 9 is on export MPICH_RANK_REORDER_DISPLAY=1
nid00208 [PE_0]: rank 10 is on
nid00208 [PE_0]: rank 11 is on
nid00208 [PE_0]: rank 12 is on
nid00209 [PE_0]: rank 13 is on
id00209 [PE 0] k 14 inid00209 [PE_0]: rank 14 is on

nid00210 [PE_0]: rank 15 is on
nid00211

185ISC12 Tutorial Performance programming on multicore-based systems

Example : IBM Power 6

Hardware: 4.7GHz Power6 Processors, 150 Compute Nodes, 32
Cores per Node, 4800 Compute Cores

enable OpenMP

p p
mpxlf_r -O4 -qarch=pwr6 -qtune=pwr6 -qsmp=omp

Crucial for full optimization in
presence of OpenMP directives

enable OpenMP

#!/bin/csh
#PBS -N bt-mz-16x4#PBS N bt mz 16x4
#PBS -m be
#PBS -l walltime=00:35:00
#PBS -l select=2:ncpus=32:mpiprocs=8:ompthreads=4# p p p p
#PBS -q standard
cd $PBS_O_WORKDIR
setenv OMP_NUM_THREADS 4

Hybrid Parallel Programming

_ _
poe ./bin/bt-mz.B.16

186Performance programming on multicore-based systemsISC12 Tutorial

Example : Intel Linux Cluster

#!/bash ScaliMPI
#PBS -q standard
#PBS –l select=16:ncpus=4
#PBS -l walltime=8:00:00
#PBS -j oe

ScaliMPI

Use more than one core

Place 2 MPI Procs
per node

#PBS j oe
cd $PBS_O_WORKDIR
export OMP_NUM_THREADS=2
mpirun –np 32 –npn 2 –affinity_mode none ./bt-mz.C.32

Use more than one core
per MPI Proc

#!/bash
#PBS -q standard

OpenMPI

l d d b

#PBS –l select=16:ncpus=4
#PBS -l walltime=8:00:00
#PBS -j oe
cd $PBS O WORKDIR Processes placed round‐robin

on nodes

cd $PBS_O_WORKDIR
export OMP_NUM_THREADS=2
mpirun –np 32 –bynode ./bt-mz.C.32

ISC12 Tutorial 187Performance programming on multicore-based systems

Topology choices with MPI/OpenMP:
More examples using Intel MPI+compiler & home-grown mpirun (@RRZE)

One MPI process per node

One MPI process per socket

env OMP_NUM_THREADS=8 mpirun -pernode \
likwid-pin –t intel -c N:0-7 ./a.out

env OMP NUM THREADS=4 mpirun -npernode 2 \

OpenMP threads pinned

env OMP_NUM_THREADS 4 mpirun npernode 2 \
-pin "0,1,2,3_4,5,6,7" ./a.out

“round robin” across cores
in node env OMP_NUM_THREADS=4 mpirun -npernode 2 \

-pin "0,1,4,5_2,3,6,7" \
lik id i t i t l 0 2 1 3 / t

Two MPI processes per
socket

likwid-pin –t intel -c L:0,2,1,3 ./a.out

socket
env OMP_NUM_THREADS=2 mpirun -npernode 4 \

-pin "0,1_2,3_4,5_6,7" \
likwid-pin –t intel -c L:0,1 ./a.outp ,

ISC12 Tutorial 188Performance programming on multicore-based systems

NUMA Control: Process and Memory Placement

Affinity and Policy can be changed externally through numactl at
the socket and core level.

32 12 13 14 158 9 10 11
Core Core

CoreCore

Core Core

CoreCore

Core Core

CoreCore

Core Core

CoreCore

32 12,13,14,158,9,10,11

Core Core Core Core Core Core Core Core

CoreCore CoreCore CoreCore CoreCore

01 0,1,2,34,5,6,7

Socket References Core References

ISC12 Tutorial 189Performance programming on multicore-based systems

Caution:Caution:
socket
numbering
system
dependent!

ISC12 Tutorial 190Performance programming on multicore-based systems

ISC12 Tutorial 191Performance programming on multicore-based systems

Example: Numactl on Ranger Cluster (TACC)

32
Running BT-MZ Class D 128 MPI Procs, 8 threads

each, 2 MPI on each node on Ranger (TACC)
Core Core

CoreCore

Core Core

CoreCoreUse of numactl for affinity:

Core Core

CoreCore

Core Core

CoreCore

01

ne

if [$localrank == 0]; then
exec numactl \ 01

32

etw
ork

exec numactl \
--physcpubind=0,1,2,3,4,5,6,7 \
-m 0,1 $*

lif [$l l k 1] h Core Core

CoreCore

Core Core

CoreCore

Rank 1elif [$localrank == 1]; then
exec numactl \

-–physcpubind=8,9,10,11,12,13,14,15 \
Core Core

CoreCore

Core Core

CoreCore

01
Rank 0

p y p , , , , , , , \
–m 2,3 $*

fi
01

0,1,2,34,5,6,7

ISC12 Tutorial 192Performance programming on multicore-based systems

Example: numactl on Lonestar Cluster at TACC

CPU type: Intel Core Westmere processor

Hardware Thread Topology

Running NPB BT-MZ Class D 128 MPI Procs, 6
threads each 2MPI per node

Hardware Thread Topology

Sockets: 2
Cores per socket: 6

Pinning A:
if [$localrank == 0]; then
exec numactl --physcpubind=0,1,2,3,4,5 \Cores per socket: 6

Threads per core: 1

p y p , , , , ,
-m 0 $*

elif [$localrank == 1]; then
exec numactl \

--physcpubind=6,7,8,9,10,11 \
-m 1 $*

fi

Socket 0: (1 3 5 7 9 11)
Socket 1: (0 2 4 6 8 10)

610 Gflop/s
Socket 1: (0 2 4 6 8 10)
--------------------------------- Running 128 MPI Procs, 6 threads each

Pinning B:
if [$localrank == 0]; then
exec numactl --physcpubind=0,2,4,6,8,10 \

-m 0 $*
lif [$l l k 1] helif [$localrank == 1]; then
exec numactl –physcpubind=1,3,5,7,9,11 \

-m 1 $*
fi 900 Gflop/s

Half of the threads
access remote
memory

ISC12 Tutorial 193Performance programming on multicore-based systems

fi 900 Gflop/sy

Lonestar Node Topology

likwid-topology p gy
output

ISC12 Tutorial 194Performance programming on multicore-based systems

Performance Statistics

Important MPI Statistics:
Time spent in communication
Time spent in synchronization

Methods to Gather Statistics:
Sampling/Interrupt based via a profiler
I t t ti f dAmount of data communicated, length of

messages, number of messages
Communication pattern
Time spent in communication vs computation

Instrumentation of user code
Use of instrumented libraries, e.g.
instrumented MPI library

Workload balance between processes

Important OpenMP Statistics:
Ti t i ll l iTime spent in parallel regions
Time spent in work-sharing
Workload distribution between threads
Fork-Join Overhead

General Statistics:
Time spent in various subroutines
H d C t I f ti (CPU lHardware Counter Information (CPU cycles,
cache misses, TLB misses, etc.)
Memory Usage

ISC12 Tutorial 195Performance programming on multicore-based systems

Examples of Performance Analysis Tools

Vendor Supported Software:
CrayPat/Cray Apprentice2: Offered by Cray for the XT Systems.
pgprof: Portland Group Performance Profilerpgp p
Intel Tracing Tools
IBM xprofiler

Public Domain Software: see Case
PAPI (Performance Application Programming Interface):

Support for reading hardware counters in a portable way
Basis for many tools
http://icl.cs.utk.edu/papi/

see Case
Studies

TAU:
Portable profiling and tracing toolkit for performance analysis of parallel programs written in Fortran, C, C++ and
others
University of Oregon, http://www.cs.uoregon.edu/research/tau/home.phpUniversity of Oregon, http://www.cs.uoregon.edu/research/tau/home.php

IPM (Integrated Performance Monitoring):
Portable profiling infrastructure for parallel codes
Provides a low-overhead performance summary of the computation
http://ipm-hpc sourceforge net/http://ipm hpc.sourceforge.net/

Scalasca:
http://icl.cs.utk.edu/scalasca/index.html

Paraver:
Barcelona Supersomputing Center
http://www.bsc.es/plantillaA.php?cat_id=488

ISC12 Tutorial 196Performance programming on multicore-based systems

Performance Tools Support for Hybrid Code

Paraver tracing is done with
linking against (closed-source)
omptrace or ompitrace

For Vampir/Vampirtrace performance analysis:
/configure –enable-omp \./configure enable omp \
–enable-hyb \
–with-mpi-dir=/opt/OpenMPI/1.3-icc \
CC=icc F77=ifort FC=ifort

(Attention: does not wrap MPI_Init_thread!)

ISC12 Tutorial 197Performance programming on multicore-based systems

Scalasca – Example “Wait at Barrier”

Indication of
non-optimal load

balance
Screenshots, courtesy of KOJAK JSC, FZ Jülich

ISC12 Tutorial 198Performance programming on multicore-based systems

Scalasca – Example “Wait at Barrier”, Solution

Better load balancing
with dynamic
loop schedulep

Screenshots, courtesy of KOJAK JSC, FZ Jülich

ISC12 Tutorial 199Performance programming on multicore-based systems

Hybrid MPI/OpenMP: Take-home messages

Be aware of inter/intra-node MPI behavior:
available shared memory vs resource contentiony

Observe the topology dependence ofObserve the topology dependence of
Inter/Intra-node MPI
OpenMP overheadsp

Enforce proper thread/process to core binding, using o ce p ope t ead/p ocess to co e b d g, us g
appropriate tools (whatever you use, but use SOMETHING)]

OpenMP processes on ccNUMA nodes require correct page
placementp

Alternative: Do not let MPI processes span multiple NUMA domains

ISC12 Tutorial 200Performance programming on multicore-based systems

Tutorial outline (2)

Hybrid MPI/OpenMP
MPI vs. OpenMP

Case studies for hybrid
MPI/OpenMP

Thread-safety quality of MPI
libraries
Strategies for combining MPI with

Overlap of communication and
computation for hybrid sparse
MVMStrategies for combining MPI with

OpenMP
Topology and mapping problems

MVM
The NAS parallel benchmarks
(NPB-MZ)p gy pp g p

Potential opportunities Hybrid computing with
accelerators and compiler
directives

Summary: Opportunities and y pp
Pitfalls of Hybrid Programming

Overall summary and goodbye

ISC12 Tutorial 201Performance programming on multicore-based systems

Case study:Case study:
MPI/OpenMP hybrid parallel
sparse matrix-vector multiplicationsparse matrix vector multiplication

A case for explicit overlap of communication and
computation

ISC12 Tutorial Performance programming on multicore-based systems 202

SpMVM test cases

Matrices in our test cases: Nnzr ≈ 7…15 RHS and LHS do matter!
HM: Hostein-Hubbard Model (solid state physics) 6-site lattice 6 electronsHM: Hostein Hubbard Model (solid state physics), 6 site lattice, 6 electrons,
15 phonons, Nnzr ≈15
sAMG: Adaptive Multigrid method, irregular discretization of Poisson stencil

t N 7on car geometry, Nnzr ≈ 7

Nnzr ≈15 Nnzr ≈ 7

ISC12 Tutorial 203Performance programming on multicore-based systems

Distributed-memory parallelization of spMVM

Local operation – no
communication
required

P0

required

P0

P1

=

P2

⋅
Nonlocal
RHS P2 elements
for P0

P3

ISC12 Tutorial 204Performance programming on multicore-based systems

Distributed-memory parallelization of spMVM

Variant 1: “MASTERONLY mode” without overlap

Standard concept
for “hybrid MPI+OpenMP”
Multithreaded computation
(ll th d)(all threads)

Communication onlyCommunication only
outside of computation

Benefit of threaded MPI process only due to message aggregation
and better load balancing

G. Hager, G. Jost, and R. Rabenseifner: Communication Characteristics and Hybrid MPI/OpenMP Parallel Programming on
Clusters of Multi-core SMP Nodes.In: Proceedings of the Cray Users Group Conference 2009 (CUG 2009), Atlanta, GA, USA,
May 4-7, 2009. PDF

ISC12 Tutorial 205Performance programming on multicore-based systems

Distributed-memory parallelization of spMVM

Variant 2: “MASTERONLY mode” with naïve overlap
(“good faith hybrid”)

Relies on MPI to support
asynchronous nonblocking
point-to-point
Multithreaded computationMultithreaded computation
(all threads)

Still simple programming
Drawback: Result vector
is written twice to memory

modified performance
d lmodel

ISC12 Tutorial 206Performance programming on multicore-based systems

Distributed-memory parallelization of spMVM

Variant 3: “FUNNELED-HYBRID mode” with dedicated comm. thread
Explicit overlap, more complex to implementp p, p p
One thread missing in
team of compute threads

But that doesn’t hurt here…
Using tasking seems simpler
but may require somebut may require some
work on NUMA locality

Drawbacks
Result vector is written
twice to memory
No simple OpenMPNo simple OpenMP
worksharing (manual,
tasking)

G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector multiplication with explicit
communication overlap on current multicore-based systems. Parallel Processing Letters 21(3), 339-358 (2011). DOI:
10.1142/S0129626411000254

ISC12 Tutorial 207Performance programming on multicore-based systems

Results HMeP (strong scaling) on Westmere-based QDR
IB cluster (vs. Cray XE6)

50% efficiency
w/ respect to

MASTERONLY

MASTERONLY

FUNNELED-HYB.
uses virtual core for p

best 1-node
performance

MASTERONLY

FUNNELED-HYB.
communication
@ 1 process/core

Dominated by communication (and load imbalance for large #procs)
Single-node Cray performance cannot be maintained beyond a few nodes
FUNNELED HYBRID pays off esp. with one process (12 threads) per node
Overlap (over-)compensates additional LHS trafficOverlap (over)compensates additional LHS traffic

ISC12 Tutorial 208Performance programming on multicore-based systems

Results sAMG

MASTERONLY

MASTERONLYMASTERONLY

FUNNELED-HYB.

Much less communication-bound
XE6 outperforms Westmere cluster, can maintain good node performance
Hardly any discernible difference as to # of threads per process
If pure MPI is good enough, don’t bother going hybrid!If pure MPI is good enough, don t bother going hybrid!

ISC12 Tutorial 209Performance programming on multicore-based systems

Case study:Case study:
The Multi-Zone NAS Parallel
Benchmarks (NPB-MZ)

ISC12 Tutorial Performance programming on multicore-based systems 210

The Multi-Zone NAS Parallel Benchmarks

MPI/OpenMP Nested
OpenMPMLP

MPI

sequential

p

sequentialsequentialTime step

OpenMPMLP inter zones

OpenMP

Call MPI

Processes

OpenMPdata copy+
sync.

exchange
boundaries

OpenMPProcessesinter-zones

OpenMP OpenMPOpenMPintra-zones

Multi-zone versions of the NAS Parallel Benchmarks
LU,SP, and BT
Two hybrid sample implementationsTwo hybrid sample implementations
Load balance heuristics part of sample codes
www.nas.nasa.gov/Resources/Software/software.html

211Performance programming on multicore-based systemsISC12 Tutorial

MPI/OpenMP BT-MZ

call omp_set_numthreads (weight)
do step = 1, itmax

call exch qbc(u, qbc, nx,…)

subroutine zsolve(u, rsd,…)

...
!$OMP PARALLEL DEFAULT(SHARED)call exch_qbc(u, qbc, nx,…) !$OMP PARALLEL DEFAULT(SHARED)

!$OMP& PRIVATE(m,i,j,k...)

do k = 2, nz-1

!$OMP DOcall mpi send/recv

do zone = 1 num zones

!$OMP DO

do j = 2, ny-1

do i = 2, nx-1

do m = 1 5

call mpi_send/recv

do zone = 1, num_zones

if (iam .eq. pzone_id(zone)) then

call zsolve(u,rsd,…)

d if

do m = 1, 5
u(m,i,j,k)=

dt*rsd(m,i,j,k-1)

end do
end if

end do

e d do

end do

end do

!$OMP END DO nowait
end do

...

!$OMP END DO nowait
end do

...

!$OMP END PARALLEL!$OMP END PARALLEL

ISC12 Tutorial 212Performance programming on multicore-based systems

MPI/OpenMP LU-MZ

call omp_set_numthreads (weight)
do step = 1, itmax

ll h b (b)call exch_qbc(u, qbc, nx,…)

call mpi_send/recv

do zone = 1, num_zones
if (iam .eq. pzone_id(zone)) then

call ssor
end if

end doend do

end do
...

ISC12 Tutorial 213Performance programming on multicore-based systems

Pipelined Thread Execution in SSOR

subroutine ssor
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP& PRIVATE(m,i,j,k...)

subroutine sync1
…neigh = iam -1
do while (isync(neigh) .eq. 0)$ (, ,j,)

call sync1 (…)
do k = 2, nz-1

!$OMP DO

y g q
!$OMP FLUSH(isync)
end do
isync(neigh) = 0!$O O

do j = 2, ny-1
do i = 2, nx-1
do m = 1, 5

!$OMP FLUSH(isync)
…
subroutine sync2do m 1, 5

rsd(m,i,j,k)=
dt*rsd(m,i-1,j-1,k-1)
end do

…
neigh = iam -1
do while (isync(neigh) .eq. 1)

end do
end do

!$OMP END DO nowait

!$OMP FLUSH(isync)
end do
isync(neigh) = 1

end do
call sync2 (…)
...

!$OMP END PARALLEL

!$OMP FLUSH(isync)

“PPP itho t global s nc”!$OMP END PARALLEL
...

“PPP without global sync”

ISC12 Tutorial 214Performance programming on multicore-based systems

Golden Rule for ccNUMA: “First touch”

• A memory page gets mapped into the local memory of the processor that first
touches it!
C t• Caveats:

• possibly not enough local memory
• "touch" means "write", not "allocate"

c---
c do one time step to touch all data
c---

do iz = 1, proc_num_zones
zone = proc_zone_id(iz)
call adi(rho_i(start1(iz)), us(start1(iz)),_

$ vs(start1(iz)), ws(start1(iz)),
…..

$ end do
do iz = 1, proc_num_zones
zone = proc_zone_id(iz)
call initialize(u(start5(iz)),…

$ end do

Performance programming on multicore-based systemsISC12 Tutorial 215

Benchmark Characteristics

Aggregate sizes:
Class D: 1632 x 1216 x 34 grid points
Class E: 4224 x 3456 x 92 grid points Expectations:Class E: 4224 x 3456 x 92 grid points

BT-MZ: (Block tridiagonal simulated CFD application)
Alternative Directions Implicit (ADI) method Pure MPI: Load

balancing problems!

Expectations:

#Zones: 1024 (D), 4096 (E)
Size of the zones varies widely:

large/small about 20
i lti l l ll li t hi d l d b l

balancing problems!
Good candidate for

MPI+OpenMP
requires multi-level parallelism to achieve a good load-balance

LU-MZ: (LU decomposition simulated CFD application)
SSOR method (2D pipelined method) Limited MPI

Parallelism:(p p)
#Zones: 16 (all Classes)

Size of the zones identical:
no load-balancing required

Parallelism:
MPI+OpenMP

increases Parallelism

limited parallelism on outer level

SP-MZ: (Scalar Pentadiagonal simulated CFD application)
#Zones: 1024 (D) 4096 (E) Load-balanced on #Zones: 1024 (D), 4096 (E)
Size of zones identical

no load-balancing required

MPI level: Pure MPI
should perform best

ISC12 Tutorial 216Performance programming on multicore-based systems

Hybrid code on cc-NUMA architectures

OpenMP:
Support only per MPI process
Version 3 0 does not provide support to control to map threads onto CPUs Support toVersion 3.0 does not provide support to control to map threads onto CPUs. Support to
specify thread placement is still under discussion.
Version 3.1 has support for binding of threads via OMP_PROC_BIND environment
variablevariable

MPI:
Initially not designed for NUMA architectures or mixing of threads and processesInitially not designed for NUMA architectures or mixing of threads and processes,
MPI-2 supports threads in MPI
API does not provide support for memory/thread placement

Vendor specific APIs to control thread and memory placement:
Environment variables
likwid pin (see first part of tutorial)likwid-pin (see first part of tutorial)
System commands like numactl,taskset,dplace,omplace etc
http://www.halobates.de/numaapi3.pdf
M i “H t ’ ”More in “How-to’s”

ISC12 Tutorial Performance programming on multicore-based systems 217

Dell Linux Cluster Lonestar

• Located at the Texas Advanced Computing Center (TACC), University of Texas
at Austin (http://www.tacc.utexas.edu)

• 1888 nodes, 2 Xeon Intel 6-Core 64-bit Westmere processors, 3.33 GHz, 24
GB memory per node, Peak Performance 160 Gflops per node, 3 channels
from each processor's memory controller to 3 DDR3 ECC DIMMS, 1333 MHz,
P i t t QPI 6 4GT/• Processor interconnect, QPI, 6.4GT/s

• Node Interconnect: InfiniBand, fat-free topology, 40Gbit/sec point-to-point
bandwidth

// / / /• More details: http://www.tacc.utexas.edu/user-services/user-guides/lonestar-
user-guide

• Compiling the benchmarks:
• ifort 11.1, Options: -O3 –ipo –openmp –mcmodel=medium

• Running the benchmarks:
• MVAPICH 2
• setenv OMP_NUM_THREADS=
• ibrun tacc_affinity ./bt-mz.x

ISC12 Tutorial Performance programming on multicore-based systems 218

Dell Linux Cluster Lonestar Topology

ISC12 Tutorial Performance programming on multicore-based systems 219

Dell Linux Cluster Lonestar Topology

CPU type: Intel Core Westmere processor
**
Hardware Thread Topology

Sockets: 2
Cores per socket: 6
Threads per core: 1Threads per core: 1

Socket 0: (1 3 5 7 9 11) Careful! Numbering scheme of Socket 0: (1 3 5 7 9 11)
Socket 1: (0 2 4 6 8 10)

cores is system-dependent
(likwid-pin supports logical
numbering, however)u be g, o e e)

ISC12 Tutorial Performance programming on multicore-based systems 220

NPB-MZ Class E scalability on Lonestar

4096
cores

8192
cores

cores

No idle cores
2048
cores

512
cores

1024
cores U

nexU
n

cores

xpected!

nexpectedd!

Cores were allocated in chunks of 12. Therefore there are idle cores for some MPIxOMP combinations.

ISC12 Tutorial Performance programming on multicore-based systems 221

LU-MZ Class D Scalability on Lonestar

idle coresidle cores
G

Fl
op

s
G

ISC12 Tutorial Performance programming on multicore-based systems 222

Cray XE6 Hermit

• Located at HLRS Stuttgart, Germany
(https://wickie.hlrs.de/platforms/index.php/Cray_XE6)

• 3552 compute nodes 113.664 cores
• Each node contains two AMD 6276 Interlagos processors with 16 cores each,

running at 2 3 GHz (TurboCore 3 3GHz)running at 2.3 GHz (TurboCore 3.3GHz)
• Around 1 Pflop theoretical peak performance
• 32 GB of main memory available per node
• 32-way shared memory system
• High-bandwidth interconnect using Cray Gemini communication chips.

ISC12 Tutorial Performance programming on multicore-based systems 223

Cray XE6 Hermit Node Topology

CPU type: AMD Interlagos processor

Hardware Thread Topology

4 NUMA domains

Sockets: 2
Cores per socket: 16
Threads per core: 1Threads per core: 1

Socket 0:
+---+
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | | 8 | | 9 | | 10 | | 11 | | 12 | | 13 | | 14 | | 15 | |
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |
| | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | |
| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |
| +---+ +---+ |
| | 6MB | | 6MB | |
| +---+ +---+ |
+---+
Socket 1:
+ ++---+
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| | 16 | | 17 | | 18 | | 19 | | 20 | | 21 | | 22 | | 23 | | 24 | | 25 | | 26 | | 27 | | 28 | | 29 | | 30 | | 31 | |
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ || + |
| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |
| | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | |
| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |
| +---+ +---+ |
| | 6MB | | 6MB | |
| +---+ +---+ |
+---+

ISC12 Tutorial Performance programming on multicore-based systems 224

NPB-MZ Class E on Hermit

20000

NPB-MZ Class E on Hermit
32K

16000

18000 bt-mz sp-mz cores

16K

10000

12000

14000

op
s

cores8K cores

6000

8000

10000

G
Fl

o

2000

4000

6000

0

MPI x OpenMP

ISC12 Tutorial Performance programming on multicore-based systems 225

Conclusions from the NPB Case Studies

• Hybrid Code Opportunities:
– Lower communication overhead

• Few multi-threaded MPI processes vs. many single-threaded processes
• Fewer number of calls and smaller chunks of data communicated
• e.g., SP-MZ depending on interconnect and MPI stack

– Lower memory requirements
• Reduced amount of replicated datap
• Reduced size of MPI internal buffer space
• May become more important for systems of 100’s or 1000’s cores per node

– Provide for flexible load-balancing on coarse and fine graing g
• Smaller #of MPI processes leave room to assign workload more even
• MPI processes with higher workload could employ more threads
• eg BT-MZ

– Increase parallelism
• Domain decomposition as well as loop level parallelism can be exploited
• eg SP-MZ, LU-MZ

ISC12 Tutorial Performance programming on multicore-based systems 226

Hybrid programming with accelerators
and compiler directivesand compiler directives

ISC12 Tutorial 227Performance programming on multicore-based systems

Hybrid Programming and Accelerators

• Under Discussion: OpenMP support for Accelerators in 4.0
- To be announced at SC12
- Multiple devices of the same type (homogeneous)
- Device type known at compile time
- Automatic run-time and programmed user-control device

selection
- Structured and unstructured block data placementStructured and unstructured block data placement

- Data regions and mirror directives
- Synchronous and asynchronous data movement
- Accelerator-style parallel launch with multiple 'threads' of

execution on the device: e.g., accelerator parallel regions
Dispatch style parallel launch(offload) to a single thread of- Dispatch-style parallel launch(offload) to a single thread of
execution on the device; eg accelerator tasks

ISC12 Tutorial Performance programming on multicore-based systems 228

Accelerator Memory Model

• Current memory model:
• Relaxed-Consistency Shared-Memory
• All threads have access to the memory
• Data-sharing attributes: shared, private

• Proposed additions to memory model
• Separate Host and Accelerator Memory

Data Movement Host Accelerator indicated by compiler• Data Movement Host ↔ Accelerator indicated by compiler
directives

• Updates to different memories indicated by compiler directives

#pragma omp acc_data [clause]
• acc_shared

t i• acc_copyout, acc_copyin

ISC12 Tutorial Performance programming on multicore-based systems 229

Accelerator Execution Model

• Current OpenMP Execution Model:
• Execution starts single threadedg
• Fork-Join Threads at OpenMP parallel regions
• Work-sharing indicated via compiler directives

• Proposed additions to the Execution Model:
• Explicit accelerator regions or tasks are generated at beginning of

l t iaccelerator regions

#pragma acc_region [clause]
• Purpose: Define code that is to be run on accelerator

i (li t)• acc_copyin (list)
• acc_copyout (list)
#pragma omp acc_loop [clause]_

ISC12 Tutorial Performance programming on multicore-based systems 230

Test Case: Hybrid Jacobi using PGI directives

• PGI (http://www.pgroup.com) provides compiler directives for
acceleratorsaccelerators
• Website for some documentation

• PGI active member of OpenMP Language committee
• Use PGI Directives

• OpenMP Language committee follows path set by PGI

O i i l H b id MPI/O MP i l t ti id d b t f• Original Hybrid MPI/OpenMP implementation provided by courtesy of
EPCC (Edingburgh Parallel Computing Center)
(http://www.epcc.ed.ac.uk)

ISC12 Tutorial Performance programming on multicore-based systems 231

Example: Jacobi Iteration OpenMP directives

!$OMP PARALLEL DO PRIVATE(i,j,k)
DO k = 1, Z, 1

DO j = 1, Y, 1j
DO i = 1, X, 1

data(i,j,k,new) = &
(data(i-1,j,k,old) + data(i+1,j,k,old) +&

data(i,j-1,k,old) + data(i,j+1,k,old) + &
data(i,j,k-1,old) + data(i,j,k+1,old) - &
edge(i,j,k)) / 6.0

END DO
END DO

END DO

ISC12 Tutorial Performance programming on multicore-based systems 232

Version 0: Unoptimized

!$omp acc_region
DO k = 1 Z 1

jacobistep:
59, Loop carried dependence of 'data' prevents DO k = 1, Z, 1

DO j = 1, Y, 1
DO i = 1, X, 1

data(i,j,k,new) = &

p p p
parallelization

Loop carried backward dependence of 'data'
prevents vectorization

60 Loop carried dependence of 'data' prevents(data(i-1,j,k,old) + &
data(i+1,j,k,old) + &
data(i,j-1,k,old) + &
data(i j+1 k old) + &

60, Loop carried dependence of data prevents
parallelization

Loop carried backward dependence of 'data'
prevents vectorizationdata(i,j+1,k,old) + &

data(i,j,k-1,old) + &
data(i,j,k+1,old) - &
edge(i,j,k)) / 6.0

61, Loop carried dependence of 'data' prevents
parallelization

Loop carried backward dependence of 'data'
prevents vectorizationEND DO

END DO
END DO
!$omp end acc region

prevents vectorization
Accelerator kernel generated
59, !$acc do seq
60, !$acc do seq

$!$omp end acc_region 61, !$acc do seq
Non-stride-1 accesses for array 'data'
Non-stride-1 accesses for array 'edge'

No performance increase when using accelerator

ISC12 Tutorial Performance programming on multicore-based systems 233

Example: Jacobi Iteration OpenMP Accelerator

!$omp acc data copyin(edge) copy(data)!$omp acc_data copyin(edge) copy(data)
!$omp acc_region_loop PRIVATE(i,j,k)
DO k = 1, Z, 1

DO j = 1 Y 1DO j = 1, Y, 1
DO i = 1, X, 1

data(i,j,k,new) = &
(data(i-1 j k old) + data(i+1 j k old) + &(data(i 1,j,k,old) + data(i+1,j,k,old) + &

data(i,j-1,k,old) + data(i,j+1,k,old) + &
data(i,j,k-1,old) + data(i,j,k+1,old) - &
edge(i,j,k)) / 6.0edge(,j,)) / 6.0

END DO
END DO

END DO
!$omp end acc_region_loop
!$omp end acc_data

ISC12 Tutorial Performance programming on multicore-based systems 234

Version 1: Optimized for parallelization….

!$acc data region local(temp2) &!$acc data region local(temp2) &
updatein(data(0:X+1,0:Y+1,0:Z+1,old)) &
updateout(data(0:X+1,0:Y+1,0:Z+1,new)) updatein(edge)

!$acc region
t 2 d t (ld)temp2 = data (:,:,:,old)
DO k = 1, Z, 1
DO j = 1, Y, 1
DO i = 1, X, 1

244, Loop is parallelizable
245, Loop is parallelizable, ,

data(i,j,k,new) = &
(temp2(i-1,j,k) + &
temp2(i+1,j,k) + &

&

246, Loop is parallelizable
Accelerator kernel generated

244, !$acc do parallel, vector(4) ! blockidx%y threadidx%z
$& ……

edge(i,j,k)) / 6.0
END DO
END DO

245, !$acc do parallel, vector(4) ! blockidx%x
threadidx%y

246, !$acc do vector(16) ! threadidx%x
C h d f t i [18 6 6] bl k fEND DO

!$acc end region
!$acc end data region

Cached references to size [18x6x6] block of
'temp2'

ISC12 Tutorial Performance programming on multicore-based systems 235

Version 1 (cont): ….and data movement

module glob
real (kind(1.0e0)), dimension(:,:,:,:), allocatable,pinned :: datareal (kind(1.0e0)), dimension(:,:,:,:), allocatable,pinned :: data
real (kind(1.0e0)), dimension(:,:,:), allocatable,pinned :: edge
logical first

!$acc mirror(data,edge)
d d l l b

if (first) then
macc = MOD(rank,2)+1
ll d iend module glob

!$acc data region local(temp2) &
updatein(data(0:X+1,0:Y+1,0:Z+1,old)) &

call acc set device num
(macc,acc_device_type)

endif
p ((, , ,))
updateout(data(0:X+1,0:Y+1,0:Z+1,new)) updatein(edge)

!$acc region
temp2 = data (:,:,:,old)
DO k = 1 Z 1

Use different devices for different MPI processes

DO k = 1, Z, 1
DO j = 1, Y, 1
DO i = 1, X, 1
data(i,j,k,new) = (temp2(i-1,j,k) + temp2(i+1,j,k) + … edge (I,j,k))/6.
END DO
END DO
END DO
!$acc end region!$acc end region
!$acc end data region

ISC12 Tutorial Performance programming on multicore-based systems 236

Tutorial outline (2)

Hybrid MPI/OpenMP
MPI vs. OpenMP

Case studies for hybrid
MPI/OpenMP

Thread-safety quality of MPI
libraries
Strategies for combining MPI with

Overlap of communication and
computation for hybrid sparse
MVMStrategies for combining MPI with

OpenMP
Topology and mapping problems

MVM
The NAS parallel benchmarks
(NPB-MZ)p gy pp g p

Potential opportunities Hybrid computing with
accelerators and compiler
directives

Summary: Opportunities and y pp
Pitfalls of Hybrid Programming

Overall summary and goodbye

ISC12 Tutorial 237Performance programming on multicore-based systems

Hybrid programming: Opportunities and pitfalls

Opportunities:
Lower communication overhead

F ltith d d MPI i l th d dFew multithreaded MPI processes vs many single-threaded processes
Fewer number of calls and smaller amount of data communicated

Lower memory requirements
Reduced amount of replicated data
Reduced size of MPI internal buffer space
May become more important for systems of 100’s or 1000’s cores per nodey p y p

Provide for flexible load-balancing on coarse and fine grain
Smaller #of MPI processes leave room to assign workload more even
MPI processes with higher workload could employ more threadsMPI processes with higher workload could employ more threads

Increase parallelism
Domain decomposition as well as loop level parallelism can be exploited
F ti l ll li tiFunctional parallelization

Exploit accelerators
OpenMP-“like” models for accelerators exist
Less pain than explicit CUDA/OpenCL/whatever
Mustl still be well understood to be used efficiently

ISC12 Tutorial 238Performance programming on multicore-based systems

Hybrid programming: Opportunities and pitfalls

Pitfalls:
Mapping problems

Every programming model requires topology awareness and affinity mechanisms
Changing the model (i.e., adding another level of parallelism) will not make the
problems go awayproblems go away
SMT adds to complexity

Inherent OpenMP overheads
Implicit OpenMP barriers
Many OpenMP regions also mean frequent synchronization
SMT adds to complexity (again)p y (g)
ccNUMA is more complex to handle with OpenMP

Complexity of programming
Si l MASTERONLY l i j h b i i d l i i hSimple MASTERONLY style is just the beginning and leaves opportunities on the
table
FUNNELED-HYBRID style promises best performance
OpenMP tasking may take away complexity, but must be fully understood

ISC12 Tutorial 239Performance programming on multicore-based systems

Elements of Successful Hybrid Programming

System Requirements:
Some level of shared memory parallelism, such as within a multi-core node
Runtime libraries and environment to support both models

Thread-safe MPI library
Compiler support for OpenMP directives, OpenMP runtime libraries

Mechanisms to map MPI processes and threads to cores and nodes
Application Requirements:

Expose multiple levels of parallelismExpose multiple levels of parallelism
Coarse-grained and fine-grained
Enough fine-grained parallelism to allow OpenMP to scale “reasonably well” (up to the
inherent limitations of multicore chips)p)

Performance is not portable:
Highly dependent on optimal process and thread placement
N t d d API t hi ti l l tNo standard API to achieve optimal placement
Optimal placement may not be known beforehand (i.e. optimal number of
threads per MPI process) or requirements may change during execution
Memory traffic yields resource contention on multicore nodes
Cache optimization more critical than on single core nodes

ISC12 Tutorial 240Performance programming on multicore-based systems

Recipe for Successful Hybrid Programming

Familiarize yourself with the layout of your system:
Blades, nodes, sockets, cores?
I t t ?Interconnects?
Level of Shared Memory Parallelism?

Check system softwarey
Compiler options, MPI library, thread support in MPI
Process placement

Anal e o r applicationAnalyze your application:
Architectural requirements (code balance, pipelining, cache space)
Does MPI scale? If yes, why bother about hybrid? If not, why not?y , y y , y

Load imbalance OpenMP might help
Too much time in communication? Workload too small?

Does OpenMP scale?Does OpenMP scale?
Performance Optimization

Optimal process and thread placement is important
Find out how to achieve it on your system
Cache optimization critical to mitigate resource contention
Creative use of surplus cores: Overlap functional decompositionCreative use of surplus cores: Overlap, functional decomposition,…

ISC12 Tutorial 241Performance programming on multicore-based systems

Tutorial outline (2)

Hybrid MPI/OpenMP
MPI vs. OpenMP

Case studies for hybrid
MPI/OpenMP

Thread-safety quality of MPI
libraries
Strategies for combining MPI with

Overlap of communication and
computation for hybrid sparse
MVMStrategies for combining MPI with

OpenMP
Topology and mapping problems

MVM
The NAS parallel benchmarks
(NPB-MZ)p gy pp g p

Potential opportunities Hybrid computing with
accelerators and compiler
directives

Summary: Opportunities and y pp
Pitfalls of Hybrid Programming

Overall summary and goodbye

ISC12 Tutorial 242Performance programming on multicore-based systems

Overall tutorial summary

Modern multicore-based hardware, even the most “commodity”
type, is hierarchical

SMT, cores, cache groups, NUMA, sockets, nodes, networks
Ignoring its specific properties costs performance

Scalable and non-scalable resources
Tools (even simple ones!) can help figure out what’s going on

Know what your code does to the hardware!Know what your code does to the hardware!

The programming model must be able to exploit the hardware upThe programming model must be able to exploit the hardware up
to the relevant bottleneck

All models have their pitfalls and there is no simple answer to “what is p p
best?”
Mapping/mismatch problems are the most prevalent ones on hybrid
hardwarehardware
Opportunities for hybrid MPI+OpenMP do exist, even for very simple
MASTERONLY style – but you need to dig deep to get it all!

ISC12 Tutorial 243Performance programming on multicore-based systems

Thank youThank you

Grant # 01IH08003A
(project SKALB)

Project OMI4PAPPS

ISC12 Tutorial Performance programming on multicore-based systems 244

Appendix

ISC12 Tutorial Performance programming on multicore-based systems 245

Appendix: References

Books:
G. Hager and G. Wellein: Introduction to High Performance Computing for Scientists and
Engineers CRC Computational Science Series 2010 ISBN 978-1439811924Engineers. CRC Computational Science Series, 2010. ISBN 978 1439811924
R. Chapman, G. Jost and R. van der Pas: Using OpenMP. MIT Press, 2007. ISBN 978-
0262533027
S. Akhter: Multicore Programming: Increasing Performance Through Software Multi-S. Akhter: Multicore Programming: Increasing Performance Through Software Multi
threading. Intel Press, 2006. ISBN 978-0976483243

Papers:p
J. Treibig, G. Hager and G. Wellein: Multicore architectures: Complexities of performance
prediction for Bandwidth-Limited Loop Kernels on Multi-Core Architectures.
DOI: 10.1007/978-3-642-13872-0_1, Preprint: arXiv:0910.4865.
G. Wellein, G. Hager, T. Zeiser, M. Wittmann and H. Fehske: Efficient temporal blocking
for stencil computations by multicore-aware wavefront parallelization. Proc. COMPSAC
2009. DOI: 10.1109/COMPSAC.2009.82
M Witt G H J T ibi d G W ll i L i h d h f ll lM. Wittmann, G. Hager, J. Treibig and G. Wellein: Leveraging shared caches for parallel
temporal blocking of stencil codes on multicore processors and clusters. Parallel
Processing Letters 20 (4), 359-376 (2010).
DOI: 10.1142/S0129626410000296. Preprint: arXiv:1006.3148DOI: 10.1142/S0129626410000296. Preprint: arXiv:1006.3148
R. Preissl et al.: Overlapping communication with computation using OpenMP tasks on
the GTS magnetic fusion code. Scientific Programming, Vol. 18, No. 3-4 (2010).
DOI: 10.3233/SPR-2010-0311

ISC12 Tutorial 246Performance programming on multicore-based systems

References

Papers continued:
J. Treibig, G. Hager and G. Wellein: LIKWID: A lightweight performance-oriented tool suite
for x86 multicore environments Proc PSTI2010 the First International Workshop onfor x86 multicore environments. Proc. PSTI2010, the First International Workshop on
Parallel Software Tools and Tool Infrastructures, San Diego CA, September 13, 2010.
DOI: 10.1109/ICPPW.2010.38. Preprint: arXiv:1004.4431
G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vectorg y p p
multiplication with explicit communication overlap on current multicore-based systems.
Parallel Processing Letters 21(3), 339-358 (2011). DOI: 10.1142/S0129626411000254
G. Schubert, G. Hager and H. Fehske: Performance limitations for sparse matrix-vector

lti li ti t lti i t P HLRB/KONWIHR W k hmultiplications on current multicore environments. Proc. HLRB/KONWIHR Workshop
2009. DOI: 10.1007/978-3-642-13872-0_2 Preprint: arXiv:0910.4836
G. Hager, G. Jost, and R. Rabenseifner: Communication Characteristics and Hybrid
MPI/OpenMP Parallel Programming on Clusters of Multi core SMP Nodes In:MPI/OpenMP Parallel Programming on Clusters of Multi-core SMP Nodes. In:
Proceedings of the Cray Users Group Conference 2009 (CUG 2009), Atlanta, GA, USA,
May 4-7, 2009. PDF
R Rabenseifner and G Wellein: Communication and Optimization Aspects of ParallelR. Rabenseifner and G. Wellein: Communication and Optimization Aspects of Parallel
Programming Models on Hybrid Architectures. International Journal of High Performance
Computing Applications 17, 49-62, February 2003. DOI:10.1177/1094342003017001005
G. Jost and R. Robins: Parallelization of a 3-D Flow Solver for Multi-Core Node Clusters:
Experiences Using Hybrid MPI/OpenMP In the Real World. Scientific Programming, Vol.
18, No. 3-4 (2010) pp. 127-138. DOI 10.3233/SPR-2010-0308

ISC12 Tutorial 247Performance programming on multicore-based systems

Presenter Biographies

Georg Hager (georg.hager@rrze.fau.de) holds a PhD in computational physics from the University of
Greifswald, Germany. He has been working with high performance systems since 1995, and is now a
senior research scientist in the HPC group at Erlangen Regional Computing Center (RRZE). Recent
research includes architecture-specific optimization for current microprocessors, performance modeling on
processor and system levels, and the efficient use of hybrid parallel systems. His textbook “Introduction to
High Performance Computing for Scientists and Engineers” is recommended reading in HPC-related
lectures and workshops worldwide. See his blog at http://blogs.fau.de/hager for current activities,
publications, talks, and teaching.
G b i l J t (b i l j t@ d) i d h d t t i li d th ti f thGabriele Jost (gabriele.jost@amd.com) received her doctorate in applied mathematics from the
University of Göttingen, Germany. She has worked in software development, benchmarking, and
application optimization for various vendors of high performance computer architectures. She also spent
six years as a research scientist in the Parallel Tools Group at the NASA Ames Research Center in Moffett
Field, California. Her projects included performance analysis, automatic parallelization and optimization, , p j p y , p p ,
and the study of parallel programming paradigms. After engagements with Sun/Oracle and the Texas
Advanced Computing Center (TACC) Gabriele joined Advanced Micro Devices (AMD) in 2011 as a design
engineer in the Systems Performance Optimization group.
Rolf Rabenseifner (rabenseifner@hlrs.de) holds a PhD in Computer Science from the University of
Stuttgart. Since 1984, he works at the High-Performance Computing-Center Stuttgart (HLRS). Since 1996,
he has been a member of the MPI-2 Forum and since Dec. 2007 he works in the steering committee for
MPI-3. From January to April 1999, he was an invited researcher at the Center for High-Performance
Computing at Dresden University of Technology. Currently, he is head of Parallel Computing - Training and
Application Services at HLRS Recent research includes benchmarking parallel programming models forApplication Services at HLRS. Recent research includes benchmarking, parallel programming models for
clusters of SMP nodes, and optimization of MPI collective routines. In workshops and summer schools, he
teaches parallel programming models, and in Jan. 2012, he was appointed as GCS' PATC director.
Jan Treibig (jan.treibig@rrze.fau.de) holds a PhD in Computer Science from the University of Erlangen-
Nuremberg, Germany. From 2006 to 2008 he was a software developer and quality engineer in the g, y p q y g
embedded automotive software industry. Since 2008 he is a research scientist in the HPC Services group
at Erlangen Regional Computing Center (RRZE). His main research interests are low-level and
architecture-specific optimization, performance modeling, and tooling for performance-oriented software
developers. He is the main developer of the LIKWID multicore tool suite. Recently he has founded a spin-
off company “LIKWID High Performance Programming ”off company, LIKWID High Performance Programming.

ISC12 Tutorial 248Performance programming on multicore-based systems

Abstract

Tutorial: Performance-oriented programming on multicore-based clusters
with MPI, OpenMP, and hybrid MPI/OpenMP

Presenters: Georg Hager, Gabriele Jost, Jan Treibig, Rolf Rabenseifner
Authors: Georg Hager, Gabriele Jost, Rolf Rabenseifner, Jan Treibig,

Gerhard WelleinGerhard Wellein
Abstract: Most HPC systems are clusters of multicore, multisocket nodes. These
systems are highly hierarchical, and there are several possible programming models; the
most popular ones being shared memory parallel programming with OpenMP within a

d di t ib t d ll l i ith MPI th f th l tnode, distributed memory parallel programming with MPI across the cores of the cluster,
or a combination of both. Obtaining good performance for all of those models requires
considerable knowledge about the system architecture and the requirements of the
application. The goal of this tutorial is to provide insights about performance limitations
and guidelines for program optimization techniques on all levels of the hierarchy when
using pure MPI, pure OpenMP, or a combination of both.
We cover peculiarities like shared vs. separate caches, bandwidth bottlenecks, and
ccNUMA locality. Typical performance features like synchronization overhead, intranodey yp p y ,
MPI bandwidths and latencies, ccNUMA locality, and bandwidth saturation (in cache and
memory) are discussed in order to pinpoint the influence of system topology and thread
affinity on the performance of parallel programming constructs. Techniques and tools for
establishing process/thread placement and measuring performance metrics are g p p g p
demonstrated in detail. We also analyze the strengths and weaknesses of various hybrid
MPI/OpenMP programming strategies. Benchmark results and case studies on several
platforms are presented.

ISC12 Tutorial 249Performance programming on multicore-based systems

	ISC12-Tutorial-MC-hybrid-PART1-final.pdf
	ISC12-Tutorial-MC-hybrid-PART2-final

