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Übersicht

Die Suche nach Programmierparadigmen, welche den Quelltext paralleler Programme robuster, leser-

licher und wartbarer gestalten, hat zur Entwicklung sogenannter PGAS (Partitioned Global Address Space)

Sprachen geführt. Typische Beispiele sind UPC (Unified Parallel C) und CAF (Coarray Fortran). Bisher

haben diese Sprachen jedoch noch nicht den Weg aus dem akademischen Umfeld in Produktionsumge-

bungen gefunden.

Mit dem Fortran 2008 Standard sind Coarrays ein nativer Bestandteil von Fortran geworden. Die

Popularität von Fortran im wissenschaftlichen Rechnen und die große Fortran Code Basis lässt darauf

hoffen, dass für die Parallelisierung von bereits existierendem Fortran Code und für das Schreiben von

neuem Quelltext von Entwicklern die native Sprachvariante einer MPI/OpenMP Parallelisierung vorgezo-

gen wird. Dies ist jedoch nur möglich, wenn sowohl der Sprachstandard für das wissenschaftliche An-

wendungsfeld ausreichend ist als auch die zur Verfügung stehenden Compiler und Entwicklungsumgebun-

gen den Anforderungen des wissenschaftlichen Rechnens nach Performance und Zuverlässigkeit gerecht

werden. Die vorliegende Master Arbeit untersucht anhand der Portierung eines prototypischen, MPI

basierten Lattice Boltzmann Lösers nach Coarray Fortran und anhand von ”low-level“ Benchmarks für

unterschiedliche Kombinationen aus gängiger HPC Hardware und Coarray Fortran Compilern, inwieweit

diese Kriterien zur Zeit der Arbeit erfüllt sind.

Abstract

The search for programming paradigms that promise to make the source code of parallel programs

more robust, readable and maintainable has led to the development of so-called PGAS (Partitioned Global

Address Space) languages, typical represantatives being UPC (Unified Parallel C) and CAF (Coarray

Fortran). The languages have, however, not yet made their way from research into production codes.

Coarray Fortran may be able to gain greater popularity since it is, starting with the Fortran 2008 lan-

guage standard, natively embedded into the Fortran programming language. This gives rise to the hope

that decent coarray compiler implementations will be available and make it feasible to actually use the

language features instead of MPI/OpenMP. This is, however, only possible if the language standard is

sufficient for the scientific application field and if the available compilers and development environments

fulfill the requirements for scientific computing, which are primarily performance and reliability. This

master thesis checks those criteria for different combinations of popular HPC hardware and Coarray For-

tran compilers by porting a prototype, MPI-based Lattice Boltzmann solver to coarray Fortran and by

evaluating the results of different low-level benchmarks.
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Chapter 1

Introduction

The wide availability of parallel compute resources in the 1990s motivated the development of
different programming paradigms to efficiently run programs on these architectures. In 1994, the
first standard for MPI (Message Passing Interface) [MPI 09], a programming library providing
support for efficient message passing, was released by a joint effort of researchers and vendors
for parallel computers and, in 1997, a consortium of hardware and software vendors released
the specification for OpenMP [Open 11], a compiler extension providing threading support by
compiler directives. Those two parallelization methods have become the de facto standards for
parallel programming in numerical simulation and the development of both specifications is an
ongoing process. In contrast, PGAS (Partitioned Global Address Space) languages like UPC

(Unified parallel C), the Coarray Fortran programming language defined in 1998 by Robert Num-
rich and John Reid [Numr 98] [ISO 10], and the SHMEM library [Ltd 01] have not managed to
gain greater acceptance outside academia. Still, advocates of PGAS languages claim that PGAS
languages can and should replace MPI and OpenMP, typical arguments being that they are more
readable and easier to learn.

Like all the other languages and libraries mentioned, Coarray Fortran uses an SPMD (Single

Program, Multiple Data) approach. Multiple instances of the same program are executed on
(possibly) distributed processors, each of the instances being called an “image”. All images run
asynchronously and work on their private part of the data. Synchronization and data transfer
is specified explicitly in the source code. With the Fortran 2008 standard, coarrays became
a native Fortran feature [ISO 10]. Data is distributed among the images by adding so-called
“codimensions” to variables, where each element in a codimension is stored by exactly one
image. An image can access data of another image by specifying the codimension of the variable.
On shared memory systems, a compiler can treat codimensions like ordinary array dimensions,

1



2 CHAPTER 1. INTRODUCTION

thus store coarrays consecutively in the shared memory and access them very efficiently. On
distributed memory architectures, a protocol like MPI or the SHMEM library can be used to
perform the communication.

In the last few years, research regarding the Lattice Boltzmann method has been conducted at
the University of Erlangen Nürnberg. In particular, two large scale production codes have been
developed at the RRZE (Erlangen Regional Computing Center) [Zeis 09] and the LSS (Chair

for System Simulation) [Feic 11]. The Lattice Boltzmann method is an explicit time-stepping
scheme for the numerical simulation of fluids, straightforward to parallelize and well suited for
modelling complex boundary conditions and multiphase flows. In addition to its production code,
the RRZE maintains a small prototype 3D Lattice Boltzmann code [Dona 04, Well 06], which is
written in Fortran and is already single core optimized and parallelized with MPI and OpenMP.
This work extends this code by parallelization with coarrays and compares performance and
programming effort to the MPI implementation. The measurements are supplemented by low-
level benchmarks to evaluate the quality of different hardware-compiler combinations and to be
able to draw conclusions about the applicability of the coarray programming paradigm for other
algorithms.

Lattice Boltzmann methods were derived from lattice gas automata by regarding the inter-
action not of single particles but of particle clusters with discrete velocities. The typical imple-
mentation of the algorithm discretizes the space with a Cartesian lattice. Each lattice cell stores
a discrete particle distribution function (PDF), a set of positive scalar values fi giving the proba-
bility of finding a particle with the discrete velocity of index i in the cell. The discrete velocities
are chosen such that a particle, which is in the center of one cell and has one of these discrete
velocities, moves exactly into the center of one adjacent cell in one time step. So, in each time
step, the values of fi are changed according to the velocities of the other particles in the cell, and
each particle conglomerate represented by the fi values moves to one adjacent lattice cell there-
after. In the D3Q19 model implemented in the prototype LBM code, 19 scalar values are stored
for each cell. Parallelization is done similarly to other stencil codes, via a Cartesian distribution
of the lattice cells among processes and by exchange of halo cells.

Cray has a long tradition with PGAS languages, starting with the support for coarrays on the
Cray T3E in 1998 [CF90 98]. UPC is also supported by the Cray Programming Environments,
the claim being that Cray Computers can efficiently map PGAS high-level constructs to network
calls. One compute platform used throughout the work is therefore a Cray XE6 machine with
Gemini routers [Alve 10] [Baw 99].

The second hardware used is a standard Infiniband Intel Westmere Cluster. On this hardware,
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the Intel Fortran Compiler 12, update 4, was chosen as one of the compilers, which can be con-
sidered a very common choice among software developers. Also tested were the Rice University
CAF 2.0 compiler and a development version of the Open64 compiler 4.2 with CAF support. A
production quality Open64 version with CAF support was not yet released at the time of writing.

This thesis is organized as follows. Chapter 2 introduces CAF in the context of existing par-
allel programming approaches. Chapter 3 describes the hardware and software environments that
were used. Chapter 4 shows performance characteristics of the different hardware/software com-
binations introduced in chapter 3 by means of low-level benchmarks. In chapter 5, the Lattice
Boltzmann Method and the implementation used for the thesis are introduced. The performance
of the Lattice Boltzmann algorithm is reported in chapter 6. Finally, chapter 7 draws conclu-
sions about the experiences made and the applicability of the CAF programming model to other
algorithms.
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Chapter 2

Parallel Programming Models

This chapter introduces MPI and OpenMP and compares them to Coarray Fortran. The serial
code shown in listings 2.1 and 2.2 is parallelized with all of the programming models to show
some substantial differences. The code computes the sum of two double precision vectors, a and
b, and stores the result in another vector, c. This shows differences in the data distribution of
the different parallelization approaches. A subsequent reduction operation is performed on c to
illustrate the usage of special purpose functions for this task.

2.1 OpenMP

OpenMP introduces compiler directives to add multiprocessor support to existing serial pro-
grams running on shared memory systems. Outside the regions marked by OpenMP directives,
the program is executed like a serial program by exactly one master thread (see figure 2.1a). On
entering an !$OMP PARALLEL block, worker threads are activated and execute the code segment
surrounded by the directives concurrently. All worker threads operate on the same address space

double precision, dimension(N) :: a,b,c
double precision :: sum_c

! initialize vectors a and b
call initialize_a_b(a,b)

c(:) = a(:) + b(:)

sum_c = sum(c(:))

Listing 2.1: Example serial program in vector notation

5



6 CHAPTER 2. PARALLEL PROGRAMMING MODELS

!$OMP END PARALLEL

Master

Master Worker 1 Worker 2

!$OMP PARALLEL

Master

1      2      3          4      5      6          7      8      9 

array in memory, Fortran array index

parallel section

Master Worker 1 Worker 2

(a) OpenMP

Rank 0 Rank 1 Rank 2

MPI_Barrier

parallel section

1      2      3                  1      2      3                1      2      3 

Rank 0 Rank 1 Rank 2

arrays in memory, Fortran array index

MPI_Send

MPI_Recv

(b) MPI

(1)[1]                (1)[2]                   (1)[3]
(2)[1]                (2)[2]                   (2)[3]
(3)[1]                (3)[2]                   (3)[3]

array in (probably fictitious) global memory

Image 1 Image 2 Image 3

sync all, sync images

parallel section

array(:)[2]=...

sync images(2,3)

Image 1 Image 2 Image 3

(c) Coarray Fortran

Figure 2.1: Control flow and memory layout

with the same start address, array indices are indices into the global array. Implicit synchroniza-
tion is performed at the end of the !$OMP PARALLEL block, explicit synchronization directives
are also available. Code example 2.3 shows the original code example enhanced by OpenMP
pragmas.

As non-local data is accessed transparently, the programming model is best suited for shared
memory systems having Uniform Memory Access (UMA). While still providing cache coher-
ence, modern shared memory architectures assign each memory page to one specific processor.
Accesses to each memory page are therefore non-uniformly fast among the different processors,
an architecture which is referred to as cache-coherent Non-Uniform Memory Access (ccNUMA)

[Hage 10]. NUMA penalties are therefore not clearly visible in the source code.

Also, the OpenMP programming model can not be efficiently extended to situations where
non-local reads/writes can not be performed with the same assembly instructions that are used
for local reads and writes, which is the case when different computers are connected through
network hardware like Infiniband or the Gemini Interconnect.

2.2 MPI

MPI is a software library that provides message passing routines for shared and distributed mem-
ory systems and is the de facto standard for distributed memory parallelization. All workers run
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double precision, dimension(N) :: a,b,c
double precision :: sum_c
integer :: i

! initialize vectors a and b
call initialize_a_b(a,b)

do i = 1, n
c(i) = a(i) + b(i)

end do

sum_c = 0.0

do i = 1, n
sum_c = sum_c + c(i)

end do

Listing 2.2: Example serial program in index notation

double precision, dimension(N) :: a,b,c
double precision :: sum_c
integer :: i

call initialize_a_b(a,b)

!$OMP PARALLEL DO PRIVATE(i)
do i = 1, N

c(i) = a(i) + b(i)
end do

!$OMP END PARALLEL DO

! method 1: use built-in OpenMP reduction operation
sum_c = 0.0

!$OMP PARALLEL PRIVATE(i) REDUCTION(+:sum_c)
do i = 1, N

sum_c = sum_c + c(i)
end do

!$OMP END PARALLEL REDUCTION

! method 2: nonparallel manual reduction
sum_c = 0.0

do i = 1, N
sum_c = sum_c + c(i)

end do

Listing 2.3: Example OpenMP program
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independently of each other from the start of the program and can have an address space of their
own. The developer manually takes care of non-local data access by inserting send/receive pairs
or special purpose routines like broadcasts or reductions (see figure 2.1b). Providing greater flex-
ibility, parallelizing a code with MPI typically requires writing many more lines of code than for
an equivalent OpenMP parallelization because

• the domain decomposition has to be done by hand,

• communication calls have to be inserted,

• compound data types have to be registered and

• manual buffering or registration of strided vectors has to be implemented for many domain
decomposition algorithms.

NUMA effects and the fact that non-local data accesses are slow are naturally regarded by
MPI code. In theory, MPI provides means for overlapping communication and computation
with non-blocking send operations. Most MPI implementations do, however, start the actual
communication only when the receiver calls MPI_Wait to wait for the data to arrive. Listing 2.4
shows different variants of an MPI parallelization for the example code.

integer :: isize, rank, ierr, recv_rank, receive_status(MPI_STATUS_SIZE)

double precision, dimension(:), allocatable :: a,b,c

double precision :: sum_c_local, sum_c, sums_c_local(:)

integer :: i, indexReady, receiveRequests(:), sendRequest

call MPI_Init(ierr)

call MPI_Comm_size(MPI_COMM_WORLD, isize, ierr)

call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)

! allocate local parts of the arrays, take care of the

! sizes of the last rank if modulo(N, isize) .ne. 0

allocate( a(1+min(((N-1)/isize+1)*(rank+1), N) - ((N-1)/isize+1)*rank) )

allocate( b(1+min(((N-1)/isize+1)*(rank+1), N) - ((N-1)/isize+1)*rank) )

allocate( c(1+min(((N-1)/isize+1)*(rank+1), N) - ((N-1)/isize+1)*rank) )

call initialize_a_b(a,b)

do i = 1, size(c)

c(i) = a(i) + b(i)
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end do

sum_c_local = 0.0

do i = 1, size(c)

sum_c_local = sum_c_local + c(i)

end do

! sum up the local contributions and store the result in rank 0

! method 1: use built-in reduction operation

call MPI_Reduce(sum_c_local, sum_c, 1, MPI_DOUBLE, &&

MPI_SUM, 0, MPI_COMM_WORLD, ierr)

! method 2: synchronous, manual reduction without reduction tree

sum_c = sum_c_local

if (rank == 0) then

sum_c = sum_c_local

do recv_rank = 1,isize-1

call MPI_Recv( sum_c_local, 1, MPI_DOUBLE, &&

recv_rank, 42, MPI_COMM_WORLD, receive_status )

sum_c = sum_c + sum_c_local

end do

else

call MPI_Send( sum_c_local, 1, MPI_DOUBLE, 0, 42, MPI_COMM_WORLD )

end if

! method 3: asynchronous, manual reduction without reduction tree

sum_c = sum_c_local

if (rank == 0) then

allocate(sums_c_local(0:isize-1))

allocate(receiveRequests(0:isize-1))

do i = 0,isize-1

call mpi_irecv(sums_c_local(i), 1, MpiDataTypeReal, i+1, 42, &&

MPI_COMM_WORLD, receiveRequests(i))

end do

do i = 0, isize-1

call MPI_Waitany(isize, receiveRequests, indexReady, MPI_STATUS_IGNORE)

sum_c = sum_c + sums_c_local(indexReady)

end do
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else

call mpi_isend(sum_c_local, 1, MpiDataTypeReal, 0, 42, MPI_COMM_WORLD, sendRequest)

call MPI_Wait(sendRequest, MPI_STATUS_IGNORE)

end if

Listing 2.4: Example MPI program, without error handling

2.3 Coarray Fortran

Coarray Fortran gives the programmer the illusion of having a global address space with NUMA
behaviour by adding so-called codimensions to variables. Each element of a codimension is
stored by the image with the corresponding image_index(). The image index is similar to the
MPI rank. Note that the first CAF image has index 1, while the first MPI process has rank
0. When the local part of a coarray is referenced, the codimension can be omitted (see listing
2.5). Remote accesses require usage of the special brackets for the codimensions indicating
possibly slow accesses. Like in MPI programs, all workers run independently from each other
and are only synchronized by explicit synchronization constructs (or coarray allocations and
deallocations). If the underlying hardware is a true shared memory system that could also be
used to run OpenMP parallel programs, coarrays can be mapped to true arrays inside the shared
memory, regarding the codimension as a true array dimension (see figure 2.1c). As all access
to remote data is explicitly specified in the code with the brackets identifying the codimensions,
distributed memory hardware can emulate the global address space by issuing library calls behind
the scenes.

For the programmer, the biggest differences to MPI are

• the native support for compound types and multidimensional arrays,

• the inability to do unequal work distribution among different ranks with standard coarrays
(unequal work distribution is only possible by using compound types with allocatable or
pointer components, more in section 2.3.2),

• the fact that remote write operations do not require a corresponding receive operation from
the remote image and that remote read operations do not require a corresponding send
operation,

• the lack of communicators (image lists can be used as an alternative).
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integer, dimension(3), codimension[*] :: array

array = ...

if (this_image() == 1) then
all(array == array[1])

end if

Listing 2.5: Optional codimensions on local image

All information about the features of Coarray Fortran can be found in the Fortran 2008 Lan-
guage Draft [ISO 10]. [Reid 10] and [Done 07] contain considerations that led to the design of
the language features.

2.3.1 Segments and Synchronization Statements

Three synchronization statements are provided, being sync memory, sync all and sync images.
sync all is equivalent to an MPI_Barrier(MPI_COMM_WORLD), sync images is equivalent to an
MPI_Barrier(userdefined_communicator) where userdefined_communicator is a commu-
nicator consisting of all the images specified in the image list that is passed as an argument to
sync images.

The code between two sync memory statements is called a segment, the behaviour of the
sync memory statement is implicitly contained in the other synchronization statements. The
sync memory statement assures that all modifications initiated inside a segment on image A are
seen inside succeeding segments on other images. More precisely, if other segments shall see the
modifications done in a segment on image A, they have to wait for the segment on image A to
end before they can start. This ordering can either be enforced manually by the programmer by
using semaphores, mutexes or spin waiting loops, for instance, or by just using the sync all or
sync images statement.

Instructions may be reordered inside segments as if no other images would exist. This means
that it is possible for the compiler to implement the optimization of postponing push communi-
cation until the next synchronization statement (see section 2.3.3).

Also, the code example 2.6 is valid because a single image should see a coarray as if it was
truly an array.
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if (this_image() == 1) then
ar[2] = 3
ar[2] = ar[2] + 3

end if

Listing 2.6: Successive remote write accesses

type Array
double precision, dimension(:), allocatable :: data

end type

type(Array), codimension[*] :: array

Listing 2.7: Nonsymmetric work distribution

2.3.2 Nonsymmetric coarrays

If a problem domain is to be distributed among different images but not all subdomains are of the
same size, this requires using coarrays of derived types with pointer or allocatable components.
Code fragment 2.7 illustrates the technique.

With a reasonably good compiler, access to such “pseudo” arrays can be expected to have the
same costs as access to true arrays because, on shared memory architectures, each rank can cache
the base pointers and the dimensions of the arrays on other images and, on distributed memory
architectures, the memory access has to emulated by the sender anyway.

Nonsymmetric coarrays were not used in the LBM implementation, varying subdomain sizes
are currently not supported.

2.3.3 Push vs. Pull Communication

If the brackets indicating the codimension are on the left hand side of an assignment equation,
the communication type is called push communication, whereas it is called pull communication
if the brackets are on the right hand side (see code example 2.8).

Push/pull communication can be implemented naturally using the shmem_put/shmem_get

! push communication
array(:)[this_image()+1] = array(:)
! pull communication
array(:) = array(:)[this_image()-1]

Listing 2.8: Push and pull communication
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functions from the SHMEM library [Ltd 01] or gasnet_put/gasnet_get from the GASNet
communication library [Bona 02]. The Rice and the Open64 compiler use GASNet, GASNet
in turn can use different conduits to perform the communication (see chapter 3, figure 3.4).

In case of push, the compiler is free to postpone the assignment and overlap the communi-
cation with the computation until the next synchronization statement (see section 2.3.1). This
requires to perform buffering or to check whether the variable being copied is changed in later
places inside the code segment. Pull communication does not need to be finished until the first
usage the gathered remote data.

2.3.4 Image Order

The draft explicitly specifies that the order of images in multidimensional coarrays is the same as
the subscript order value of array elements, which is column-major. This means that the image
order is exactly the opposite of what it is like in the MPI implementations used in this thesis. As
depicted in figure 2.2, this results in different communication characteristics for MPI compared
to CAF and has to be corrected for to not confound performance comparisons.

Figure 2.2 also shows the different behaviour of MPI and CAF in cases where not all ranks/im-
ages can take place in a multidimensional domain partitioning. This is the case when the number
of images (here: 7) is larger than the product of the sizes of the codimensions (here: 2 · 3 = 6).
Whereas MPI will create a communicator in which some of the ranks are not contained (here:
rank 6), CAF creates a coarray that is larger than required by the user and assigns all elements
where no rank is available to the invalid zero rank (here: array element variable[2,4] is as-
signed to no rank at all and attempts to access it will result in undefined behaviour).

2.3.5 Subarrays

It is possible to pass a subarray of a coarray to subroutines and functions and access remote
parts of the subarray inside the procedure. The subarray may not have vector subscripts because
this would require copy-in and and copy-out, which would cause problems when other images
attempt to modify the coarray while the subroutine has not yet finished. Code example 2.9 shows
valid and invalid calls to subroutines with dummy coarray variables.

2.3.6 Reductions

The proposal in [Reid 10] made it possible to write code like this.
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(b) Coarray Fortran image order

Figure 2.2: Rank/image order

integer, dimension(7,8,9), codimension[*] :: array

call sub( ar(:,2,2) ) ! ok
call sub( ar(2,:,2) ) ! ok
call sub( ar(2,2,:) ) ! ok

call sub( ar([1,2,3],2,2) ) ! not ok, array subscripts are not allowed

subroutine sub(ar)
integer, dimension(:), codimension[*] :: array

end subroutine

Listing 2.9: Valid and invalid usage of dummy coarray variables

double precision, codimension[*] :: array

double precision :: array_sum

array = ....

array_sum = sum(array[:])

This means that a coarray can, under special circumstances, be converted into a regular array,
thus making it possible to easily code reductions with standard coarray syntax. The feature
is, however, not contained in Fortran 2008. Also, in contrast to MPI and OpenMP, no special
purpose routines exist for performing reductions concurrently.



2.3. COARRAY FORTRAN 15

double precision, dimension(:), codimension[:], allocatable :: a,b,c
double precision :: sum_c
integer :: i, isize

isize = 1+min(((N-1)/isize+1)*(rank+1), N) - ((N-1)/isize+1)*rank
! allocate local parts of the arrays, allocate more space
! than required for the last image if modulo(N, isize) /= 0
allocate(a((N-1)/isize+1)[*])
allocate(b((N-1)/isize+1)[*])
allocate(c((N-1)/isize+1)[*])

call initialize_a_b(a,b)

c(:) = a(:) + b(:)

! make sure all images finished the computation
sync all

! CAF does not provide a built-in reduction operation
! we use an unoptimized global gather
if (this_image() == 1) then

sum_c = 0.0
do i=1, num_image()

sum_c = sum_c + sum(c[i])
end do

end if

Listing 2.10: Example CAF program

2.3.7 Code Example

Listing 2.10 contains a coarray version of the example code that was already shown for MPI and
OpenMP.
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Chapter 3

Test Machines

3.1 Hardware

The LBM code was run on two different machines, the Cray XE6 of the Swiss National Compute
Center [Palu] and the “Lima” cluster of RRZE (Erlangen Regional Computing Center) [Lima].
Table 3.1 summarizes the hardware characteristics of both systems, figure 3.1 visualizes the
internal hardware configuration of a compute node of each machine.

When all processors (and virtual processors on the Westmere) were used on a compute node,
the process affinity was chosen according to the CPU numbering depicted in figure 3.2. The
purpose of this numbering is to minimize the amount of traffic that has to pass the Hypertransport

and QuickPath interconnects respectively. When less processes were used per node, the ordering
was again chosen such that the processes were equally distributed among the different NUMA
domains and the traffic through the interconnects was minimized.

The memory bandwidths of table 3.1 are taken from the measurements in section 4.1, the
network bandwidth is said to be the highest value of the ringshift bandwidth from section 4.2.1.
The XE6 has a torus network topology and the total bandwidth available per node does therefore
not only depend on the algorithmic memory access patterns but also on the selection of the
nodes, see figure 3.3. Resulting from the decision to define the network bandwidth to be the
highest bandwidth measured in the ringshift benchmark using two nodes, the network bandwidth
given here refers to the bandwidth available per connection of two nodes.

The network interface of the Cray XE6 is provided by the Gemini System Interconnect
[Alve 10] and promises to provide good hardware support for coarrays. The Lima cluster, on
the other hand, can only provide coarray support by appropriate software emulation.

17
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Cray XE6 Lima cluster
Processor AMD Magny-Cours Intel Westmere
Clock frequency 2.20 GHz 2.67 GHz
Nominal performance/node (double precision) 211 GFLOP/s 128 GFLOP/s
#Physical cores/node 24 12
#Virtual cores/node 24 24
#Sockets/node 2 2
#NUMA domains/socket 2 1
L3 cache size/NUMA domain 5 MB 12 MB
Measured memory bandwidth/node 50 GB/s 40 GB/s
Network topology 3D torus Fat tree
Measured network bandwidth/connection 10 GB/s 6 GB/s
#Nodes 176 500

Table 3.1: Compute hardware data sheet

3.2 Software Environment

Table 3.2 contains a “X” for each compiler/hardware combination that was tested. Table 3.3 lists
the software/versions that were used.

On the Cray XE6, only the Cray Programming Environment was taken into account because
it is readily shipped with the hardware and contains a Fortran compiler with coarray support that
promises to have good support for the Gemini chipset.

On the Lima cluster, the standard InfiniBand network does not make the choice of the com-
piler that obvious. While the Intel compiler is only able to use MPI as a conduit, Open64 and the
Rice University CAF 2.0 compiler were configured to use the GASNet communication library
which in turn was set up to use MPI and the IB Verbs library shipped with the OpenFabrics
Enterprise Distribution (OFED) [Open]. Figure 3.4 depicts the dependency trees of Rice and
Open64. The attempts to produce working executables failed for the Rice compiler and partially
for the Open64, more details are given in section 3.2.4.

The performance tool collection likwid was installed on both systems [Likw]. Likwid sup-
ports program optimization and performance analysis by, amongst others, providing tools for
gathering hardware topology information, running processes with a user-defined process affinity
mask and reading hardware performance counters. In particular, likwid-topology was used to get
information about the node topology and the cache sizes reported in figure 3.1 and table 3.1.
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Figure 3.3: Ringshift on torus network

3.2.1 Cray Fortran

The Cray Fortran compiler, which was already pre-installed on the Cray XE6 machine, supports
coarrays and is able to efficiently utilize the Gemini System Interconnect [Alve 10] [Baw 99] of
the XE6. Sufficient documentation is provided and coarray performance is comparable to MPI.
The only bug found during the work on the thesis, a bug related to memory allocation, is already
fixed in newer versions of the compiler. As for MPI programs, executing a coarray program is
done with ’aprun’.

For coarrays larger than a few megabytes, an environment variable has to be set to specify the
size per image required for coarrays. The choice of the value has an influence on the performance,
but this effect is not investigated in the thesis.

When coarray support is enabled during compilation and large non-coarray variables are to
be allocated, it is necessary to instruct the system to use huge memory pages or the allocation
will fail. Huge pages can, however, have a negative impact on the performance.

3.2.2 Intel Fortran

Intel’s Fortran Compiler is able to compile coarray code since version 12.0. It is as easy to in-
stall as the previous versions of the compiler but little documentation is available for the coarray
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Cray Fortran Intel Fortran Rice CAF 2.0 Open64
Used on XE6 X
Used on Lima X X X

Table 3.2: Hardware/compiler combinations

Software Version
Cray Programming Environment Version 4.0.36
Cray Fortran Version 7.4.4
Intel Fortran Version 12.0 update 4
Rice University CAF 2.0 Revision 2789 from http://svn.rice.edu/r/caf/caf-compiler
Open64 An extension based on version 4.2
GASNet Version 1.16.1

Table 3.3: Software version numbers

Rice CAF 2.0

GASNetRose

Java

Open64

IB Verbs

ARMCI

requires
one of

Boost

can use

MPI others...

Figure 3.4: Rice CAF 2.0 compiler and Open64 dependency tree
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if (this_image() == 1) then
sync images( 2 )

end if
if (this_image() == 2) then

sync images( 1 )
end if

Listing 3.1: Code that works

integer :: one
one = 1
if (this_image() == 1) then

sync images( 2 )
end if
if (this_image() == 2) then

sync images( one )
end if

Listing 3.2: Code that dead-locks

support. The performance is so poor that the compiler must be considered a proof of concept.
Measurements indicate that each array element is transferred separately during coarray assign-
ments, even elements that are stored contiguously in memory. The stability has improved a lot
from version 12.0 to 12.0 update 4, which was the latest version available during the making
of the thesis. In version 12.0 update 3, for instance, it was not yet possible to pass a part of a
coarray to a function and modify remote elements inside that function. Working around this is-
sue required extensive code changes in the Lattice Boltzmann code, but the bug is fixed with the
compiler update 4. Another important issue has, however, not yet been fixed: sync images(1)

behaves different to sync images(one) with one being an integer variable and one == 1. The
code examples 3.1 and 3.2 describe the compiler bug.

Also, in the LBM, a global gather operation in the time measurement code equivalent to code

integer :: array(100)[*]
integer :: i
array = ...
if (this_image() == 1) then

do i=1,num_images()
array = array + array(:)[i]

end do
end if

Listing 3.3: Slow gather operation
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example 3.3 slowed down the program in such a way that the coarray bandwidth dropped to a few
bytes per second and let this part of the code run for minutes. Also, the ping-pong benchmark
crashed for messages larger than 500MB.

To execute distributed coarray programs, an MPI configuration file has to be specified, the
writing of which is very tedious and eventually made it necessary to write a configuration file
generator.

3.2.3 Rice

The Rice University provides a work in progress Coarray Fortran source-to-source compiler for
a language syntax that is different from the coarrays introduced in the Fortran 2008 language
standard. The language is called Coarray Fortran 2.0 and is, according to [Mell 09], superior to
the syntax introduced by Fortran 2008. As can be seen in figure 3.4, the installation requires
resolving many dependencies. The documentation is still sparse and the compiler is not yet very
stable. The underlying network conduit is provided by GASNet [Bona 02].

No benchmarking was performed because it does, with the Rice compiler in its current state,
seem very hard to compile a coarray program unless one has information about which features
have already been implemented, and which have not. For instance, “while” loops are not sup-
ported and source code errors typically cause failing assertions inside the compiler without infor-
mation about the line number and the kind of error. Static coarrays can only be implemented in
modules, not in program units. There are further bugs in program units, and it seems more safe
to declare all coarray variables inside modules. Filenames containing non-lowercase characters
result in a failing assertion and all files containing coarrays must have the file extension “.caf”.
Usage of interfaces also causes a failing assertion, which is extremely problematic because the
time measurement that is used inside the benchmarks is implemented in the C programming
language and its binding to coarray Fortran was done via an interface. In the Fortran statement
read(unit=rdbuf, iostat=rdstat, fmt=*), the part fmt=* vanishes during the source-to-
source translation. Currently, only one co-dimension is supported which is problematic for mul-
tidimensional domain partitioning. Also, using a preprocessor does not work out of the box.

3.2.4 Open64

Compiling Open64 requires resolving either the dependency on GASNet or on ARMCI. As the
ARMCI website was down during the writing of the thesis and as GASNet is required for Rice
anyway, GASNet was chosen. There does currently not exist any documentation about the coar-
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ray features of Open64 because the coarray support is not yet publicly available. In contrast to
Rice, Open64 is a real compiler, not a source-to-source compiler and it is Fortran 2008 compli-
ant. It seems to be much more stable than the Rice compiler. As for the Rice compiler, coarray
programs are executed with the tools provided by GASNet.

Open64 and GASNet were compiled in two versions, one with Intel MPI support and one
with native InfiniBand support provided by IB Verbs [Open]. The executables produced with
MPI support worked, if not more than one process ran per compute node. With more than one
executable running on one node, segmentation faults occurred in sync all statements. The In-
finiBand executables crashed with a segmentation fault inside a GASNet call during the program
startup. One benchmark from section 4.2.6 failed with a segmentation fault because of a bug in
the intrinsic reshape function.

Benchmarking was performed with the MPI version for inter node communication only.
During the start of executables using the MPI conduit, a warning message informs about the
lack of speed of the MPI implementation of GASNet and proposes to recompile GASNet with
InfiniBand support. As already mentioned, the InfiniBand version crashed during program
startup.

3.3 Pinning configuration

All program and benchmark runs were performed with a pinning configuration that maximizes
the available memory bandwidth. This is achieved by placing the same amount of processes
on each NUMA domain of a processor. On the XE6 with a Magny Cours processor, 4 NUMA
domains are available per node, one Lima node contains 2 NUMA domains (see figure 3.1).



Chapter 4

Low-level Benchmarks

The purpose of this chapter is to provide reasonable input data for the performance model
[Hage 10] in section 5.7, which requires knowledge about the bandwidth of the memory sys-
tem and the latency and bandwidth during communication.

4.1 Memory Bandwidth

4.1.1 Benchmark Implementation

The benchmark codes used for the memory bandwidth measurements are shown in listings 4.1
and 4.2. Suitable timing code was omitted. Table 4.1 summarizes the results. The code examples
use the variable n to specify the size of the double precision arrays. The following sections
will, however, use the variable N = n · 8 Bytes, which stores the array size in bytes. As the
benchmark results are to be used in the performance model of the Lattice Boltzmann algorithm
and as the benchmark runs used for the Lattice Boltzmann algorithm are designed such that the
problem domain does not fit into the cache, the array size n in the benchmarks is also chosen
such that the arrays do not fit into the processor cache.

double precision :: a(n), b(n)
for i=1..n

a(i) = b(i)
end for

Listing 4.1: Copy benchmark with two memory streams

25
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double precision :: a(n,19), b(n,19)
for i=1..n

for l=1..19
a(i,l) = b(i,l)

end for
end for

Listing 4.2: Copy benchmark with 2 · 19 memory streams

#streams
process

#processes
node

XE6, bandwidth
node [GB/s]

Lima, bandwidth
node [GB/s]

2, non temporal 2 19.9 19.8
2 2 18.5 29.6
2 · 19 2 8.4 16.1
2, non temporal 12 50.5 40.4
2 12 51.9 40.1
2 · 19 12 39.3 38.3
2, non temporal 24 49.8 40.8
2 24 54.1 41.1
2 · 19 24 51.9 38.9

Table 4.1: Memory bandwidth of copy benchmarks 4.1 and 4.2

4.1.2 Non Temporal Stores

On modern cache based architectures, writing to the variable a (see listings 4.1 and 4.2) does first
require loading a from main memory to the cache (“write allocate”) before it can be modified
and evicted to main memory later on. Loading a into the cache is not necessary in the considered
copy benchmarks because no subsequent read operations on a are performed while it is in the
cache. Optimally, loading a should therefore be omitted by using “non temporal stores”. Non
temporal stores are assembler instructions that write to a memory location and bypass the cache.

The benchmark using two memory streams was implemented with and without non temporal
stores, the benchmark with 2 · 19 memory streams was only implemented without non temporal
stores. The LBM implementation that is used throughout the thesis does not use non temporal
stores. When the working set of the LBM method does not fit into the cache and a sufficiently
large number of processes runs on each NUMA domain, the performance is memory bound and
the performance characteristics are resembled by the copy benchmark using 2 · 19 streams.
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4.1.3 Results

The bandwidth was calculated using the formula B = 2·N
runtime for two streams when non temporal

stores were used, and according to B = 3·N
runtime and B = 3·19·N

runtime otherwise. It can be seen that
the bandwidths for 2 · 19 memory streams do only approach the bandwidths for two streams
for sufficiently large numbers of processes per NUMA domain. Analysing the assembly code
revealed that the loop with 2 memory streams was vectorized, while the code with 2 · 19 memory
streams was not.

4.2 Communication

As explained in section 5.3, the Lattice Boltzmann Method does, like other stencil codes, require
the exchange of boundary slices of multidimensional arrays between processes. The commu-
nication time expected for the transfer of those slices is predicted by the performance of the
ringshift and the strided ping-pong benchmark. The ringshift benchmark is used to predict the
communication time for stride 1 communication, while the strided ping-pong benchmark is used
to check how the communication bandwidth is affected by communication types other than stride
1. In the LBM algorithm, strided communication does not occur for all domain decomposition
techniques and can therefore be avoided (at the cost of a higher communication volume though).
This section contains the benchmarking results for those two low-level benchmarks and also the
results for a ping-pong benchmark with stride 1. The correctness of the results obtained for the
ping-pong and ringshift benchmark was validated by comparing them to the results of the Intel
MPI Benchmarks [Inte].

The benchmarks worked on either integer or double precision arrays. If not specified
otherwise, the performance graphs show results for benchmarks that used integer arrays.

The bandwidths were measured either inter node oder intra node. In case of inter node
measurements, there were always two nodes taking part in the communication.

4.2.1 Benchmark Implementation

Listings 4.3, 4.4, 4.5 and 4.6 show the benchmark codes used for the ping-pong and ringshift
measurements. The code actually used for the measurements is more complicated than shown
here. More precisely, the real code has a loop around the lines of code that perform the network
communication. It is ensured that the loop terminates only if more than one second has passed
since loop entry. Also, when intra node communication is taking place, the inner loop does not
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only operate on a buffer of size n, but on a buffer that is guaranteed to be larger than the L3
cache. Chunks of size n within this buffer are transferred, ensuring that no cache reuse can occur
between successive loop iterations. The strategy of using a large buffer and sending chunks was
not used for inter node transfers because this resulted in strong bandwidth drops for medium
sized messages. We were not able to explain those bandwidth drops.

MPI Implementation

To simplify the code snippets, the MPI_COMM_WORLD, ierr and istatus function parameters
were removed (see listings 4.3 and 4.4)

integer, dimension(n) :: buffer

rank = ...

buffer = rank

call MPI_Barrier()

if (rank == 0) then

call MPI_Send(array, n, MPI_INTEGER, 1, 29)

call MPI_Recv(array, n, MPI_INTEGER, 1, 31)

end if

if (rank == 1) then

call MPI_Recv(array, n, MPI_INTEGER, 0, 29)

call MPI_Send(array, n, MPI_INTEGER, 0, 31)

end if

Listing 4.3: MPI ping-pong
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integer, dimension(n) :: send_buffer, recv_buffer

rank = ...

destRank = ...

destRank = ...

buffer = rank

call MPI_Barrier()

call MPI_SendRecv(send_buffer, n, MPI_INTEGER, destRank, 1, &&

recv_buffer, n, MPI_INTEGER, srcRank, 1)

Listing 4.4: MPI ringshift

CAF Implementation

The code examples 4.5 and 4.6 illustrate the CAF implementations of the benchmarks. A push
implementation was used in both cases.

integer, dimension(n), codimension[*] :: buffer

buffer = this_image()

sync all

if (this_image() == 1) then

sync all ! images 1 and 2 ready

buffer(:)[2] = buffer(:)[1]

sync all ! buffer[2] filled

sync all ! buffer[1] filled

end if

if (this_image() == 2) then

sync all ! images 1 and 2 ready

sync all ! buffer[2] filled

buffer(:)[1] = buffer(:)[2]

sync all ! buffer[1] filled

end if

Listing 4.5: CAF ping-pong using push strategy
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if (this_image() == 1) then

sync all ! images 1 and 2 ready

recv(:)[2] = send(:)[1]

sync all ! recv[1] and recv[2] filled

end if

if (this_image() == 2) then

sync all ! images 1 and 2 ready

recv(:)[1] = send(:)[2]

sync all ! recv[1] and recv[2] filled

end if

Listing 4.6: CAF ringshift using push strategy

4.2.2 Bandwidth Model

The bandwidth model for the ping-pong benchmark reads as follows. Let

N be the message size,

T the time spent for the completion of the benchmark,

L the latency and

B be the bandwidth, then

T = 2 ·
(
L+

N

B

)

For the ringshift, the following model is used.

T = L+
2 ·N
B

The estimation of L and B is shown for the ping-pong benchmark. The values for the ringshift
were estimated in the same way. In a first attempt, the following minimization problem was
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solved. Let

Ni be the message size in the i-th benchmark run,

Ti the time spent for the completion of the i-th benchmark run,

L the latency and

B the bandwidth, then

L,B = argmin
L,B
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This problem formulation did, however, result in poor results for the latency because of low
absolute errors for small message sizes. To increase the weighting of small message sizes, the
following minimization problem, which minimizes the squared sums of the relative residuals,
was solved instead.

L,B = argmin
L,B
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4.2.3 Non-strided Communication using 4 Byte Array Elements

The Cray CAF implementation is about as fast as MPI (figure 4.1). Inter node CAF has a higher
bandwidth, but the latency is worse than for MPI, which results in higher transfer times for small
message sizes.

Figure 4.2 shows that the communication bandwidth for the ifort coarray implementation is
too slow to be suitable for most applications. Open64 with GASNet and MPI (figure 4.3) already
performs reasonably well and there is hope that a native InfiniBand version will be faster.

In figures 4.1 and 4.2, the term inter/intra socket refers to inter/intra NUMA domain com-
munication. The ping-pong benchmark was run with two different intra node process pinnings,
one involving only communication inside a NUMA node and one involving only communication
between NUMA domains. Communication is typically faster inside NUMA domains. However,
the results only have limited relevance for practical applications because the ping-pong bench-
mark only used two processes, whereas real world applications would use many more processes,
which might result in different ping-pong curves.

The ringshift benchmarks use the process affinity described in section 3.1. On Lima with
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MPI and on the XE6 with MPI and CAF the ringshift saturates at about half of the main memory
bandwidth with 24 processes per node. The inter node benchmarks already saturate the network
with one process per node.

4.2.4 Push vs. Pull Communication

One might expect pull communication to be slower than push communication because more net-
work traffic to set up the network communication might be required. On the other hand, push
communication might be implemented in a non-blocking way by using buffering, thus decreas-
ing the bandwidth. The measurements of the ping-pong benchmark using pull communication
show that the performance characteristics of push and pull do not differ on the XE6 (figure 4.1)
but on the Lima with Intel CAF and Open64 (figures 4.3 and 4.2). The XE6 shows this be-
haviour because all communication is performed instantaneously (see section 4.2.8), no further
investigations were made to find the reasons for the differences with Intel CAF and Open64.

4.2.5 4 Byte vs. 8 Byte Array Elements

Figure 4.4 compares the ringshift benchmark with double precision (64 Bit) buffers to the ring-
shift benchmark with integer (32 Bit) buffers. Only the Cray compiler performs the same for
both, integer and double precision arrays. Open64 and the Intel compiler are faster with
double precision arrays. The Intel compiler even doubles in bandwidth when double precision

arrays are used, which suggests that element-wise communication is taking place.

4.2.6 Strided Ping-pong

Figure 4.5 shows strided ping-pong communication results for two code variants: pingStrd

refers to native, strided coarray communication, while pingStrb refers to strided coarray com-
munication with previous manual buffering.

Strided inter node communication is poorly supported on the XE6 and manual buffering is
required if strided accesses cannot be circumvented. Strided intra node communication does not
need to be buffered.

For parallelized stencil codes this means that the computational domain should not be de-
composed along the fast axis unless manual buffering is implemented. This effect can also be
seen in the LBM benchmarking results in section 6.2.

The performance of the Intel CAF implementation is not affected by the choice of the stride.
This result can be expected if element-wise communication is used underneath.
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The inter node performance of Open64 shows a strong penalty for strides greater than one.
Due to a bug in the reshape function of Open64, no results are available for the buffered and
strided ping-pong benchmark.

4.2.7 Explicitly Element-wise Communication

Figure 4.6 compares contiguous and element-wise ping-pong communication for the different
compilers. The ping-pong benchmark was modified such that the contiguous copy statements
like dst(:)[2] = src(:)[1] were converted into loops that perform element-wise copy opera-
tions. No synchronization statements were inserted into the inner copy loop. The inner loop was
obfuscated to make it (nearly) impossible for the compiler to convert the loop into one contiguous
copy statement during compile time.

If acceptable performance was still obtained in such a situation, this would mean that ei-
ther the compiler does not perform communication instantaneously or that the network hard-
ware schedules and merges data transfers. As measurements for all the compilers showed
bad performance on this task, neither of the statements seems to be true for any of the tested
compilers/hardware.

The XE6 inter node communication bandwidth drops by a factor of 3000, the intra node
bandwidth drops by a factor of 30.

As expected the Intel compiler bandwidth does not change, because contiguous communica-
tion is not supported.

The Open64 benchmark exited with the error message “GASNet Extended API: Ran out

of explicit handles (limit=65535)” for messages larger than 200 KB. The peak bandwidth
was obtained for message sizes of about 1 KB with a bandwidth that was a factor 500 lower than
the peak bandwidth of the contiguous communication.
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Figure 4.1: Ping-pong and ringshift with Cray Fortran on the Cray XE6
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Figure 4.2: Ping-pong and ringshift with Intel Fortran on Lima
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Figure 4.3: Ping-pong and ringshift with Open64 on Lima
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Figure 4.4: CAF ringshift with integer buffer vs. double precision buffer
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Figure 4.5: Strided ping-pong, CAF, message size of 8.5 MB
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Figure 4.6: Explicitly contiguous vs. element-wise ping-pong communication
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Push/pull Communication Computation Inter/Intra Communication Runtime [µs]
enabled enabled Node Bandwidth [GB/s]

don’t care no yes don’t care 1278
push yes no inter 9.6 806
push yes yes inter 3.8 2080
push yes no intra 6.2 1254
push yes yes intra 3.0 2553
pull yes no inter 9.8 805
pull yes yes inter 3.6 2163
pull yes no intra 6.2 1273
pull yes yes intra 3.0 2551

Table 4.2: Test for overlap of communication and computation on the XE6

4.2.8 Overlap of Computation and Communication

To check whether it is possible to overlap computation and communication with the available
compilers, the ringshift benchmark was modified as shown in listings 4.7 and 4.8.

sync all
if (comm) array(:,2)[modulo(this_image(), num_images())+1] = array(:,1)
if (comp) call do_calculation()
sync all

Listing 4.7: Push ringshift with overlapping computation

sync all
if (comm) array(:,2) = array(:,1)[modulo(this_image()-2, num_images())+1]
if (comp) call do_calculation()
sync all

Listing 4.8: Pull ringshift with overlapping computation

The benchmark was run for all possible combinations of comm and comp, except for comm
= comp = false on all compilers. As the computational kernel does not require any memory
bandwidth, the process placement does not influence the results if comm = false, thus the “don’t
care” in the corresponding cells.

A message size of 4 MB was chosen, the measurement results are as listed in table 4.2. It
shows that communication and computation do neither overlap for push nor for pull communi-
cation, no matter if the processes are on the same node or not.
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# create an executable file "program_name.exe+pat"
# from the original program "program_name"
pat_build -f -u -g caf program_name
# run the instrumented program,
# this creates a trace file program_name.exe+pat*.xf
aprun -n 2 -N 2 -S 1 ./program_name.exe+pat
# visualize the trace file
pat_report -T program_name.exe+pat*.xf

Listing 4.9: CrayPat command line

T

c m

N

communication

computation

Figure 4.7: CrayPat performance model

Comparing the results when the time is measured inside or outside the code segment that is
surrounded by sync all statements further reveals that the communication is performed instan-
taneously and is not scheduled and shifted to the next synchronization statement. Only the results
on the XE6 are shown here because the other compilers showed exactly the same behaviour.

4.2.9 CrayPat

The performance measurement tool CrayPat is available on the XE6 system and was applied to
a strided/non-strided, inter/intra node ringshift using push/pull communication with two coarray
images. It is important to note that the coarray was not allocatable. 500 data transmissions
were performed. The -g compiler switch must not be enabled if the Cray compiler shall not use
element wise communication. The CrayPat command line and the results look as depicted in
listings 4.9 and 4.10.

The number of calls has obviously been divided by the number of images by CrayPat. The
columns Imb. Time and Imb. Time% provide information about the imbalance time and imbal-
ance% [DeRo]. Each of the metrics asks a different question. For imbalance time it is “what is
the upper bound for the program runtime that could be saved if the load balance was perfect?”.
For imbalance% it is “what fraction of the workers could be saved if the load balance was per-
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Time% | Time | Imb. | Imb. | Calls |Group
| | Time | Time% | | Function
| | | | | PE=HIDE
| | | | | Thread=HIDE

100.0% | 0.115166 | -- | -- | 27831.0 |Total
|-----------------------------------------------------------------------------
| 92.9% | 0.106970 | -- | -- | 27729.0 |PGAS
||----------------------------------------------------------------------------
|| 64.4% | 0.074125 | 0.000969 | 2.6% | 500.0 |__pgas_sync_nb
|| 14.5% | 0.016669 | 0.000726 | 8.3% | 17229.0 |__pgas_poll
|| 3.3% | 0.003801 | 0.003149 | 90.6% | 1000.0 |__pgas_barrier_wait
|| 2.3% | 0.002664 | 0.000203 | 14.2% | 1000.0 |__pgas_aor
|| 2.2% | 0.002539 | 0.000172 | 12.7% | 1000.0 |__pgas_aadd
|| 1.9% | 0.002222 | 0.001252 | 72.1% | 1000.0 |__pgas_barrier_notify
|| 1.4% | 0.001654 | 0.000747 | 62.2% | 2000.0 |__pgas_fence
|| 1.0% | 0.001170 | 0.001170 | 100.0% | 500.0 |__pgas_aand
|| 0.9% | 0.001081 | 0.000000 | 0.0% | 500.0 |__pgas_put_nb
|| 0.5% | 0.000633 | 0.000007 | 2.3% | 1000.0 |__pgas_sync_all
|| 0.2% | 0.000194 | 0.000005 | 5.5% | 500.0 |__pgas_memput_nb
|| 0.1% | 0.000157 | 0.000004 | 4.8% | 500.0 |__pgas_link_handle_to_syncid
|| 0.0% | 0.000044 | 0.000006 | 24.7% | 500.0 |__pgas_sync_nb_adaptive
|| 0.0% | 0.000017 | 0.000004 | 37.5% | 500.0 |__pgas_reserve_handle
||============================================================================

Listing 4.10: CrayPat results for non-strided, inter node, push communication with a static coar-
ray
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fect and the program should run for the same time as the original program with imperfect load
balance?”. The number of workers is defined as the total number of processes minus one.

CrayPat’s performance model assumes that the program consists of computation and com-
munication calls, and that a global barrier exists at the end of the communication calls (see figure
4.7). Under these assumptions the imbalance time can be calculated as imb = ĉ− c̄ for compu-
tation calls and, with T = c̄+ m̄ = ĉ+ m̌, as imb = m̄− m̌ for communication calls where ĉ is
the maximum computation runtime, m̌ is the minimum communication time and c̄ and m̄ denote
the mean times.

Regarding calculation of imbalance%, if N0 denotes the number processes, N1 denotes the
number of processes required in case of a perfect load balance and ĉ0, ĉ1 and all other variables
are defined accordingly, the imbalance% can be calculated as follows.

Because the total amount of computation has to remain constant,

c̄0 ·N0 = c̄1 ·N1

The total runtime has to remain constant, so

c̄1 = ĉ0

⇒ imb% =
N0 −N1

N0 − 1
= ... =

N0

N0 − 1
· imb
ĉ0

When calculating imb% for communication calls, m̂0 is used instead of ĉ0 in the formula
above. This makes an interpretation of the imb% value for communication calls problematic.
The benchmarked code consists solely of communication calls. As the model also assumes that
all asynchrony comes from computation calls, the interpretation of the imb values that appeared
in the analysed benchmark is problematic es well.

Attempts were made to

• deduce the type of communication (strided/non-strided, inter/intra node, push/pull) from
the name of the function that requires the most communication time in table 4.10 or from
some other function that only shows up for a specific kind of communication,

• find performance differences between the different function calls,

• check whether some of the communication types overlap communication and computation,
while others do not.
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All function calls were found to show the same performance characteristics and none of the
function calls showed overlap of communication and computation. Looking at the summary table
4.3 we came to the conclusion that the neither the strided-ness nor whether inter or intra node
communication is taking place can be deduced from the CrayPat results for application codes,
because application code will typically use allocatable coarrays.
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allocatable strided inter/ push/ specific function topmost function runtime contribution
intra pull of topmost function

n n inter push pgas put nb pgas sync nb 64.4%
n n inter pull pgas get nb pgas sync nb 61.7%
n n intra push pgas put nb pgas put nb 70.9%
n n intra pull pgas get nb pgas get nb 78.6%
n y inter push pgas put strided pgas put strided 98.1%
n y inter pull pgas get strided pgas get strided 98.8%
n y intra push pgas put strided pgas put strided 93.8%
n y intra pull pgas get strided pgas get strided 97.5%
y n inter push pgas put strided pgas put strided 63.7%
y n inter pull pgas get strided pgas get strided 68.6%
y n intra push pgas put strided pgas put strided 47.9%
y n intra pull pgas get strided pgas get strided 62.9%
y y inter push pgas put strided pgas put strided 98.0%
y y inter pull pgas get strided pgas get strided 98.9%
y y intra push pgas put strided pgas put strided 88.0%
y y intra pull pgas get strided pgas get strided 95.9%

Table 4.3: CrayPat results for different benchmark configurations
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Chapter 5

Lattice Boltzmann Algorithm

5.1 Lattice Boltzmann Theory

The Lattice Boltzmann Method (LBM) [Succ 01] is an explicit time stepping scheme for the
numerical simulation of fluids. The fluid is modelled as conglomerates of particles which collide
in each time step and move to adjacent cells afterwards. The viscosity of the fluid and the fact that
fluid particles move according to their velocity are modelled in two separate steps, the collide and
the stream step (see figures 5.1a and 5.1b). The particle conglomerates, also known as particle

distribution functions (PDFs) fl, are only stored for the centres of lattice cells and can only have
discrete velocities. If a particle is located in the centre of a lattice cell and has such a discrete
velocity, it will move exactly into the centre of one adjacent cell in one time step. This lets the
stream step become a simple memory copy operation.

The code used for the thesis assumes the fluid to be incompressible, the physical quantities
time step size and density are normalized to δt = ρ = 1. All other quantities are normalized as
well and gaining the true physical quantities back does therefore require denormalization.

1. Collide step

f̃l(x, t+ 1) = fl(x) +
1

τ
(f eq

l − fl(x, t))

2. Stream step
fl(x + el, t+ 1) = f̃l(x, t+ 1)

With the second order Taylor expansion of the Maxwell equilibrium distribution function

f eq
l = ωlρ

(
1 +

3elu

c2
+

9(elu)2

2c4
− 3(u)2

2c2

)
47
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Collide step

Brings velocities
closer to
equilibrium
distribution

f1
f2·e2f6·e6

(a) Collide step

f1
f2·e2

Stream step

Copies fi values

f6·e6

(b) Stream step (c) D3Q19 Model

Figure 5.1: LBM Algorithm

and
u =

∑
l

fl · el

For a 3D code, x is the cell coordinate in the 3D arrays fl and f̃l (t is ignored, no time
history is stored), el are discrete lattice velocities and are specified, for example, by the D3Q19
model visualized in figure 5.1c. The D3Q19 model does also specify the parameters ωl and c,
with c = 1. The D3Q19 model gets its name from the fact that it operates in 3 dimensions
and incorporates 19 particle distribution functions. There exist other models, differing in the
dimensionality and in the number of distribution functions.

Simple boundary conditions can be implemented easily, no-slip boundary conditions, for
instance, are implemented by reflecting all PDFs penetrating obstacle cells.

5.2 Compute Kernel

The algorithm used for the thesis fuses the collide and the stream step into one combined collide-
stream step, in this order, meaning it performs the collision first and propagates the particles
thereafter. The propagation optimized memory layout [Well 06] is used, which means that each
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do k=1,Nz
do j=1,Ny

do i=1,Nx
do l=1,19

load source_pdf(i,j,k,l)
end do
perform computations using pdf(i,j,k,:)
do l=1,19

store destination_pdf(i+e1(l),j+e2(l),k+e3(l),l)
end do

end do
end do

end do

Listing 5.1: Simplified LBM compute kernel

particle distribution function is stored in a separate array and the array index denoting the index
of the velocity direction is the slowest index. Two grids are stored, one storing the PDFs of the
previous time step and one storing the PDFs of the current time step. A simplified version of the
inner loop of the algorithm reads as listing 5.1.

When the algorithm is memory-bound, which is the case for all measurements in the thesis,
its performance characteristics can be approximated by the stream benchmark using 19 read and
19 write streams, the results of which can be found in section 4.1.

5.3 Parallelization

The parallelization is done by a Cartesian, equidistant domain decomposition and exchange of
ghost layers between the different parts of the domain. Each Cartesian cell corresponds to one
MPI rank (or coarray image) and has 18 neighbouring cells in the D3Q19 model. It is, however,
sufficient to communicate with six neighbours if the communication is scheduled as shown in
code example 5.2, where exchange_ghost_cells(East, West) means that the ghost layers
with the neighbours in eastern and western direction are exchanged. East, North and Top denote
the ranks of the neighbours in direction of the three Cartesian basis vectors that define the grid of
lattice cells. The indirect ghost layer exchange for the diagonal neighbours is visualized in figure
5.2b.

It should be noted that the ghost cell transmission is performed before the boundary con-
dition handling. Figure 5.2a shows, for a 1D example with one obstacle cell at the interface
between to process subdomains, why it is necessary to order the function calls in this way. One
stream-communicate-boundary handling cycle of the algorithm is shown. The memory layouts
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collide_stream()

exchange_ghost_cells(East, West)
exchange_ghost_cells(North, South)
exchange_ghost_cells(Top, Bottom)

handle_boundary_conditions()

Listing 5.2: Ghost layer exchange in pseudo code

before/after the algorithmic steps are divided by horizontal lines. Inside the regions divided by
horizontal lines, the upper lattice cells belong to process 1, the lower cells belong to process 2.
The interface between the two processes is visualized by the vertical line. The lattice cell of
process 1 which is on the right of the vertical line is a ghost cell of process 1, the cell of process
2 which is left of the boundary is a ghost cell of process 2. Each arrow corresponds to a particle
conglomerate. The crucial point is that only complete boundary slices (slices without holes) are
transmitted. This means that, after the “communicate” step, the second cell of process 1 is filled
with bogus values from process 2. Placing the boundary treatment after the “communicate” step
overwrites those bogus values.

Resulting from the structure of the D3Q19 model, each process has to send and receive 5
distribution functions during every ghost layer exchange. The ringshift in section 4.2.1 is used to
model the performance characteristics.

The following code examples use the convention that, if a process does not have a neighbour
in one direction, this neighbour rank is set to the invalid value “-1”.

5.4 MPI Implementation

The MPI implementation uses non-blocking send/receive pairs (see listing 5.3). The copy_cells
subroutine copies the data from the array storing the ghost parts of the PDF to the send buffer,
while the paste_cells function copies the data from the receive buffer into the ghost parts of
the PDF.

As access to main memory is fastest when the accesses have stride 1, there exist slow and
fast axes for traversing an array (see figure 5.2c). The traversal for the buffering is therefore
fastest if slices that cut the 3D array along its slowest axis are exchanged. For Fortran, the last
and therefore third axis is the slowest axis.

For simplicity the code shown assumes that the send and receive buffers have the same size
in each direction, which means that the ghost cells in x, y and z direction must have equal size.
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subroutine exchange_ghost_cells(rankA, rankB)
call mpi_irecv(receiveBufferA, receiveBufferSizeA, rankA, receiveRequestA)
call mpi_irecv(receiveBufferB, receiveBufferSizeB, rankB, receiveRequestB)

if (rankA .ne. -1) call copy_cells(directionA, sendBufferA)
if (rankA .ne. -1) call mpi_isend(sendBufferA, sendBufferSizeA, rankA, &

&
sendRequestA)

if (rankB .ne. -1) call copy_cells(directionB, sendBufferB)
if (rankB .ne. -1) call mpi_isend(sendBufferB, sendBufferSizeB, rankB, &

&
sendRequestB)

! missing code: wait for receiveRequestA and receiveRequestB

if (rankA .ne. -1) paste_cells(receiveBufferA)
if (rankB .ne. -1) paste_cells(receiveBufferB)

! missing code: wait for sendRequestA and sendRequestB
end subroutine

Listing 5.3: Simplified version of the MPI communication code

The actual application code does not have this restriction.

5.5 MPI-like CAF Implementation

The MPI-like, buffered CAF version was created by converting the receive buffers of the MPI
implementation into coarrays. The send/receive code is shown in listing 5.4.

The line receiveBufferA[rankB]=sendBufferB is discussed in more detail. By definition
(compare to the original MPI code in listing 5.3), receiveBufferA contains the ghost cells re-
ceived from rankA (rank=images_index()-1). Suppose that there exist only two processes and
that rank 0 is eastern of rank 1. Then, rank 0 calls exchange_ghost_cells(rankA=-1, rankB=1)

and rank 1 calls exchange_ghost_cells(rankA=0, rankB=-1). This means that rank 1 ex-
pects the data from rank 0 in receiveBufferA and rank 0 has to execute receiveBufferA&

[rankB]=sendBufferB.

Like the MPI implementation the code shown here expects the ghost cells in x, y and z
direction to be of equal size to improve readability. The actual application code does not have
this restriction.
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subroutine exchange_ghost_cells(rankA, rankB)
if (rankA .ne. -1) call copy_cells(directionA, sendBufferA)
if (rankB .ne. -1) call copy_cells(directionB, sendBufferB)

if ((rankA .ne. -1) .and. (rankB .ne. -1)) sync images([rankA, rankB]+1)
if ((rankA .ne. -1) .and. (rankB .eq. -1)) sync images([rankA ]+1)
if ((rankA .eq. -1) .and. (rankB .ne. -1)) sync images([ rankB]+1)

if (rankA .ne. -1) receiveBufferB[rankA] = sendBufferA
if (rankB .ne. -1) receiveBufferA[rankB] = sendBufferB

if ((rankA .ne. -1) .and. (rankB .ne. -1)) sync images([rankA, rankB]+1)
if ((rankA .ne. -1) .and. (rankB .eq. -1)) sync images([rankA ]+1)
if ((rankA .eq. -1) .and. (rankB .ne. -1)) sync images([ rankB]+1)

if (rankA .ne. -1) call paste_cells(directionA, receiveBufferA)
if (rankB .ne. -1) call paste_cells(directionB, receiveBufferB)

end subroutine

Listing 5.4: Simplified, buffered CAF code

5.6 CAF Implementation

The main part of the unbuffered CAF implementation is hidden in the subroutine transmit_slice
(listing 5.5). In the buffered, MPI-like CAF Implementation, it was relatively easy for the sender
to determine the place where the receiver would expect the data from its neighbour to be stored:
rankB expected the data to be in receiveBufferA. In contrast, in the case of unbufferd CAF
communication the sender has to calculate the boundaries of the corresponding halo slice on the
receiver process (see the variables pasteStart and pasteEnd).

As already explained in section 5.4 and shown in figure 5.2c, the performance of the buffering
before the halo exchange depends on the dimension along which the halo cuts through the 3D
array. Such an effect can also be seen for unbuffered coarray accesses.

5.7 Performance Model

For the considerations already shown for the ringshift in figure 3.3 and for the LBM method in
figures 5.2e and 5.2f, the selection of the nodes has a big influence on the communication times
of the LBM on the XE6. Therefore the performance model created here can only be applied to
the fully non-blocking fat tree network of the Lima.

Figure 5.2d is used to estimate the number of neighbours of a node. This means that the
following assumptions are made.
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subroutine exchange_ghost_cells(rankA, rankB)
if ((rankA .ne. -1) .and. (rankB .ne. -1)) sync images([rankA, rankB]+1)
if ((rankA .ne. -1) .and. (rankB .eq. -1)) sync images([rankA ]+1)
if ((rankA .eq. -1) .and. (rankB .ne. -1)) sync images([ rankB]+1)

if (rankA .ne. -1) call transmit_slice(directionA, rankA)
if (rankB .ne. -1) call transmit_slice(directionB, rankB)

if ((rankA .ne. -1) .and. (rankB .ne. -1)) sync images([rankA, rankB]+1)
if ((rankA .ne. -1) .and. (rankB .eq. -1)) sync images([rankA ]+1)
if ((rankA .eq. -1) .and. (rankB .ne. -1)) sync images([ rankB]+1)

end subroutine

subroutine transmit_slice(direction, destRank)
integer :: copy_Start(3), copy_End(3), pasteStart(3), pasteEnd(3)
integer :: links(5)

! missing code: from direction, compute copy_Start, copy_End,
! pasteStart, pasteEnd and links

pdf(pasteStart(1):pasteEnd(1),
pasteStart(2):pasteEnd(2),
pasteStart(3):pasteEnd(3), links)[destRank] = &

pdf(copy_Start(1):copy_End(1),
copy_Start(2):copy_End(2),
copy_Start(3):copy_End(3), links)

end subroutine

Listing 5.5: Unbuffered CAF communication
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• There exist exactly two process subdomains inside a node that share exactly one face with
another process subdomain inside that node (ranks 0 and 23 in figure 5.2d).

• All other subdomains share exactly two faces with other process subdomains inside that
node (ranks 1,...,22 in figure 5.2d).

This means that the union of the subdomains contained by all processes inside a node is
topologically connected and “looks like a snake”. This will not always be the case in practice
because the “snake” might get cut at the array boundary if the first communication axis is not
divisible by the number of processes inside a node. An underestimation of the communication
time will be the result.

Secondly it means that the “snake does not touch itself”. This assumption might not hold if
the first communication axis contains less processes than are contained inside a node.

Together with the additional assumption that

• at least one node is fully surrounded by other nodes,

the two previous assumptions require that such a fully surrounded node communicates with 6 ·
P −2 · (P −2)−1 ·2 = 4 ·P + 2 inter node neighbours if P is the number of processes per node
(compare also to figure 5.2d). Also, inside each node, 2 · (P − 1) intra node communications
take place. The following additional assumptions are made.

• The performance of the LBM kernel is memory bound.

• The network is bidirectional with a bandwidth of Be/2 in each direction and is fully non-
blocking

• The subdomain of every process is a box of the same size, meaning each process stores the
same number of cells N3 and that each array dimension is of the same size N .

• All nodes contain the same number of processes.

• Double precision numbers with a size of 8 Bytes are used.
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To summarize, let

P be the total number of processes

p be the number of processes per node

Le/a be the inter/intra node latency,

measured with the ringshift benchmark in section 4.2.1,

Be/a be the inter/intra node bandwidth,

measured with the ringshift benchmark in section 4.2.1,

M be the memory bandwidth,

measured with the copy benchmark with 19 streams in section 4.1 and

N be the number of lattice cells in each dimension of the subdomain stored by a process.

Then, the time required for one time step is

t = 3 · Le +
5 · 8 Bytes ·N2

(Be/2)/(4 · p+ 2)
+ 3 · La +

5 · 8 Bytes ·N2

(Ba/2)/(2 · (p− 1))
+

3 · 19 · 8 Bytes ·N3

M

The number of lattice site updates per second is

LUPS/s = P · N
3

t
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Figure 5.2: Parallel LBM implementation



Chapter 6

Performance Evaluation of the LBM
Implementations

The analysis of the performance of the LBM implementations starts with determining the number
of processes required per node to saturate the memory system and the optimal node filling factor
is then used in the subsequent strong scaling and weak scaling runs. CAF and MPI is bench-
marked, using the Cray compiler on the XE6 and the Intel compiler on the Westmere Cluster.
The measured performance is compared to the prediction generated by the performance model
from section 5.7.

6.1 Optimal Single Node Performance Evaluation

To find out how many processes are required per node to saturate the memory system, figure 6.1
shows the LUPS/s achieved by one compute node for different numbers of processes per node.
Each process was assigned a compute domain of 400 MB, no matter how many processes were
running on each node. Intra node MPI communication was taking place, but the communication
time was subtracted from the total runtime before the performance metric was calculated.

The Lima has only 12 physical cores per node and 12 virtual hyperthreaded cores, in contrast
to the XE6 with 24 physical cores. However, both the Lima and the XE6 need 24 processes on
each node to saturate the memory system.

57
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pat_build -f -u -g caf lbm
export PAT_RT_HWPC=15
aprun -n 1 -N 1 -S 1 ./lbm+pat
pat_report -T program_name.exe+pat*.xf

Listing 6.1: Command line for CrayPat LBM with L3 cache counters

1 per socket 6 per socket 12 per socket0

20M
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60M

80M

100M
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P

S
/s

Measurement
Model

(a) XE6

1 per socket 6 per socket 12 per socket0
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(b) Lima

Figure 6.1: Measurements and model prediction for LBM LUPS/s per node without communi-
cation. A domain size of 110×110×110 per rank was chosen (400 MB per rank).

To check the validity of the stream benchmark as a performance model for the LBM, Cray-
Pat was used to monitor hardware performance counters giving information about the number
of memory transfers. The program was executed as illustrated in listing 6.1, where the line
export PAT_RT_HWPC=15 enables the hardware performance group 15, which is the L3 socket
level. Only a single time iteration was performed and only one process was run on a domain of
size 110× 22× 110 .

As shown in listing 6.2, CrayPat measured 1 275 378 L3 cache misses. With a cache line size
of 64 Bytes one would expect 2·8·19·110·100·22

64
= 1 264 450 evictions, which is in good agreement

with the measurements.
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USER / relax_
------------------------------------------------------------------------

Time% 21.2%
Time 0.033748 secs
Calls 29.6 /sec 1.0 calls
L3_EVICTIONS:ALL 0.004M/sec 145 ops
READ_REQUEST_TO_L3_CACHE:ALL 44.056M/sec 1487032 req
L3_CACHE_MISSES:ALL 37.786M/sec 1275378 misses
L3_FILLS_CAUSED_BY_L2_EVICTIONS:

ALL 37.335M/sec 1260163 fills
User time (approx) 0.034 secs 70881502 cycles 100.0%Time
Average Time per Call 0.033748 secs
CrayPat Overhead : Time 0.0%
L3 cache hit,miss ratio 14.2% hits 85.8% misses

Listing 6.2: L3 cache counters measured with CrayPat

6.2 Strong scaling

The following section shows which domain partitioning approaches are best suited for strong
scaling runs of each of the three different implementations (MPI, MPI-like (buffered) CAF and
unbuffered CAF). The symbol (x,1,1) in the legend corresponds to a 1D domain decomposition
along the first (and fast) axis of the Fortran array, (x,x,x) corresponds to a 3D domain decom-
position. All “x” have the same size, meaning the decomposition is done equally along each
axis.

The problem domain contains 3503 lattice cells, which makes 2 · 8 · 19 · 3503 Bytes ≈ 13GB
in total. This means that the algorithm’s memory footprint is larger than the cache size up to about
40 nodes in the strong scaling computations.

As it is not possible to use more than three compute nodes for a 1D domain decomposition
of the chosen computational domain with the given number of processes per node, it is hard to
compare the 1D domain decomposition to the 2D and 3D decomposition approaches and on a
per-node basis. The 1D decomposition is therefore compared separately in an extra plot on a
per-process basis.

Figures 6.2 and 6.3 show strong scaling runs up to 63 nodes. In order to increase the sampling
rate, the domain size is increased in each dimension up to the next number divisible by the
number of ranks in that dimension. If the resulting computational volume is more than 10%
larger than the original computational volume, the benchmark is not run.
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6.2.1 2D/3D Domain Decomposition

XE6

On the XE6 with MPI, the best 2D domain decomposition, the (1,x,x) decomposition, and the 3D
decomposition are equally fast. The 2D decompositions that cut along the fast axis are slower,
and equally slow.

The buffered CAF implementation shows nearly the same performance characteristics as
the MPI version and both implementations are equally fast up to about 30 nodes. The CAF
performance is slightly worse than MPI for larger amounts of nodes. 30 nodes corresponds to a
message size of 5·8Bytes·3502√

24·30 ≈ 180 kB for the buffered CAF implementation, which is, according
to results of the ringshift benchmark from section 4.2.1, still a message size large enough to hide
CAF’s higher latency. No further investigations were made to find the reason for the differences
in predicted and measured performance for Cray CAF.

The unbuffered CAF implementation performs worse than MPI and buffered CAF when a
true 3D domain decomposition is used, and even worse if the unfavourable 2D decompositions
(x,x,1) and (x,1,x) are used. This could already be expected from the strided pingpong mea-
surements in section 4.2.6. The (1,x,x) decomposition is about as fast as for the buffered CAF
version.

Lima

In contrast to the MPI implementation on the XE6, the Lima MPI implementation performs best
if the (1,x,x) domain decomposition is used.

Due to the low CAF communication bandwidth (see section 4.2.1), the CAF parallelization
is communication bound on Lima and is 40 times slower than the reference MPI implementation
for large numbers of processes. This means that the time used for manual buffering does not
affect the overall performance and buffered CAF is as fast as unbuffered CAF.

As element-wise communication seems to take place (see section 4.2.6), only the dimension-
ality of the decomposition affects the performance. Therefore the 3D domain decomposition
shows the best performance, and all 2D domain partitioning approaches are slower and have
equal performance. The model perdicts a performance that is about twice as large as the true
performance of the LBM. This effect can also be seen in the weak scaling results of section 6.3.
Due to Intel CAF’s overall poor performance, no further investigations were conducted to find
the reason for the differences between the modelled and the true performance.
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6.2.2 1D Domain Decomposition

XE6

On the XE6, the performance penalties for the 1D domain decomposition are equal for MPI,
CAF and buffered CAF (figure 6.3). This leads to the conclusion that the domain is so large that
the communication does hardly affect the runtime. The differences in the performance are there-
fore due to different performances of the computational kernel for the different decomposition
directions. It is not possible to use many more processes than shown here for the 1D domain
decomposition because the slices for 60 ranks already have a thickness of 6 lattices.

Lima

On the Lima with Intel CAF the algorithm performance is limited by communication due to the
low bandwidth of the Intel coarray implementation. As the communication volume per node
does not shrink for increasing numbers of processes, no speedup can be seen.

6.3 Weak Scaling

A weak scaling run using a 2D domain decomposition was benchmarked on Lima with MPI and
CAF. Each process operates on a domain of size 96× 96× 96, which corresponds to a memory
requirement of 6.5 GB per full compute node. The placement of the MPI ranks for 56 nodes
is shown in figure 6.4a, the topology of the runs with fewer nodes can be constructed from the
placement of figure 6.4a by just removing all nodes with higher numbers. The results are shown
in figures 6.4c to 6.4f. No results for the XE6 are shown, because its torus network topology
makes the resulting performance graphs hard to interpret.

6.3.1 Assumptions

The following assumptions are made in the analysis of the results.

• The computation of one process can overlap with the communcation of its horizontal and
vertical neighbours.

• If a process has to wait for communication of its neighbours to start, and another process
inside that node can already start its LBM kernel, this LBM kernel run will require less
time than in the case where all processes run synchronously.
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So, to oversimplify: If the processes run asynchronously in the horizontal direction, the
LBM kernel will require less runtime and the communication will take longer than in the
synchronous case.

This statement is problematic because running intra node communication also requires
memory bandwidth, only the waiting times make resources available.

• Adding more processes in vertical direction will, except for the step from 2 to 3 horizontal
lines, let the processes run more synchronously in horizontal direction due to a higher
coupling in vertical direction.

To clarify the last point, suppose that only one horizontal line of nodes exists in figure 6.4a,
consisting of nodes 1 and 2. Further suppose that the processes in node 2 run slower than the
processes in node 1. This will result in a decreased overall computation time and an increased
communication time.

Now suppose that a second line of nodes is added in vertical direction, with node 3 above
node 1 and node 4 above node 2. Again node 2 runs slower than node 1. Node 2 will now
additionally slow down node 1 through the connection node 2 → node 4 → node 3 → node
1. Nodes 2 and node 1 will therefore run more synchronously which results in an increased
computation time.

Now suppose that the communication time (including waiting times) between two vertical
neighbours is a random variable with a variance of σ2. This variance will add up to the time
difference between horizontal neighbours inside the nodes. If a third line of nodes is added in
vertical direction, the overall vertical communication time of one process in the vertically central
line of nodes will be a random variable of variance 2 · σ2 under the assumption of statistical
independence of the times needed to communicate with the upper and the lower neighbour. The
horizontal synchrony of the processes in the vertically central line of nodes will therefore be
lower than the synchrony of the processes in the case of only two lines of nodes and the compu-
tation time will therefore be lowered.

Adding additional nodes in vertical direction will, like the step from one to two vertical lines,
result in a stronger coupling of the different processes and thus slightly increase the horizontal
synchrony again.

6.3.2 Application

The following analysis explains the MPI performance graphs.
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The base runtime for one node is increased when a second node is added, because inter node
communication is now taking place. More time is required for the communication, and as the
processes run more asynchronously in horizontal direction now, the kernel runtime decreases.

Starting with three nodes, there exists one node that has two neighbours and its runtime
determines the runtime of the total algorithm. As more processes are added there exist more
nodes with two neighbours, but the total runtime does hardly change because the slowest node
determines the overall runtime.

From 7 to 14 nodes, one line of nodes is added in vertical direction which results in a higher
horizontal coupling of the nodes and thus a higher LBM kernel runtime. As more communication
is done per node, the communication time increases. This effect is, however, partly compensated
by the fact that the higher coupling decreases the communication time a little bit.

From 14 to 21 nodes, one line of nodes is added that requires much more inter node commu-
nication time than all other nodes. This results in a great increase of the communication time and,
due to the higher communication time, in a higher horizontal asynchrony and thus a decrease of
the kernel runtime.

As more nodes are added, the communication time does hardly change for the same reasons
that applied for the graph segment between 3 and 7 nodes. However, due to the higher number
of vertical nodes, the horizontal synchrony increases and the communication time does therefore
slightly decrease while the kernel runtime increases.

Figure 6.4f reveals that the performance model does not work well for Intel CAF commu-
nication. First of all, the communication time is strongly underestimated as soon as inter node
communication takes place. Secondly, the increase in communication time from 3 to 4 horizontal
lines is not explained by the performance model. Due to Intel CAF’s poor overall performance
no further inverstigations were made to find the reasons for the mismatches between model pre-
diction and measurement results.

6.4 CrayPat PGAS Communication Calls

CrayPat was used to monitor the internals of an LBM run. As already seen in section 4.2.9,
it is hard to draw conclusions about the communication characteristics of a program from the
monitored PGAS calls. In contrast to the ringshift code benchmarked in section 4.2.9, which
used sync all statements, the LBM uses sync images statements to finalize communication
calls. The observations from section 4.2.9 can therefore not be directly applied to the LBM
CrayPat measurements.
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Runs with different domain partitionings were performed, but the CrayPat outputs looked
similar in all runs and no decisive differences could be found. Listing 6.3 shows the output of
the CrayPat run with a (1,5,1) domain partitioning, a domain size of 110× 110× 110 and 17
time iterations. The program was executed like already explained in section 4.2.9.
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Figure 6.3: Effects of 1D domain decomposition
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Table 1: Profile by Function Group and Function

Time% | Time | Imb. | Imb. | Calls |Group
| | Time | Time% | | Function
| | | | | PE=HIDE
| | | | | Thread=HIDE

100.0% | 1.421276 | -- | -- | 135127.2 | Total
|----------------------------------------------------------------
| 70.1% | 0.996689 | -- | -- | 201.6 |USER
|||---------------------------------------------------------------
|| 49.5% | 0.703123 | 0.039322 | 6.6% | 17.0 |relax_
|| 7.9% | 0.112893 | 0.028810 | 25.4% | 27.2 |copy_cells_1
|| 5.5% | 0.077665 | 0.023476 | 29.0% | 17.0 |bounceback_index_
|| 0.1% | 0.000734 | 0.000098 | 14.8% | 51.0 |commun...
(....)
||================================================================
| 17.4% | 0.247249 | -- | -- | 15297.8 |ETC
|||---------------------------------------------------------------
|| 8.7% | 0.123188 | 0.084440 | 50.8% | 35.6 |__pgas_sync_with_image_list
|| 8.0% | 0.113328 | 0.028677 | 25.2% | 15232.0 |__pgas_put_nb
|| 0.6% | 0.007853 | 0.001970 | 25.1% | 1.0 |exit
|| 0.2% | 0.002490 | 0.001720 | 51.1% | 7.0 |__pgas_barrier_wait
|| 0.0% | 0.000155 | 0.000078 | 41.7% | 7.0 |__pgas_barrier_notify
|| 0.0% | 0.000072 | 0.000004 | 7.1% | 6.0 |__pgas_barrier
|| 0.0% | 0.000050 | 0.000003 | 6.4% | 2.0 |__pgas_sheap_malloc
|| 0.0% | 0.000033 | 0.000002 | 5.6% | 1.0 |__pgas_sheap_free
|| 0.0% | 0.000032 | 0.000010 | 29.2% | 2.8 |__pgas_get
|| 0.0% | 0.000024 | 0.000001 | 6.1% | 1.0 |__pgas_sync_all
|| 0.0% | 0.000014 | 0.000002 | 16.6% | 1.6 |__pgas_sync_with_image
|| 0.0% | 0.000008 | 0.000002 | 28.6% | 0.8 |__pgas_get_nb
||================================================================
| 12.5% | 0.177338 | -- | -- | 119627.8 |PGAS
|||---------------------------------------------------------------
|| 4.3% | 0.060687 | 0.015160 | 25.0% | 7.0 |__pgas_register
|| 3.8% | 0.054542 | 0.013848 | 25.3% | 15232.0 |__pgas_memput_nb
|| 3.8% | 0.053972 | 0.014584 | 26.6% | 15232.8 |__pgas_sync_nb
|| 0.3% | 0.004612 | 0.003815 | 56.6% | 73707.8 |__pgas_poll
|| 0.1% | 0.001962 | 0.000763 | 35.0% | 15232.0 |__pgas_sync_nb_adaptive
|| 0.0% | 0.000694 | 0.000028 | 4.9% | 85.2 |__pgas_sync_nbi
|| 0.0% | 0.000458 | 0.000064 | 15.4% | 49.6 |__pgas_fence
|| 0.0% | 0.000264 | 0.000029 | 12.4% | 56.0 |__pgas_afadd_nbi
|| 0.0% | 0.000067 | 0.000007 | 12.0% | 7.0 |__pgas_register_dv
|| 0.0% | 0.000045 | 0.000002 | 4.7% | 7.0 |__pgas_aor
|| 0.0% | 0.000026 | 0.000004 | 18.6% | 7.0 |__pgas_aadd
|| 0.0% | 0.000005 | 0.000021 | 100.0% | 1.4 |__pgas_aand
|| 0.0% | 0.000002 | 0.000000 | 17.5% | 1.0 |__pgas_local_sheap_free
|| 0.0% | 0.000002 | 0.000000 | 12.2% | 2.0 |__pgas_local_sheap_alloc
|=================================================================

Listing 6.3: CrayPat profile for LBM
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Chapter 7

Conclusion

This work has investigated the performance of contemporary Coarray Fortran programming so-
lutions by means of low-level benchmarks and evaluated their suitability for use in application
codes on the example of replacing a former MPI parallelization of an existing prototype 3D Lat-
tice Boltzmann code by a parallelization with coarrays. The performance of the Lattice Boltz-
mann MPI implementation was compared to a CAF version incorporating the manual buffering
taken from the original MPI version and to a simpler, pure CAF implementation without manual
buffering. We evaluated coarrays with the Cray Compiler on a Cray XE6 and, on an Infiniband

Intel Westmere Cluster, the Intel Fortran Compiler, the Rice University CAF 2.0 compiler and a
development version of the Open64 compiler with CAF support. The Open64 version was not
yet released at the time of writing.

For the task of parallelizing our prototype 3D Lattice Boltzmann code, CAF turned out to
be slightly easier to program than MPI, but the Cray Compiler was the only compiler that was
sufficiently stable and generated communication code that was efficient enough to be considered
an alternative to the MPI parallelization. All the other compilers that were tested were either too
unstable (Open64, Rice) or too slow (Intel Compiler).

Low-level benchmarks revealed that the Cray CAF compiler was slower than MPI for small
messages due to a higher communication latency, but was faster than MPI for large messages.
In practical applications, the very large message sizes where CAF was faster than MPI are only
to be seen when each process’s subproblem is so large that the runtime is clearly dominated by
computation. Open64 showed promising performance characteristics but could not be totally
evaluated because the resulting executables were not stable enough. As the performance of the
MPI version of Open64 was already encouraging one might expect that the InfiniBand version
is also able to compete with a native MPI version, but results for Open64 are not available for
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the reasons given in section 3.2.4. The Intel Compiler was not yet able to produce competitive
communication code. Up to now, its executables show bandwidths that are 1000 times lower
than the bandwidths of the MPI implementation, most likely due to elementwise data transfers.
The Rice University CAF 2.0 compiler was not benchmarked because it did not yet show a
sufficiently large feature set and the compiler version tested was too unstable.

For application developers this means that execution of CAF applications is currently bound
to Cray hardware unless they have communication requirements that are so low that the Intel
compiler becomes an option. As the compilation of the benchmark codes revealed several bugs
inside Open64 and the Rice compiler, they can also be expected to be too unstable to compile
most other application codes.

On the Cray XE6, the optimal kind of domain decomposition for parallelizing the Lattice
Boltzmann algorithm using unbuffered coarray communication was found to be a 2D domain
decomposition along the slowest and the second-slowest array dimension. The domain decom-
position could also be replaced by a 3D domain decomposition if manual buffering was used to
collect the data before communication. Those findings should also hold for other stencil codes
operating on regular grids.

Comparison of the Lattice Boltzmann single node performance to a copy benchmark showed
that the algorithm uses the maximum memory bandwidth available on both the Intel Westmere,
and the XE6 Cluster.
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