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Hands-on sessions 

 2x ~45 minutes 

 Before lunch 

 Before end of tutorial 

 

 Technical prerequisites for participants 

 Laptop with stable wireless connection 

 SSH client 

 If you cannot cope with vi: An X server on your laptop 

 Each participant will receive a personal user account on the main compute 

cluster “LiMa” of RRZE at the University of Erlangen, Germany 

 Linux skills required 

 

 Details (login procedures, exercises,…) at 

 
http://moodle.rrze.uni-erlangen.de/moodle/course/view.php?id=256&username=guest&password=guest 

 

http://goo.gl/iJ55s 

 

 SC12 Tutorial Performance on Multicore 
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The x86 multicore evolution so far 
Intel Single-Dual-/Quad-/Hexa-/-Cores (one-socket view) 

Sandy Bridge EP  

“Core i7”  

32nm 
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Simultaneous  

Multi Threading (SMT) 
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There is no single driving force for chip performance! 

Floating Point (FP) Performance: 
 

   P = ncore * F * S * n 
 

ncore  number of cores:  8 
 

F  FP instructions per cycle:  2  

 (1 MULT and 1 ADD) 
 

S  FP ops / instruction:    4 (dp) / 8 (sp)  

 (256 Bit SIMD registers – “AVX”) 
 

n   Clock speed :           ∽2.7 GHz 

 

P = 173 GF/s (dp) / 346 GF/s (sp) 

 

Intel Xeon 

“Sandy Bridge EP” socket  

4,6,8 core variants available 

But: P=5 GF/s (dp) for serial, non-SIMD code  

SC12 Tutorial Performance on Multicore 

TOP500 rank 1 (1995) 
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Today: Dual-socket Intel (Westmere) node: 

Yesterday (2006): Dual-socket Intel “Core2” node: 

From UMA to ccNUMA  
Basic architecture of commodity compute cluster nodes 

 

Uniform Memory Architecture (UMA) 

Flat memory ; symmetric MPs 

But: system “anisotropy” 

 

 

Cache-coherent Non-Uniform Memory 

Architecture (ccNUMA) 

HT / QPI provide scalable bandwidth at 

the price of ccNUMA architectures: 

Where does my data finally end up? 

On AMD it is even more complicated  ccNUMA within a socket! 

SC12 Tutorial Performance on Multicore 
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Back to the 2-chip-per-case age 

12 core AMD Magny-Cours – a 2x6-core ccNUMA socket 

 AMD: single-socket ccNUMA since Magny Cours 

 

 1 socket: 12-core Magny-Cours built from two 6-core chips 

    2 NUMA domains    

 

 2 socket server   4 NUMA domains 

    

 

 

 

 

 

 

 

 4 socket server:  8 NUMA domains 

        

 WHY?  Shared resources are hard two scale:  

 2 x 2 memory channels  vs. 1 x 4 memory channels per socket 

SC12 Tutorial Performance on Multicore 
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Another flavor of “SMT”  

AMD Interlagos / Bulldozer 

 Up to 16 cores (8 Bulldozer modules) in a single socket 

 Max. 2.6 GHz  (+ Turbo Core) 

 Pmax = (2.6 x 8 x 8) GF/s  

     = 166.4 GF/s 

Each Bulldozer module: 

 2 “lightweight” cores 

 1 FPU: 4 MULT & 4 ADD 

(double precision) / cycle 

 Supports AVX 

 Supports FMA4  

2 NUMA domains per socket 

16 kB 

dedicated  

L1D cache 

2 DDR3 (shared) memory 

channel > 15 GB/s 

2048 kB 

shared  

L2 cache 

8 (6) MB 

shared 

L3 cache  

SC12 Tutorial Performance on Multicore 
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Cray XE6 “Interlagos” 32-core dual socket node 

 Two 8- (integer-) core chips per 

socket @ 2.3 GHz (3.3 @ turbo) 

 Separate DDR3 memory 

interface per chip 

 ccNUMA on the socket! 

 

 Shared FP unit per pair of 

integer cores (“module”) 

 “256-bit” FP unit 

 SSE4.2, AVX, FMA4 

 

 16 kB L1 data cache per core 

 2 MB L2 cache per module 

 8 MB L3 cache per chip  

(6 MB usable) 

 
SC12 Tutorial Performance on Multicore 
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Trading single thread performance for parallelism: 

GPGPUs vs. CPUs 

 GPU vs. CPU  

light speed estimate: 
 

1. Compute bound:  2-5 X 

2. Memory Bandwidth: 1-5 X 

   Intel Core i5 – 2500 

(“Sandy Bridge”) 

Intel Xeon E5-2680 DP 

node (“Sandy Bridge”) 

NVIDIA C2070  

(“Fermi”) 

Cores@Clock 4 @ 3.3 GHz 2 x 8 @ 2.7 GHz 448 @ 1.1 GHz 

Performance+/core 52.8 GFlop/s 43.2 GFlop/s 2.2 GFlop/s 

Threads@stream <4 <16 >8000 

Total performance+ 210 GFlop/s 691 GFlop/s 1,000 GFlop/s 

Stream BW 18 GB/s 2 x 36 GB/s 90 GB/s (ECC=1) 

Transistors / TDP 1 Billion* / 95 W 2 x (2.27 Billion / 130W) 3 Billion / 238 W 

* Includes on-chip GPU and PCI-Express + Single Precision Complete compute device 

SC12 Tutorial Performance on Multicore 
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Parallel programming models 
on multicore multisocket nodes 

 Shared-memory (intra-node) 

 Good old MPI (current standard: 2.2) 

 OpenMP (current standard: 3.0) 

 POSIX threads 

 Intel Threading Building Blocks (TBB) 

 Cilk++, OpenCL, StarSs,… you name it 

 

 Distributed-memory (inter-node) 

 MPI (current standard: 2.2) 

 PVM (gone) 

 

 Hybrid 

 Pure MPI 

 MPI+OpenMP 

 MPI + any shared-memory model 

 MPI (+OpenMP) + CUDA/OpenCL/… 

All models require 

awareness of 

topology and affinity 

issues for getting 

best performance 

out of the machine! 
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Parallel programming models: 
Pure MPI 

 Machine structure is invisible to user: 

  Very simple programming model 

  MPI “knows what to do”!? 

 Performance issues 

 Intranode vs. internode MPI 

 Node/system topology 
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Parallel programming models: 
Pure threading on the node 

 Machine structure is invisible to user 

  Very simple programming model 

 Threading SW (OpenMP, pthreads, 

TBB,…) should know about the details 

 Performance issues 

 Synchronization overhead 

 Memory access 

 Node topology 
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Parallel programming models: 
Hybrid MPI+OpenMP on a multicore multisocket cluster 

 

One MPI process / node 

 

 

One MPI process / socket: 

OpenMP threads on same 

socket: “blockwise” 

 

OpenMP threads pinned 

“round robin” across 

cores in node 

 

Two MPI processes / socket 

OpenMP threads  

on same socket 

SC12 Tutorial Performance on Multicore 
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A parallel histogram calculation 

Simple issues when dealing with shared-

memory parallel code 
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The problem 

 Compute simplified histogram (HIST(0:15)) of a (integer) random 

number generator: HIST(MODULO( RAND() , 16)) 

 

 Check if RAND() generates a homogeneous distribution: 

HIST( MODULO( RAND() , 16) = N/16 (N: random numbers 

generated) 

 

 Architecture: Intel Xeon/Sandy Bridge 2.7 GHz (fixed clock speed) 

 Compiler: Intel V12.1 (no inlining) 

 Simple Random number generator (taken from man rand ; there 

are much better ones…) 

SC12 Tutorial Performance on Multicore 

int myrand(unsigned long* next) { 

  *next = *next * 1103515245 + 12345; 

  return((unsigned)(*next/65536) % 32768); 

} 
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Serial implementation and baseline 

 

 

 

 

 

 

 

 

 

 

 Serial baselines (N=109 ) 

 

Computation 
 

lseed = 123; 

for(i=0; i<16; ++i) 

    hist[i]=0; 

 

timing(&wcstart, &ct); 

   

for(i=0; i<n_loop; ++i) 

      hist[ RAND & 0xf]++; 

 

timing(&wcend, &ct); 

Quality evaluation 

 
double av=n_loop/16.0; 

double abserr=0.0; 

 

for(i=0; i<16; ++i) { 

  err=(((double)hist[i])-av) /av);  

  abserr=MAXIMUM(fabs(err,abserr) 

} 

 

RAND = rand_r(&lseed) 
Time =6.7 secs 
abserr  =4 * 10-6 

RAND = myrand(&lseed) 
Time =3.6 secs 
abserr  =3 * 10-6 

Standard thread-safe random 

number generator 

SC12 Tutorial Performance on Multicore 
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Straightforward parallelization?! 

 Just add a single OpenMP directive….. 

 

 Result Quality 

 

 

 

 

 

 

 Performance 

 

 

  lseed = 123; 

  for(i=0; i<16; ++i) hist[i]=0; 

 

  timing(&wcstart, &ct); 

 

#pragma omp parallel for 

   

  for(i=0; i<n_loop; ++i) { 

    hist[myrand(&lseed) & 0xf]++; 

  } 

 

  timing(&wcend, &ct); 

Threads abserr 

2 ~0.38 

4 ~0.61 

8 ~0.80 

16 ~0.89 

Threads Time 

2 ~20s 

4 ~23s 

8 ~28s 

16 ~105s 

Problem: 

Uncoordinated concurrent updates of  
hist[] and lseed  

 Runtime and result changes between runs 
B
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s
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Get it correct first! 

 Protect update of lseed and hist[] by critical region 

 

 Result Quality 

 

 

 

 

 

 

 Performance 

 

 

   

#pragma omp parallel for 

   

  for(i=0; i<n_loop; ++i) { 

 

#omp critical{ 

    hist[myrand(&lseed) & 0xf]++;} 

 

  } 

 

Threads abserr 

2 3 * 10-6 

4 3 * 10-6 

8 3 * 10-6 

16 3 * 10-6 

Threads Time 

2 201s 

4 221s 

8 217s 

16 427s 

Result Quality: OK 

Problem:  

Performance: ~50x-100x slower! 

Serialization and some (?) more overhead, 

e.g. “synchronization” 
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Avoid complete serialization  

 Define a private lseed 

 Only histogram update needs a #pragma omp critical 

 Result Quality 

 

 

 

 

 

 

 Performance  

 

   

#pragma omp parallel for & 

             firstprivate(lseed) 

   

  for(i=0; i<n_loop; ++i) { 

    value= myrand(&lseed) & 0xf; 

 

#omp critical{ hist[value]++; } 

 

  } 

 

Threads abserr 

2 6 * 10-6 

4 15 * 10-6 

8 24 * 10-6 

16 60 * 10-6 

Threads Time 

2 191s 

4 201s 

8 194s 

16 413s 

Problem: Performance improves only 
marginally  critical is still an issue! 

  

Problem (?): Result Quality is slightly 

worse than baseline. 
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Get rid of the critical statement (1) 

 Use a shared scoreboard (hist_2D):  

 Each thread writes to a separate column of length 16 

 Sum up the numbers across each row to get the final hist[] 

 

 

 

 

// additional shared array 

// assuming 4 threads 

  hist_2D[16][4]=0; 

   

#pragma omp parallel { 

  threadID=omp_get_num_threads(); 

 

#pragma omp for firstprivate(lseed) 

  for(i=0; i<n_loop; ++i) { 

    value= myrand(&lseed) & 0xf; 

    hist_2D[value][threadID]++; }  

 

#pragma omp critical 

    hist[]+= hist_2D[][threadID] 

} 

[0,0] [0,1] [0,2] [0,3] 

[1,0] [1,1] [1,2] [1,3] 

… … … ... 

[14,0] [14,1] [14,2] [14,3] 

[15,0] [15,1] [15,2] [15,3] 

4 THREADS 

[0] 

[1] 

… 

[14] 

[15] 

+ 

hist_2D hist 

SC12 Tutorial Performance on Multicore 
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Get rid of the critical statement (2) 

 Result Quality 

 

 

 

 

 

 

 Performance 

 

 

Threads abserr 

2 6 * 10-6 

4 15 * 10-6 

8 24 * 10-6 

16 60 * 10-6 

Threads Time 

2 11.7s 

4 9.3s 

8 6.6s 

16 19.3s 

Performance improves 30x but still 

much slower than serial version ?! 
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[0,0] [0,1] [0,2] [0,3] 

[1,0] [1,1] [1,2] [1,3] 

… … … ... 

[14,0] [14,1] [14,2] [14,3] 

[15,0] [15,1] [15,2] [15,3] 

4 THREADS 

1 Cache Line 

1 Cache Line 

Each thread writes frequently to 
every cache line of hist_2D  

 False Sharing 

SC12 Tutorial Performance on Multicore 
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Memory 

Excursion: 

Cache coherence protocol  False Sharing 

 Data in cache is only a copy of data in memory 

 Multiple copies of same data on multiprocessor systems 

 Cache coherence protocol/hardware ensure consistent data view 

 Without cache coherence, shared cache lines can become clobbered:  

(Cache line size = 2 WORD; A1+A2 are in a single CL) 

C1 
 
 

P1 

A1, A2 

C2 
 
 

P2 

P1 P2 

Load A1 

Write A1=0 

A1, A2 

Load A2 

Write A2=0 

A1, A2 

Bus  

Write-back to memory leads to 
incoherent data 

A1, A2 A1, A2 A1, A2 

C1 & C2 entry can not be 
merged to: 

 
A1, A2 
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Memory 

Excursion: 

Cache coherence protocol  False Sharing 

 Cache coherence protocol must keep track of cache line status 

C1 
 
 

P1 

A1, A2 

C2 
 
 

P2 Load A1 

Write A1=0: 

 

 

P1 

Load A2 

 

 

 

 

 

Write A2=0: 

P2 

A1, A2 A1, A2 

Bus 

t 

1. Request exclusive 
access to CL 

2. Invalidate CL in C2 

3. Modify A1 in C1 

A1, A2 

1. Request exclusive 
 CL access 

2. CL write back+ Invalidate 

3. Load CL to C2 

4. Modify A2 in C2 

A1, A2 

A1, A2 A1, A2 

C2 is exclusive owner of CL 
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Avoid False Sharing 

 Use thread private histogram (hist_local[16]) for thread local 

computation & sum up all results at the end 

 Result Quality 

 

 

 

 

 

 

 Performance 

 

   

#pragma omp parallel { 

  int hist_local[16]=0; 

 

#pragma omp for firstprivate(lseed) 

  for(i=0; i<n_loop; ++i) { 

    value= myrand(&lseed) & 0xf; 

    hist_local[value]++; }  

 

#pragma omp critical 

    hist[]+= hist_local[] 

} 

   

Threads abserr 

2 6 * 10-6 

4 15 * 10-6 

8 24 * 10-6 

16 60 * 10-6 

Threads Time 

2 1.78s 

4 0.89s 

8 0.44s 

16 0.22s 

Performance: OK now – nice scaling  

PROBLEM: Quality still gets worse as 

number of threads increase?! 
Every thread does the same (lseed is the 

same!)  more threads less statistics 
B
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Improve Result Quality 

 Use different seeds for each thread! 

 

 Result Quality 

 

 

 

 

 

 

 Performance 

 

   

#pragma omp parallel { 

  int hist_local[16]=0; 

 

#pragma omp critical {  

   int myseed = myrand(&seed); } 

 

#pragma omp for firstprivate(lseed) 

  for(i=0; i<n_loop; ++i) { 

    value= myrand( &myseed ) & 0xf; 

    hist_local[value]++; }  

 

#pragma omp critical 

    hist[]+= hist_local[]; 

} 

   

Threads abserr 

2 4 * 10-6 

4 7 * 10-6 

8 10 * 10-6 

16 10 * 10-6 

Threads Time 

2 1.78s 

4 0.89s 

8 0.44s 

16 0.22s 

Result quality is slightly worse - we are 

doing different things than in the serial 

version……..  
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Can hyperthreading (SMT) speed up the computation?! 

 PRO SMT 

 Function evaluation is rather cheap  calling overhead?!   

 

 

 CON SMT 

 Result quality may change  

 

 

 

 

 

 Performance benefit of SMT 

reduces if compiler inlines 

subroutine call 

 

 See later for more info on SMT 

W/O 

SMT 

SMT 

1 core 3.6s 2.2s 

1 socket 0.44s 0.29s 

1 node 0.22s 0.14s 

W/O 

SMT 

SMT 

1 core 3 * 10-6 4 * 10-6 

1 socket 10 * 10-6 10 * 10-6 

1 node 10 * 10-6 20 * 10-6 

B
a

s
e
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*1

0
-6

 

Result Quality 

Performance B
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Conclusions from the histogram example 

 Get it correct first! 

 Race conditions, deadlocks… 

 

 Avoid complete serialization 

 Thread-local data 

 

 Avoid false sharing 

 Proper shared array layout 

 Padding 

 

 Parallel random numbers may be non-trivial 

SC12 Tutorial Performance on Multicore 
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Data access on modern processors 

Characterization of memory hierarchies 

Balance analysis and light speed estimates  

Data access optimization 
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Latency and bandwidth in modern computer environments 

ns 

ms 

ms 

1 GB/s 

SC12 Tutorial Performance on Multicore 

HPC plays here 

Avoiding slow data 

paths is the key to 

most performance 

optimizations! 
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Interlude: Data transfers in a memory hierarchy 

 How does data travel from memory to the CPU and back? 

 Example: Array copy A(:)=C(:) 

SC12 Tutorial Performance on Multicore 

CPU registers 

Cache 

Memory 

CL 

CL CL 

CL 

LD C(1) 

MISS 

ST A(1) MISS 

write 

allocate 

evict 

(delayed) 

3 CL 

transfers 

LD C(2..Ncl) 

ST A(2..Ncl) 

 

HIT 

CPU registers 

Cache 

Memory 

CL 

CL 

CL CL 

LD C(1) 

NTST A(1) 
MISS 

2 CL 

transfers 

LD C(2..Ncl) 

NTST A(2..Ncl) 

 

HIT 

Standard stores Nontemporal (NT) 

stores 

50% 

performance 

boost for 

COPY 

C(:) A(:) C(:) A(:) 
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The parallel vector triad benchmark 

A “swiss army knife” for microbenchmarking 

Simple streaming benchmark: 

 

 

 

 

 

 

 

 

 

 

 Report performance for different N 

 Choose NITER so that accurate time measurement is possible 

 This kernel is limited by data transfer performance for all memory 

levels on all current architectures! 

double precision, dimension(N) :: A,B,C,D 

A=1.d0; B=A; C=A; D=A 

 

do j=1,NITER 

  do i=1,N 

    A(i) = B(i) + C(i) * D(i) 

  enddo 

  if(.something.that.is.never.true.) then 

    call dummy(A,B,C,D) 

  endif 

enddo 

Prevents smarty-pants 

compilers from doing 

“clever” stuff 
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A(:)=B(:)+C(:)*D(:) on one Interlagos core 

SC12 Tutorial Performance on Multicore 

L1D cache (16k) 

L2 cache (2M) 

L3 cache 

(6M) 

Memory 6
x

 b
a

n
d

w
id

th
 g

a
p

 (
1

 c
o

re
) 

64 GB/s (no write allocate in L1) 

10 GB/s 

(incl. write 

allocate) 

Is this the 

limit??? 
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STREAM benchmarks: 
Memory bandwidth on Cray XE6 Interlagos node 

SC12 Tutorial Performance on Multicore 

COPY:  
A(:)=C(:) 

TRIAD: 
A(:)=B(:)+s*C(:) 

 STREAM is the 

“standard” for 

memory BW 

comparisons 

 

 NT store variants 

save write allocate 

on stores 

 50% boost for 

copy, 33% for 

TRIAD 

 

 STREAM BW is 

practical limit for all 

codes 
BW saturation 

within the 8-core 

chip 

BW scaling across 

NUMA domains 
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General remarks on the performance 

properties of multicore multisocket 

systems 
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Parallelism in modern computer systems 

 Parallel and shared resources within a shared-memory node 

GPU #1 

GPU #2 

PCIe link 

    Parallel resources: 

 Execution/SIMD units 

 Cores 

 Inner cache levels 

 Sockets / memory domains 

 Multiple accelerators 

    Shared resources: 

 Outer cache level per socket 

 Memory bus per socket 

 Intersocket link 

 PCIe bus(es) 

 Other I/O resources 

Other I/O 

1 

2 

3 

4 5 

1 

2 

3 

4 

5 

6 

6 

7 

7 

8 

8 

9 

9 

10 

10 

How does your application react to all of those details? 

SC12 Tutorial Performance on Multicore 
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The parallel vector triad benchmark 

(Near-)Optimal code on (Cray) x86 machines 

Large-N version  

(nontemporal stores) 

Small-N version  

(standard stores) 

call get_walltime(S) 

!$OMP parallel private(j) 

do j=1,R 

  if(N.ge.CACHE_LIMIT) then 

!DIR$ LOOP_INFO cache_nt(A) 

!$OMP parallel do 

    do i=1,N 

      A(i) = B(i) + C(i) * D(i) 

    enddo 

!$OMP end parallel do 

  else 

!DIR$ LOOP_INFO cache(A) 

!$OMP parallel do 

    do i=1,N 

      A(i) = B(i) + C(i) * D(i) 

    enddo 

!$OMP end parallel do 

  endif 

  ! prevent loop interchange 

  if(A(N2).lt.0) call dummy(A,B,C,D) 

enddo 

!$OMP end parallel 

 

call get_walltime(E) 

“outer parallel”: Avoid thread team restart at 

every workshared loop 
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The parallel vector triad benchmark 

Single thread on Cray XE6 Interlagos node 

OMP overhead 

and/or lower 

optimization w/ 

OpenMP active 

L1 cache L2 cache memory L3 cache 

Team restart is 

expensive! 

 use only 

outer parallel 

from now on! 
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The parallel vector triad benchmark 

Intra-chip scaling on Cray XE6 Interlagos node 

L2 

bottleneck 

Aggregate 

L2, exclusive 

L3 

sync 

overhead 

Memory BW 

saturated @ 

4 threads 

Per-module 

L2 caches 
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The parallel vector triad benchmark 

Nontemporal stores  on Cray XE6 Interlagos node 

slow L3 

NT stores 

hazardous if data 

in cache 

25% speedup for 

vector triad in 

memory via NT 

stores 
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The parallel vector triad benchmark 

Topology dependence  on Cray XE6 Interlagos node 

sync overhead nearly 

topology-independent  

@ constant thread count 

more aggregate 

L3 with more 

chips 
bandwidth 

scalability across 

memory 

interfaces 
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The parallel vector triad benchmark 

Inter-chip scaling  on Cray XE6 Interlagos node 

sync overhead grows  

with core/chip count 
bandwidth 

scalability across 

memory 

interfaces 



Some data on synchronization overhead 



48 SC12 Tutorial Performance on Multicore 

Welcome to the multi-/many-core era 

Synchronization of threads may be expensive! 

!$OMP PARALLEL … 

… 

!$OMP BARRIER  

!$OMP DO  

… 

!$OMP ENDDO 

!$OMP END PARALLEL 

 

On x86 systems there is no hardware support for synchronization! 

 Next slide: Test OpenMP Barrier performance… 

 for different compilers 

 and different topologies: 

 shared cache 

 shared socket 

 between sockets 

 and different thread counts 

 2 threads 

 full domain (chip, socket, node) 

Threads are synchronized at explicit AND 

implicit barriers. These are a main source of 

overhead in OpenMP progams. 
 

Determine costs via modified OpenMP 

Microbenchmarks  testcase  (epcc) 
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Thread synchronization overhead on AMD Interlagos  
OpenMP barrier overhead in CPU cycles 

2 Threads Cray 8.03 GCC 4.6.2 PGI 11.8 Intel 12.1.3 

Shared L2 258 3995 1503 128623 

Shared L3 698 2853 1076 128611 

Same 

socket 
879 2785 1297 128695 

Other socket 940 2740 / 4222 1284 / 1325 128718 

Intel compiler barrier very expensive on Interlagos 

     OpenMP & Cray compiler 

Full domain Cray 8.03 GCC 4.6.2 PGI 11.8 Intel 12.1.3 

Shared L3 2272 27916 5981 151939 

Socket 3783 49947 7479 163561 

Node 7663 167646 9526 178892 
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Thread synchronization overhead on Intel CPUs  
pthreads vs. OpenMP vs. Spin loop 

2 Threads Q9550 (shared L2) i7 920 (shared L3) 

pthreads_barrier_wait 23739 6511 

omp barrier gcc 4.3.3 22603 7333 

omp barrier icc 11.0 399 469 

Spin loop 231 270 

pthreads  OS kernel call 

                                                                         Syncing SMT threads is expensive 

Spin loop does fine for shared cache sync 

                                                                         OpenMP & Intel compiler  

Nehalem 2 Threads Shared SMT threads shared L3 different socket 

pthreads_barrier_wait 23352 4796 49237 

omp barrier (icc 11.0) 2761 479 1206 

Spin loop 17388 267 787 



Bandwidth saturation effects in cache and 

memory 

A look at different processors 
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Bandwidth limitations: Main Memory 
Scalability of shared data paths inside a NUMA domain  (V-Triad) 

1 thread cannot 

saturate bandwidth 

Saturation with 

3 threads 

Saturation with 

2 threads 

Saturation with 

4 threads 
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Bandwidth limitations: Outer-level cache 

Scalability of shared data paths in L3 cache 
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Conclusions from the data access properties 

 Affinity matters! 

 Almost all performance properties depend on the position of 

 Data 

 Threads/processes 

 Consequences 

 Know where your threads are running 

 Know where your data is 

 

 

 Bandwidth bottlenecks are ubiquitous 

 

 

 Synchronization overhead may be an issue 

 … and also depends on affinity! 
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Case study:  

OpenMP-parallel sparse matrix-vector 

multiplication (part 1) 

 

A simple (but sometimes not-so-simple) 

example for bandwidth-bound code and 

saturation effects in memory 
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Case study: Sparse matrix-vector multiply 

 Important kernel in many applications (matrix diagonalization, 

solving linear systems) 

 Strongly memory-bound for large data sets 

 Streaming, with partially indirect access: 

 

 

 

 

 

 

 

 

 Usually many spMVMs required to solve a problem 

 

 Following slides: Performance data on one 24-core AMD Magny 

Cours node 

 

do i = 1,Nr  

 do j = row_ptr(i), row_ptr(i+1) - 1  

  c(i) = c(i) + val(j) * b(col_idx(j))  

 enddo 

enddo 

 

!$OMP parallel do 

 

 

 

 

 

!$OMP end parallel do 
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Bandwidth-bound parallel algorithms: 
Sparse MVM 

 Data storage format is crucial for performance properties 

 Most useful general format: Compressed Row Storage (CRS) 

 SpMVM is easily parallelizable in shared and distributed memory 

 

 For large problems, spMVM is 

inevitably memory-bound 

 Intra-LD saturation effect 

on modern multicores 

 

 

 

 

 MPI-parallel spMVM is often  

communication-bound 

 See later part for what we 

can do about this… 

SC12 Tutorial Performance on Multicore 
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Application: Sparse matrix-vector multiply 
Strong scaling on one XE6 Magny-Cours node 

 Case 1: Large matrix 

Intrasocket 

bandwidth 

bottleneck 
Good scaling 

across sockets 
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 Case 2: Medium size 

Application: Sparse matrix-vector multiply 
Strong scaling on one XE6 Magny-Cours node 

Intrasocket 

bandwidth 

bottleneck 

Working set fits 

in aggregate 

cache 
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Application: Sparse matrix-vector multiply 
Strong scaling on one Magny-Cours node 

 Case 3: Small size 

No bandwidth 

bottleneck 

Parallelization 

overhead 

dominates 
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Conclusions from the spMVM benchmarks 

 If the problem is “large”, bandwidth saturation on the socket is 

a reality 

  There are “spare cores” 

 Very common performance pattern 

 What to do with spare cores? 

 Let them idle  saves energy with minor  

loss in time to solution 

 Use them for other tasks, such as MPI  

communication 

 Can we predict the saturated performance? 

 Bandwidth-based performance modeling! 

 What is the significance of the indirect access?  

Can it be modeled? 

 Can we predict the saturation point? 

 … and why is this important? 

SC12 Tutorial Performance on Multicore 
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Probing node topology 

 Standard tools 

 likwid-topology 
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How do we figure out the node topology? 

 Topology = 

 Where in the machine does core #n reside? And do I have to remember this 

awkward numbering anyway? 

 Which cores share which cache levels? 

 Which hardware threads (“logical cores”) share a physical core? 

 Linux 

 cat /proc/cpuinfo is of limited use 

 Core numbers may change across kernels 

and BIOSes even on identical hardware 

 

 numactl --hardware prints  

ccNUMA node information                  

 

 Information on caches is harder 

to obtain 

$ numactl --hardware 

available: 4 nodes (0-3) 

node 0 cpus: 0 1 2 3 4 5 

node 0 size: 8189 MB 

node 0 free: 3824 MB 

node 1 cpus: 6 7 8 9 10 11 

node 1 size: 8192 MB 

node 1 free: 28 MB 

node 2 cpus: 18 19 20 21 22 23 

node 2 size: 8192 MB 

node 2 free: 8036 MB 

node 3 cpus: 12 13 14 15 16 17 

node 3 size: 8192 MB 

node 3 free: 7840 MB 
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Likwid Lightweight Performance Tools 

 Lightweight  command line tools for Linux 

 Help to face the challenges without getting in the way 

 Focus on X86 architecture 

 

 Philosophy: 

 Simple 

 Efficient 

 Portable 

 Extensible 

 

 

 

 

Open source project (GPL v2): 

http://code.google.com/p/likwid/ 

 
Performance on Multicore 

http://code.google.com/p/likwid/
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likwid-topology – Topology information 

 Based on cpuid information 

 Functionality: 

 Measured clock frequency  

 Thread topology 

 Cache topology 

 Cache parameters (-c command line switch) 

 ASCII art output (-g command line switch) 

 Currently supported (more under development): 

 Intel Core 2 (45nm + 65 nm) 

 Intel Nehalem + Westmere (Sandy Bridge in beta phase) 

 AMD K10 (Quadcore and Hexacore) 

 AMD K8 

 Linux OS 
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Output of  likwid-topology –g 
on one node of Cray XE6 “Hermit” 
------------------------------------------------------------- 

CPU type:       AMD Interlagos processor  

************************************************************* 

Hardware Thread Topology 

************************************************************* 

Sockets:                2  

Cores per socket:       16  

Threads per core:       1  

------------------------------------------------------------- 

HWThread        Thread          Core            Socket 

0               0               0               0 

1               0               1               0 

2               0               2               0 

3               0               3               0 

[...] 

16              0               0               1 

17              0               1               1 

18              0               2               1 

19              0               3               1 

[...] 

------------------------------------------------------------- 

Socket 0: ( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ) 

Socket 1: ( 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ) 

------------------------------------------------------------- 

 

************************************************************* 

Cache Topology 

************************************************************* 

Level:  1 

Size:   16 kB 

Cache groups:   ( 0 ) ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 ) ( 11 ) ( 12 ) ( 13 

) ( 14 ) ( 15 ) ( 16 ) ( 17 ) ( 18 ) ( 19 ) ( 20 ) ( 21 ) ( 22 ) ( 23 ) ( 24 ) ( 25 ) ( 26 ) ( 27 ) ( 

28 ) ( 29 ) ( 30 ) ( 31 ) 
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Output of likwid-topology continued 

SC12 Tutorial Performance on Multicore 

------------------------------------------------------------- 

Level:  2 

Size:   2 MB 

Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 ) ( 16 17 ) ( 18 

19 ) ( 20 21 ) ( 22 23 ) ( 24 25 ) ( 26 27 ) ( 28 29 ) ( 30 31 ) 

------------------------------------------------------------- 

Level:  3 

Size:   6 MB 

Cache groups:   ( 0 1 2 3 4 5 6 7 ) ( 8 9 10 11 12 13 14 15 ) ( 16 17 18 19 20 21 22 23 ) ( 24 25 26 

27 28 29 30 31 ) 

------------------------------------------------------------- 

 

************************************************************* 

NUMA Topology 

************************************************************* 

NUMA domains: 4  

------------------------------------------------------------- 

Domain 0: 

Processors:  0 1 2 3 4 5 6 7 

Memory: 7837.25 MB free of total 8191.62 MB 

------------------------------------------------------------- 

Domain 1: 

Processors:  8 9 10 11 12 13 14 15 

Memory: 7860.02 MB free of total 8192 MB 

------------------------------------------------------------- 

Domain 2: 

Processors:  16 17 18 19 20 21 22 23 

Memory: 7847.39 MB free of total 8192 MB 

------------------------------------------------------------- 

Domain 3: 

Processors:  24 25 26 27 28 29 30 31 

Memory: 7785.02 MB free of total 8192 MB 

------------------------------------------------------------- 
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Output of likwid-topology continued 
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************************************************************* 

Graphical: 

************************************************************* 

Socket 0: 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| |   0  | |   1  | |   2  | |   3  | |   4  | |   5  | |   6  | |   7  | |   8  | |   9  | |  10  | |  11  | |  12  | |  13  | |  14  | |  15  | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

| |                                 6MB                                 | |                                 6MB                                 | | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

Socket 1: 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| |  16  | |  17  | |  18  | |  19  | |  20  | |  21  | |  22  | |  23  | |  24  | |  25  | |  26  | |  27  | |  28  | |  29  | |  30  | |  31  | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

| |                                 6MB                                 | |                                 6MB                                 | | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 



Enforcing thread/process-core affinity 

under the Linux OS 

Standard tools and OS affinity facilities under 

program control 

 

likwid-pin 
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Motivation: STREAM benchmark on 12-core Intel Westmere 

Anarchy vs. thread pinning 

No pinning 

Pinning (physical cores first, 

alternating sockets) 

There are several reasons for caring about 

affinity: 

 Eliminating performance variation 

 Making use of architectural features 

 Avoiding resource contention 
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Generic thread/process-core affinity under Linux 
Overview 

 taskset [OPTIONS] [MASK | -c LIST ] \                      

                      [PID | command [args]...] 

 

 taskset binds processes/threads to a set of CPUs. Examples: 
 
taskset 0x0006 ./a.out 

taskset –c 4 33187 

mpirun –np 2 taskset –c 0,2 ./a.out # doesn’t always work 

 

 Processes/threads can still move within the set! 

 Alternative: let process/thread bind itself by executing syscall 
#include <sched.h> 

int sched_setaffinity(pid_t pid, unsigned int len,  

                   unsigned long *mask); 

 

 Disadvantage: which CPUs should you bind to on a non-exclusive 
machine? 

 

 Still of value on multicore/multisocket cluster nodes, UMA or ccNUMA 



73 SC12 Tutorial Performance on Multicore 

Generic thread/process-core affinity under Linux 

 Complementary tool: numactl 

 
Example: numactl --physcpubind=0,1,2,3 command [args] 

Bind process to specified physical core numbers 

 
Example: numactl --cpunodebind=1 command [args] 

Bind process to specified ccNUMA node(s) 

 

 Many more options (e.g., interleave memory across nodes) 

  see section on ccNUMA optimization 

 

 Diagnostic command (see earlier): 
numactl --hardware 

 

 Again, this is not suitable for a shared machine 
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More thread/Process-core affinity (“pinning”) options 

 Highly OS-dependent system calls 

 But available on all systems 

 Linux:  sched_setaffinity(), PLPA (see below)  hwloc 
Solaris:  processor_bind() 

Windows:  SetThreadAffinityMask() 
… 

 Support for “semi-automatic” pinning in some 
compilers/environments 

 Intel compilers > V9.1 (KMP_AFFINITY environment variable) 

 PGI, Pathscale, GNU 

 SGI Altix dplace (works with logical CPU numbers!) 

 Generic Linux: taskset, numactl, likwid-pin (see below) 

 Affinity awareness in MPI libraries 

 SGI MPT 

 OpenMPI 

 Intel MPI 

 … 

If combined with OpenMP,  

issues may arise 
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Likwid-pin 
Overview 

 Part of the LIKWID tool suite:  http://code.google.com/p/likwid 

 Pins processes and threads to specific cores without touching code 

 Directly supports pthreads, gcc OpenMP, Intel OpenMP 

 Detects OpenMP implementation automatically 

 Based on combination of wrapper tool together with overloaded pthread 

library  binary must be dynamically linked! 

 Can also be used as a superior replacement for taskset 

 

 

 Usage examples: 

 Physical numbering: 

likwid-pin -c 0,2,4-6  ./myApp parameters  

 

 Logical numbering (4 cores on socket 0) with “skip mask” specified: 

likwid-pin -s 3 -c S0:0-3 ./myApp parameters 

http://code.google.com/p/likwid
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Likwid-pin 
Example: Intel OpenMP 

 Running the STREAM benchmark with likwid-pin: 

   

  $ export OMP_NUM_THREADS=4   

  $ likwid-pin -s 0x1 -c 0,1,4,5 ./stream 

  [likwid-pin] Main PID -> core 0 - OK 

  ---------------------------------------------- 

   Double precision appears to have 16 digits of accuracy 

   Assuming 8 bytes per DOUBLE PRECISION word 

  ---------------------------------------------- 

  [... some STREAM output omitted ...] 

   The *best* time for each test is used 

   *EXCLUDING* the first and last iterations 

  [pthread wrapper] PIN_MASK: 0->1  1->4  2->5   

  [pthread wrapper] SKIP MASK: 0x1 

  [pthread wrapper 0] Notice: Using libpthread.so.0 

          threadid 1073809728 -> SKIP  

  [pthread wrapper 1] Notice: Using libpthread.so.0  

          threadid 1078008128 -> core 1 - OK 

  [pthread wrapper 2] Notice: Using libpthread.so.0  

          threadid 1082206528 -> core 4 - OK 

  [pthread wrapper 3] Notice: Using libpthread.so.0  

          threadid 1086404928 -> core 5 - OK 

  [... rest of STREAM output omitted ...] 

Skip shepherd  

thread 

Main PID always  

pinned 

Pin all spawned  

threads in turn 
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Likwid-pin 
Using logical core numbering 

 Core numbering may vary from system to system even with 

identical hardware 

 Likwid-topology delivers this information, which can then be fed into likwid-

pin 

 Alternatively, likwid-pin can abstract this variation and provide a 

purely logical numbering (physical cores first) 

 

 

 

 

 

 

 

 Across all cores in the node: 
OMP_NUM_THREADS=8 likwid-pin -c N:0-7 ./a.out 

 Across the cores in each socket and across sockets in each node: 
OMP_NUM_THREADS=8 likwid-pin -c S0:0-3@S1:0-3 ./a.out 

Socket 0: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  0  1| |  2  3| |  4  5| |  6  7| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 

Socket 1: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  8  9| |10  11| |12  13| |14  15| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 

Socket 0: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  0  8| |  1  9| |  2 10| |  3 11| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 

Socket 1: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  4 12| |  5 13| |  6 14| |  7 15| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 
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Likwid-pin 
Using logical core numbering 

 Possible unit prefixes 

 

N  node 

 

 

 

S  socket 

 

 

 

 

M  NUMA domain 

 

 

 

C  outer level cache group 

SC12 Tutorial Performance on Multicore 

Chipset 

Memory 

Default if –c is not 

specified! 



79 

likwid-mpirun 

MPI  startup and Hybrid pinning 

 How do you manage affinity with MPI or hybrid MPI/threading? 

 In the long run a unified standard is needed 

 Till then, likwid-mpirun provides a portable/flexible solution 

 The examples here are for Intel MPI/OpenMP programs, but are 

also applicable to other threading models 

 

 

 

Pure MPI: 

$ likwid-mpirun -np 16 -nperdomain S:2 ./a.out 

 

Hybrid: 

$ likwid-mpirun -np 16 -pin S0:0,1_S1:0,1 ./a.out 

 

SC12 Tutorial Performance on Multicore 



80 

likwid-mpirun  

1 MPI process per node 

likwid-mpirun –np 2 -pin N:0-11  ./a.out 

 

SC12 Tutorial 

Intel MPI+compiler: 
OMP_NUM_THREADS=12 mpirun –ppn 1 –np 2 –env KMP_AFFINITY scatter ./a.out   

Performance on Multicore 
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likwid-mpirun 

1 MPI process per socket 

likwid-mpirun –np 4 –pin S0:0-5_S1:0-5 ./a.out 

 

SC12 Tutorial 

Intel MPI+compiler:  
OMP_NUM_THREADS=6 mpirun –ppn 2 –np 4 \ 

     –env I_MPI_PIN_DOMAIN socket –env KMP_AFFINITY scatter ./a.out 

Performance on Multicore 
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likwid-mpirun 

Integration of likwid-perfctr 

SC12 Tutorial 

 likwid-mpirun can  optionally set up  likwid-perfctr for you 

$ likwid-mpirun –np 16 –nperdomain S:2 –perf FLOPS_DP \    

   -marker –mpi intelmpi  ./a.out 

 

 likwid-mpirun  generates an  intermediate perl script which is called  

by the native MPI start mechanism 

 According the MPI rank the script pins the process and threads 

 

 If you use perfctr after the run for each process a file in the format 
Perf-<hostname>-<rank>.txt 

 

Its output which contains the perfctr results. 

 

 In the future analysis scripts will be added which generate reports 

of the raw data (e.g. as html pages) 

Performance on Multicore 
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The Plan 

Performance on Multicore 
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processors 
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Basic performance modeling and  

“motivated optimizations” 

Machine and code balance 

Example: The Jacobi smoother 

 

The Roofline Model 
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Balance metric: Machine balance 

 The machine balance for data memory access of a specific computer 

is given by 

(architectural 

limitation) 

 

 Bandwidth:   1 W = 8 bytes = 64 bits 

    bS = achievable bandwidth over 

    the slowest data path 

      

Floating point peak:  Pmax  

 Machine Balance = How many input operands can be delivered for 

each FP operation? 

 Typical values (main memory):  
AMD Interlagos  (2.3 GHz):  Bm = {(17/8) GW/s} / {4 x 2.3 x 8 GFlop/s} ~0.029 W/F 

 Intel Sandy Bridge EP (2.7 GHz):  ~0.025 W/F 

NEC SX9 (vector):     ~0.3 W/F 

 nVIDIA GTX480   ~0.026 W/F 

]flops/s[ 

]words/s[ 

maxP

b
B S

m 
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Machine Balance: Typical values beyond main memory 

Data path Balance BM [W/F]  

Cache 0.5 – 1.0 

Machine (main memory) 0.01 – 0.5 

Interconnect (Infiniband) 0.001 – 0.002 

Interconnect (GBit ethernet) 0.0001 – 0.0007 

Disk (or disk subsystem) 0.0001 – 0.001 

1/BM = “Computational Intensity”: How many FP ops can be 

performed before FP performance becomes a bottleneck? 

 

D
o

u
b

le
 p

re
c
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n
: 

W
 


 6
4
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Balance metric: Code balance & lightspeed estimates 

 BM tells us what the hardware can deliver at most 

 Code balance (BC) quantifies  

the requirements of the code: 

 

 Expected fraction of peak performance  

(„lightspeed"): 

l =1  code is not limited by bandwidth 

 

 Lightspeed for absolute performance: 

(Pmax : “applicable” peak performance) 

 

 Example: Vector triad A(:)=B(:)+C(:)*D(:) on 2.3 GHz Interlagos 

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate) 

 

Bm/Bc = 0.029/2.5 = 0.012, i.e. 1.2 % of peak performance (~1.7 GF/s) 

][ operations arithmetic

][ (LD/ST) transfer data

flops

words
Bc 













c

m

B

B
l ,1min

This is what we 

need 

This is what we 

get 













C

S

B

b
PPlP ,min maxmax
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Balance metric (a.k.a. the “roofline model”) 

 The balance metric formalism is based on some (crucial) 

assumptions: 

 The code makes balanced use of MULT and ADD operation. For others 

(e.g. A=B+C) the peak performance input parameter Pmax has to be 

adjusted (e.g. Pmax  Pmax/2 ) 

 

 Attainable bandwidth of code = input parameter! Determine effective 

bandwidth via simple streaming benchmarks to model more complex 

kernels and applications.    

 Definition is based on 64-bit arithmetic but can easily be adjusted, e.g. for 

32-bit 

 

 Data transfer and arithmetic overlap perfectly! 

 

 Slowest data path is modeled only; all others are assumed to be infinitely 

fast 

 Latency effects are ignored, i.e. perfect streaming mode 

SC12 Tutorial Performance on Multicore 
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Balance metric: 2D diffusion equation + Jacobi solver 

 Diffusion equation in 2D 

 

 Stationary solution with Dirichlet boundary conditions using 

Jacobi iteration scheme can be obtained with: 

Balance (crude estimate incl. write allocate):  

phi(:,:,t0): 3 LD +  

phi(:,:,t1): 1 ST+ 1LD 

 BC = 5 W / 4 FLOPs = 1.25 W / F 

Reuse when computing 
phi(i+2,k,t1) 

WRITE ALLOCATE:  
LD + ST  phi(i,k,t1) 

SC12 Tutorial Performance on Multicore 
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Balance metric: 2 D Jacobi 

 Modern cache subsystems may further reduce memory traffic  

If cache is large enough to hold at least 2 rows 
(shaded region): Each phi(:,:,t0) is loaded 

once from main memory and reused 3 times from 

cache: 

phi(:,:,t0): 1 LD + phi(:,:,t1): 1 ST+ 1LD 

BC = 3 W / 4 F = 0.75 W / F 

 

If cache is large enough to hold at least one row 
phi(:,k-1,t0) needs to be reloaded: 

phi(:,:,t0): 2 LD + phi(:,:,t1): 1 ST+ 1LD 

BC = 4 W / 4 F = 1.0 W / F 

 

Beyond that: 
phi(:,:,t0): 2 LD + phi(:,:,t1): 1 ST+ 1LD 

BC = 5 W / 4 F = 1.25 W / F 

SC12 Tutorial Performance on Multicore 
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Performance metrics: 2D Jacobi 

 Alternative implementation (“Macho FLOP version”) 

 

 

 

 

 

 MFlops/sec increases by 7/4 but time to solution remains the same 

 

 Better metric (for many iterative stencil schemes): 

 Lattice Site Updates per Second (LUPs/sec) 

 

 2D Jacobi example: Compute LUPs/sec metric via 
                      

SC12 Tutorial Performance on Multicore 

wall

maxmaxmax]/[
T

kiit
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
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Balance metric for 3D Jacobi 

 3D sweep: 

 

 

 

 

 

 

 

 Best case balance: 1 LD  phi(i,j,k+1,t0) 

 1 ST + 1 write allocate phi(i,j,k,t1) 

 6 flops 

 BC = 0.5 W/F (24 bytes/update) 

 

 No 2-layer condition but 2 rows fit: BC = 5/6 W/F (40 bytes/update) 

 Worst case (2 rows do not fit): BC = 7/6 W/F (56 bytes/update) 

SC12 Tutorial Performance on Multicore 

do k=1,kmax 

  do j=1,jmax 

    do i=1,imax 

      phi(i,j,k,t1) = oos *(phi(i-1,j,k,t0)+phi(i+1,j,k,t0) & 

                          + phi(i,j-1,k,t0)+phi(i,j+1,k,t0) & 

                          + phi(i,j,k-1,t0)+phi(i,j,k+1,t0)) 

    enddo 

  enddo 

enddo 
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3D Jacobi solver 
Performance of vanilla code on one Interlagos chip (8 cores) 

SC12 Tutorial Performance on Multicore 

cache memory 

2 layers of source array 

drop out of L2 cache 

Problem size: N3 
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Conclusions from the Jacobi example 

 We have made sense of the memory-bound performance vs. 

problem size 

 “Layer conditions” lead to predictions of code balance 

 Achievable memory bandwidth is input parameter 

 

 

 The model works only if the bandwidth is “saturated” 

 In-cache modeling is more involved 

 

 

 Optimization == reducing the code balance by code 

transformations 

 See below 
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Data access optimizations  
  

General considerations 

 

Case study: Optimizing a Jacobi solver 
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Premise 

Data access is the most prevalent  

performance-limiting factor in computing 

SC12 Tutorial Performance on Multicore 
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Data access – general considerations 

 Case 1: O(N)/O(N) Algorithms 

 O(N) arithmetic operations vs. O(N) data access operations 

 Examples: Scalar product, vector addition, sparse MVM etc. 

 Performance limited by memory BW for large N (“memory bound”) 

 Limited optimization potential for single loops  

 …at most a constant factor for multi-loop operations 

 Example: successive vector additions 

do i=1,N 

  a(i)=b(i)+c(i) 

enddo 

 

do i=1,N 

  z(i)=b(i)+e(i) 

enddo no optimization 
potential for either loop 

do i=1,N 

  a(i)=b(i)+c(i) 

  z(i)=b(i)+e(i) 

enddo 

fusing different loops 

allows O(N) data 

reuse from registers 

Loop fusion 

Bc = 3/1 W/F 

Bc = 5/2 W/F 
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Data access – general guidelines 

 Case 2: O(N2)/O(N2) algorithms 

 Examples: dense matrix-vector multiply, matrix addition, dense matrix 

transposition etc. 

 Nested loops 

 Memory bound for large N 

 Some optimization potential (at most constant factor) 

 Can often enhance code balance by outer loop unrolling or spatial blocking 

 Example: dense matrix-vector multiplication 

 

do i=1,N 

 do j=1,N 

  c(i)=c(i)+a(j,i)*b(j) 

 enddo 

enddo 

= + • 

Naïve version loads b[] N times! 
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Data access – general guidelines 

 O(N2)/O(N2) algorithms cont’d 

 “Unroll & jam” optimization (or “outer loop unrolling”) 

do i=1,N 

 do j=1,N 

  c(i)=c(i)+a(j,i)*b(j) 

 enddo 

enddo 

do i=1,N,2 

 do j=1,N 

  c(i)  =c(i)  +a(j,i)  *b(j) 

 enddo 

 do j=1,N 

  c(i+1)=c(i+1)+a(j,i+1)*b(j) 

 enddo 

enddo 

unroll 

do i=1,N,2 

 do j=1,N 

  c(i)  =c(i)  +a(j,i)  * b(j) 

  c(i+1)=c(i+1)+a(j,i+1)* b(j) 

 enddo 

enddo 

jam
 

b(j) can be re-used once 

from register → save 1 LD 

operation 

Lowers  Bc from 1 to ¾ W/F 
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 O(N2)/O(N2) algorithms cont’d 

 Data access pattern for 2-way unrolled dense MVM: 

 

 

 

 

 

 

 

 Data transfers can further be reduced by more aggressive unrolling (i.e., m-

way instead of 2-way) 

 Significant code bloat (try to use compiler directives if possible) 

 Main memory limit: b[] only be loaded once from memory (Bc ≈ ½ W/F) (can be 

achieved by high unrolling OR large outer level caches) 

 Outer loop unrolling can also be beneficial to reduce traffic within caches! 

 Beware: CPU registers are a limited resource 

 Excessive unrolling can cause register spills to memory 

Data access – general guidelines 

= + • 

Vector b[] now only loaded 

N/2 times! 

 

Remainder loop handled 

separately 



Case study:  

3D Jacobi solver  

Spatial blocking for improved cache utilization 
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Remember the 3D Jacobi solver on Interlagos? 

 

SC12 Tutorial Performance on Multicore 

2 layers of source array 

drop out of L2 cache 

 

 avoid through spatial 

blocking! 
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Jacobi iteration (2D): No spatial Blocking 

 Assumptions:  

 cache can hold 32 elements (16 for each array) 

 Cache line size is 4 elements 

 Perfect eviction strategy for source array 

 

This element is needed for three more updates; but 29 updates happen before this element is 

used for the last time 

i 

k 
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Jacobi iteration (2D): No spatial blocking 

 Assumptions:  

 cache can hold 32 elements (16 for each array) 

 Cache line size is 4 elements 

 Perfect eviction strategy for source array 

This element is needed for 

three more updates but has 

been evicted 
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Jacobi iteration (2D): Spatial Blocking 

 divide system into blocks 

 update block after block 

 same performance as if three complete rows of the systems fit 

into cache 
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Jacobi iteration (2D): Spatial Blocking  

 Spatial blocking reorders traversal of data to account for the data 

update rule of the code 

Elements stay sufficiently long in cache to be fully reused  

Spatial blocking improves temporal locality! 
(Continuous access in inner loop ensures spatial locality) 

This element remains in cache until it is fully used (only 6 updates happen before 

last use of this element) 
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Jacobi iteration (2D): Spatial blocking 

 Implementation: 

 

 

 

 

 

 

 

 

 Guidelines: 

 Blocking of inner loop levels (traversing continuously through main memory) 

 Blocking size iblock large enough to keep elements sufficiently long in 

cache but cache size is a hard limit! 

 Blocking loops may have some impact on ccNUMA page placement (see 

later) 

 

do it=1,itmax 

  do ioffset=1,imax,iblock 

    do k=1,kmax 

      do i=ioffset, min(imax,ioffset+iblock-1) 

        phi(i, k, t1) = ( phi(i-1, k, t0) + phi(i+1, k, t0) 

                        + phi(i, k-1, t0) + phi(i, k+1, t0) )*0.25 

      enddo 

    enddo 

  enddo 

enddo 

loop over i-blocks 
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3D Jacobi solver (problem size 4003) 
Blocking different loop levels (8 cores Interlagos) 
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3D vs. 2D? 

OpenMP parallelization? 

Optimal block size? 

k-loop blocking? 

 

 see Exercise! 

24B/update  

performance 

model 

inner (i) loop 

blocking  

middle (j) loop 

blocking  

optimum j 

block size 
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3D Jacobi solver 
Spatial blocking + nontemporal stores 
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blocking 
NT 

stores 

expected 

boost: 

50% 

16 B/update perf. model 



The Roofline Model 
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The Roofline Model – A tool for more insight 

1. Determine the applicable peak performance of a loop, assuming 

that data comes from L1 cache 

2. Determine the computational intensity (flops per byte 

transferred) over the slowest data path utilized (1/Bc) 

3. Determine the applicable peak bandwidth of the slowest data 

path utilized 

Example: do i=1,N; s=s+a(i); enddo 

in DP on hypothetical CPU, N large 

 

ADD peak  (half of full peak) 

 

4-cycle latency per ADD if not unrolled 

 

Computational intensity (= 1/Bc) 

Expected  

performance 

SC12 Tutorial Performance on Multicore 
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Input to the roofline model 

… on the example of       do i=1,N; s=s+a(i); enddo  

SC12 Tutorial Performance on Multicore 

analysis 

Code analysis: 

1 ADD + 1 LOAD 

architecture 

Throughput: 1 ADD + 1 LD/cy 

Pipeline depth: 4 cy (ADD) 

measurement 

Maximum memory 

bandwidth 10 GB/s 

Memory-bound @ large N! 

Pmax = 1.25 GF/s 
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Factors to consider in the roofline model 

Bandwidth-bound (simple case) 

 Accurate traffic calculation (write-

allocate, strided access, …) 

 Practical ≠ theoretical BW limits 

 Erratic access patterns 

 

Core-bound (may be complex) 

 Multiple bottlenecks: LD/ST, 

arithmetic, pipelines, SIMD, 

execution ports 

 Still probably some contributions 

from data access 

SC12 Tutorial Performance on Multicore 
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Example: SpMVM node performance model 

 Sparse MVM in 

double precision w/ CRS: 

 

 

 

 

 

 DP CRS code balance 

  quantifies extra traffic 

for loading RHS more than 

once 

 Predicted Performance = streamBW/BCRS 

 Determine   by measuring performance and actual memory bandwidth 

 

 

8 8 8 4 8 

8 

G. Schubert, G. Hager, H. Fehske and G. Wellein: Parallel sparse matrix-vector multiplication as a test case 

for hybrid MPI+OpenMP programming. Workshop on Large-Scale Parallel Processing (LSPP 2011), May 20th, 

2011, Anchorage, AK. DOI:10.1109/IPDPS.2011.332, Preprint:  arXiv:1101.0091 
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The sparsity pattern determines   

 Analysis for HMeP matrix on Nehalem EP socket 

 BW used by spMVM kernel = 18.1 GB/s  should get ≈ 2.66 Gflop/s 

spMVM performance if  = 0 

 Measured spMVM performance = 2.25 Gflop/s 

 Solve 2.25 Gflop/s = BW/BCRS  for   ≈ 2.5 

 

 37.5 extra bytes per row  

 RHS is loaded 6 times from memory 

 about 33% of BW goes into RHS 

 

 

 

 Conclusion: Even if the roofline/bandwidth model does not work 

100%, we can still learn something from the deviations 

SC12 Tutorial Performance on Multicore 
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Input to the roofline model 

… on the example of spMVM with HMeP matrix 

Code analysis: 

1 ADD, 1 MULT, 

(2.5+2/Nnzr) LOADs, 

1/Nnzr STOREs +  

Throughput: 1 ADD, 1 MULT 

+ 1 LD + 1ST/cy 

Maximum memory 

bandwidth 20 GB/s 

Memory-bound! 

 = 2.5 

Measured memory BW 

for spMVM 18.1 GB/s 
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Assumptions and shortcomings of the roofline model 

 Assumes one of two bottlenecks  

1. In-core execution 

2. Bandwidth of a single hierarchy level 

 Latency effects are not modeled  pure data streaming assumed 

 In-core execution is sometimes hard to 

model 

 

 

 Saturation effects in multicore  

chips are not explained 

 ECM model gives more insight 

(see later) 

A(:)=B(:)+C(:)*D(:) 

Roofline predicts 

full socket BW 

SC12 Tutorial Performance on Multicore 
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Efficient parallel programming  

on ccNUMA nodes 

Performance characteristics of ccNUMA nodes 

First touch placement policy 

C++ issues 

ccNUMA locality and dynamic scheduling 

ccNUMA locality beyond first touch 
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ccNUMA performance problems 
“The other affinity” to care about 

 ccNUMA: 

 Whole memory is transparently accessible by all processors 

 but physically distributed 

 with varying bandwidth and latency 

 and potential contention (shared memory paths) 

 How do we make sure that memory access is always as "local" 

and "distributed" as possible? 

 

 

 

 

 

 

 

 Page placement is implemented in units of OS pages (often 4kB, possibly 

more) 
 

C C C C 

M M 

C C C C 

M M 
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Cray XE6 Interlagos node 

4 chips, two sockets, 8 threads per ccNUMA domain 

 
 ccNUMA map: Bandwidth penalties for remote access 

 Run 8 threads per ccNUMA domain (1 chip) 

 Place memory in different domain  4x4 combinations 

 STREAM triad benchmark using nontemporal stores  

SC12 Tutorial Performance on Multicore 

S
T

R
E

A
M

 t
ri

a
d

 p
e

rf
o

rm
a

n
c

e
 [

M
B

/s
] 

Memory node 

C
P

U
 n

o
d

e
 



123 SC12 Tutorial Performance on Multicore 

ccNUMA locality tool numactl: 

How do we enforce some locality of access? 

 numactl can influence the way a binary maps its memory pages: 

 
numactl --membind=<nodes> a.out # map pages only on <nodes> 

        --preferred=<node> a.out  # map pages on <node>  

                             # and others if <node> is full 

        --interleave=<nodes> a.out # map pages round robin across 

                               # all <nodes> 

 

 Examples: 

 
env OMP_NUM_THREADS=2 numactl --membind=0 --cpunodebind=1 ./stream 

 

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \ 

    likwid-pin -c N:0,4,8,12 ./stream 

 

 

 

 But what is the default without numactl? 
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ccNUMA default memory locality 

 "Golden Rule" of ccNUMA: 

 

A memory page gets mapped into the local memory of the 

processor that first touches it! 

 

 Except if there is not enough local memory available 

 This might be a problem, see later 

 Caveat: "touch" means "write", not "allocate" 

 Example:  

 
double *huge = (double*)malloc(N*sizeof(double)); 

 

for(i=0; i<N; i++) // or i+=PAGE_SIZE 

   huge[i] = 0.0;   

 

 

 It is sufficient to touch a single item to map the entire page 

Memory not 

mapped here yet 

Mapping takes 

place here 
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Coding for ccNUMA data locality 

integer,parameter :: N=10000000 

double precision A(N), B(N) 

 

 

 

A=0.d0 

 

 

 

!$OMP parallel do 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end parallel do 

integer,parameter :: N=10000000 

double precision A(N),B(N) 

!$OMP parallel  

!$OMP do schedule(static) 

do i = 1, N 

  A(i)=0.d0 

end do 

!$OMP end do 

... 

!$OMP do schedule(static) 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end do 

!$OMP end parallel 

 Most simple case: explicit initialization  
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Coding for ccNUMA data locality 

integer,parameter :: N=10000000 

double precision A(N), B(N) 

 

 

 

 

READ(1000) A 

 

 

 

!$OMP parallel do 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end parallel do 

integer,parameter :: N=10000000 

double precision A(N),B(N) 

!$OMP parallel  

!$OMP do schedule(static) 

do i = 1, N 

  A(i)=0.d0 

end do 

!$OMP end do 

!$OMP single 

READ(1000) A 

!$OMP end single 

!$OMP do schedule(static) 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end do 

!$OMP end parallel 

 Sometimes initialization is not so obvious: I/O cannot be easily 

parallelized, so “localize” arrays before I/O 
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Coding for Data Locality 

 Required condition: OpenMP loop schedule of initialization must 

be the same as in all computational loops 

 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to 

be sure… 

 Imposes some constraints on possible optimizations (e.g. load balancing) 

 Presupposes that all worksharing loops with the same loop length have the 

same thread-chunk mapping 

 Guaranteed by OpenMP 3.0 only for loops in the same enclosing parallel region 

and static schedule 

 In practice, it works with any compiler even across regions 

 If dynamic scheduling/tasking is unavoidable, more advanced methods may 

be in order 

 How about global objects? 

 Better not use them 

 If communication vs. computation is favorable, might consider properly 

placed copies of global data 

 In C++, STL allocators provide an elegant solution (see hidden slides) 



128 SC12 Tutorial Performance on Multicore 

Coding for Data Locality: 

Placement of static arrays or arrays of objects 

 Speaking of C++: Don't forget that constructors tend to touch the 

data members of an object. Example: 

 

 class D { 
  double d; 

public: 

  D(double _d=0.0) throw() : d(_d) {} 

  inline D operator+(const D& o) throw() { 

    return D(d+o.d); 

  } 

  inline D operator*(const D& o) throw() { 

    return D(d*o.d); 

  } 

... 

}; 

→ placement problem with  
     D* array = new D[1000000]; 
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Coding for Data Locality: 

Parallel first touch for arrays of objects 

 Solution: Provide overloaded D::operator new[] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Placement of objects is then done automatically by the C++ runtime via 

“placement new” 

void* D::operator new[](size_t n) { 

  char *p = new char[n];    // allocate 

 

  size_t i,j; 

#pragma omp parallel for private(j) schedule(...) 

  for(i=0; i<n; i += sizeof(D)) 

    for(j=0; j<sizeof(D); ++j) 

      p[i+j] = 0; 

  return p; 

} 

 

void D::operator delete[](void* p) throw() { 

  delete [] static_cast<char*>p; 

} 

parallel first 

touch 
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Coding for Data Locality: 
NUMA allocator for parallel first touch in std::vector<> 

template <class T> class NUMA_Allocator { 

public: 

  T* allocate(size_type numObjects, const void   

              *localityHint=0) { 

    size_type ofs,len = numObjects * sizeof(T); 

    void *m = malloc(len); 

    char *p = static_cast<char*>(m); 

    int i,pages = len >> PAGE_BITS; 

#pragma omp parallel for schedule(static) private(ofs) 

    for(i=0; i<pages; ++i) { 

      ofs = static_cast<size_t>(i) << PAGE_BITS; 

      p[ofs]=0; 

    } 

    return static_cast<pointer>(m); 

  } 

... 

}; Application: 
vector<double,NUMA_Allocator<double> > x(10000000) 
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Diagnosing Bad Locality 

 If your code is cache-bound, you might not notice any locality 

problems 

 

 Otherwise, bad locality limits scalability at very low CPU numbers 

(whenever a node boundary is crossed) 

 If the code makes good use of the memory interface 

 But there may also be a general problem in your code… 

 

 Consider using performance counters 

 LIKWID-perfctr can be used to measure nonlocal memory accesses 

 Example for Intel Nehalem (Core i7): 

 
env OMP_NUM_THREADS=8 likwid-perfctr -g MEM –C N:0-7 \ 

        -t intel ./a.out 



132 SC12 Tutorial Performance on Multicore 

Using performance counters for diagnosing bad ccNUMA 

access locality 

 Intel Nehalem EP node: 

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+ 

|             Event             |   core 0    |   core 1    |   core 2    |   core 3    |   core 4    |   core 5    |   core 6    |   core 7    | 

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+ 

|       INSTR_RETIRED_ANY       | 5.20725e+08 | 5.24793e+08 | 5.21547e+08 | 5.23717e+08 | 5.28269e+08 | 5.29083e+08 | 5.30103e+08 | 5.29479e+08 | 

|     CPU_CLK_UNHALTED_CORE     | 1.90447e+09 | 1.90599e+09 | 1.90619e+09 | 1.90673e+09 | 1.90583e+09 | 1.90746e+09 | 1.90632e+09 | 1.9071e+09  | 

|   UNC_QMC_NORMAL_READS_ANY    | 8.17606e+07 |      0      |      0      |      0      | 8.07797e+07 |      0      |      0      |      0      | 

|    UNC_QMC_WRITES_FULL_ANY    | 5.53837e+07 |      0      |      0      |      0      | 5.51052e+07 |      0      |      0      |      0      | 

| UNC_QHL_REQUESTS_REMOTE_READS | 6.84504e+07 |      0      |      0      |      0      | 6.8107e+07  |      0      |      0      |      0      | 

| UNC_QHL_REQUESTS_LOCAL_READS  | 6.82751e+07 |      0      |      0      |      0      | 6.76274e+07 |      0      |      0      |      0      | 

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+ 

RDTSC timing: 0.827196 s 

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+ 

|           Metric            |  core 0  |  core 1  | core 2  |  core 3  |  core 4  |  core 5  | core 6  | core 7  | 

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+ 

|         Runtime [s]         | 0.714167 | 0.714733 | 0.71481 | 0.715013 | 0.714673 | 0.715286 | 0.71486 | 0.71515 | 

|             CPI             | 3.65735  | 3.63188  | 3.65488 | 3.64076  | 3.60768  | 3.60521  | 3.59613 | 3.60184 | 

| Memory bandwidth [MBytes/s] | 10610.8  |    0     |    0    |    0     | 10513.4  |    0     |    0    |    0    | 

|  Remote Read BW [MBytes/s]  |   5296   |    0     |    0    |    0     | 5269.43  |    0     |    0    |    0    | 

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+ 

Uncore events only 

counted once per socket 

Half of read BW comes 

from other socket! 
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If all fails… 

 Even if all placement rules have been carefully observed, you may 

still see nonlocal memory traffic. Reasons? 
 

 Program has erratic access patters  may still achieve some access 

parallelism (see later) 

 OS has filled memory with buffer cache data: 

 

 

 

 

 

 

# numactl --hardware    # idle node! 

available: 2 nodes (0-1) 

node 0 size: 2047 MB 

node 0 free: 906 MB 

node 1 size: 1935 MB 

node 1 free: 1798 MB 

top - 14:18:25 up 92 days,  6:07,  2 users,  load average: 0.00, 0.02, 0.00 

Mem:   4065564k total,  1149400k used,  2716164k free,    43388k buffers 

Swap:  2104504k total,     2656k used,  2101848k free,  1038412k cached 
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ccNUMA problems beyond first touch: 

Buffer cache 

 OS uses part of main memory for 

disk buffer (FS) cache 

 If FS cache fills part of memory,  

apps will probably allocate from  

foreign domains 

  non-local access! 

 “sync” is not sufficient to 

drop buffer cache blocks 

 

 

 Remedies 

 Drop FS cache pages after user job has run (admin’s job) 

 seems to be automatic after aprun has finished on Crays  

 User can run “sweeper” code that allocates and touches all physical 

memory before starting the real application 

 numactl tool or aprun can force local allocation (where applicable) 

 Linux: There is no way to limit the buffer cache size in standard kernels 

P1 
C 

P2 
C 
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ccNUMA problems beyond first touch: 

Buffer cache 

Real-world example: ccNUMA and the Linux buffer cache 

Benchmark: 

1. Write a file of some size 

from LD0 to disk 

2. Perform bandwidth 

benchmark using 

all cores in LD0 and 

maximum memory 

installed in LD0 

 

Result: By default, 

Buffer cache is given  

priority over local  

page placement 

 restrict to local  

    domain if possible! 

aprun –ss ... 

(Cray only) 
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ccNUMA placement and erratic access patterns 

 Sometimes access patterns are  

just not nicely grouped into  

contiguous chunks: 

 

 

 

 

 

 

 

 

 

 

 In both cases page placement cannot easily be fixed for perfect parallel 

access 

double precision :: r, a(M) 

!$OMP parallel do private(r) 

do i=1,N 

  call RANDOM_NUMBER(r) 

  ind = int(r * M) + 1 

  res(i) = res(i) + a(ind) 

enddo 

!OMP end parallel do 

 Or you have to use tasking/dynamic 

scheduling: 

!$OMP parallel 

!$OMP single 

do i=1,N 

  call RANDOM_NUMBER(r) 

  if(r.le.0.5d0) then 

!$OMP task 

    call do_work_with(p(i)) 

!$OMP end task 

  endif 

enddo 

!$OMP end single 

!$OMP end parallel 
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ccNUMA placement and erratic access patterns 

 Worth a try: Interleave memory across ccNUMA domains to get at least 

some parallel access 

1. Explicit placement: 

 

 

 

 

 

2. Using global control via numactl: 

 

numactl --interleave=0-3 ./a.out 

 

 Fine-grained program-controlled placement via libnuma (Linux) 

using, e.g., numa_alloc_interleaved_subset(), 

numa_alloc_interleaved() and others 

 

!$OMP parallel do schedule(static,512) 

do i=1,M 

  a(i) = … 

enddo 

!$OMP end parallel do 

This is for all memory, not 

just the problematic 

arrays! 

Observe page alignment of 

array to get proper 

placement! 
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The curse and blessing of interleaved placement:  

OpenMP STREAM on a Cray XE6 Interlagos node 

 Parallel init: Correct parallel initialization 

 LD0: Force data into LD0 via  numactl –m 0 

 Interleaved:  numactl --interleave <LD range> 

SC12 Tutorial Performance on Multicore 
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Simultaneous multithreading (SMT) 

Principles and performance impact 

SMT vs. independent instruction streams 

Facts and fiction 
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SMT Makes a single physical core appear as two or more 

“logical” cores  multiple threads/processes run concurrently 

 SMT principle (2-way example): 
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SMT impact 

 SMT is primarily suited for increasing processor throughput 

 With multiple threads/processes running concurrently 

 Scientific codes tend to utilize chip resources quite well 

 Standard optimizations (loop fusion, blocking, …)  

 High data and instruction-level parallelism 

 Exceptions do exist 

 

 SMT is an important topology issue 

 SMT threads share almost all core 

resources 

 Pipelines, caches, data paths 

 Affinity matters! 

 If SMT is not needed 

 pin threads to physical cores 

 or switch it off via BIOS etc. 
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SMT impact 

 SMT adds another layer of topology  

(inside the physical core) 

 Caveat: SMT threads share all caches! 

 Possible benefit: Better pipeline throughput 

 Filling otherwise unused pipelines 

 Filling pipeline bubbles with other thread’s executing instructions: 

 

 

 

 

 

 

 

 Beware: Executing it all in a single thread  

(if possible) may reach the same goal  

without SMT: 

 

Thread 0: 
do i=1,N 

  a(i) = a(i-1)*c 

enddo  

Dependency  pipeline 

stalls until previous MULT 

is over 

Westmere EP  
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Thread 1: 
do i=1,N 

  b(i) = func(i)*d 

enddo  

Unrelated work in other 

thread can fill the pipeline 

bubbles 

do i=1,N 

  a(i) = a(i-1)*c 

  b(i) = func(i)*d  

enddo  



144 

a(2)*c 

Thread 0: 
do i=1,N 

a(i)=a(i-1)*c 

enddo  

a(2)*c 

a(7)*c 

Thread 0: 
do i=1,N 

a(i)=a(i-1)*c 

enddo  

Thread 1: 
do i=1,N 

a(i)=a(i-1)*c 

enddo  

B(7)*d 

A(2)*c 

A(7)*d 

B(2)*c 

Thread 0: 
do i=1,N 

A(i)=A(i-1)*c 

B(i)=B(i-1)*d 

enddo  

Thread 1: 
do i=1,N 

A(i)=A(i-1)*c 

B(i)=B(i-1)*d 

enddo  

Simultaneous recursive updates with SMT  

SC12 Tutorial Performance on Multicore 

 

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT 

MULT Pipeline depth: 5 stages  1 F / 5 cycles for recursive update 

Fill bubbles via: 
 SMT 

 Multiple streams 
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Simultaneous recursive updates with SMT  

SC12 Tutorial Performance on Multicore 

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT 

MULT Pipeline depth: 5 stages  1 F / 5 cycles for recursive update 

5 independent updates on a single thread do the same job! 

B(2)*s 

A(2)*s 

E(1)*s 

D(1)*s 

C(1)*s 

Thread 0: 
do i=1,N 

 A(i)=A(i-1)*s 

 B(i)=B(i-1)*s 

 C(i)=C(i-1)*s 

 D(i)=D(i-1)*s 

 E(i)=E(i-1)*s 

enddo  
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Simultaneous recursive updates with SMT  

SC12 Tutorial Performance on Multicore 

 

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT 

Pure update benchmark can be vectorized  2 F / cycle (store limited) 

Recursive update: 
 

 SMT can fill pipeline 

bubles 

 

 A single thread can 

do so as well 

 

 Bandwidth does not 

increase through 

SMT 

 

 SMT can not 

replace SIMD! 
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SMT myths: Facts and fiction (1) 

 Myth: “If the code is compute-bound, then the functional units 

should be saturated and SMT should show no improvement.” 

 

 

 

 Truth 

1. A compute-bound loop does not  

necessarily saturate the pipelines;  

dependencies can cause a lot of bubbles,  

which may be filled by SMT threads. 

 

2. If a pipeline is already full, SMT will not improve its 

utilization 
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B(7)*d 

A(2)*c 

A(7)*d 

B(2)*c 

Thread 0: 
do i=1,N 

A(i)=A(i-1)*c 

B(i)=B(i-1)*d 

enddo  

Thread 1: 
do i=1,N 

A(i)=A(i-1)*c 

B(i)=B(i-1)*d 

enddo  
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SMT myths: Facts and fiction (2) 

 Myth: “If the code is memory-bound, SMT should help because it 

can fill the bubbles left by waiting for data from memory.” 

 Truth:  

1. If the maximum memory bandwidth is already reached, SMT will not 

help since the relevant  

resource (bandwidth)  

is exhausted. 

 

2. If the relevant  

bottleneck is not  

exhausted, SMT may  

help since it can fill  

bubbles in the LOAD  

pipeline. 

 

This applies also to other 

“relevant bottlenecks!” 
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SMT myths: Facts and fiction (3) 

 Myth: “SMT can help bridge the latency to 

memory (more outstanding references).” 

 

 Truth:  
Outstanding references may or may not be 

bound to SMT threads; they may be a resource 

of the memory interface and shared by all 

threads. The benefit of SMT with memory-bound 

code is usually due to better utilization of the 

pipelines so that less time gets “wasted” in the 

cache hierarchy. 

 

 

See also the “ECM Performance Model” 

later on. 
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SMT: When it may help, and when not 

 

Functional parallelization 

FP-only parallel loop code  

Frequent thread synchronization 

Code sensitive to cache size 

Strongly memory-bound code 

Independent pipeline-unfriendly instruction streams  
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mapping 
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Intranode MPI 

 Common misconception: Intranode MPI is infinitely fast compared 

to internode 

 

 Reality 

 Intranode latency is much smaller than internode 

 Intranode asymptotic bandwidth is surprisingly comparable to internode 

 Difference in saturation behavior 

 

 Other issues 

 Mapping between ranks, subdomains and cores with Cartesian MPI 

topologies 

 Overlapping intranode with internode communication 
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MPI and Multicores 

Clusters: Unidirectional internode Ping-Pong bandwidth 

QDR/GBit ~ 30X 
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MPI and Multicores 

Clusters: Unidirectional intranode Ping-Pong bandwidth 

Mapping problem for most efficient communication paths!?  

P 
C 
C 

P 
C 
C 

P 
C 
C 

MI 
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C 
C 

C 

Memory Memory 

P 
C 
C 

P 
C 
C 

P 
C 
C 

MI 

P 
C 
C 

C 

Cross-Socket (CS) 

Intra-Socket (IS) 

Single point-to-

point BW similar 

to internode 

Some BW 

scalability for 

multi-intranode 

connections 
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“Best possible” MPI: 

Minimizing cross-node communication 

■ Example: Stencil solver with halo exchange 

 

 

 

 

 

 

 

 

■ Goal: Reduce inter-node halo traffic 

■ Subdomains exchange halo with neighbors 

■ Populate a node's ranks with “maximum neighboring” subdomains 

■ This minimizes a node's communication surface 

 

■ Shouldn’t MPI_CART_CREATE (w/ reorder) take care of this? 

SC12 Tutorial Performance on Multicore 
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MPI rank-subdomain mapping in Cartesian topologies: 

A 3D stencil solver and the growing number of cores per node 

“Common” MPI 

library behavior 
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~ 1.5x 

4 ppn SDR-IB 

MPI rank-subdomain mapping: 

3D stencil solver – measurements for 8ppn and 4ppn GBE vs. IB 

8 ppn QDR-IB 

32 MPI processes 
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Summary on MPI multicore issues 

 Intranode MPI 

 May not be as fast as you think… 

 Becomes more important as core counts increase 

 May not be handled optimally by your MPI library 

 

 

 Rank-core mapping may be crucial for best performance 

 Reduce inter-node traffic 

 Most MPIs do not recognize this 

 Some (e.g., Cray) can give you hints toward optimal placement 
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Best practices for using 

hardware performance 

metrics 

 
likwid-perfctr 
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Probing performance behavior 

 How do we find out about the performance properties and 

requirements of a parallel code? 

 Profiling via advanced tools is often overkill 

 A coarse overview is often sufficient 

 likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on 

Linux/Altix) 

 Simple end-to-end measurement of hardware performance metrics 

 Operating modes: 

 Wrapper 

 Stethoscope 

 Timeline 

 Marker API 

 Preconfigured and extensible  

metric groups, list with 
likwid-perfctr -a     

 

BRANCH: Branch prediction miss rate/ratio 

CACHE: Data cache miss rate/ratio 

CLOCK: Clock of cores 

DATA: Load to store ratio 

FLOPS_DP: Double Precision MFlops/s 

FLOPS_SP: Single Precision MFlops/s 

FLOPS_X87: X87 MFlops/s 

L2: L2 cache bandwidth in MBytes/s 

L2CACHE: L2 cache miss rate/ratio 

L3: L3 cache bandwidth in MBytes/s 

L3CACHE: L3 cache miss rate/ratio 

MEM: Main memory bandwidth in MBytes/s 

TLB: TLB miss rate/ratio 
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likwid-perfctr 

Example usage with preconfigured metric group  

$ env OMP_NUM_THREADS=4 likwid-perfctr -C N:0-3 –t intel -g FLOPS_DP  ./stream.exe 

------------------------------------------------------------- 

CPU type:       Intel Core Lynnfield processor  

CPU clock:      2.93 GHz  

------------------------------------------------------------- 

Measuring group FLOPS_DP 

------------------------------------------------------------- 

YOUR PROGRAM OUTPUT 

+--------------------------------------+-------------+-------------+-------------+-------------+ 

|                Event                 |   core 0    |   core 1    |   core 2    |   core 3    | 

+--------------------------------------+-------------+-------------+-------------+-------------+ 

|          INSTR_RETIRED_ANY           | 1.97463e+08 | 2.31001e+08 | 2.30963e+08 | 2.31885e+08 | 

|        CPU_CLK_UNHALTED_CORE         | 9.56999e+08 | 9.58401e+08 | 9.58637e+08 | 9.57338e+08 | 

|    FP_COMP_OPS_EXE_SSE_FP_PACKED     | 4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 | 

|    FP_COMP_OPS_EXE_SSE_FP_SCALAR     |     882     |      0      |      0      |      0      | 

| FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION |      0      |      0      |      0      |      0      | 

| FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION | 4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 | 

+--------------------------------------+-------------+-------------+-------------+-------------+ 

+--------------------------+------------+---------+----------+----------+ 

|          Metric          |   core 0   | core 1  |  core 2  |  core 3  | 

+--------------------------+------------+---------+----------+----------+ 

|       Runtime [s]        |  0.326242  | 0.32672 | 0.326801 | 0.326358 | 

|           CPI            |  4.84647   | 4.14891 | 4.15061  | 4.12849  | 

| DP MFlops/s (DP assumed) |  245.399   | 189.108 | 189.024  | 189.304  | 

|      Packed MUOPS/s      |  122.698   | 94.554  | 94.5121  | 94.6519  | 

|      Scalar MUOPS/s      | 0.00270351 |    0    |    0     |    0     | 

|        SP MUOPS/s        |     0      |    0    |    0     |    0     | 

|        DP MUOPS/s        |  122.701   | 94.554  | 94.5121  | 94.6519  | 

+--------------------------+------------+---------+----------+----------+  

Always 

measured 

Derived 

metrics 

Configured metrics 

(this group) 
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likwid-perfctr 
Best practices for runtime counter analysis  

Things to look at (in roughly this 

order) 

 

 Load balance (flops, instructions, 

BW) 

 

 In-socket memory BW saturation 

 

 Shared cache BW saturation 

 

 Flop/s, loads and stores per flop 

metrics 

 

 SIMD vectorization 

 

 CPI metric 

 

 # of instructions,  

branches, mispredicted branches 

 

 

 

Caveats 

 

 Load imbalance may not show in 

CPI or # of instructions 
 Spin loops in OpenMP barriers/MPI 

blocking calls 

 Looking at “top” or the Windows Task 

Manager does not tell you anything useful 

 

 In-socket performance saturation 

may have various reasons 

 

 Cache miss metrics are overrated 

 If I really know my code, I can often  

calculate the misses 

 Runtime and resource utilization is 

much more important 

SC12 Tutorial Performance on Multicore 
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likwid-perfctr 

Identify load imbalance… 

 Instructions retired / CPI may not be a good indication of 

useful workload – at least for numerical / FP intensive codes…. 

 Floating Point Operations Executed is often a better indicator 

 Waiting / “Spinning” in barrier generates a high instruction count  

!$OMP PARALLEL DO 

DO I = 1, N 

 DO J = 1, I 

    x(I) = x(I) + A(J,I) * y(J) 

 ENDDO 

ENDDO 

!$OMP END PARALLEL DO 

SC12 Tutorial Performance on Multicore 
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likwid-perfctr 

… and load-balanced codes 

!$OMP PARALLEL DO 

DO I = 1, N 

 DO J = 1, N 

    x(I) = x(I) + A(J,I) * y(J) 

 ENDDO 

ENDDO 

!$OMP END PARALLEL DO 

Higher CPI but 

better performance 

env OMP_NUM_THREADS=6 likwid-perfctr –t intel –C S0:0-5 –g FLOPS_DP ./a.out 

SC12 Tutorial Performance on Multicore 
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 likwid-perfctr counts events on cores; it has no notion of what 

kind of code is running (if any) 

 

This enables to listen on what currently happens without any 

overhead: 

 

likwid-perfctr -c N:0-11 -g FLOPS_DP  -s 10 

 

 It can be used as cluster/server monitoring tool 

 

 A frequent use is to measure a certain part of a long running 

parallel application from outside 

SC12 Tutorial 

likwid-perfctr 

Stethoscope mode 

Performance on Multicore 
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likwid-perfctr 

Timeline mode 

 likwid-perfctr supports time resolved measurements of full node: 

  likwid-perfctr –c N:0-11 -g MEM –d 50ms  > out.txt 

 

SC12 Tutorial Performance on Multicore 
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likwid-perfctr 

Marker API 

 To measure only parts of an application a marker API is available. 

 The API only turns counters on/off. The configuration of the 

counters is still done by likwid-perfctr application. 

 Multiple named regions can be measured 

 Results on multiple calls are accumulated 

 Inclusive and overlapping Regions are allowed 

SC12 Tutorial 

likwid_markerInit();  // must be called from serial region 

 

likwid_markerStartRegion(“Compute”); 

. . . 

likwid_markerStopRegion(“Compute”); 

 

 

likwid_markerStartRegion(“postprocess”); 

. . . 

likwid_markerStopRegion(“postprocess”); 

 

 

likwid_markerClose();  // must be called from serial region 

 

Performance on Multicore 
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likwid-perfctr 

Group files 

SHORT PSTI 

EVENTSET 

FIXC0 INSTR_RETIRED_ANY 

FIXC1 CPU_CLK_UNHALTED_CORE 

FIXC2 CPU_CLK_UNHALTED_REF 

PMC0  FP_COMP_OPS_EXE_SSE_FP_PACKED 

PMC1  FP_COMP_OPS_EXE_SSE_FP_SCALAR 

PMC2  FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION 

PMC3  FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION 

UPMC0  UNC_QMC_NORMAL_READS_ANY 

UPMC1  UNC_QMC_WRITES_FULL_ANY 

UPMC2 UNC_QHL_REQUESTS_REMOTE_READS 

UPMC3 UNC_QHL_REQUESTS_LOCAL_READS  

METRICS 

Runtime [s] FIXC1*inverseClock 

CPI  FIXC1/FIXC0 

Clock [MHz]  1.E-06*(FIXC1/FIXC2)/inverseClock 

DP MFlops/s (DP assumed) 1.0E-06*(PMC0*2.0+PMC1)/time 

Packed MUOPS/s   1.0E-06*PMC0/time 

Scalar MUOPS/s 1.0E-06*PMC1/time 

SP MUOPS/s 1.0E-06*PMC2/time 

DP MUOPS/s 1.0E-06*PMC3/time 

Memory bandwidth [MBytes/s] 1.0E-06*(UPMC0+UPMC1)*64/time; 

Remote Read BW [MBytes/s] 1.0E-06*(UPMC2)*64/time; 

LONG 

Formula: 

DP MFlops/s =  (FP_COMP_OPS_EXE_SSE_FP_PACKED*2 +  FP_COMP_OPS_EXE_SSE_FP_SCALAR)/ runtime. 
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 Groups are architecture-specific 

 They are defined in simple text files 

 Code is generated on recompile of 

likwid 

 likwid-perfctr  -a outputs  list of groups 

 For every group an extensive 

documentation is available 

Performance on Multicore 
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Measuring  energy consumption 

likwid-powermeter  and  likwid-perfctr -g ENERGY 

 Implements Intel RAPL interface (Sandy Bridge) 

 RAPL = “Running average power limit” 
------------------------------------------------------------- 

CPU name:       Intel Core SandyBridge processor  

CPU clock:      3.49 GHz  

------------------------------------------------------------- 

Base clock:     3500.00 MHz  

Minimal clock:  1600.00 MHz  

Turbo Boost Steps: 

C1 3900.00 MHz  

C2 3800.00 MHz  

C3 3700.00 MHz  

C4 3600.00 MHz  

------------------------------------------------------------- 

Thermal Spec Power: 95 Watts  

Minimum  Power: 20 Watts  

Maximum  Power: 95 Watts  

Maximum  Time Window: 0.15625 micro sec  

------------------------------------------------------------- 

SC12 Tutorial Performance on Multicore 
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Example: 
A medical image reconstruction code on Sandy Bridge 

SC12 Tutorial Performance on Multicore 

Test case Runtime [s] Power [W] Energy [J] 

8 cores, plain C 90.43 90 8110 

8 cores, SSE 29.63 93 2750 

8 cores (SMT), SSE 22.61 102 2300 

8 cores (SMT), AVX 18.42 111 2040 

Sandy Bridge EP (8 cores, 2.7 GHz base freq.) 
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Case studies 

“Multicore-aware” wavefront temporal blocking:  

 Making use of shared caches 

 

Asynchronous MPI communication in sparse MVM 



Multicore-aware wavefront temporal 

blocking:  

 

Making use of shared caches 
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Multicore awareness  

Classical Approaches: Parallelize & Reduce memory pressure  

Multicore processors are still mostly programmed  

the same way as classic n-way SMP single-core 

compute nodes! 

 
Memory 

P 
C 
C 

P 
C 
C 

P 
C 
C 

MI 

P 
C 
C 

P 
C 
C 

P 
C 
C 

C 

do k = 1 , Nk 

 do j = 1 , Nj 

       do i = 1 , Ni 

          y(i,j,k) = a*x(i,j,k) + b* 

     (x(i-1,j,k)+x(i+1,j,k)+  

      x(i,j-1,k)+x(i,j+1,k)+  

      x(i,j,k-1)+x(i,j,k+1)) 

    enddo 

  enddo  

enddo 

Simple 3D Jacobi stencil update (sweep): 

 Performance Metric: Million Lattice Site Updates per second (MLUPs) 

Equivalent MFLOPs: 8 FLOP/LUP * MLUPs 
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Multicore awareness  

Standard sequential implementation 

k-direction 

j-
d

ir
e
c
ti

o
n

 

do t=1,tMax 
 

 do k=1,N 

     do j=1,N 

       do i=1,N 

     y(i,j,k) = … 

       enddo 

     enddo 

  enddo 
 

enddo 

core0 core1 

Cache 

Memory 

 

x 



179 SC12 Tutorial Performance on Multicore 

Multicore awareness  

Classical Approaches: Parallelize! 

k-direction 

j-
d

ir
e
c
ti

o
n

 

core0 core1 

Cache 

Memory 

 

x 

do t=1,tMax 
!$OMP PARALLEL DO private(…) 

 do k=1,N 

     do j=1,N 

       do i=1,N 

     y(i,j,k) = … 

       enddo 

     enddo 

  enddo 

!$OMP END PARALLEL DO 

enddo 
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Multicore awareness  

Parallelization – reuse data in cache between threads 

k-direction 

j-
d

ir
e
c
ti

o
n

 

core0: x(:,:,k-1:k+1)t     y(:,:,k)t+1 

core1: y(:,:,(k-3):(k-1))t+1   x(:,:,k-2)t+2  

core0 core1 

y(:,:,:) 

Memory 

 

x(:,:,:) 

Do not use domain 

decomposition! 

Instead shift 2nd thread by 

three i-j planes and 

proceed to the same 

domain 

 2nd thread loads input 

data from shared OL cache! 

Sync threads/cores after 

each k-iteration! 

“Wavefront 

Parallelization (WFP)” 
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Use small ring buffer  
tmp(:,:,0:3)  

which fits into the cache 

 

Save main memory data 
transfers for y(:,:,:) ! 

 

16 Byte / 2 LUP ! 

 

8 Byte / LUP ! 

 

 

 

Multicore awareness  

WF parallelization – reuse data in cache between threads 

Compare with optimal baseline (nontemporal stores on y):  

Maximum speedup of 2 can be expected  

 (assuming infinitely fast cache and  

no overhead for OMP BARRIER after each k-iteration) 
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Multicore awareness  

WF parallelization – reuse data in cache between threads 

Thread 0: x(:,:,k-1:k+1)t     tmp(:,:,mod(k,4)) 

Thread 1: tmp(:,:,mod(k-3,4):mod(k-1,4))  x(:,:,k-2)t+2  

 

Performance model including finite cache bandwidth (BC) 

Time for 2 LUP:   

 T2LUP = 16 Byte/BM + x * 8 Byte / BC = T0 ( 1 + x/2 * BM/BC) 
 

core0 core1 

tmp(:,:,0:3) 

Memory 

 

x 

Minimum value: x =2 

Speed-Up vs. baseline: SW = 2*T0/T2LUP 

  = 2 / (1 +  BM/BC) 

 

BC and BM are measured in saturation runs: 

Clovertown: BM/BC = 1/12   SW = 1.85 

Nehalem  : BM/BC = 1/4   SW = 1.6  
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Jacobi solver 

WFP: Propagating four wavefronts on native quadcores (1x4) 

core0 core1 

tmp1(0:3) |  tmp2(0:3) |  tmp3(0:3) 

 

x( : , : , : ) 

core2 core3 

1 x 4 distribution 

Running tb wavefronts requires tb-1 

temporary arrays tmp to be held in 

cache! 

Max. performance gain (vs. optimal 
baseline): tb = 4 

Extensive use of cache bandwidth! 
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Jacobi solver 

WF parallelization: New choices on native quad-cores 

Thread 0: x(:,:,k-1:k+1)t       tmp1(mod(k,4)) 

Thread 1: tmp1(mod(k-3,4):mod(k-1,4))  tmp2(mod(k-2,4)) 

core0 core1 

tmp1(0:3) |  tmp2(0:3) |  tmp3(0:3) 

 

x( : , : , : ) 

core2 core3 

Thread 2: tmp2(mod(k-5,4:mod(k-3,4))  tmp3(mod(k-4,4)) 

Thread 3: tmp3(mod(k-7,4):mod(k-5,4))  x(:,:,k-6)t+4  

1 x 4 distribution 

core0 core1 

tmp0(  : ,  : ,  0:3) 

 

x( :,1:N/2,:)     x(:,N/2+1:N,:)  

core2 core3 

2 x 2 distribution 
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Jacobi solver 

Wavefront parallelization: L3 group Nehalem 

Performance model indicates some potential gain  new compiler tested. 

Only marginal benefit when using 4 wavefronts  A single copy stream does not 

achieve full bandwidth 

P 
C 
C 

P 
C 
C 

P 
C 
C 

MI 

Memory 

P 
C 
C 

C 

P 
C 
C 

P 
C 
C 

P 
C 
C 

MI 

Memory 

P 
C 
C 

C 

4003 

bj=40 
MLUPs 

1 x 2 786 

2 x 2 1230 

1 x 4 1254 
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Multicore-aware parallelization 

Wavefront – Jacobi on state-of-the art multicores 

P 
C 

P 
C 

C 

P 
C 

P 
C 

C 

P 
C 
C 

P 
C 
C 

P 
C 
C 

MI 

P 
C 
C 

P 
C 
C 

P 
C 
C 

P 
C 
C 

P 
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C 

P 
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C 
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C 
C 
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C 
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C 
C 

P 
C 
C 

P 
C 
C 

MI 

P 
C 
C 

P 
C 
C 

P 
C 
C 

C 

Compare against optimal baseline! 

Performance gain ~ Bolc = L3 bandwidth / memory bandwidth 

Bolc ~ 10 

Bolc ~ 2-3 

Bolc ~ 10 
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Conclusions from wavefront temporal blocking 

 Shared caches are the interesting new feature on current 

multicore chips 

 Shared caches provide opportunities for fast synchronization (see sections 

on OpenMP and intra-node MPI performance) 

 Parallel software should leverage shared caches for performance 

 One approach: Shared cache reuse by wavefront temporal blocking 

 In addition fast synchronization (pref. within a socket) allows to exploit 

parallel structures at finer granularity (shorter loops, frequent 

synchronisation) 

 Wavefront technique can be extended to many regular stencil 

based iterative methods, e.g.  

 Gauß-Seidel    ( done) 

 Lattice-Boltzmann flow solvers  ( done) 

 Multigrid-smoother   ( work in progress) 

 Wavefront technique can be extended to hybrid MPI+OpenMP 

parallelizaton 

 See references 
 



Asynchronous MPI communication in 

sparse MVM 
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Distributed-memory parallelization of spMVM 

SC12 Tutorial Performance on Multicore 

= 

P0 

P3 

P2 

P1 

 
Nonlocal 

RHS 

elements 

for P0 

Local operation – 

no communication 

required 
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Distributed-memory parallelization of spMVM 

 Variant 1: “Vector mode” without overlap 

 

 

 Standard concept 

for “hybrid MPI+OpenMP” 

 Multithreaded computation 

(all threads) 

 

 Communication only  

outside of computation 

 

 

 Benefit of threaded MPI process only due to message aggregation 

and (probably) better load balancing 
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Distributed-memory parallelization of spMVM 

 Variant 2: “Vector mode” with naïve overlap (“good faith hybrid”) 

 

 

 Relies on MPI to support 

async nonblocking PtP 

 Multithreaded computation 

(all threads) 

 

 Still simple programming 

 Drawback: Result vector 

is written twice to memory 

 modified performance 

model 
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Distributed-memory parallelization of spMVM 

 Variant 3: “Task mode” with dedicated communication thread 

 Explicit overlap, more complex to implement 

 One thread missing in 

team of compute threads 

 But that doesn’t hurt here… 

 Using tasking seems simpler 

but may require some  

work on NUMA locality 

 Drawbacks 

 Result vector is written  

twice to memory 

 No simple OpenMP 

worksharing (manual, 

tasking) 
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Performance results for the HMeP matrix 

 Dominated by communication (and some load imbalance for large #procs) 

 Single-node Cray performance cannot be maintained beyond a few nodes 

 Task mode pays off esp. with one process (12 threads) per node 

 Task mode overlap (over-)compensates additional LHS traffic 
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Task mode uses 

virtual core for 

communication  

@ 1 process/core 

50% efficiency 

w/ respect to 

best 1-node 

performance 
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Performance results for the sAMG matrix 

 Much less communication-bound 

 XE6 outperforms Westmere cluster, can maintain good node performance 

 Hardly any discernible difference as to # of threads per process 

 If pure MPI is good enough, don’t bother going hybrid! 
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Conclusions from hybrid spMVM results 

 Do not rely on asynchronous MPI progress 

 Sparse MVM leaves resources (cores) free for use by 

communication threads 

 Simple “vector mode” hybrid MPI+OpenMP parallelization is not 

good enough if communication is a real problem 

 “Task mode” hybrid can truly hide communication and 

overcompensate penalty from additional memory traffic in spMVM 

 Comm thread can share a core with comp thread via SMT and still 

be asynchronous 

 If pure MPI scales ok and maintains its node performance  

according to the node-level performance model, don’t bother 

going hybrid 

 

 Extension to multi-GPGPU is possible 

 See later 
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Examples for  

Advanced Performance Engineering 

Modeling sparse MVM on GPGPU clusters 

 

Beyond the roofline model: ECM 
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Performance Engineering – What’s that? 

The Performance Engineering (PE) process: 

 

 

 

 

 

 

 

 

 

 

The performance model is the central component – if the model fails 

to predict the measurement, you learn something! 

 

The analysis has to be done for every loop / basic block! 

Algorithm/Code analysis 

Runtime profiling 

Machine characteristics 

Kernel benchmarking 

Traces/HW metrics 

Performance model Code optimization 
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Distributed memory parallelization of SpMVM 

= 

P0 

P3 

P2 

P1 

 
Nonlocal 

RHS 

elements 

for P0 

Local operation – 

no communication 

required 
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Performance model (pJDS matrix format on GPGPU) 

 Code balance:  

 

𝑩W
DP =

                                                     bytes

flop
 

 

 

 

 
 

 𝑵𝒏𝒛𝒓
𝒎𝒂𝒙… maximum number of nonzeros per row 

 

 𝟏/𝑵𝒏𝒛𝒓
𝒎𝒂𝒙 ≤ 𝜶 ≤ 𝟏  quantifies possible RHS vector re-usage 

 

 Assumption: colStart[] always comes from cache  

 

8 4 8α 16/𝑵𝒏𝒛𝒓
𝒎𝒂𝒙

 + + + 16/𝑵𝒏𝒛𝒓
𝒎𝒂𝒙

 16/𝑵𝒏𝒛𝒓
𝒎𝒂𝒙

 

2 

c[i] = c[i] + A_val [colStart[j]+i] * x [ A_col [colStart[j]+i]]; 

M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann, and A.R. Bishop: Sparse matrix-vector 

multiplication on GPGPU clusters: A new storage format and a scalable implementation. Workshop on 

Large-Scale Parallel Processing 2012 (LSPP12) at IPDPS 2012. DOI: 10.1109/IPDPSW.2012.211 
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Impact of PCIe transfers of LHS/RHS for iterative schemes 

 Time for SpMVM: 

  𝑻MVM =  
𝑩DP

𝑩𝑾GPU
∗ 𝑵 ∗ 𝑵𝒏𝒛𝒓 ∗ 𝑵𝒊𝒕               =  

𝟖𝑵

𝑩𝑾GPU
𝑵𝒏𝒛𝒓 𝜶 +

𝟑

𝟐
+ 𝟐  ∗ 𝑵𝒊𝒕 

 

 𝑵𝒊𝒕 … number of SpMVMs before PCIe communication has to be done 

 

 Time for PCIe transfers of LHS and RHS:   𝑻PCI =  
𝟏𝟔𝑵

𝑩𝑾PCI
 

 

 We want small impact of PCIe transfer, e.g.:  

 

 𝑻MVM ≥ 𝟏𝟎𝑻PCI 

Matrix type  HMEp sAMG DLR1 DLR2 UHBR 

𝑵𝒏𝒛𝑟  15 7 144 315 123 

Suitable? × × ✓ ✓ ✓ 

𝑩𝑾GPU ≈ 10𝑩𝑾PCI 

𝛂 = 𝟏 
𝑵𝒊𝒕 = 𝟏 

    𝑵𝒏𝒛𝒓 ≥
𝟐𝟎𝑩𝑾𝑮𝑷𝑼/𝑩𝑾𝑷𝑪𝑰−𝟐

𝜶+3/2
             ≥             𝟖𝟎 
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Multi-GPGPU SpMVM: Design patterns 

 

 Three design patterns for distributed-memory parallel SpMVM: 

 

1. Vector Mode without overlap of communication and computation 
communication of non-local RHS elements is done before the actual SpMVM 

 

2. Vector Mode with naive overlap (“good faith hybrid”) 
SpMVM is split into local / non-local part; the local SpMVM may be overlapped with 

non-local RHS communication using non-blocking MPI (but: not asynchronous in 

most MPI libraries) 

 

3. Task Mode with explicit overlap 
using a dedicated thread for MPI  reliably asynchronous communication 

 
 

 
G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector multiplication 

with explicit communication overlap on current multicore-based systems. Parallel Processing Letters 

21(3), 339-358 (2011). DOI: 10.1142/S0129626411000254 
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Multi-GPGPU SpMVM: Performance results 

 𝑵 is rather small 

 

 only few rows left per GPGPU 

for larger node counts  

 

 communication becomes 

dominant 

 𝑵 large  

 

 no break-down for larger node 

counts 

 

 Low comm. requirements: no big 

benefit from overlap 
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The multicore saturation mystery 

 Why can a single core often not saturate the memory bus? 

 Non-overlapping contributions from data transfers and in-cache execution to 

overall runtime 

 

 What determines the saturation point? 

 Important question for energy efficiency 

 Saturation == Bandwidth pressure on relevant bottleneck exhausts the 

maximum BW cacpacity 

 

 

 Requirements for an appropriate multicore performance model 

 Should predict single-core performance 

 Should predict saturation point 

 

 ECM (Execution – Cache – Memory) model 
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207 

Example: ECM model for Schönauer Vector Triad 
A(:)=B(:)+C(:)*D(:) on a Sandy Bridge Core with AVX  

CL 

transfer 

Write-

allocate 

CL transfer 
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Full vs. partial vs. no overlap 

Results 

suggest no 

overlap! 
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ECM prediction vs. measurements for  A(:)=B(:)+C(:)*D(:)  

on a Sandy Bridge socket (no-overlap assumption) 

Model: Scales until saturation 

sets in  

 

Saturation point (# cores) well 

predicted 

 

Measurement: scaling not perfect 

 

 

Caveat: This is specific for this 

architecture and this benchmark! 

 

Check: Use “overlappable” kernel 

code 
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ECM prediction vs. measurements for  A(:)=B(:)+C(:)/D(:)  

on a Sandy Bridge socket (full overlap assumption) 

In-core execution is dominated by 

divide operation  

(44 cycles with AVX, 22 scalar) 

 

 Almost perfect agreement with    

    ECM model 
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Example: Lattice-Boltzmann flow solver 

 D3Q19 model 

 Empty channel, 2283 fluid lattice 

sites (3.7 GB of memory) 

 AVX implementation with compiler 

intrinsics 

 

 ECM model input 

 Core execution from Intel IACA tool 

 Max. memory bandwidth from multi-

stream measurements 
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Lattice-Boltzmann solver: ECM (no-overlap) vs. measurements 

Saturation point again predicted 

accurately 

 

 

Saturation performance matches 

streaming benchmarks 

 

 

No-overlap assumption seems a 

little pessimistic 

Not all execution is LD and ST 
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multicore chips via simple machine models. Submitted. 

Preprint: arXiv:1208.2908 

http://arxiv.org/abs/1208.2908
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Conclusions from the case studies 

 There is no substitute for knowing what’s going on between your 

code and the hardware 

 

 Make sense of performance behavior through sensible application 

of performance models 

 However, there is no “golden formula” to do it all for you automagically 

 

 Model inputs: 

 Code analysis/inspection 

 Hardware counter data 

 Microbenachmark analysis 

 Architectural features 

 

 Simple models work best; do not try to make it more complex than 

necessary 

 ECM model refines simple bandwidth/roofline analysis 
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Tutorial conclusion 

 Multicore architecture == multiple complexities 

 Affinity matters  pinning/binding is essential 

 Bandwidth bottlenecks  inefficiency is often made on the chip level 

 Topology dependence of performance features  know your hardware! 

 Put cores to good use 

 Bandwidth bottlenecks  surplus cores  functional parallelism!? 

 Shared caches  fast communication/synchronization  better 

implementations/algorithms? 

 

 Simple modeling techniques help us 

 … understand the limits of our code on the given hardware 

 … identify optimization opportunities 

 … learn more, especially when they do not work! 

 

 Simple tools get you 95% of the way 

 e.g., LIKWID tool suite 
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THANK YOU. 
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Jan Treibig 

Johannes Habich 

Moritz Kreutzer 

Markus Wittmann 
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Faisal Shahzad 
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HQS@HPC II  
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Abstract 

 SC12 tutorial tut161: The practitioner’s cookbook for good parallel 
performance on multi- and manycore systems 

 Presenter(s): Georg Hager, Gerhard Wellein 

 

 ABSTRACT: 
 
The advent of multi- and manycore chips has led to a further opening of the gap between 
peak and application performance for many scientific codes. This trend is accelerating as 
we move from petascale to exascale. Paradoxically, bad node-level performance helps to 
"efficiently" scale to massive parallelism, but at the price of increased overall time to 
solution. If the user cares about time to solution on any scale, optimal performance on the 
node level is often the key factor. Also, the potential of node-level improvements is widely 
underestimated, thus it is vital to understand the performance-limiting factors on modern 
hardware. We convey the architectural features of current processor chips, 
multiprocessor nodes, and accelerators, as well as the dominant MPI and OpenMP 
programming models, as far as they are relevant for the practitioner. Peculiarities like 
shared vs. separate caches, bandwidth bottlenecks, and ccNUMA characteristics are 
pointed out, and the influence of system topology and affinity on the performance of 
typical parallel programming constructs is demonstrated. Performance engineering is 
introduced as a powerful tool that helps the user assess the impact of possible code 
optimizations by establishing models for the interaction of the software with the hardware 
on which it runs. 
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