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Abstract. In the last decade, expression templates (ETs) have gained a reputation as an efficient
performance optimization tool for C++ codes. This reputation builds on several ET-based linear
algebra frameworks focused on combining both elegant and high-performance C++ code. However,
on closer examination the assumption that ETs are a performance optimization technique cannot be
maintained. In this paper we compare the performance of several generations of ET-based frame-
works. We analyze different ET methodologies and explain the inability of some ET implementations
to deliver high performance for dense and sparse linear algebra operations. Additionally, we intro-
duce the notion of “smart” ETs, which truly allow for a combination of high performance code with
the elegance and maintainability of a domain-specific language.
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1. Introduction. Expression templates (ETs) as originally introduced by Veld-
huizen in 1995 [22, 23] are intended to be a “performance optimization for array-based
operations.” The general goal is to avoid the unnecessary creation of temporary ob-
jects during the evaluation of arithmetic expressions with overloaded operators in
C++. Commonly demonstrated using simple O(n) array operations like additions,
they achieve performance levels similar to hand-crafted C code while maintaining an
elegant mathematical syntax. This success led to quick adoption in standard text-
books [24, 1], and ETs are thus widely accepted as the technique for high performance
array math in C++.

Two widely known libraries that use the standard ET concepts to fully implement
ET-based arithmetics are Blitz++ [4], which was developed as “a C++ class library
for scientific computing which provides performance on par with Fortran 77/90,” and
Boost uBLAS [6], which is part of the Boost project [7]. Both frameworks successfully
use ETs to avoid the creation of temporaries. They provide fast array arithmetic and
still (mostly) maintain an intuitive, mathematical syntax via C++ operators. Also,
both frameworks extend the ET methodology to matrices and provide BLAS level 2
and level 3 operations. In comparison to Blitz++, Boost uBLAS further extends the
idea of ETs to sparse vectors and matrices.

The starting point of this work is an evaluation of the single-core (serial) perfor-
mance of the Blitz++ and Boost uBLAS libraries in the context of high performance
computing (HPC). Although the idea of ETs has a wider scope (they are, e.g., used
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for lambda expressions [5]), we focus on their performance aspect in the context of
numerical libraries, whose performance is of fundamental importance. Based on those
results we will explain in detail why the standard ET methodology is not suited for
HPC in general and why simple extensions of it are still limited in the achievable
performance. As a solution we propose the “smart” ET concept. It offers the ad-
vantages of a high-level language but overcomes the performance issues of standard
ETs by a combination of architecture-specific performance optimization, restructur-
ing of expressions, and specific temporary creation and is thus intrinsically suited for
HPC. Note that we ignore GPGPU computing altogether and focus on a contempo-
rary CPU architecture, the Intel Westmere. In order to demonstrate the achievable
performance, we will compare all results from the ET libraries to optimized BLAS
code (using the Intel MKL library [14]).

This paper is organized as follows. In section 2 we give a short overview of re-
lated work, and section 3 briefly summarizes the details of our benchmark platform.
Section 4 recapitulates the standard ET techniques and evaluates ET performance for
the basic benchmark (dense vector addition). In section 5 we extend the analysis to
dense matrix-matrix multiplication and uncover some of the limitations of standard
ETs. Based on these results, we propose the new methodology of “smart expression
templates” in section 6. We turn to study the use of ETs for sparse data structures
and complex expressions (operator chaining) in sections 7 and 8. Section 9 elabo-
rates on the aspect of inlining in the context of ETs, and section 10 focuses on the
implementation aspects of smart ETs. Section 11 concludes the paper and provides
suggestions for future work.

2. Related work. Few groups have invested work to look into the performance
of ETs. Bassetti, Davis, and Quinlan [3] have analyzed the performance of C++ ETs
in comparison to Fortran 77 code. They show that the performance promise of ETs
is not uniformly guaranteed across different implementations, which is attributed to
the large register pressure in complex ET code. Härdtlein et al. [16] have introduced
the concepts of “easy expression templates,” which are easier to implement than
standard ETs, and “fast expression templates,” which use static memory to improve
the performance of array operations.

3. Benchmark platform. A six-core Intel Westmere CPU at 2.93GHz with
12MB shared L3 cache was used for all benchmarks. The maximum achievable mem-
ory bandwidth (as measured by the STREAM benchmark [18]) is about 20GB/s per
socket. Note that this maximum cannot be hit by a single thread. Each core has
a theoretical peak performance of 11.72GFlop/s in double precision, which can be
achieved only if single instruction multiple data (SIMD) instructions are used. SIMD
allows the execution of two arithmetic operations in one instruction (four in single
precision) and is crucial for getting good performance in cache. Note that the loads
and stores to the memory hierarchy must be SIMD vectorized for best results.

The GNU g++ 4.4.2 and Intel 11.1 compilers produced very similar performance
results, so we stick to GNU g++. The following compiler flags were used:

Listing 1

GCC compilation flags.

1 g++ -Wall -Wshadow -Woverloaded -virtual -ansi -O3 -msse4 .2 -DNDEBUG

2 --param large -unit -insns =100000000

3 --param inline -unit -growth =100000000

4 --param max -inline -insns -single =100000000

5 --param large -function -growth =100000000

6 --param large -function -insns =100000000
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To allow a direct comparison of the different ET methodologies we do not employ
any low-level optimization apart from proper loop ordering, where appropriate. We
use the latest Blitz++ implementation, Boost uBLAS version 1.46, MTL4 version
4.0.8368, and Eigen3 version 3.0.1. All libraries were benchmarked as given. We
only present double precision results either as MFlop/s graphs or normalized to the
fastest measured performance across the different frameworks for each particular test
case. However, we always provide MFlop/s values where possible. For all in-cache
benchmarks we make sure that the data has already been loaded to the cache.

4. The idea behind ETs. In this section we will summarize the basic mech-
anisms at work in ETs. As an example we use the addition of two dense vectors of
type Vector:1

Listing 2

Addition of two dense vectors.

1 Vector a, b, c;

2 // ... Initialization of vector a and b

3 c = a + b;

The use of the C++ arithmetic operators allows for a very concise description of
the addition operation: The two vectors a and b are added and the result is assigned
to the third vector c. Assuming that the Vector class allows access to its elements via
the subscript operator and provides a size function to query its current size, operator+
is usually implemented similar to the following code:

Listing 3

Classic implementation of the addition operator.

1 inline const Vector operator +( const Vector & a, const Vector & b )

2 {

3 Vector tmp ( a.size () );

4

5 for ( size_t i=0; i<a.size(); ++i )

6 tmp[i] = a[i] + b[i];

7

8 return tmp ;

9 }

Although intuitive to use and flexible (for instance, it is possible to concatenate
vector additions), the performance of this implementation in comparison with hand-
crafted C code is quite bad due to the creation of the temporary tmp in line 3. The
creation of tmp involves a dynamic memory allocation, a subsequent copy operation
from the temporary into the target vector (line 3 in Listing 2), and a memory deallo-
cation. Additionally, the temporary interferes with cache locality due to the increased
memory footprint of the operation. All this additional overhead, however, could be
removed by implementing the vector addition manually:

Listing 4

C-like, manual implementation of the addition of two vectors.

1 for ( size_t i=0; i<size; ++i )

2 c[i] = a[i] + b[i];

1We will focus on the essential aspect of ETs here and therefore omit all unnecessary details.
For instance, we are aware that the Vector class could be implemented as a class template, but this
would unnecessarily bloat the code and obscure the core of ETs.
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The performance loss is even worse if several vectors are added within a single
statement due to the “greedy” expression evaluation [1]:

Listing 5

Addition of three dense vectors.

1 Vector a, b, c, d;

2 // ... Initialization of vector a, b, and c

3 d = a + b + c;

For each single addition operation a separate temporary vector is created, whereas
the expression would not require a single temporary:

Listing 6

C-like, manual implementation of the addition of three vectors.

1 for ( size_t i=0; i<size; ++i )

2 d[i] = a[i] + b[i] + c[i];

The ET approach is to create a compile-time parse tree of the whole expression to
remove the creation of the costly temporary objects entirely and to delay the execution
of the expression until it is assigned to its target. Therefore the addition operator
no longer returns the (computationally expensive) result of the addition but a small
temporary object that acts as a placeholder for the addition expression [10]:

Listing 7

ET-based implementation of the addition operator.

1 template < typename A, typename B >

2 class Sum

3 {

4 public :

5 explicit Sum( const A& a, const B& b )

6 : a_( a )

7 , b_( b )

8 {}

9

10 std :: size_t size () const {

11 return a_.size ();

12 }

13

14 double operator []( std :: size_t i ) const {

15 return a_[i] + b_[i];

16 }

17

18 private :

19 const A& a_; // Reference to the left -hand side operand

20 const B& b_; // Reference to the right -hand side operand

21 };

22

23

24 template < typename A, typename B >

25 Sum <A,B> operator +( const A& a, const B& b )

26 {

27 return Sum <A,B>( a, b );

28 }

Instead of calculating the result of the addition of two vectors, the addition opera-
tor now returns an object of type Sum<A,B>, where A and B are the types of the left- and
right-hand-side operands, respectively. The only requirements the addition operator
poses on A and B are the existence of a subscript operator to access the elements of



C46 K. IGLBERGER, G. HAGER, J. TREIBIG, AND U. RÜDE

the operands and a size function. The Sum class has two data members, which are
references-to-const to the two operands of the addition operation. Therefore this ob-
ject is cheap to create and copy in comparison to the complete result vector. Since the
Sum class represents the result of an addition, it must provide access to the resulting
elements. For this purpose, it defines two access functions: the size function to access
the size of the resulting vector and the subscript operator to access the individual
elements.

The Sum class now temporarily represents the addition, until a special assignment
operator is encountered:

Listing 8

Implementation of the ET assignment operator.

1 class Vector

2 {

3 public :

4 // ...

5

6 template < typename A >

7 Vector & operator =( const A& expr )

8 {

9 resize ( expr.size () );

10

11 for ( std :: size_t i=0; i<expr.size(); ++i )

12 v_[i] = expr[i];

13

14 return *this;

15 }

16

17 // ...

18 };

This assignment operator is the only other assignment operator of the Vector

class next to the copy assignment operator (which is necessary due to the manual
management of the memory for the vector elements). Every time an expression object
is assigned to a Vector, this assignment operator is used to handle the assignment.2 It
first resizes the vector accordingly and afterward traverses the elements of the given
expression within a single for loop. Note that during this traversal evaluation of the
expression is triggered due to access to the values via the subscript operator. Also
note that this for loop is the only for loop necessary to evaluate the entire expression.

Based on the inline formulation of all functions and the evaluation within a single
for loop hidden in the assignment operator the compiler is able to generate code similar
to a C-like implementation (see Listing 4). It is even possible to concatenate several
additions as illustrated, e.g., in Listing 5, without the creation of any temporary
object (and still a single for loop evaluation as in Listing 6).

Both the Boost uBLAS and Blitz++ libraries are based on the two major ideas
of the illustrated ET implementation:

• No temporaries are created during the evaluation of an expression (except for
the ET objects themselves, which also have to be considered temporaries).

• The elements of the left-hand-side target are evaluated elementwise by the
time the assignment operator is called and by accessing the elements of the
right-hand-side expression

2Due to the signature of this assignment operator all nonvector objects assigned to a vector that
do not fit the signature of the copy assignment operator will use this assignment operator. How this
problem is handled is explained in detail in [10] and [13].
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Fig. 1. Performance comparison of five implementations of the addition between two dense
vectors.

In the following we compare the performance of five implementations of the ad-
dition of two dense vectors:

1. classic C++ operator overloading;
2. a C-like, manual implementation of the for loop, as illustrated in Listing 4;
3. a plain function that accepts the two operands and the target vector of type

Vector as arguments and wraps the vector addition:

1 inline void addVectors ( const Vector & a, const Vector & b,

2 Vector & c )

3 {

4 // ... Same implementation as in Listing 2, except no

5 // temporary is created

6 }

4. the Blitz++ library;
5. the Boost uBLAS library.

Figure 1 shows the performance results for vector sizes ranging from 1 to 10,000,000.
As expected, the classic C++ operator overloading shows by far the worst performance
due to the extra data transfer caused by the temporary vector. In this direct com-
parison it becomes apparent that the overhead due to the creation of a temporary
vector prevents good performance. In contrast, ET libraries such as Blitz++ and
Boost uBLAS using the just described standard approach and avoiding the creation
of a temporary are able to achieve the performance of a manual, C-like implementa-
tion. In this regard, ETs can be considered a performance optimization in comparison
to naive C++ operator overloading. Additionally, they provide the expressiveness,
naturalness, and flexibility of a domain specific language [1] by exploiting operator
overloading, i.e., it is possible, for instance, to intuitively concatenate the addition of
several vectors.
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5. ETs: A performance optimization technique? The reputation that ETs
are a performance optimization exclusively results from their performance advantage
compared to classic C++ operator overloading in BLAS level 1 operations, such as
the dense vector addition. One main reason for that is that the optimization of array
operations is the main application of ETs [22]. Still, Blitz++, Boost uBLAS, MTL4,
and Eigen3 provide functionality well beyond BLAS level 1. In this section we will
evaluate the performance of a BLAS level 3 function, the multiplication of two dense
matrices. The characteristics of the dense matrix multiplication make it an interesting
optimization target, since it can be rendered arithmetically bound instead of memory
bound via standard code transformations [9].

For this comparison we use five implementations of a plain multiplication of two
dense, row-major matrices:

1. A straightforward C++ implementation using classic C++ operator overload-
ing. The following listing shows the according implementation, which does
not contain any optimizations except for a suitable ordering of the nested for

loops.

1 inline const Matrix operator *( const Matrix & A,const Matrix & B )

2 {

3 Matrix C( A.rows (), B.columns () );

4

5 for ( size_t i=0; i<A.rows (); ++i ) {

6 for ( size_t k=0; k<B.columns (); ++k ) {

7 C(i,k) = A(i,0) * B(0,k);

8 }

9 for ( size_t j=1; j<A.columns (); ++j ) {

10 for ( size_t k=0; k<B.columns (); ++k ) {

11 C(i,k) += A(i,j) * B(j,k);

12 }

13 }

14 }

15

16 return C;

17 }

2. A plain function accepting the three involved matrices as arguments. This
function is similar to the addVector function from Listing 3.

3. The Blitz++ library.

1 blitz ::Array <double ,2> A( N, N ), B( N, N ), C( N, N );

2 blitz :: firstIndex i;

3 blitz :: secondIndex j;

4 blitz :: thirdIndex k;

5 // ... Initialization of the matrices

6 C = blitz ::sum ( A(i,k) * B(k,j), k );

4. The Boost uBLAS library.

1 boost :: numeric :: ublas :: matrix <double > A( N, N ), B( N, N ),

2 C( N, N );

3 // ... Initialization of the matrices

4 noalias ( C ) = prod( A, B );

5. A plain call to the dgemm BLAS function.
Figure 2 shows the performance results for the five implementations. For very

small matrices, the overhead of the dgemm function call limits its achievable perfor-
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Fig. 2. Performance comparison of five implementations of the multiplication of two dense,
row-major matrices.

Table 1

Hardware counter performance analysis of the multiplication of two large dense matrices (N =
5000). Note that the dgemm function uses packed instructions, which may result in a higher number
of arithmetic operations than retired instructions. See the text for a description of all metrics.

Memory
bandwidth
[MByte/s]

Total retired
instructions

[1011]

Total
arithmetic
operations

[1011]

CPI

STREAM 11814 — — —

N
=

5
0
0
0

Classic 5314 12.5420 2.50272 0.440861

Plain function call 5318 12.5409 2.50270 0.440592

Blitz++ 633 10.1297 2.586 4.58243

Boost uBLAS 630 10.1207 2.50349 4.61834

dgemm 531 2.03448 2.50604 0.321115

mance. However, for both small in-cache and large out-of-cache matrices, the dgemm

function is clearly the fastest option.
In contrast, Blitz++ and Boost uBLAS exhibit very poor performance. This

result comes as no surprise, since the dgemm function in the MKL library is optimized for
maximal performance. However, the fact that even the simple, nonoptimized operator
overloading is much faster for out-of-cache matrices than the ET-based libraries is
unexpected.

Table 1 gives an indication of why the performance of Boost uBLAS and Blitz++
is so low. We used the Likwid tool suite [21] to measure the following basic and
derived hardware performance metrics when running the 50002 benchmark case:
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• Memory bandwidth. The actual memory traffic caused by the operation (num-
ber of cache lines transferred to and from main memory multiplied by the
cache line length of 64 bytes), divided by the runtime. For reference we have
included the single-thread STREAM triad bandwidth, which constitutes a
practical upper limit.

• Total retired instructions. The number of machine instructions that the pro-
cessor has executed during the whole operation. It does not include instruc-
tions that were executed speculatively and later discarded due to, e.g., branch
mispredictions.

• Total arithmetic operations. The number of floating-point operations (mul-
tiply or add in this case) executed. This may be larger than the number of
retired instructions due to the use of SIMD vectorization. For example, a
double precision SIMD add instruction constitutes two floating-point opera-
tions.

• Cycles per instruction (CPI). The average number of cycles a machine in-
struction takes to execute. For the Westmere processor used here, the abso-
lute minimum CPI as given by the architecture is 0.25, which will never be
achieved by real application code. A value between 0.3 and 0.5 is considered
“good,” but it does not bear any information about whether “useful” code
was executed. Hence, the CPI must always be assessed together with other,
complementary metrics like the total number of retired instructions.

Looking at the memory bandwidth for the “classic” and “plain function call”
codes, the main reason for their failure to deliver good performance is the lack of
basic optimizations like (outer) loop unrolling and blocking, resulting in a considerable
pressure on the memory interface (but still far away from the maximum). All other
versions are all but decoupled from main memory but differ considerably in other
respects. Boost uBLAS and Blitz++, in particular, show a large number of retired
instructions in combination with a very large CPI value, indicating a low-quality
machine code, which is dominated by latencies.

The reason for this behavior is inherent to the methodology of standard ETs.
Based on the philosophy that each element of the target data structure is computed
one after another, the executed code is similar to the code shown in Listing 9:

Listing 9

Slow implementation of the matrix-matrix multiplication operator.

1 for ( size_t i=0; i<A.rows(); ++i ) {

2 for ( size_t j=0; j<B.columns (); ++j ) {

3 for ( size_t k=0; k<A.columns (); ++k ) {

4 C(i,j) += A(i,k) * B(k,j);

5 }

6 }

7 }

This loop ordering corresponds to the worst possible data access scheme that
can be used for the matrix multiplication: For each element of the target matrix a
complete column of the right-hand side matrix is traversed, resulting in a full cache
line transfer for each individual data value. On the other hand, the two codes for
classic operator overloading and the plain function call use a more cache efficient
data access scheme that simultaneously calculates several values of the target matrix,
which results in a much better memory bandwidth and lower CPI.

We must conclude that the temporary required for the classic operator overloading
does not hurt here, since the cost is proportional to N2. Thus the performance gain
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results from the choice of the better data access scheme. The primary question is
why the standard ET libraries do not implement a more efficient loop ordering. The
reason is that they are solely based on three paradigms: (i) avoiding temporaries,
(ii) evaluating the given right-hand side expressions elementwise, and (iii) relying on
the compiler to perfectly optimize the resulting code constructs after inlining has
taken place. Although this works reasonably well for array operations like the vector
addition, in order to achieve high performance for the matrix multiplication detailed
knowledge about the involved data structures, the operation, and the underlying
hardware has to be exploited.

The fundamental problem of the standard ET method is that it is an abstrac-
tion technique rather than a performance optimization. Although this abstraction
improves the flexibility of a framework to integrate new types and operations, it
counteracts high performance on several levels. First, ETs abstract from the in-
volved data types. A clear indication for this is that the involved ET data types
are required to adhere to a certain interface (“design by contract” [19]). Therefore
no special optimization can be applied based on the type of matrices used. Second,
ETs abstract from the type of operation. From an abstract point of view it makes
no difference whether the target matrix is assigned a matrix addition expression or
a matrix multiplication expression; in both cases, the according assignment operator
accesses the elements of this virtual matrix to fill the target matrix. However, in
terms of performance a matrix addition has to be treated in a fundamentally different
way. Therefore, with the standard methodology, real performance optimization based
on memory optimization (the most important optimization for contemporary, cache-
based architectures [9]), vectorization, and exploitation of superscalarity cannot be
properly performed. The optimization capability of ETs is thus limited to operations
where the abstract data access scheme coincidentally corresponds to the optimal data
access scheme.

These results have another important implication. A crucial aspect of ETs is the
encapsulation of the numerical operations in functions, through which they provide
an intuitive, easy-to-use interface and good maintainability. This aspect is especially
important for complex numerical operations, such as the matrix multiplication. While
simple kernels, such as a vector addition, can easily be rewritten (although it is by
no means trivial to write a vector addition code that gives best performance under
all circumstances), it should not be necessary to repeatedly reimplement complex
kernels, which would require vast efforts. Hardware vendors have already invested into
this, and usually provide suitable libraries. From a performance point of view, the
encapsulation of complex kernels is therefore more important than the encapsulation
of simple kernels. Considering the performance results for the matrix multiplication,
it must be concluded that the standard ET methodology is not suitable to encapsulate
highly optimized complex kernels.

6. A new ET methodology: Smart ETs. The idea to combine high perfor-
mance code with the mathematical syntax provided by the C++ operators is justified:
Code clarity, readability, and maintainability are greatly improved if used in a math-
ematical context. However, as shown above, ETs themselves are not generally able to
provide high performance. The performance of libraries using standard ETs is limited
due to the abstracting nature of ETs and due to the limited optimization capabili-
ties of compilers. Yet ET libraries are able to deliver high performance, as will be
demonstrated in this section. Whether ET-based libraries are suitable for HPC is
basically a matter of the underlying methodology. In this section we will introduce
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smart expression templates (SETs), which conceptually make ETs compatible with
the requirements of HPC.

Three representatives of this new generation of ET-based linear algebra libraries
are MTL4 [20], Eigen3 [8], and Blaze, which all provide operations with dense vectors
(in the case of Blaze, also sparse vectors) and dense and sparse matrices. All introduce
new concepts to improve the performance of standard ETs. MTL4 and Blaze use
optimized kernels such as BLAS function calls for certain calculations “to provide an
easy and intuitive interface to users while enabling optimal performance ” [20]. In
contrast, the technology of Eigen3 is similar to standard ETs but integrates explicit
SIMD vectorization, exploits knowledge about fixed-size matrices, and implements
standard unrolling and blocking techniques for better cache and register reuse.

The performance advantage of SET libraries becomes apparent for the dense
vector addition. A plain C loop is not the best that can be achieved on the given
hardware. For small vector sizes, the explicit use of SIMD intrinsics or compiler-
based vectorization can lead to a substantial performance boost, as can be seen from
the results of Eigen3 and Blaze in Figure 3. In the case of large vectors, where
the performance is limited by memory bandwidth, SIMD vectorization does not pay
off, but the use of nontemporal stores can improve performance by roughly 20% in
comparison to a C-like for loop. Nontemporal stores write data from registers directly
to memory without using the cache hierarchy, eliminating the need for a write-allocate
transfer on a write miss [9]. The memory traffic for the vector add operation is
thus reduced by 25%. This result clearly demonstrates that compilers are usually
not able to achieve the highest level of performance automatically and that extra
effort is necessary to boost performance even for trivial operations such as the vector
addition. In the case of the Eigen3 library the performance is achieved by relying on
the optimization and inlining capabilities of the compiler and by additionally providing
access functions to packed data types. In contrast, the Blaze library ships with a
specifically optimized dense vector addition kernel function, which limits performance
for very small vectors but yields best performance for all other vector sizes and is
independent of compiler optimizations.

The performance advantage of SETs is even more apparent in the case of the
dense matrix multiplication. Figure 4 and Table 2 show the performance and profiling
results for all eight implementations. Although also based on ETs, the MTL4 and
Blaze libraries achieve the same performance level as the Intel MKL, since internally
they also use the dgemm function.

That the ability of the compiler to optimize kernels is sometimes overestimated
can be seen when analyzing the results of the Eigen3 library. Although it does not
suffer from the problems of standard ETs, the Eigen3 library still does not achieve
the performance level of an optimized dgemm function. While not abstracting from
the right-hand-side matrix operation and implementing a dense matrix multiplication
kernel, Eigen3 still relies on the compiler to assemble an optimized kernel from kernel
building blocks. Therefore the performance of the Eigen3 implementation is limited
by the compiler’s ability to optimize compute kernels and strongly depends on proper
inlining (see section 9).

These results demonstrate that in contrast to other ET approaches SETs take a
completely different approach in order to achieve the goal of combining performance
and syntax. In SETs the notion of ETs being a performance optimization is com-
pletely dropped. Instead, SETs mainly act as an intelligent parsing functionality that
provides the following features:



ETs REVISITED: A PERFORMANCE ANALYSIS C53

1 10 100 1000 10000 100000 1000000 10000000

Vector Length

0

500

1000

1500

2000

2500

3000

M
F

lo
p/

s

Classic
C-like for Loop
Plain Function
Blitz++
Boost uBLAS
MTL4
Eigen3
Blaze

Classic

Blitz++

uBLAS MTL4

Eigen3

Blaze

Fig. 3. Performance comparison of eight implementations of the addition between two dense
vectors.

1 10 100 1000

Matrix Size

0

2000

4000

6000

8000

10000

12000

14000

M
F

lo
p/

s

Classic
Plain Function
Blitz++
Boost uBLAS
MTL4
Eigen3
Blaze
Intel MKL

Classic & Function

Blitz++ & uBLAS

MTL4

Eigen3

Blaze & MKL

Fig. 4. Performance comparison of eight implementations of the multiplication of two dense,
row-major matrices.



C54 K. IGLBERGER, G. HAGER, J. TREIBIG, AND U. RÜDE

Table 2

Hardware counter performance analysis of the multiplication of two large dense matrices (N =
5000). Note that the dgemm function uses packed instructions, which may result in a higher number
of arithmetic operations than retired instructions.

Memory
bandwidth
[MByte/s]

Total retired
instructions

[1011]

Total
arithmetic
operations

[1011]

CPI

STREAM 11814 — — —

N
=

5
0
0
0

Classic 5314 12.5420 2.50272 0.440861

Plain function call 5318 12.5409 2.50270 0.440592

Blitz++ 633 10.1297 2.586 4.58243

Boost uBLAS 630 10.1207 2.50349 4.61834

MTL4 531 2.03452 2.50604 0.321143

Eigen3 371 2.1014 2.53904 0.41168

Blaze 531 2.03449 2.50604 0.321114

dgemm 531 2.03448 2.50604 0.321115

1. No abstraction from arithmetic operations and data types in order to be able
to fully exploit all available knowledge. For instance, matrix additions are
treated in a fundamentally different way than matrix multiplications. This is
achieved by providing the generated expression objects with detailed knowl-
edge about the operation and the operands. This feature is provided by
MTL4, Eigen3, and Blaze but not by Boost uBLAS and Blitz++.

2. Use of architecture specific, optimized compute kernels to achieve maximum
performance. SETs act as a wrapper around highly optimized, architecture-
specific compute kernels such as dgemm. Depending on the type of the operands
the fastest and most specialized kernel is selected for evaluation of the expres-
sion. In contrast to standard ETs, evaluation of expressions is always based
on optimized kernels (as already shown even in the case of dense vector addi-
tion), which minimizes the dependency on the compiler’s inlining capability.
Additionally, since the kernels can be easily exchanged, this kernel-based ap-
proach facilitates the transition from single- and multicore-core architectures
to GPUs and massively parallel systems. Moreover, existing highly optimized
low-level kernels can be easily reused and do not have to be translated to tem-
plated C++ only to arrive at a similar machine code in the end. Currently,
Blaze is based on this philosophy, and MTL4 and Eigen3 support it to an
extent.

3. Automatic selection of optimal evaluation strategies. In addition to the selec-
tion of the compute kernel, SETs incorporate knowledge about the optimal
evaluation strategy for compound expressions. For instance, instead of eval-
uating the statement A = B + C * D as

1 Temp = C * D;

2 A = B + Temp;

SETs evaluate the statement as

1 A = B;

2 A += C * D;
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Fig. 5. Performance comparison of the complex expression A ·B · v.

without the use of any temporary. This feature is incorporated to some extent
in both the Eigen3 and Blaze libraries.

4. Ability to restructure the expression to optimize the evaluation. An illustrat-
ing example for a smart choice for the evaluation order of subexpressions is
the expression A ∗ B ∗ v, where A and B are two matrices and v is a vec-
tor. Usually the expression is evaluated from left to right, resulting in a
matrix-matrix multiplication and a subsequent matrix-vector multiplication.
However, if the right subexpression is evaluated first, the performance can be
dramatically improved since the matrix-matrix multiplication can be avoided
in favor of a second matrix-vector multiplication. Figure 5 gives an example
for the two ET libraries that syntactically allow us to formulate the expres-
sion within a single statement: In contrast to Eigen3, Blaze restructures the
expressions based on performance considerations. Considering the tremen-
dous performance difference, it is apparent that in the case that a numerics
library syntactically allows such expressions, implementation must be aware
of the possibility to improve performance by restructuring them. Currently,
only Eigen3 and Blaze support this feature to a certain level.

5. Ability for specific, operand-based creation of necessary temporaries. As shown
in section 8, the creation of temporaries can be the key to high performance
in the case that the syntax of the ET implementation allows formulation of
complex expressions. In the case of standard ET methodology, due to ab-
straction the advantage of creating a temporary cannot be recognized. SETs
recognize the need for an intermediate evaluation of operands based on knowl-
edge of the arithmetic operation and the operands. For instance, in the case
of the complex expression (A + B) · (C −D), it is beneficial to evaluate the
left-hand-side and right-hand-side operands prior to the matrix multiplica-
tion such that subsequently the dgemm kernel can be used. In their current
implementation, MTL4, Eigen3, and Blaze support this feature, while Boost
uBLAS and Blitz++ do not.

6. Automatic detection of aliasing effects. In the current ET libraries, alias-
ing effects such as in the statement x = A * x; either are not handled at all
(Blitz++), result in runtime errors (MTL4), or must be explicitly handled
(Boost uBLAS, Eigen3). SETs are able to detect aliasing effects automat-
ically and can therefore introduce the necessary temporaries automatically
and efficiently. Currently only Blaze supports this feature.

7. Sparse arithmetic. Due to abstraction from the actual data types in all
operations, ETs offer an impressive flexibility to integrate new data types into the
system. Abstraction is achieved by requiring all data types to adhere to a certain
interface via which it is possible to access the underlying elements. One example of
this flexibility is demonstrated by the Boost uBLAS, MTL4, and Eigen3 libraries: In
contrast to Blitz++, they provide sparse data structures that can be homogeneously
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combined with the available dense vectors and matrices. This enriched functionality is
an extraordinary strength of ETs. The downside of this abstraction, however, can be
a severe performance penalty. In order to show this penalty we select two operations
between dense and sparse data types and compare their performance.

Listing 10

Use of the sparse matrix/dense vector multiplication in the Boost uBLAS library.

1 boost :: numeric :: ublas :: compressed_matrix <double > A( N, N );

2 boost :: numeric :: ublas ::vector <double > a( N ), b( N );

3 // ... Initialization of the matrix and the vectors

4 noalias ( b ) = prod( A, a );

Listing 11

Use of the sparse matrix/dense vector multiplication in the MTL4 library.

1 typedef mtl :: dense_vector <double > dense_vector;

2 typedef mtl :: tag :: row_major row_major ;

3 typedef mtl :: matrix :: parameters <row_major > parameters ;

4 typedef mtl :: compressed2D <double ,parameters > compressed2D;

5

6 compressed2D A( N, N );

7 dense_vector a( N ), b( N );

8 // ... Initialization of the matrix and the vectors

9 b = A * a;

Listing 12

Use of the sparse matrix/dense vector multiplication in the Eigen3 library.

1 using Eigen :: Dynamic ;

2 using Eigen :: RowMajor ;

3

4 Eigen :: SparseMatrix <double ,RowMajor ,size_t > A( N, N );

5 Eigen ::Matrix <double ,Dynamic ,1> a( N ), b( N );

6 // ... Initialization of the matrix and the vectors

7 b.noalias () = A * a;

Listing 13

Use of the sparse matrix/dense vector multiplication in the Blaze library.

1 blaze :: CompressedMatrix <double > A( N, N );

2 blaze :: DynamicVector <double > a( N ), b( N );

3 // ... Initialization of the matrix and the vectors

4 b = A * a;

The first operation is the multiplication of a sparse matrix with a dense vector.
It is of importance in many engineering applications, e.g., in solvers for linear systems
of equations. Listings 10 through 13 show its implementation with the Boost uBLAS,
MTL4, Eigen3, and Blaze libraries, respectively. The matrix is stored in the well-
known compressed row storage format [2].

Figure 6 shows the in-cache and out-of-cache performance results for sparse ma-
trices randomly filled with 10% and 40% nonzeros, respectively. A direct comparison
of the different ET implementations does not exhibit a huge performance difference
for either the different sizes or the different filling degrees. This is because the default
memory access scheme utilized by the ET implementations works perfectly for this
operation: A single row of the matrix has to be multiplied with the dense vector for
each element of the resulting vector. Since both the rowwise memory access to the
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Fig. 6. Performance comparison of four implementations of the sparse matrix by dense vector
multiplication. In-cache (top) vs. out-of-cache (bottom) and different nonzero filling (left vs. right
columns) are distinguished.

sparse matrix and the access to the dense vector exploit the layout of both data struc-
tures, the performance is on a reasonable level with the exception of Boost uBLAS
and MTL4 for small matrices.

Similar performance levels can be expected for the multiplication of a rowwise
stored dense matrix with a columnwise stored sparse matrix. However, the situation
changes entirely when we multiply a rowwise stored dense matrix with a rowwise
stored sparse matrix. Listings 14 through 17 show the according implementation
of this operation with the Boost uBLAS, MTL4, Eigen3, and Blaze libraries. Fig-
ure 7 shows the in-cache and out-of-cache performance results for 10% and 40% filled
sparse matrices, respectively. There is a tremendous performance difference between
the libraries that cannot be explained by simple variations in the implementation of
the codes but points at fundamental differences in the methodology of the ET li-
braries. Whereas Blaze attempts to exploit all information about the operations and
both data types and therefore deals efficiently with the fact that the right-hand-side
sparse matrix is stored in a rowwise fashion, Boost uBLAS and MTL4 completely
abstract from the current operation and the layout and data types of the two in-
volved matrices. In the case of Boost uBLAS, all elements of the resulting matrix
are evaluated one after another by traversing the left-hand-side dense matrix via row
iterators and the right-hand side sparse matrix via column iterators. Although the
column iterators are a convenient interface for users of the library, their internal, ab-
stract use results in a devastating performance penalty in this case. To correct this
would require a recognition of the data structure of the right-hand-side sparse matrix
and the use and reuse of its elements in a cache-efficient manner. However, due to
abstraction from both the actual operation and the data types, this is not possible.
Therefore the standard ETs prohibit any possible performance optimization for this
operation.

Listing 14

Use of the dense matrix/sparse matrix multiplication in the Boost uBLAS library.

1 boost :: numeric :: ublas ::matrix <double > A( N, N ), C( N, N );

2 boost :: numeric :: ublas :: compressed_matrix <double > B( N, N );

3 // ... Initialization of the matrix and the vectors

4 noalias ( C ) = prod( A, B );
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Fig. 7. Performance comparison of the different ET frameworks for the multiplication of a
dense matrix with a sparse matrix.

Listing 15

Use of the dense matrix/sparse matrix multiplication in the MTL4 library.

1 typedef mtl :: dense2D <double > dense2D ;

2 typedef mtl :: tag :: row_major row_major ;

3 typedef mtl :: matrix :: parameters <row_major > parameters ;

4 typedef mtl :: compressed2D <double ,parameters > compressed2D;

5

6 dense2D A( N, N ), C( N, N );

7 compressed2D B( N, N );

8 // ... Initialization of the matrix and the vectors

9 C = A * B;

Listing 16

Use of the dense matrix/sparse matrix multiplication in the Eigen3 library.

1 using Eigen :: Dynamic ;

2 using Eigen :: RowMajor ;

3

4 Eigen ::Matrix <double ,Dynamic ,Dynamic ,RowMajor > A( N, N ), C( N, N );

5 Eigen :: SparseMatrix <double ,RowMajor > B( N, N );

6 // ... Initialization of the matrix and the vectors

7 C.noalias () = A * B;

Listing 17

Use of the dense matrix/sparse matrix multiplication in the Blaze library.

1 blaze :: DynamicMatrix <double > A( N, N ), C( N, N );

2 blaze :: CompressedMatrix <double > B( N, N );

3 // ... Initialization of the matrices

4 C = A * B;

Note that this operation was specifically selected to demonstrate that performance
greatly suffers from abstraction from the data types and operations. The performance
penalty would be much less severe in case of a columnwise stored sparse matrix.
However, since ET libraries are usually provided as black box systems, the knowledge
that the combination of certain data structures should be (completely) avoided cannot
be expected from a user of the library.

8. Complex expressions. In some cases it is necessary for performance reasons
to break the fundamental “no temporaries” rule of standard ETs. In this section



ETs REVISITED: A PERFORMANCE ANALYSIS C59

we have specifically selected two examples of complex expressions that require the
creation of temporaries in order to demonstrate the shortcoming of this rule.

The first case is the multiplication of a dense matrix with the sum of three dense
vectors: A · (a+ b+ c). The right-hand-side vector of the matrix-vector multiplication
is required several times during its evaluation. In the case that the result of the vector
additions a+ b+ c is not computed prior to the multiplication, the additions have to
be evaluated several times, which will inevitably result in a performance loss.

Listing 18

Use of the expression d = A ∗ (a + b+ c) with classic operator overloading.

1 class ic::Matrix <double > A( N, N );

2 class ic::Vector <double > a( N ), b( N ), c( N ), d( N );

3 // ... Initialization of the matrix and vectors

4 d = A * ( a + b + c );

Listing 19

Use of the expression d = A ∗ (a + b+ c) in the Blitz++ library.

1 blitz ::Array <double ,2> A( N, N );

2 blitz ::Array <double ,1> a( N ), b( N ), c( N ), d( N );

3 blitz :: firstIndex i;

4 blitz :: secondIndex j;

5 // ... Initialization of the matrix and vectors

6 blitz ::Array <double ,1> tmp( a + b + c );

7 d = blitz ::sum( A(i,j) * tmp(j), j );

Listing 20

Use of the expression d = A ∗ (a+ b+ c) in the Boost uBLAS library.

1 boost :: numeric :: ublas ::matrix <double > A( N, N );

2 boost :: numeric :: ublas ::vector <double > a( N ), b( N ), c( N ), d( N );

3 // ... Initialization of the matrices

4 noalias ( d ) = prod( A, ( a + b + c ) );

Listing 21

Use of the expression d = A ∗ (a+ b+ c) in the MTL4 library.

1 mtl :: dense2D <double > A( N, N );

2 mtl :: dense_vector <double > a( N ), b( N ), c( N ), d( N );

3 // ... Initialization of the matrices

4 mtl :: dense_vector <double > tmp( a + b + c );

5 d = A * tmp;

Listing 22

Use of the expression d = A ∗ (a+ b+ c) in the Eigen3 library.

1 using Eigen :: RowMajor ;

2

3 Eigen ::Matrix <double ,Dynamic ,Dynamic ,RowMajor > A( N, N );

4 Eigen ::Matrix <double ,Dynamic ,1> a( N ), b( N ), c( N ), d( N );

5 // ... Initialization of the matrices

6 d.noalias () = A * ( a + b + c );

Listing 23

Use of the expression d = A ∗ (a + b+ c) in the Blaze library.

1 blaze :: DynamicMatrix <double > A( N, N );

2 blaze :: DynamicVector <double > a( N ), b( N ), c( N ), d( N );

3 // ... Initialization of the matrices

4 d = A * ( a + b + c );
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Fig. 8. Performance comparison of six implementations of the complex expression A · (a+ b+ c).

Table 3

Hardware counter performance analysis of the complex expression A · (a+ b+ c) for N = 5000.

Memory
bandwidth
[MByte/s]

Total
retired

instructions
[108]

Total
arithmetic
operations

[107]

CPI L1 data
cache line

replacements
[106]

STREAM 11814 — — — —

N
=

5
0
0
0

Classic 4259 3.33483 5.10292 0.412432 6.26337

Blitz++ 4999 2.83944 5.12711 0.405723 6.29091

Boost uBLAS 3772 2.85076 10.1008 0.543944 12.5277

MTL4 6143 2.28151 5.0069 0.420074 6.2694

Eigen3 10337 0.65668 5.06263 0.823168 3.94277

Blaze 10564 0.46034 5.04643 1.1158 3.94093

Listings 18 through 23 show the implementation of the complex expression with
classic operator overloading for Blitz++, Boost uBLAS, MTL4, Eigen3, and Blaze,
respectively. Interestingly, it is necessary to explicitly create the temporary tmp in
the case of Blitz++ and MTL4 since it is syntactically not possible to evaluate the
complex expression within a single statement. Figure 8 shows the in-cache and out-
of-cache performance results of the six implementations.

For both small and large N , the Blitz++, Boost uBLAS, and MTL4 libraries do
not exhibit good performance. In the case of large N , classic operator overloading,
although requiring a total of three temporaries for the evaluation of the expression,
performs better than Boost uBLAS, which mainly suffers from not evaluating the
vector addition subexpression. The Eigen3 and Blaze libraries, which use a single
temporary to store the intermediate result of the vector additions and utilize opti-
mized kernel functions for the subsequent matrix-vector multiplication, have a clear
performance advantage. Table 3 shows hardware counter measurements, which allow
a more detailed performance analysis. The repeated evaluation of the vector additions
incur a 2× larger number of arithmetic operations for Boost uBLAS. It seems sur-
prising that Blaze and Eigen3, although they show the best performance levels, have
the worst (highest) CPI value. This is because they manage to generate much fewer
machine instructions, and the code is clearly bound by data transfers (as indicated
by the memory bandwidth, which is close to the STREAM limit). For reference we
have also included counter data for L1 data cache line replacements, i.e., how often
it was necessary to refill an L1 cache line from L2, invalidating or evicting its previ-
ous contents. A large number of replacements indicates poor data locality and shows
clearly the differences in the data access patterns between the code variants.
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Fig. 9. Performance comparison of six implementations of the complex expression (A + B) ·
(C −D).

Table 4

Hardware counter performance analysis of the complex expression (A+B)·(C−D) for N = 5000.

Memory
bandwidth
[MByte/s]

Total
retired

instructions
[1011]

Total
arithmetic
operations

[1011]

CPI L1 data
cache line

replacements
[109]

STREAM 11814 — — — —

N
=

5
0
0
0

Classic 4091 15.2473 2.50443 0.471834 31.3022

Blitz++ 628 10.2533 2.58038 4.58646 266.62

Boost uBLAS 619 13.9891 6.15498 6.77575 533.426

MTL4 578 2.05486 2.50672 0.323117 2.08345

Eigen3 410 2.11584 2.53706 0.411949 4.05275

Blaze 580 2.05009 2.50673 0.323406 2.07969

Another interesting case of a complex expression involves four dense matrices:
E = (A + B) · (C − D). In order to execute the matrix multiplication efficiently,
both operands must be evaluated beforehand. Again, in the case of Blitz++ and
MTL4 the expression cannot be computed within a single statement, which results in
two explicit temporary matrices. Again this has some benefit, as can be seen from
the data in Figure 9, which shows in-cache and out-of-cache performance results for
classic operator overloading, Blitz++, Boost uBLAS, MTL4, Eigen3, and the Blaze
library. Blitz++ always performs better than Boost uBLAS, which does not create any
temporaries and reevaluates the matrix addition and subtraction repeatedly. However,
both Blitz++ and Boost uBLAS exhibit poor performance in comparison to MTL4,
Eigen3, and Blaze, which internally create two temporaries to hold the intermediate
results of the matrix addition and subtraction and use optimized kernels to carry
out the multiplication. It is particularly striking that for large N both Blitz++ and
Boost uBLAS are immensely outperformed by classic operator overloading, since the
latter does create the necessary temporaries and, more importantly, utilizes a faster
kernel. These performance values are confirmed by the hardware counter results in
Table 4. The large data cache replacement rates, the large CPI, and the low memory
bandwidth of the “slow” frameworks especially indicate low code quality.

Admittedly, a simple solution to improve the performance of Boost uBLAS would
be the explicit generation of temporaries whenever necessary. However, arguably the
primary goal of ETs is the ability to use infix operator notation and to provide a
convenient, intuitive black box interface for all kinds of mathematical operations.
Therefore a user cannot be blamed for the lack of proper automatic recognition of
necessary temporaries. The standard ET rule to avoid all temporaries, which estab-



C62 K. IGLBERGER, G. HAGER, J. TREIBIG, AND U. RÜDE
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Fig. 10. Performance comparison of the dense vector addition for successful and failed inlining.
The short bars correspond to results from Figure 3, the long bars to the results with failed inlining.
The bars are scaled according to the fastest result with successful inlining.

lished the reputation of ETs as performance optimization, can therefore obviously
also act as performance “pessimization.”

9. Inlining. Inlining is essential for all ET-based frameworks: Without a com-
plete inlining of the entire ET functionality the expected performance level cannot
be achieved. Therefore ETs vitally depend on the inlining capabilities of the used
compiler. However, due to the enormous number of nested function calls in ET codes
the pressure on the compiler is very high. Additionally, the inline keyword is merely
a recommendation for the compiler to perform the inlining, not a binding instruc-
tion. Depending on the size of the function the ETs are used in, the size of the
compilation unit, the total number of instructions, etc., the compiler might reject this
recommendation and choose to keep the function calls.

In our measurements, we went to great lengths to ensure that all ET function-
ality was properly inlined to measure the maximum possible performance. (See the
compiler flags in section 3.) However, this set of aggressive compilation flags may be
unrealistic for production codes. The default flags, on the other hand, work well for
small compilation units, but performance might be lost due to failed inlining in more
realistic scenarios. In order to demonstrate the impact of failed inlining, we switched
off inlining altogether. Figure 10 shows a best-case/worst-case comparison between
successful and failed inlining in the case of dense vector addition for in-cache and out-
of-cache computations. (The inlined performance values correspond to results from
Figure 3.)

As this comparison shows, inlining can pose a severe and fundamental problem for
all ET-based production code. This statement is also true for the ET implementation
of the Blaze library, but due to the concept of embedding HPC kernels Blaze is much
less affected than the other ET frameworks. Most importantly, programmers must
not be overly confident in the compiler’s ability to (1) perform inlining to the required
level and then (2) generate the most efficient low-level loop code possible.

10. The smart expression template implementation of Blaze. In the fol-
lowing we will sketch the implementation of the six key ingredients of SETs in the
Blaze library by means of the expression A · B · v. Note, however, that the Blaze
implementation is only one possible implementation of SETs and therefore merely
serves as an illustrating example to SETs. Additionally note that we have slightly
simplified the source code to facilitate code presentation and comprehension. For in-
stance, we omit all functionality that differentiates between rowwise and columnwise
stored matrices and transposed and nontransposed vectors.
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Listing 24 shows the implementation of the expression by means of the Blaze
functionality. Since the right-hand-side expression is evaluated from left to right, the
first operation to be evaluated is the leading matrix-matrix multiplication. Listing 25
shows the implementation of the operator that after an initial check of the dimensions
of the matrices only returns a temporary expression object of type DMatDMatMultExpr,
which represents the multiplication of two dense matrices.

Listing 24

Use of the expression w = A ·B · v in the Blaze library.

1 blaze :: DynamicMatrix <double > A, B;

2 blaze :: DynamicVector <double > v, w;

3 // Initialization of the matrices and vectors

4 w = A * B * v;

Listing 25

Multiplication operator for the matrix-matrix multiplication.

1 template < typename T1 // Type of the left -hand side dense matrix

2 , typename T2 > // Type of the right -hand side dense matrix

3 inline const DMatDMatMultExpr <T1,T2>

4 operator *( const DenseMatrix <T1 >& lhs , const DenseMatrix <T2 >& rhs )

5 {

6 if( (~lhs ).columns () != (~rhs).rows () )

7 throw std :: invalid_argument( "Matrix sizes do not match " );

8

9 return DMatDMatMultExpr <T1,T2 >( ~lhs , ~rhs );

10 }

Listing 26 shows part of the implementation of the according class template. The
template parameter MT1 represents the type of the left-hand-side dense matrix operand,
and the parameter MT2 represents the type of the right-hand-side dense matrix operand.
The DMatDMatMultExpr class derives both from the Expression class (which formally tags it
as an expression) and from the DenseMatrix class template (using the curiously recurring
template pattern (CRTP) [15, 24]), which makes it a dense matrix. The type safe up-
cast that is enabled by CRTP is provided via operator~ (see, for instance, Listing 25,
lines 6 and 9). Via common template meta programming [1] techniques the data types
of the two operands are used to evaluate the two member data types Lhs and Rhs. The
two operands of the matrix multiplication are stored either by value in case they are
expression objects (i.e., derived from the class Expression) or by reference in case they
are a nonexpression, plain dense matrix type. Because of this, expression objects are
always lightweight objects that are cheap to copy.

Listing 26

Smart expression object for the matrix-matrix multiplication.

1 template < typename MT1 // Type of the left -hand side dense matrix

2 , typename MT2 > // Type of the right -hand side dense matrix

3 class DMatDMatMultExpr

4 : public DenseMatrix < DMatDMatMultExpr <MT1 ,MT2 > >

5 , private Expression

6 {

7 public :

8 // Public interface omitted

9

10 private :

11 // ...

12
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13 // Member data type of the left -hand side dense matrix expression

14 typedef typename SelectType < IsExpression <MT1 >:: value ,

15 const MT1 , const MT1& >:: Type Lhs ;

16

17 // Member data type of the right -hand side dense matrix expression

18 typedef typename SelectType < IsExpression <MT2 >:: value ,

19 const MT2 , const MT2& >:: Type Rhs ;

20

21 Lhs lhs_; // Left -hand side dense matrix of the

22 // multiplication expression

23 Rhs rhs_; // Right -hand side dense matrix of the

24 // multiplication expression

25

26 template < typename VT > // Type of the right -hand side dense vector

27 friend inline const DMatDVecMultExpr < MT1 ,

28 DMatDVecMultExpr <MT2 ,VT > >

29 operator *( const DMatDMatMultExpr& lhs ,

30 const DenseVector <VT >& rhs )

31 {

32 typedef DMatDVecMultExpr <MT2 ,VT> InnerType ;

33 typedef DMatDVecMultExpr <MT1 ,InnerType > OuterType ;

34 return OuterType ( lhs.lhs_ , InnerType ( lhs.rhs_ , ~rhs ) );

35 }

36

37 // ...

38 };

The next operation to be evaluated is the matrix-vector multiplication of the
matrix-matrix multiplication A · B with the vector v. In order to split the matrix-
matrix multiplication to generate two matrix-vector multiplications a special multipli-
cation operator is required. This multiplication operator is defined as a friend function
inside the DMatDMatMultExpr class body. Via the Barton–Nackman trick [17, 24] the op-
erator is injected into the surrounding namespace. In case the just created matrix
multiplication object is multiplied with any dense vector object, this operator is used
and the matrix-matrix multiplication is restructured into two nested matrix-vector
multiplications (i.e., two DMatDVecMultExpr objects).

Listing 27 shows part of the implementation of the DMatDVecMultExpr class template
that represents multiplications of a dense matrix and a dense vector. The template
parameter MT represents the type of the left-hand-side dense matrix operand, and
the parameter VT represents the type of the right-hand-side dense vector operand.
DMatDVecMultExpr is also derived from the Expression class as well as from the DenseVector

class template. Again, Lhs and Rhs are the member data types for the two operands.

Listing 27

Smart expression object for the matrix-vector multiplication (I).

1 template < typename MT // Type of the left -hand side dense matrix

2 , typename VT > // Type of the right -hand side dense vector

3 class DMatDVecMultExpr

4 : public DenseVector < DMatDVecMultExpr <MT ,VT > >

5 , private Expression

6 {

7 public :

8 // Public interface omitted

9 // ...

10

11 // Result type of the matrix expression

12 typedef typename MT:: ResultType MRT;

13
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14 // Result type of the vector expression

15 typedef typename VT:: ResultType VRT;

16

17 // Result type for expression template evaluations

18 typedef typename MathTrait <MRT ,VRT >:: MultType ResultType ;

19

20 // Resulting element type

21 typedef typename ResultType :: ElementType ElementType ;

22

23 // Data type for composite expression templates

24 typedef const ResultType CompositeType;

25

26 private :

27 // ...

28

29 // Composite type of the left -hand side matrix expression

30 typedef typename SelectType < IsExpression <MT >:: value ,

31 const MT , const MT& >:: Type Lhs ;

32

33 // Composite type of the right -hand side vector expression

34 typedef typename SelectType < IsExpression <VT >:: value ,

35 const VT , const VT& >:: Type Rhs ;

36

37 Lhs lhs_; // Left -hand side matrix of the multiplication expr.

38 Rhs rhs_; // Right -hand side vector of the multiplication expr.

39

40 // ...

41 };

After evaluation of the two multiplication operators, the restructured expression
is assigned to the left-hand-side dense vector. For this purpose, the DynamicVector class
template implements a special assignment operator for the assignment of DenseVectors
(see Listing 28).

Listing 28

ET assignment operator of the DynamicVector class.

1 template < typename Type > // Data type of the vector

2 template < typename VT > // Type of right -hand side dense vector

3 inline DynamicVector <Type ,TF >&

4 DynamicVector <Type ,TF >:: operator =( const DenseVector <VT >& rhs )

5 {

6 using blaze :: assign ;

7

8 if( IsExpression <VT >:: value && (~ rhs).isAliased ( this ) ) {

9 DynamicVector tmp( rhs );

10 swap( tmp );

11 }

12 else {

13 resize ( (~ rhs).size() );

14 assign ( *this , ~rhs );

15 }

16

17 return *this;

18 }

During the assignment, two possible scenarios have to be distinguished. If the
left-hand-side target vector is aliased with the expression on the right-hand side (see
line 8), a temporary vector is created and the “temporary swap” idiom [12, 11] is
applied. If no aliasing can be detected, the vector is resized accordingly and assigned
the right-hand-side expression. The call to the assign function in line 14 is the core
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of the evaluation of the expression. Each expression object can define its own assign
kernel via namespace injection. Listing 29 shows the implementation of the according
assign function of the DMatDVecMultExpr class template along with the necessary type
definitions.

Listing 29

Smart expression object for the matrix-vector multiplication (II).

1 template < typename MT // Type of the left -hand side dense matrix

2 , typename VT > // Type of the right -hand side dense vector

3 class DMatDVecMultExpr : private Expression

4 {

5 public :

6 // Public interface omitted

7

8 private :

9 // ...

10

11 // Element type of the matrix expression

12 typedef typename MRT :: ElementType MET;

13

14 // Element type of the vector expression

15 typedef typename VRT :: ElementType VET;

16

17 // Composite type of the matrix expression

18 typedef typename MT:: CompositeType MCT ;

19

20 // Composite type of the vector expression

21 typedef typename VT:: CompositeType VCT ;

22

23 // Compilation switch for the composite type of the left -hand

24 // side matrix expression

25 enum { blas = IsExpression <MT >:: value &&

26 ( IsFloat <MET >:: value || IsDouble <MET >:: value ) &&

27 ( IsFloat <VET >:: value || IsDouble <VET >:: value ) };

28

29 // Type for the assignment of the left -hand side matrix operand

30 typedef typename SelectType < blas , const MRT , MCT >:: Type LT;

31

32 // Type for the assignment of the right -hand side matrix operand

33 typedef typename SelectType < IsExpression <VT >:: value ,

34 const VRT , VCT >:: Type RT;

35

36 // Specialized assign function injected into the surrounding

37 // namespace

38 template < typename VT2 > // Type of the target dense vector

39 friend inline void assign ( DenseVector <VT2 ,false >& lhs ,

40 const DMatDVecMultExpr& rhs )

41 {

42 LT A( rhs.mat_ ); // Evaluation of the left -hand side

43 // dense matrix operand

44 RT x( rhs.vec_ ); // Evaluation of the right -hand side

45 // dense vector operand

46

47 DMatDVecMultExpr :: selectAssignKernel( ~lhs , A, x );

48 }

49

50 // ...

51 };

The first step of the evaluation of a matrix-vector multiplication within the assign

function is the evaluation of the two operands. LT corresponds to the data type for
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the evaluation of the left-hand-side dense matrix operand. In the case in which the
matrix operand is an expression and the element types of both the matrix and the
vector operand would enable the application of the dgemv BLAS function, an interme-
diate evaluation is enforced by using the resulting data type ResultType of the matrix
operand. Otherwise the nested CompositeType of the matrix expression is used, which
incorporates the knowledge of the expression itself whether an intermediate evalua-
tion is required or not. If an evaluation is necessary, LT corresponds to a nonreference,
concrete data type; otherwise LT is a mere reference to the operand. Via a similar pro-
cedure the data type for the evaluation of the right-hand-side dense vector operand is
determined. However, in this case it is enough to differentiate whether VT is an expres-
sion type (i.e., derived from the Expression class) or a nonexpression, plain vector type.

In the example of the two nested matrix-vector multiplications in the expression
A · B · v, in the case of the inner matrix-vector multiplication B · v, both operands
do not require any intermediate evaluations. Therefore both LT and RT correspond
to references to the original operands. In the case of the outer matrix-vector mul-
tiplication, the vector operand corresponds to the inner matrix-vector multiplica-
tion and therefore requires an intermediate evaluation prior to execution of the outer
matrix-vector multiplication. Whereas for LT a reference to the matrix operand is
used, RT corresponds to the most suitable result type for a matrix-vector multiplica-
tion of a DynamicMatrix<double> with a DynamicVector<double>, which is determined via
the MathTrait class template (see Listing 27, line 18). For this example, a tempo-
rary DynamicVector<double> is used, which is constructed in place via the same assign

mechanism.
In line 47, the evaluated operands are passed to the selectAssignKernel function

(see Listing 30). Via the “substitution failure is not an error” (SFINAE) principle
(see [24]) exactly one kernel is available depending on the data types of the evaluated
operands. In the case in which the two operands as well as the target vector are
compatible to the BLAS standard, the dgemv kernel is selected; otherwise a slower but
more generally applicable default kernel is used.

Listing 30

Assign functions for the evaluation of the matrix-vector multiplication.

1 template < typename MT // Type of the left -hand side dense matrix

2 , typename VT > // Type of the right -hand side dense vector

3 class DMatDVecMultExpr : private Expression

4 {

5 private :

6 // ...

7

8 template < typename VT1 // Type of left -hand side target vector

9 , typename MT1 // Type of left -hand side matrix operand

10 , typename VT2 >// Type of right -hand side vector operand

11 static inline

12 typename boost :: enable_if_c < ! IsBlasCompatible <VT1 >:: value ||

13 ! IsBlasCompatible <MT1 >:: value ||

14 ! IsBlasCompatible <VT2 >:: value >:: Type

15 selectAssignKernel( VT1& y, const MT1& A, const VT2& x )

16 {

17 // Default implementation of the matrix -vector multiplication

18 // ...

19 }

20

21 template < typename VT1 // Type of left -hand side target vector

22 , typename MT1 // Type of left -hand side matrix operand

23 , typename VT2 >// Type of right -hand side vector operand
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24 static inline

25 typename boost :: enable_if_c < IsBlasCompatible <VT1 >:: value &&

26 IsBlasCompatible <MT1 >:: value &&

27 IsBlasCompatible <VT2 >:: value >:: Type

28 selectAssignKernel( VT1& y, const MT1& A, const VT2& x )

29 {

30 // Utilization of the cblas_dgemv kernel

31 // ...

32 }

33

34 // ...

35 };

In this implementation of the evaluation of the expression A ·B ·v a total of eight
function calls is used, among these two calls to the BLAS dgemv function, and a single
temporary is automatically created for the inner matrix-vector multiplication.

11. Conclusion and future work. There is very little ground for the reputa-
tion of SETs to be a performance optimization for array operations. They do achieve
their original goal of providing fast element-by-element array arithmetic in combi-
nation with the benefits of high-level constructs, because they effectively eliminate
the generation of temporaries in expressions. In this sense, they remedy a specific
deficiency of the C++ language. However, more complex operations like BLAS level
2 and 3 procedures, sparse linear algebra, and generally everything that profits from
standard and architecture-specific low-level optimizations often show devastating per-
formance levels. This is because ETs are essentially an abstraction technique that
hides the details of actual data and operations types and reduces them to efficient
single-element access, which is insufficient. We have shown that the widespread be-
lief in advanced inlining and optimization capabilities of C++ compilers is naive and
unjustified. While aggressive inlining is a necessary prerequisite for getting good per-
formance from an ET source, it does not guarantee the best low-level code. There is
no alternative to exploiting all possible knowledge about data types, operations, and
access patterns.

We have also introduced the notion of smart expression templates, which are
systematically realized in the Blaze library. They eliminate the shortcomings of stan-
dard ETs by reducing the ET mechanism to an intelligent wrapper around a selection
of highly optimized kernels or, in case of BLAS-type operations, vendor-provided li-
braries. Smart ETs combine the advantages of a domain-specific language (ease of
use by high-level constructs, readability, encapsulation, maintainability) with the per-
formance of HPC-suitable code. Moreover, they do not rely on aggressive inlining as
much as standard ETs do.

In this work we have restricted our discussion to sequential code. Considering the
importance of highly hierarchical, multicore/multisocket building blocks in today’s
high performance systems, a generalization of smart ETs to parallel computing on
distributed data structures seems natural and will be investigated.
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