
The practitioner’s cookbook for good

parallel performance on multi- and

manycore systems

Georg Hager and Gerhard Wellein

HPC Services, Erlangen Regional Computing Center (RRZE)

SC12 Full-Day Tutorial

November 12, 2012

Salt Lake City, Utah

2

The Plan

Performance on Multicore

Basic multicore architecture

Data access on modern

processors

Performance properties of

multicore/multisocket systems

Micro-

bench

marks

Sync

over-

head

Band-

width

saturation

Case study: Sparse matrix-

vector multiply (part 1)

Multicore performance tools

Part 1

Probing

topology

Enforcing

affinity

Basic performance modeling

Balance

metrics

“Motivated”

optimizations

Case study:

3D Jacobi smoother

The Roofline Model

Hands-On session 1

Efficient programming on

ccNUMA nodes

Simultaneous multi-threading

(SMT)

Theory
Impli-

cations

Facts &

fiction

MPI in multicore environments

Intranode vs.

internode

Rank-

subdomain

mapping

Multicore performance tools

Part 2

Hardware

metrics

Best

practices

Advanced case studies:

Putting cores to better use

Wavefront

temporal

blocking

Sparse MVM

(part 2)

Outlook: Advanced

performance engineering

Sparse MVM

(part 3)
ECM model

Conclusions

Hands-On session 2

SC12 Tutorial

3

Hands-on sessions

 2x ~45 minutes

 Before lunch

 Before end of tutorial

 Technical prerequisites for participants

 Laptop with stable wireless connection

 SSH client

 If you cannot cope with vi: An X server on your laptop

 Each participant will receive a personal user account on the main compute

cluster “LiMa” of RRZE at the University of Erlangen, Germany

 Linux skills required

 Details (login procedures, exercises,…) at

http://moodle.rrze.uni-erlangen.de/moodle/course/view.php?id=256&username=guest&password=guest

http://goo.gl/iJ55s

 SC12 Tutorial Performance on Multicore

http://moodle.rrze.uni-erlangen.de/moodle/course/view.php?id=256&username=guest&password=guest
http://moodle.rrze.uni-erlangen.de/moodle/course/view.php?id=256&username=guest&password=guest
http://moodle.rrze.uni-erlangen.de/moodle/course/view.php?id=256&username=guest&password=guest
http://goo.gl/iJ55s

4

The Plan

Performance on Multicore

Basic multicore architecture

Data access on modern

processors

Performance properties of

multicore/multisocket systems

Micro-

bench

marks

Sync

over-

head

Band-

width

saturation

Case study: Sparse matrix-

vector multiply (part 1)

Multicore performance tools

Part 1

Probing

topology

Enforcing

affinity

Basic performance modeling

Balance

metrics

“Motivated”

optimizations

Case study:

3D Jacobi smoother

The Roofline Model

Hands-On session 1

Efficient programming on

ccNUMA nodes

Simultaneous multi-threading

(SMT)

Theory
Impli-

cations

Facts &

fiction

MPI in multicore environments

Intranode vs.

internode

Rank-

subdomain

mapping

Multicore performance tools

Part 2

Hardware

metrics

Best

practices

Advanced case studies:

Putting cores to better use

Wavefront

temporal

blocking

Sparse MVM

(part 2)

Outlook: Advanced

performance engineering

Sparse MVM

(part 3)
ECM model

Conclusions

Hands-On session 2

SC12 Tutorial

Multicore processor and system

architecture

Basics

6

The x86 multicore evolution so far
Intel Single-Dual-/Quad-/Hexa-/-Cores (one-socket view)

Sandy Bridge EP

“Core i7”

32nm

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

2012: Wider SIMD units

AVX: 256 Bit

P
C

P
C

C

P
C

P
C

C

W
o

o
d

c
re

s
t

“
C

o
re

2
 D

u
o
”

6
5

n
m

H
a

rp
e
rt

o
w

n

“C
o
re

2
 Q

u
a
d

”
4

5
n

m

Memory

Chipset

P
C

P
C

C

Memory

Chipset

O
th

e
r

s
o

c
k
e
t

O
th

e
r

s
o

c
k
e
t

2006: True dual-core

P

C
C

Memory

Chipset

Memory

Chipset

P

C
C

P

C
C

2005: “Fake” dual-core

Nehalem EP

“Core i7”

45nm

Westmere EP

 “Core i7”

32nm

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

2008:

Simultaneous

Multi Threading (SMT)

O
th

e
r

s
o

c
k
e
t

O
th

e
r

s
o

c
k
e
t

C
C

C
C

C
C

C
C

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

2010:

6-core chip

SC12 Tutorial Performance on Multicore

O
th

e
r

s
o

c
k
e
t

7

There is no single driving force for chip performance!

Floating Point (FP) Performance:

 P = ncore * F * S * n

ncore number of cores: 8

F FP instructions per cycle: 2

 (1 MULT and 1 ADD)

S FP ops / instruction: 4 (dp) / 8 (sp)

 (256 Bit SIMD registers – “AVX”)

n Clock speed : ∽2.7 GHz

P = 173 GF/s (dp) / 346 GF/s (sp)

Intel Xeon

“Sandy Bridge EP” socket

4,6,8 core variants available

But: P=5 GF/s (dp) for serial, non-SIMD code

SC12 Tutorial Performance on Multicore

TOP500 rank 1 (1995)

8

Today: Dual-socket Intel (Westmere) node:

Yesterday (2006): Dual-socket Intel “Core2” node:

From UMA to ccNUMA
Basic architecture of commodity compute cluster nodes

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

But: system “anisotropy”

Cache-coherent Non-Uniform Memory

Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at

the price of ccNUMA architectures:

Where does my data finally end up?

On AMD it is even more complicated  ccNUMA within a socket!

SC12 Tutorial Performance on Multicore

9

Back to the 2-chip-per-case age

12 core AMD Magny-Cours – a 2x6-core ccNUMA socket

 AMD: single-socket ccNUMA since Magny Cours

 1 socket: 12-core Magny-Cours built from two 6-core chips

  2 NUMA domains

 2 socket server  4 NUMA domains

 4 socket server:  8 NUMA domains

 WHY?  Shared resources are hard two scale:

 2 x 2 memory channels vs. 1 x 4 memory channels per socket

SC12 Tutorial Performance on Multicore

10

Another flavor of “SMT”

AMD Interlagos / Bulldozer

 Up to 16 cores (8 Bulldozer modules) in a single socket

 Max. 2.6 GHz (+ Turbo Core)

 Pmax = (2.6 x 8 x 8) GF/s

 = 166.4 GF/s

Each Bulldozer module:

 2 “lightweight” cores

 1 FPU: 4 MULT & 4 ADD

(double precision) / cycle

 Supports AVX

 Supports FMA4

2 NUMA domains per socket

16 kB

dedicated

L1D cache

2 DDR3 (shared) memory

channel > 15 GB/s

2048 kB

shared

L2 cache

8 (6) MB

shared

L3 cache

SC12 Tutorial Performance on Multicore

11

Cray XE6 “Interlagos” 32-core dual socket node

 Two 8- (integer-) core chips per

socket @ 2.3 GHz (3.3 @ turbo)

 Separate DDR3 memory

interface per chip

 ccNUMA on the socket!

 Shared FP unit per pair of

integer cores (“module”)

 “256-bit” FP unit

 SSE4.2, AVX, FMA4

 16 kB L1 data cache per core

 2 MB L2 cache per module

 8 MB L3 cache per chip

(6 MB usable)

SC12 Tutorial Performance on Multicore

12

Trading single thread performance for parallelism:

GPGPUs vs. CPUs

 GPU vs. CPU

light speed estimate:

1. Compute bound: 2-5 X

2. Memory Bandwidth: 1-5 X

 Intel Core i5 – 2500

(“Sandy Bridge”)

Intel Xeon E5-2680 DP

node (“Sandy Bridge”)

NVIDIA C2070

(“Fermi”)

Cores@Clock 4 @ 3.3 GHz 2 x 8 @ 2.7 GHz 448 @ 1.1 GHz

Performance+/core 52.8 GFlop/s 43.2 GFlop/s 2.2 GFlop/s

Threads@stream <4 <16 >8000

Total performance+ 210 GFlop/s 691 GFlop/s 1,000 GFlop/s

Stream BW 18 GB/s 2 x 36 GB/s 90 GB/s (ECC=1)

Transistors / TDP 1 Billion* / 95 W 2 x (2.27 Billion / 130W) 3 Billion / 238 W

* Includes on-chip GPU and PCI-Express + Single Precision Complete compute device

SC12 Tutorial Performance on Multicore

13 SC12 Tutorial Performance on Multicore

Parallel programming models
on multicore multisocket nodes

 Shared-memory (intra-node)

 Good old MPI (current standard: 2.2)

 OpenMP (current standard: 3.0)

 POSIX threads

 Intel Threading Building Blocks (TBB)

 Cilk++, OpenCL, StarSs,… you name it

 Distributed-memory (inter-node)

 MPI (current standard: 2.2)

 PVM (gone)

 Hybrid

 Pure MPI

 MPI+OpenMP

 MPI + any shared-memory model

 MPI (+OpenMP) + CUDA/OpenCL/…

All models require

awareness of

topology and affinity

issues for getting

best performance

out of the machine!

14 SC12 Tutorial Performance on Multicore

Parallel programming models:
Pure MPI

 Machine structure is invisible to user:

  Very simple programming model

  MPI “knows what to do”!?

 Performance issues

 Intranode vs. internode MPI

 Node/system topology

15 SC12 Tutorial Performance on Multicore

Parallel programming models:
Pure threading on the node

 Machine structure is invisible to user

  Very simple programming model

 Threading SW (OpenMP, pthreads,

TBB,…) should know about the details

 Performance issues

 Synchronization overhead

 Memory access

 Node topology

16

Parallel programming models:
Hybrid MPI+OpenMP on a multicore multisocket cluster

One MPI process / node

One MPI process / socket:

OpenMP threads on same

socket: “blockwise”

OpenMP threads pinned

“round robin” across

cores in node

Two MPI processes / socket

OpenMP threads

on same socket

SC12 Tutorial Performance on Multicore

Warm-up example:

A parallel histogram calculation

Simple issues when dealing with shared-

memory parallel code

18

The problem

 Compute simplified histogram (HIST(0:15)) of a (integer) random

number generator: HIST(MODULO(RAND() , 16))

 Check if RAND() generates a homogeneous distribution:

HIST(MODULO(RAND() , 16) = N/16 (N: random numbers

generated)

 Architecture: Intel Xeon/Sandy Bridge 2.7 GHz (fixed clock speed)

 Compiler: Intel V12.1 (no inlining)

 Simple Random number generator (taken from man rand ; there

are much better ones…)

SC12 Tutorial Performance on Multicore

int myrand(unsigned long* next) {

 *next = *next * 1103515245 + 12345;

 return((unsigned)(*next/65536) % 32768);

}

19

Serial implementation and baseline

 Serial baselines (N=109)

Computation

lseed = 123;

for(i=0; i<16; ++i)

 hist[i]=0;

timing(&wcstart, &ct);

for(i=0; i<n_loop; ++i)

 hist[RAND & 0xf]++;

timing(&wcend, &ct);

Quality evaluation

double av=n_loop/16.0;

double abserr=0.0;

for(i=0; i<16; ++i) {

 err=(((double)hist[i])-av) /av);

 abserr=MAXIMUM(fabs(err,abserr)

}

RAND = rand_r(&lseed)
Time =6.7 secs
abserr =4 * 10-6

RAND = myrand(&lseed)
Time =3.6 secs
abserr =3 * 10-6

Standard thread-safe random

number generator

SC12 Tutorial Performance on Multicore

20

Straightforward parallelization?!

 Just add a single OpenMP directive…..

 Result Quality

 Performance

 lseed = 123;

 for(i=0; i<16; ++i) hist[i]=0;

 timing(&wcstart, &ct);

#pragma omp parallel for

 for(i=0; i<n_loop; ++i) {

 hist[myrand(&lseed) & 0xf]++;

 }

 timing(&wcend, &ct);

Threads abserr

2 ~0.38

4 ~0.61

8 ~0.80

16 ~0.89

Threads Time

2 ~20s

4 ~23s

8 ~28s

16 ~105s

Problem:

Uncoordinated concurrent updates of
hist[] and lseed

 Runtime and result changes between runs
B

a
s

e
lin

e
: 3

.6
s

B

a
s
e
lin

e
: 3

*1
0

-6

SC12 Tutorial Performance on Multicore

21

Get it correct first!

 Protect update of lseed and hist[] by critical region

 Result Quality

 Performance

#pragma omp parallel for

 for(i=0; i<n_loop; ++i) {

#omp critical{

 hist[myrand(&lseed) & 0xf]++;}

 }

Threads abserr

2 3 * 10-6

4 3 * 10-6

8 3 * 10-6

16 3 * 10-6

Threads Time

2 201s

4 221s

8 217s

16 427s

Result Quality: OK

Problem:

Performance: ~50x-100x slower!

Serialization and some (?) more overhead,

e.g. “synchronization”
B

a
s
e
lin

e
: 3

*1
0

-6

B
a

s
e

lin
e

: 3
.6

s

SC12 Tutorial Performance on Multicore

22

Avoid complete serialization

 Define a private lseed

 Only histogram update needs a #pragma omp critical

 Result Quality

 Performance

#pragma omp parallel for &

 firstprivate(lseed)

 for(i=0; i<n_loop; ++i) {

 value= myrand(&lseed) & 0xf;

#omp critical{ hist[value]++; }

 }

Threads abserr

2 6 * 10-6

4 15 * 10-6

8 24 * 10-6

16 60 * 10-6

Threads Time

2 191s

4 201s

8 194s

16 413s

Problem: Performance improves only
marginally  critical is still an issue!

Problem (?): Result Quality is slightly

worse than baseline.
B

a
s

e
lin

e
: 3

.6
s

B

a
s
e
lin

e
: 3

*1
0

-6

SC12 Tutorial Performance on Multicore

23

Get rid of the critical statement (1)

 Use a shared scoreboard (hist_2D):

 Each thread writes to a separate column of length 16

 Sum up the numbers across each row to get the final hist[]

// additional shared array

// assuming 4 threads

 hist_2D[16][4]=0;

#pragma omp parallel {

 threadID=omp_get_num_threads();

#pragma omp for firstprivate(lseed)

 for(i=0; i<n_loop; ++i) {

 value= myrand(&lseed) & 0xf;

 hist_2D[value][threadID]++; }

#pragma omp critical

 hist[]+= hist_2D[][threadID]

}

[0,0] [0,1] [0,2] [0,3]

[1,0] [1,1] [1,2] [1,3]

… … … ...

[14,0] [14,1] [14,2] [14,3]

[15,0] [15,1] [15,2] [15,3]

4 THREADS

[0]

[1]

…

[14]

[15]

+

hist_2D hist

SC12 Tutorial Performance on Multicore

24

Get rid of the critical statement (2)

 Result Quality

 Performance

Threads abserr

2 6 * 10-6

4 15 * 10-6

8 24 * 10-6

16 60 * 10-6

Threads Time

2 11.7s

4 9.3s

8 6.6s

16 19.3s

Performance improves 30x but still

much slower than serial version ?!

B
a
s
e
lin

e
: 3

*1
0

-6

B
a

s
e

lin
e

: 3
.6

s

[0,0] [0,1] [0,2] [0,3]

[1,0] [1,1] [1,2] [1,3]

… … … ...

[14,0] [14,1] [14,2] [14,3]

[15,0] [15,1] [15,2] [15,3]

4 THREADS

1 Cache Line

1 Cache Line

Each thread writes frequently to
every cache line of hist_2D

 False Sharing

SC12 Tutorial Performance on Multicore

25 SC12 Tutorial Performance on Multicore

Memory

Excursion:

Cache coherence protocol  False Sharing

 Data in cache is only a copy of data in memory

 Multiple copies of same data on multiprocessor systems

 Cache coherence protocol/hardware ensure consistent data view

 Without cache coherence, shared cache lines can become clobbered:

(Cache line size = 2 WORD; A1+A2 are in a single CL)

C1

P1

A1, A2

C2

P2

P1 P2

Load A1

Write A1=0

A1, A2

Load A2

Write A2=0

A1, A2

Bus

Write-back to memory leads to
incoherent data

A1, A2 A1, A2 A1, A2

C1 & C2 entry can not be
merged to:

A1, A2

26 SC12 Tutorial Performance on Multicore

Memory

Excursion:

Cache coherence protocol  False Sharing

 Cache coherence protocol must keep track of cache line status

C1

P1

A1, A2

C2

P2 Load A1

Write A1=0:

P1

Load A2

Write A2=0:

P2

A1, A2 A1, A2

Bus

t

1. Request exclusive
access to CL

2. Invalidate CL in C2

3. Modify A1 in C1

A1, A2

1. Request exclusive
 CL access

2. CL write back+ Invalidate

3. Load CL to C2

4. Modify A2 in C2

A1, A2

A1, A2 A1, A2

C2 is exclusive owner of CL

27

Avoid False Sharing

 Use thread private histogram (hist_local[16]) for thread local

computation & sum up all results at the end

 Result Quality

 Performance

#pragma omp parallel {

 int hist_local[16]=0;

#pragma omp for firstprivate(lseed)

 for(i=0; i<n_loop; ++i) {

 value= myrand(&lseed) & 0xf;

 hist_local[value]++; }

#pragma omp critical

 hist[]+= hist_local[]

}

Threads abserr

2 6 * 10-6

4 15 * 10-6

8 24 * 10-6

16 60 * 10-6

Threads Time

2 1.78s

4 0.89s

8 0.44s

16 0.22s

Performance: OK now – nice scaling

PROBLEM: Quality still gets worse as

number of threads increase?!
Every thread does the same (lseed is the

same!)  more threads less statistics
B

a
s
e
lin

e
: 3

.6
s

B
a
s
e
lin

e
: 3

*1
0

-6

SC12 Tutorial Performance on Multicore

28

Improve Result Quality

 Use different seeds for each thread!

 Result Quality

 Performance

#pragma omp parallel {

 int hist_local[16]=0;

#pragma omp critical {

 int myseed = myrand(&seed); }

#pragma omp for firstprivate(lseed)

 for(i=0; i<n_loop; ++i) {

 value= myrand(&myseed) & 0xf;

 hist_local[value]++; }

#pragma omp critical

 hist[]+= hist_local[];

}

Threads abserr

2 4 * 10-6

4 7 * 10-6

8 10 * 10-6

16 10 * 10-6

Threads Time

2 1.78s

4 0.89s

8 0.44s

16 0.22s

Result quality is slightly worse - we are

doing different things than in the serial

version……..
B

a
s

e
lin

e
: 3

.6
s

B

a
s
e
lin

e
: 3

*1
0

-6

SC12 Tutorial Performance on Multicore

29

Can hyperthreading (SMT) speed up the computation?!

 PRO SMT

 Function evaluation is rather cheap  calling overhead?!

 CON SMT

 Result quality may change

 Performance benefit of SMT

reduces if compiler inlines

subroutine call

 See later for more info on SMT

W/O

SMT

SMT

1 core 3.6s 2.2s

1 socket 0.44s 0.29s

1 node 0.22s 0.14s

W/O

SMT

SMT

1 core 3 * 10-6 4 * 10-6

1 socket 10 * 10-6 10 * 10-6

1 node 10 * 10-6 20 * 10-6

B
a

s
e

lin
e

: 3
*1

0
-6

Result Quality

Performance B
a

s
e

lin
e

: 3
.6

s

SC12 Tutorial Performance on Multicore

30

Conclusions from the histogram example

 Get it correct first!

 Race conditions, deadlocks…

 Avoid complete serialization

 Thread-local data

 Avoid false sharing

 Proper shared array layout

 Padding

 Parallel random numbers may be non-trivial

SC12 Tutorial Performance on Multicore

31

The Plan

Performance on Multicore

Basic multicore architecture

Data access on modern

processors

Performance properties of

multicore/multisocket systems

Micro-

bench

marks

Sync

over-

head

Band-

width

saturation

Case study: Sparse matrix-

vector multiply (part 1)

Multicore performance tools

Part 1

Probing

topology

Enforcing

affinity

Basic performance modeling

Balance

metrics

“Motivated”

optimizations

Case study:

3D Jacobi smoother

The Roofline Model

Hands-On session 1

Efficient programming on

ccNUMA nodes

Simultaneous multi-threading

(SMT)

Theory
Impli-

cations

Facts &

fiction

MPI in multicore environments

Intranode vs.

internode

Rank-

subdomain

mapping

Multicore performance tools

Part 2

Hardware

metrics

Best

practices

Advanced case studies:

Putting cores to better use

Wavefront

temporal

blocking

Sparse MVM

(part 2)

Outlook: Advanced

performance engineering

Sparse MVM

(part 3)
ECM model

Conclusions

Hands-On session 2

SC12 Tutorial

Data access on modern processors

Characterization of memory hierarchies

Balance analysis and light speed estimates

Data access optimization

33

Latency and bandwidth in modern computer environments

ns

ms

ms

1 GB/s

SC12 Tutorial Performance on Multicore

HPC plays here

Avoiding slow data

paths is the key to

most performance

optimizations!

34

Interlude: Data transfers in a memory hierarchy

 How does data travel from memory to the CPU and back?

 Example: Array copy A(:)=C(:)

SC12 Tutorial Performance on Multicore

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1) MISS

write

allocate

evict

(delayed)

3 CL

transfers

LD C(2..Ncl)

ST A(2..Ncl)

HIT

CPU registers

Cache

Memory

CL

CL

CL CL

LD C(1)

NTST A(1)
MISS

2 CL

transfers

LD C(2..Ncl)

NTST A(2..Ncl)

HIT

Standard stores Nontemporal (NT)

stores

50%

performance

boost for

COPY

C(:) A(:) C(:) A(:)

35 SC12 Tutorial Performance on Multicore

The parallel vector triad benchmark

A “swiss army knife” for microbenchmarking

Simple streaming benchmark:

 Report performance for different N

 Choose NITER so that accurate time measurement is possible

 This kernel is limited by data transfer performance for all memory

levels on all current architectures!

double precision, dimension(N) :: A,B,C,D

A=1.d0; B=A; C=A; D=A

do j=1,NITER

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

 if(.something.that.is.never.true.) then

 call dummy(A,B,C,D)

 endif

enddo

Prevents smarty-pants

compilers from doing

“clever” stuff

36

A(:)=B(:)+C(:)*D(:) on one Interlagos core

SC12 Tutorial Performance on Multicore

L1D cache (16k)

L2 cache (2M)

L3 cache

(6M)

Memory 6
x

 b
a

n
d

w
id

th
 g

a
p

 (
1

 c
o

re
)

64 GB/s (no write allocate in L1)

10 GB/s

(incl. write

allocate)

Is this the

limit???

37

STREAM benchmarks:
Memory bandwidth on Cray XE6 Interlagos node

SC12 Tutorial Performance on Multicore

COPY:
A(:)=C(:)

TRIAD:
A(:)=B(:)+s*C(:)

 STREAM is the

“standard” for

memory BW

comparisons

 NT store variants

save write allocate

on stores

 50% boost for

copy, 33% for

TRIAD

 STREAM BW is

practical limit for all

codes
BW saturation

within the 8-core

chip

BW scaling across

NUMA domains

38

The Plan

Performance on Multicore

Basic multicore architecture

Data access on modern

processors

Performance properties of

multicore/multisocket systems

Micro-

bench

marks

Sync

over-

head

Band-

width

saturation

Case study: Sparse matrix-

vector multiply (part 1)

Multicore performance tools

Part 1

Probing

topology

Enforcing

affinity

Basic performance modeling

Balance

metrics

“Motivated”

optimizations

Case study:

3D Jacobi smoother

The Roofline Model

Hands-On session 1

Efficient programming on

ccNUMA nodes

Simultaneous multi-threading

(SMT)

Theory
Impli-

cations

Facts &

fiction

MPI in multicore environments

Intranode vs.

internode

Rank-

subdomain

mapping

Multicore performance tools

Part 2

Hardware

metrics

Best

practices

Advanced case studies:

Putting cores to better use

Wavefront

temporal

blocking

Sparse MVM

(part 2)

Outlook: Advanced

performance engineering

Sparse MVM

(part 3)
ECM model

Conclusions

Hands-On session 2

SC12 Tutorial

General remarks on the performance

properties of multicore multisocket

systems

40

Parallelism in modern computer systems

 Parallel and shared resources within a shared-memory node

GPU #1

GPU #2

PCIe link

 Parallel resources:

 Execution/SIMD units

 Cores

 Inner cache levels

 Sockets / memory domains

 Multiple accelerators

 Shared resources:

 Outer cache level per socket

 Memory bus per socket

 Intersocket link

 PCIe bus(es)

 Other I/O resources

Other I/O

1

2

3

4 5

1

2

3

4

5

6

6

7

7

8

8

9

9

10

10

How does your application react to all of those details?

SC12 Tutorial Performance on Multicore

41 SC12 Tutorial Performance on Multicore

The parallel vector triad benchmark

(Near-)Optimal code on (Cray) x86 machines

Large-N version

(nontemporal stores)

Small-N version

(standard stores)

call get_walltime(S)

!$OMP parallel private(j)

do j=1,R

 if(N.ge.CACHE_LIMIT) then

!DIR$ LOOP_INFO cache_nt(A)

!$OMP parallel do

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

!$OMP end parallel do

 else

!DIR$ LOOP_INFO cache(A)

!$OMP parallel do

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

!$OMP end parallel do

 endif

 ! prevent loop interchange

 if(A(N2).lt.0) call dummy(A,B,C,D)

enddo

!$OMP end parallel

call get_walltime(E)

“outer parallel”: Avoid thread team restart at

every workshared loop

42 SC12 Tutorial Performance on Multicore

The parallel vector triad benchmark

Single thread on Cray XE6 Interlagos node

OMP overhead

and/or lower

optimization w/

OpenMP active

L1 cache L2 cache memory L3 cache

Team restart is

expensive!

 use only

outer parallel

from now on!

43 SC12 Tutorial Performance on Multicore

The parallel vector triad benchmark

Intra-chip scaling on Cray XE6 Interlagos node

L2

bottleneck

Aggregate

L2, exclusive

L3

sync

overhead

Memory BW

saturated @

4 threads

Per-module

L2 caches

44 SC12 Tutorial Performance on Multicore

The parallel vector triad benchmark

Nontemporal stores on Cray XE6 Interlagos node

slow L3

NT stores

hazardous if data

in cache

25% speedup for

vector triad in

memory via NT

stores

45 SC12 Tutorial Performance on Multicore

The parallel vector triad benchmark

Topology dependence on Cray XE6 Interlagos node

sync overhead nearly

topology-independent

@ constant thread count

more aggregate

L3 with more

chips
bandwidth

scalability across

memory

interfaces

46 SC12 Tutorial Performance on Multicore

The parallel vector triad benchmark

Inter-chip scaling on Cray XE6 Interlagos node

sync overhead grows

with core/chip count
bandwidth

scalability across

memory

interfaces

Some data on synchronization overhead

48 SC12 Tutorial Performance on Multicore

Welcome to the multi-/many-core era

Synchronization of threads may be expensive!

!$OMP PARALLEL …

…

!$OMP BARRIER

!$OMP DO

…

!$OMP ENDDO

!$OMP END PARALLEL

On x86 systems there is no hardware support for synchronization!

 Next slide: Test OpenMP Barrier performance…

 for different compilers

 and different topologies:

 shared cache

 shared socket

 between sockets

 and different thread counts

 2 threads

 full domain (chip, socket, node)

Threads are synchronized at explicit AND

implicit barriers. These are a main source of

overhead in OpenMP progams.

Determine costs via modified OpenMP

Microbenchmarks testcase (epcc)

49 SC12 Tutorial Performance on Multicore

Thread synchronization overhead on AMD Interlagos
OpenMP barrier overhead in CPU cycles

2 Threads Cray 8.03 GCC 4.6.2 PGI 11.8 Intel 12.1.3

Shared L2 258 3995 1503 128623

Shared L3 698 2853 1076 128611

Same

socket
879 2785 1297 128695

Other socket 940 2740 / 4222 1284 / 1325 128718

Intel compiler barrier very expensive on Interlagos

 OpenMP & Cray compiler

Full domain Cray 8.03 GCC 4.6.2 PGI 11.8 Intel 12.1.3

Shared L3 2272 27916 5981 151939

Socket 3783 49947 7479 163561

Node 7663 167646 9526 178892

50 SC12 Tutorial Performance on Multicore

Thread synchronization overhead on Intel CPUs
pthreads vs. OpenMP vs. Spin loop

2 Threads Q9550 (shared L2) i7 920 (shared L3)

pthreads_barrier_wait 23739 6511

omp barrier gcc 4.3.3 22603 7333

omp barrier icc 11.0 399 469

Spin loop 231 270

pthreads  OS kernel call

 Syncing SMT threads is expensive

Spin loop does fine for shared cache sync

 OpenMP & Intel compiler

Nehalem 2 Threads Shared SMT threads shared L3 different socket

pthreads_barrier_wait 23352 4796 49237

omp barrier (icc 11.0) 2761 479 1206

Spin loop 17388 267 787

Bandwidth saturation effects in cache and

memory

A look at different processors

52 SC12 Tutorial Performance on Multicore

Bandwidth limitations: Main Memory
Scalability of shared data paths inside a NUMA domain (V-Triad)

1 thread cannot

saturate bandwidth

Saturation with

3 threads

Saturation with

2 threads

Saturation with

4 threads

53 SC12 Tutorial Performance on Multicore

Bandwidth limitations: Outer-level cache

Scalability of shared data paths in L3 cache

54

Conclusions from the data access properties

 Affinity matters!

 Almost all performance properties depend on the position of

 Data

 Threads/processes

 Consequences

 Know where your threads are running

 Know where your data is

 Bandwidth bottlenecks are ubiquitous

 Synchronization overhead may be an issue

 … and also depends on affinity!

SC12 Tutorial Performance on Multicore

Case study:

OpenMP-parallel sparse matrix-vector

multiplication (part 1)

A simple (but sometimes not-so-simple)

example for bandwidth-bound code and

saturation effects in memory

56 SC12 Tutorial Performance on Multicore

Case study: Sparse matrix-vector multiply

 Important kernel in many applications (matrix diagonalization,

solving linear systems)

 Strongly memory-bound for large data sets

 Streaming, with partially indirect access:

 Usually many spMVMs required to solve a problem

 Following slides: Performance data on one 24-core AMD Magny

Cours node

do i = 1,Nr

 do j = row_ptr(i), row_ptr(i+1) - 1

 c(i) = c(i) + val(j) * b(col_idx(j))

 enddo

enddo

!$OMP parallel do

!$OMP end parallel do

57

Bandwidth-bound parallel algorithms:
Sparse MVM

 Data storage format is crucial for performance properties

 Most useful general format: Compressed Row Storage (CRS)

 SpMVM is easily parallelizable in shared and distributed memory

 For large problems, spMVM is

inevitably memory-bound

 Intra-LD saturation effect

on modern multicores

 MPI-parallel spMVM is often

communication-bound

 See later part for what we

can do about this…

SC12 Tutorial Performance on Multicore

58 SC12 Tutorial Performance on Multicore

Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

 Case 1: Large matrix

Intrasocket

bandwidth

bottleneck
Good scaling

across sockets

59 SC12 Tutorial Performance on Multicore

 Case 2: Medium size

Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

Intrasocket

bandwidth

bottleneck

Working set fits

in aggregate

cache

60 SC12 Tutorial Performance on Multicore

Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

 Case 3: Small size

No bandwidth

bottleneck

Parallelization

overhead

dominates

61

Conclusions from the spMVM benchmarks

 If the problem is “large”, bandwidth saturation on the socket is

a reality

  There are “spare cores”

 Very common performance pattern

 What to do with spare cores?

 Let them idle  saves energy with minor

loss in time to solution

 Use them for other tasks, such as MPI

communication

 Can we predict the saturated performance?

 Bandwidth-based performance modeling!

 What is the significance of the indirect access?

Can it be modeled?

 Can we predict the saturation point?

 … and why is this important?

SC12 Tutorial Performance on Multicore

S
e

e
 l
a

te
r

fo
r

a
n

s
w

e
rs

!

62

The Plan

Performance on Multicore

Basic multicore architecture

Data access on modern

processors

Performance properties of

multicore/multisocket systems

Micro-

bench

marks

Sync

over-

head

Band-

width

saturation

Case study: Sparse matrix-

vector multiply (part 1)

Multicore performance tools

Part 1

Probing

topology

Enforcing

affinity

Basic performance modeling

Balance

metrics

“Motivated”

optimizations

Case study:

3D Jacobi smoother

The Roofline Model

Hands-On session 1

Efficient programming on

ccNUMA nodes

Simultaneous multi-threading

(SMT)

Theory
Impli-

cations

Facts &

fiction

MPI in multicore environments

Intranode vs.

internode

Rank-

subdomain

mapping

Multicore performance tools

Part 2

Hardware

metrics

Best

practices

Advanced case studies:

Putting cores to better use

Wavefront

temporal

blocking

Sparse MVM

(part 2)

Outlook: Advanced

performance engineering

Sparse MVM

(part 3)
ECM model

Conclusions

Hands-On session 2

SC12 Tutorial

Probing node topology

 Standard tools

 likwid-topology

64 SC12 Tutorial Performance on Multicore

How do we figure out the node topology?

 Topology =

 Where in the machine does core #n reside? And do I have to remember this

awkward numbering anyway?

 Which cores share which cache levels?

 Which hardware threads (“logical cores”) share a physical core?

 Linux

 cat /proc/cpuinfo is of limited use

 Core numbers may change across kernels

and BIOSes even on identical hardware

 numactl --hardware prints

ccNUMA node information 

 Information on caches is harder

to obtain

$ numactl --hardware

available: 4 nodes (0-3)

node 0 cpus: 0 1 2 3 4 5

node 0 size: 8189 MB

node 0 free: 3824 MB

node 1 cpus: 6 7 8 9 10 11

node 1 size: 8192 MB

node 1 free: 28 MB

node 2 cpus: 18 19 20 21 22 23

node 2 size: 8192 MB

node 2 free: 8036 MB

node 3 cpus: 12 13 14 15 16 17

node 3 size: 8192 MB

node 3 free: 7840 MB

65 SC12 Tutorial

Likwid Lightweight Performance Tools

 Lightweight command line tools for Linux

 Help to face the challenges without getting in the way

 Focus on X86 architecture

 Philosophy:

 Simple

 Efficient

 Portable

 Extensible

Open source project (GPL v2):

http://code.google.com/p/likwid/

Performance on Multicore

http://code.google.com/p/likwid/

66 SC12 Tutorial Performance on Multicore

likwid-topology – Topology information

 Based on cpuid information

 Functionality:

 Measured clock frequency

 Thread topology

 Cache topology

 Cache parameters (-c command line switch)

 ASCII art output (-g command line switch)

 Currently supported (more under development):

 Intel Core 2 (45nm + 65 nm)

 Intel Nehalem + Westmere (Sandy Bridge in beta phase)

 AMD K10 (Quadcore and Hexacore)

 AMD K8

 Linux OS

67 SC12 Tutorial Performance on Multicore

Output of likwid-topology –g
on one node of Cray XE6 “Hermit”

CPU type: AMD Interlagos processor

Hardware Thread Topology

Sockets: 2

Cores per socket: 16

Threads per core: 1

HWThread Thread Core Socket

0 0 0 0

1 0 1 0

2 0 2 0

3 0 3 0

[...]

16 0 0 1

17 0 1 1

18 0 2 1

19 0 3 1

[...]

Socket 0: (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

Socket 1: (16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)

Cache Topology

Level: 1

Size: 16 kB

Cache groups: (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13

) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (

28) (29) (30) (31)

68

Output of likwid-topology continued

SC12 Tutorial Performance on Multicore

Level: 2

Size: 2 MB

Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15) (16 17) (18

19) (20 21) (22 23) (24 25) (26 27) (28 29) (30 31)

Level: 3

Size: 6 MB

Cache groups: (0 1 2 3 4 5 6 7) (8 9 10 11 12 13 14 15) (16 17 18 19 20 21 22 23) (24 25 26

27 28 29 30 31)

NUMA Topology

NUMA domains: 4

Domain 0:

Processors: 0 1 2 3 4 5 6 7

Memory: 7837.25 MB free of total 8191.62 MB

Domain 1:

Processors: 8 9 10 11 12 13 14 15

Memory: 7860.02 MB free of total 8192 MB

Domain 2:

Processors: 16 17 18 19 20 21 22 23

Memory: 7847.39 MB free of total 8192 MB

Domain 3:

Processors: 24 25 26 27 28 29 30 31

Memory: 7785.02 MB free of total 8192 MB

69

Output of likwid-topology continued

SC12 Tutorial Performance on Multicore

Graphical:

Socket 0:

+---+

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | | 8 | | 9 | | 10 | | 11 | | 12 | | 13 | | 14 | | 15 | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| +---+ +---+ |

| | 6MB | | 6MB | |

| +---+ +---+ |

+---+

Socket 1:

+---+

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16 | | 17 | | 18 | | 19 | | 20 | | 21 | | 22 | | 23 | | 24 | | 25 | | 26 | | 27 | | 28 | | 29 | | 30 | | 31 | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| +---+ +---+ |

| | 6MB | | 6MB | |

| +---+ +---+ |

+---+

Enforcing thread/process-core affinity

under the Linux OS

Standard tools and OS affinity facilities under

program control

likwid-pin

71 SC12 Tutorial Performance on Multicore

Motivation: STREAM benchmark on 12-core Intel Westmere

Anarchy vs. thread pinning

No pinning

Pinning (physical cores first,

alternating sockets)

There are several reasons for caring about

affinity:

 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention

72 SC12 Tutorial Performance on Multicore

Generic thread/process-core affinity under Linux
Overview

 taskset [OPTIONS] [MASK | -c LIST] \

 [PID | command [args]...]

 taskset binds processes/threads to a set of CPUs. Examples:

taskset 0x0006 ./a.out

taskset –c 4 33187

mpirun –np 2 taskset –c 0,2 ./a.out # doesn’t always work

 Processes/threads can still move within the set!

 Alternative: let process/thread bind itself by executing syscall
#include <sched.h>

int sched_setaffinity(pid_t pid, unsigned int len,

 unsigned long *mask);

 Disadvantage: which CPUs should you bind to on a non-exclusive
machine?

 Still of value on multicore/multisocket cluster nodes, UMA or ccNUMA

73 SC12 Tutorial Performance on Multicore

Generic thread/process-core affinity under Linux

 Complementary tool: numactl

Example: numactl --physcpubind=0,1,2,3 command [args]

Bind process to specified physical core numbers

Example: numactl --cpunodebind=1 command [args]

Bind process to specified ccNUMA node(s)

 Many more options (e.g., interleave memory across nodes)

  see section on ccNUMA optimization

 Diagnostic command (see earlier):
numactl --hardware

 Again, this is not suitable for a shared machine

74 SC12 Tutorial Performance on Multicore

More thread/Process-core affinity (“pinning”) options

 Highly OS-dependent system calls

 But available on all systems

 Linux: sched_setaffinity(), PLPA (see below)  hwloc
Solaris: processor_bind()

Windows: SetThreadAffinityMask()
…

 Support for “semi-automatic” pinning in some
compilers/environments

 Intel compilers > V9.1 (KMP_AFFINITY environment variable)

 PGI, Pathscale, GNU

 SGI Altix dplace (works with logical CPU numbers!)

 Generic Linux: taskset, numactl, likwid-pin (see below)

 Affinity awareness in MPI libraries

 SGI MPT

 OpenMPI

 Intel MPI

 …

If combined with OpenMP,

issues may arise

75 SC12 Tutorial Performance on Multicore

Likwid-pin
Overview

 Part of the LIKWID tool suite: http://code.google.com/p/likwid

 Pins processes and threads to specific cores without touching code

 Directly supports pthreads, gcc OpenMP, Intel OpenMP

 Detects OpenMP implementation automatically

 Based on combination of wrapper tool together with overloaded pthread

library  binary must be dynamically linked!

 Can also be used as a superior replacement for taskset

 Usage examples:

 Physical numbering:

likwid-pin -c 0,2,4-6 ./myApp parameters

 Logical numbering (4 cores on socket 0) with “skip mask” specified:

likwid-pin -s 3 -c S0:0-3 ./myApp parameters

http://code.google.com/p/likwid

76 SC12 Tutorial Performance on Multicore

Likwid-pin
Example: Intel OpenMP

 Running the STREAM benchmark with likwid-pin:

 $ export OMP_NUM_THREADS=4

 $ likwid-pin -s 0x1 -c 0,1,4,5 ./stream

 [likwid-pin] Main PID -> core 0 - OK

 --

 Double precision appears to have 16 digits of accuracy

 Assuming 8 bytes per DOUBLE PRECISION word

 --

 [... some STREAM output omitted ...]

 The *best* time for each test is used

 EXCLUDING the first and last iterations

 [pthread wrapper] PIN_MASK: 0->1 1->4 2->5

 [pthread wrapper] SKIP MASK: 0x1

 [pthread wrapper 0] Notice: Using libpthread.so.0

 threadid 1073809728 -> SKIP

 [pthread wrapper 1] Notice: Using libpthread.so.0

 threadid 1078008128 -> core 1 - OK

 [pthread wrapper 2] Notice: Using libpthread.so.0

 threadid 1082206528 -> core 4 - OK

 [pthread wrapper 3] Notice: Using libpthread.so.0

 threadid 1086404928 -> core 5 - OK

 [... rest of STREAM output omitted ...]

Skip shepherd

thread

Main PID always

pinned

Pin all spawned

threads in turn

77 SC12 Tutorial Performance on Multicore

Likwid-pin
Using logical core numbering

 Core numbering may vary from system to system even with

identical hardware

 Likwid-topology delivers this information, which can then be fed into likwid-

pin

 Alternatively, likwid-pin can abstract this variation and provide a

purely logical numbering (physical cores first)

 Across all cores in the node:
OMP_NUM_THREADS=8 likwid-pin -c N:0-7 ./a.out

 Across the cores in each socket and across sockets in each node:
OMP_NUM_THREADS=8 likwid-pin -c S0:0-3@S1:0-3 ./a.out

Socket 0:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 0 1| | 2 3| | 4 5| | 6 7| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Socket 1:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 8 9| |10 11| |12 13| |14 15| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Socket 0:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 0 8| | 1 9| | 2 10| | 3 11| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Socket 1:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 4 12| | 5 13| | 6 14| | 7 15| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

78

Likwid-pin
Using logical core numbering

 Possible unit prefixes

N node

S socket

M NUMA domain

C outer level cache group

SC12 Tutorial Performance on Multicore

Chipset

Memory

Default if –c is not

specified!

79

likwid-mpirun

MPI startup and Hybrid pinning

 How do you manage affinity with MPI or hybrid MPI/threading?

 In the long run a unified standard is needed

 Till then, likwid-mpirun provides a portable/flexible solution

 The examples here are for Intel MPI/OpenMP programs, but are

also applicable to other threading models

Pure MPI:

$ likwid-mpirun -np 16 -nperdomain S:2 ./a.out

Hybrid:

$ likwid-mpirun -np 16 -pin S0:0,1_S1:0,1 ./a.out

SC12 Tutorial Performance on Multicore

80

likwid-mpirun

1 MPI process per node

likwid-mpirun –np 2 -pin N:0-11 ./a.out

SC12 Tutorial

Intel MPI+compiler:
OMP_NUM_THREADS=12 mpirun –ppn 1 –np 2 –env KMP_AFFINITY scatter ./a.out

Performance on Multicore

81

likwid-mpirun

1 MPI process per socket

likwid-mpirun –np 4 –pin S0:0-5_S1:0-5 ./a.out

SC12 Tutorial

Intel MPI+compiler:
OMP_NUM_THREADS=6 mpirun –ppn 2 –np 4 \

 –env I_MPI_PIN_DOMAIN socket –env KMP_AFFINITY scatter ./a.out

Performance on Multicore

82

likwid-mpirun

Integration of likwid-perfctr

SC12 Tutorial

 likwid-mpirun can optionally set up likwid-perfctr for you

$ likwid-mpirun –np 16 –nperdomain S:2 –perf FLOPS_DP \

 -marker –mpi intelmpi ./a.out

 likwid-mpirun generates an intermediate perl script which is called

by the native MPI start mechanism

 According the MPI rank the script pins the process and threads

 If you use perfctr after the run for each process a file in the format
Perf-<hostname>-<rank>.txt

Its output which contains the perfctr results.

 In the future analysis scripts will be added which generate reports

of the raw data (e.g. as html pages)

Performance on Multicore

83

The Plan

Performance on Multicore

Basic multicore architecture

Data access on modern

processors

Performance properties of

multicore/multisocket systems

Micro-

bench

marks

Sync

over-

head

Band-

width

saturation

Case study: Sparse matrix-

vector multiply (part 1)

Multicore performance tools

Part 1

Probing

topology

Enforcing

affinity

Basic performance modeling

Balance

metrics

“Motivated”

optimizations

Case study:

3D Jacobi smoother

The Roofline Model

Hands-On session 1

Efficient programming on

ccNUMA nodes

Simultaneous multi-threading

(SMT)

Theory
Impli-

cations

Facts &

fiction

MPI in multicore environments

Intranode vs.

internode

Rank-

subdomain

mapping

Multicore performance tools

Part 2

Hardware

metrics

Best

practices

Advanced case studies:

Putting cores to better use

Wavefront

temporal

blocking

Sparse MVM

(part 2)

Outlook: Advanced

performance engineering

Sparse MVM

(part 3)
ECM model

Conclusions

Hands-On session 2

SC12 Tutorial

84

The Plan

Performance on Multicore

Basic multicore architecture

Data access on modern

processors

Performance properties of

multicore/multisocket systems

Micro-

bench

marks

Sync

over-

head

Band-

width

saturation

Case study: Sparse matrix-

vector multiply (part 1)

Multicore performance tools

Part 1

Probing

topology

Enforcing

affinity

Basic performance modeling

Balance

metrics

“Motivated”

optimizations

Case study:

3D Jacobi smoother

The Roofline Model

Hands-On session 1

Efficient programming on

ccNUMA nodes

Simultaneous multi-threading

(SMT)

Theory
Impli-

cations

Facts &

fiction

MPI in multicore environments

Intranode vs.

internode

Rank-

subdomain

mapping

Multicore performance tools

Part 2

Hardware

metrics

Best

practices

Advanced case studies:

Putting cores to better use

Wavefront

temporal

blocking

Sparse MVM

(part 2)

Outlook: Advanced

performance engineering

Sparse MVM

(part 3)
ECM model

Conclusions

Hands-On session 2

SC12 Tutorial

Basic performance modeling and

“motivated optimizations”

Machine and code balance

Example: The Jacobi smoother

The Roofline Model

86

Balance metric: Machine balance

 The machine balance for data memory access of a specific computer

is given by

(architectural

limitation)

 Bandwidth: 1 W = 8 bytes = 64 bits

 bS = achievable bandwidth over

 the slowest data path

Floating point peak: Pmax

 Machine Balance = How many input operands can be delivered for

each FP operation?

 Typical values (main memory):
AMD Interlagos (2.3 GHz): Bm = {(17/8) GW/s} / {4 x 2.3 x 8 GFlop/s} ~0.029 W/F

 Intel Sandy Bridge EP (2.7 GHz): ~0.025 W/F

NEC SX9 (vector): ~0.3 W/F

 nVIDIA GTX480 ~0.026 W/F

]flops/s[

]words/s[

maxP

b
B S

m 

SC12 Tutorial Performance on Multicore

87

Machine Balance: Typical values beyond main memory

Data path Balance BM [W/F]

Cache 0.5 – 1.0

Machine (main memory) 0.01 – 0.5

Interconnect (Infiniband) 0.001 – 0.002

Interconnect (GBit ethernet) 0.0001 – 0.0007

Disk (or disk subsystem) 0.0001 – 0.001

1/BM = “Computational Intensity”: How many FP ops can be

performed before FP performance becomes a bottleneck?

D
o

u
b

le
 p

re
c

is
io

n
:

W
 


 6
4
-B

it

SC12 Tutorial Performance on Multicore

88

Balance metric: Code balance & lightspeed estimates

 BM tells us what the hardware can deliver at most

 Code balance (BC) quantifies

the requirements of the code:

 Expected fraction of peak performance

(„lightspeed"):

l =1  code is not limited by bandwidth

 Lightspeed for absolute performance:

(Pmax : “applicable” peak performance)

 Example: Vector triad A(:)=B(:)+C(:)*D(:) on 2.3 GHz Interlagos

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)

Bm/Bc = 0.029/2.5 = 0.012, i.e. 1.2 % of peak performance (~1.7 GF/s)

][operations arithmetic

][(LD/ST) transfer data

flops

words
Bc 













c

m

B

B
l ,1min

This is what we

need

This is what we

get













C

S

B

b
PPlP ,min maxmax

SC12 Tutorial Performance on Multicore

89

Balance metric (a.k.a. the “roofline model”)

 The balance metric formalism is based on some (crucial)

assumptions:

 The code makes balanced use of MULT and ADD operation. For others

(e.g. A=B+C) the peak performance input parameter Pmax has to be

adjusted (e.g. Pmax  Pmax/2)

 Attainable bandwidth of code = input parameter! Determine effective

bandwidth via simple streaming benchmarks to model more complex

kernels and applications.

 Definition is based on 64-bit arithmetic but can easily be adjusted, e.g. for

32-bit

 Data transfer and arithmetic overlap perfectly!

 Slowest data path is modeled only; all others are assumed to be infinitely

fast

 Latency effects are ignored, i.e. perfect streaming mode

SC12 Tutorial Performance on Multicore

90

Balance metric: 2D diffusion equation + Jacobi solver

 Diffusion equation in 2D

 Stationary solution with Dirichlet boundary conditions using

Jacobi iteration scheme can be obtained with:

Balance (crude estimate incl. write allocate):

phi(:,:,t0): 3 LD +

phi(:,:,t1): 1 ST+ 1LD

 BC = 5 W / 4 FLOPs = 1.25 W / F

Reuse when computing
phi(i+2,k,t1)

WRITE ALLOCATE:
LD + ST phi(i,k,t1)

SC12 Tutorial Performance on Multicore

91

Balance metric: 2 D Jacobi

 Modern cache subsystems may further reduce memory traffic

If cache is large enough to hold at least 2 rows
(shaded region): Each phi(:,:,t0) is loaded

once from main memory and reused 3 times from

cache:

phi(:,:,t0): 1 LD + phi(:,:,t1): 1 ST+ 1LD

BC = 3 W / 4 F = 0.75 W / F

If cache is large enough to hold at least one row
phi(:,k-1,t0) needs to be reloaded:

phi(:,:,t0): 2 LD + phi(:,:,t1): 1 ST+ 1LD

BC = 4 W / 4 F = 1.0 W / F

Beyond that:
phi(:,:,t0): 2 LD + phi(:,:,t1): 1 ST+ 1LD

BC = 5 W / 4 F = 1.25 W / F

SC12 Tutorial Performance on Multicore

92

Performance metrics: 2D Jacobi

 Alternative implementation (“Macho FLOP version”)

 MFlops/sec increases by 7/4 but time to solution remains the same

 Better metric (for many iterative stencil schemes):

 Lattice Site Updates per Second (LUPs/sec)

 2D Jacobi example: Compute LUPs/sec metric via

SC12 Tutorial Performance on Multicore

wall

maxmaxmax]/[
T

kiit
sMLUPsP




93

Balance metric for 3D Jacobi

 3D sweep:

 Best case balance: 1 LD phi(i,j,k+1,t0)

 1 ST + 1 write allocate phi(i,j,k,t1)

 6 flops

 BC = 0.5 W/F (24 bytes/update)

 No 2-layer condition but 2 rows fit: BC = 5/6 W/F (40 bytes/update)

 Worst case (2 rows do not fit): BC = 7/6 W/F (56 bytes/update)

SC12 Tutorial Performance on Multicore

do k=1,kmax

 do j=1,jmax

 do i=1,imax

 phi(i,j,k,t1) = oos *(phi(i-1,j,k,t0)+phi(i+1,j,k,t0) &

 + phi(i,j-1,k,t0)+phi(i,j+1,k,t0) &

 + phi(i,j,k-1,t0)+phi(i,j,k+1,t0))

 enddo

 enddo

enddo

94

3D Jacobi solver
Performance of vanilla code on one Interlagos chip (8 cores)

SC12 Tutorial Performance on Multicore

cache memory

2 layers of source array

drop out of L2 cache

Problem size: N3

95

Conclusions from the Jacobi example

 We have made sense of the memory-bound performance vs.

problem size

 “Layer conditions” lead to predictions of code balance

 Achievable memory bandwidth is input parameter

 The model works only if the bandwidth is “saturated”

 In-cache modeling is more involved

 Optimization == reducing the code balance by code

transformations

 See below

SC12 Tutorial Performance on Multicore

Data access optimizations

General considerations

Case study: Optimizing a Jacobi solver

97

Premise

Data access is the most prevalent

performance-limiting factor in computing

SC12 Tutorial Performance on Multicore

98 SC12 Tutorial Performance on Multicore

Data access – general considerations

 Case 1: O(N)/O(N) Algorithms

 O(N) arithmetic operations vs. O(N) data access operations

 Examples: Scalar product, vector addition, sparse MVM etc.

 Performance limited by memory BW for large N (“memory bound”)

 Limited optimization potential for single loops

 …at most a constant factor for multi-loop operations

 Example: successive vector additions

do i=1,N

 a(i)=b(i)+c(i)

enddo

do i=1,N

 z(i)=b(i)+e(i)

enddo no optimization
potential for either loop

do i=1,N

 a(i)=b(i)+c(i)

 z(i)=b(i)+e(i)

enddo

fusing different loops

allows O(N) data

reuse from registers

Loop fusion

Bc = 3/1 W/F

Bc = 5/2 W/F

99 SC12 Tutorial Performance on Multicore

Data access – general guidelines

 Case 2: O(N2)/O(N2) algorithms

 Examples: dense matrix-vector multiply, matrix addition, dense matrix

transposition etc.

 Nested loops

 Memory bound for large N

 Some optimization potential (at most constant factor)

 Can often enhance code balance by outer loop unrolling or spatial blocking

 Example: dense matrix-vector multiplication

do i=1,N

 do j=1,N

 c(i)=c(i)+a(j,i)*b(j)

 enddo

enddo

= + •

Naïve version loads b[] N times!

100 SC12 Tutorial Performance on Multicore

Data access – general guidelines

 O(N2)/O(N2) algorithms cont’d

 “Unroll & jam” optimization (or “outer loop unrolling”)

do i=1,N

 do j=1,N

 c(i)=c(i)+a(j,i)*b(j)

 enddo

enddo

do i=1,N,2

 do j=1,N

 c(i) =c(i) +a(j,i) *b(j)

 enddo

 do j=1,N

 c(i+1)=c(i+1)+a(j,i+1)*b(j)

 enddo

enddo

unroll

do i=1,N,2

 do j=1,N

 c(i) =c(i) +a(j,i) * b(j)

 c(i+1)=c(i+1)+a(j,i+1)* b(j)

 enddo

enddo

jam

b(j) can be re-used once

from register → save 1 LD

operation

Lowers Bc from 1 to ¾ W/F

101 SC12 Tutorial Performance on Multicore

 O(N2)/O(N2) algorithms cont’d

 Data access pattern for 2-way unrolled dense MVM:

 Data transfers can further be reduced by more aggressive unrolling (i.e., m-

way instead of 2-way)

 Significant code bloat (try to use compiler directives if possible)

 Main memory limit: b[] only be loaded once from memory (Bc ≈ ½ W/F) (can be

achieved by high unrolling OR large outer level caches)

 Outer loop unrolling can also be beneficial to reduce traffic within caches!

 Beware: CPU registers are a limited resource

 Excessive unrolling can cause register spills to memory

Data access – general guidelines

= + •

Vector b[] now only loaded

N/2 times!

Remainder loop handled

separately

Case study:

3D Jacobi solver

Spatial blocking for improved cache utilization

103

Remember the 3D Jacobi solver on Interlagos?

SC12 Tutorial Performance on Multicore

2 layers of source array

drop out of L2 cache

 avoid through spatial

blocking!

104 SC12 Tutorial Performance on Multicore

Jacobi iteration (2D): No spatial Blocking

 Assumptions:

 cache can hold 32 elements (16 for each array)

 Cache line size is 4 elements

 Perfect eviction strategy for source array

This element is needed for three more updates; but 29 updates happen before this element is

used for the last time

i

k

105 SC12 Tutorial Performance on Multicore

Jacobi iteration (2D): No spatial blocking

 Assumptions:

 cache can hold 32 elements (16 for each array)

 Cache line size is 4 elements

 Perfect eviction strategy for source array

This element is needed for

three more updates but has

been evicted

106 SC12 Tutorial Performance on Multicore

Jacobi iteration (2D): Spatial Blocking

 divide system into blocks

 update block after block

 same performance as if three complete rows of the systems fit

into cache

107 SC12 Tutorial Performance on Multicore

Jacobi iteration (2D): Spatial Blocking

 Spatial blocking reorders traversal of data to account for the data

update rule of the code

Elements stay sufficiently long in cache to be fully reused

Spatial blocking improves temporal locality!
(Continuous access in inner loop ensures spatial locality)

This element remains in cache until it is fully used (only 6 updates happen before

last use of this element)

108 SC12 Tutorial Performance on Multicore

Jacobi iteration (2D): Spatial blocking

 Implementation:

 Guidelines:

 Blocking of inner loop levels (traversing continuously through main memory)

 Blocking size iblock large enough to keep elements sufficiently long in

cache but cache size is a hard limit!

 Blocking loops may have some impact on ccNUMA page placement (see

later)

do it=1,itmax

 do ioffset=1,imax,iblock

 do k=1,kmax

 do i=ioffset, min(imax,ioffset+iblock-1)

 phi(i, k, t1) = (phi(i-1, k, t0) + phi(i+1, k, t0)

 + phi(i, k-1, t0) + phi(i, k+1, t0))*0.25

 enddo

 enddo

 enddo

enddo

loop over i-blocks

109

3D Jacobi solver (problem size 4003)
Blocking different loop levels (8 cores Interlagos)

SC12 Tutorial Performance on Multicore

3D vs. 2D?

OpenMP parallelization?

Optimal block size?

k-loop blocking?

 see Exercise!

24B/update

performance

model

inner (i) loop

blocking

middle (j) loop

blocking

optimum j

block size

110

3D Jacobi solver
Spatial blocking + nontemporal stores

SC12 Tutorial Performance on Multicore

blocking
NT

stores

expected

boost:

50%

16 B/update perf. model

The Roofline Model

112

The Roofline Model – A tool for more insight

1. Determine the applicable peak performance of a loop, assuming

that data comes from L1 cache

2. Determine the computational intensity (flops per byte

transferred) over the slowest data path utilized (1/Bc)

3. Determine the applicable peak bandwidth of the slowest data

path utilized

Example: do i=1,N; s=s+a(i); enddo

in DP on hypothetical CPU, N large

ADD peak (half of full peak)

4-cycle latency per ADD if not unrolled

Computational intensity (= 1/Bc)

Expected

performance

SC12 Tutorial Performance on Multicore

113

Input to the roofline model

… on the example of do i=1,N; s=s+a(i); enddo

SC12 Tutorial Performance on Multicore

analysis

Code analysis:

1 ADD + 1 LOAD

architecture

Throughput: 1 ADD + 1 LD/cy

Pipeline depth: 4 cy (ADD)

measurement

Maximum memory

bandwidth 10 GB/s

Memory-bound @ large N!

Pmax = 1.25 GF/s

114

Factors to consider in the roofline model

Bandwidth-bound (simple case)

 Accurate traffic calculation (write-

allocate, strided access, …)

 Practical ≠ theoretical BW limits

 Erratic access patterns

Core-bound (may be complex)

 Multiple bottlenecks: LD/ST,

arithmetic, pipelines, SIMD,

execution ports

 Still probably some contributions

from data access

SC12 Tutorial Performance on Multicore

115

Example: SpMVM node performance model

 Sparse MVM in

double precision w/ CRS:

 DP CRS code balance

  quantifies extra traffic

for loading RHS more than

once

 Predicted Performance = streamBW/BCRS

 Determine  by measuring performance and actual memory bandwidth

8 8 8 4 8

8

G. Schubert, G. Hager, H. Fehske and G. Wellein: Parallel sparse matrix-vector multiplication as a test case

for hybrid MPI+OpenMP programming. Workshop on Large-Scale Parallel Processing (LSPP 2011), May 20th,

2011, Anchorage, AK. DOI:10.1109/IPDPS.2011.332, Preprint: arXiv:1101.0091

SC12 Tutorial Performance on Multicore

http://dx.doi.org/10.1109/IPDPS.2011.332
http://arxiv.org/abs/1101.0091

116

The sparsity pattern determines 

 Analysis for HMeP matrix on Nehalem EP socket

 BW used by spMVM kernel = 18.1 GB/s  should get ≈ 2.66 Gflop/s

spMVM performance if  = 0

 Measured spMVM performance = 2.25 Gflop/s

 Solve 2.25 Gflop/s = BW/BCRS for  ≈ 2.5

 37.5 extra bytes per row

 RHS is loaded 6 times from memory

 about 33% of BW goes into RHS

 Conclusion: Even if the roofline/bandwidth model does not work

100%, we can still learn something from the deviations

SC12 Tutorial Performance on Multicore

117

Input to the roofline model

… on the example of spMVM with HMeP matrix

Code analysis:

1 ADD, 1 MULT,

(2.5+2/Nnzr) LOADs,

1/Nnzr STOREs + 

Throughput: 1 ADD, 1 MULT

+ 1 LD + 1ST/cy

Maximum memory

bandwidth 20 GB/s

Memory-bound!

 = 2.5

Measured memory BW

for spMVM 18.1 GB/s

SC12 Tutorial Performance on Multicore

118

Assumptions and shortcomings of the roofline model

 Assumes one of two bottlenecks

1. In-core execution

2. Bandwidth of a single hierarchy level

 Latency effects are not modeled  pure data streaming assumed

 In-core execution is sometimes hard to

model

 Saturation effects in multicore

chips are not explained

 ECM model gives more insight

(see later)

A(:)=B(:)+C(:)*D(:)

Roofline predicts

full socket BW

SC12 Tutorial Performance on Multicore

119

The Plan

Performance on Multicore

Basic multicore architecture

Data access on modern

processors

Performance properties of

multicore/multisocket systems

Micro-

bench

marks

Sync

over-

head

Band-

width

saturation

Case study: Sparse matrix-

vector multiply (part 1)

Multicore performance tools

Part 1

Probing

topology

Enforcing

affinity

Basic performance modeling

Balance

metrics

“Motivated”

optimizations

Case study:

3D Jacobi smoother

The Roofline Model

Hands-On session 1

Efficient programming on

ccNUMA nodes

Simultaneous multi-threading

(SMT)

Theory
Impli-

cations

Facts &

fiction

MPI in multicore environments

Intranode vs.

internode

Rank-

subdomain

mapping

Multicore performance tools

Part 2

Hardware

metrics

Best

practices

Advanced case studies:

Putting cores to better use

Wavefront

temporal

blocking

Sparse MVM

(part 2)

Outlook: Advanced

performance engineering

Sparse MVM

(part 3)
ECM model

Conclusions

Hands-On session 2

SC12 Tutorial

Efficient parallel programming

on ccNUMA nodes

Performance characteristics of ccNUMA nodes

First touch placement policy

C++ issues

ccNUMA locality and dynamic scheduling

ccNUMA locality beyond first touch

121 SC12 Tutorial Performance on Multicore

ccNUMA performance problems
“The other affinity” to care about

 ccNUMA:

 Whole memory is transparently accessible by all processors

 but physically distributed

 with varying bandwidth and latency

 and potential contention (shared memory paths)

 How do we make sure that memory access is always as "local"

and "distributed" as possible?

 Page placement is implemented in units of OS pages (often 4kB, possibly

more)

C C C C

M M

C C C C

M M

122

Cray XE6 Interlagos node

4 chips, two sockets, 8 threads per ccNUMA domain

 ccNUMA map: Bandwidth penalties for remote access

 Run 8 threads per ccNUMA domain (1 chip)

 Place memory in different domain  4x4 combinations

 STREAM triad benchmark using nontemporal stores

SC12 Tutorial Performance on Multicore

S
T

R
E

A
M

 t
ri

a
d

 p
e

rf
o

rm
a

n
c

e
 [

M
B

/s
]

Memory node

C
P

U
 n

o
d

e

123 SC12 Tutorial Performance on Multicore

ccNUMA locality tool numactl:

How do we enforce some locality of access?

 numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out # map pages only on <nodes>

 --preferred=<node> a.out # map pages on <node>

 # and others if <node> is full

 --interleave=<nodes> a.out # map pages round robin across

 # all <nodes>

 Examples:

env OMP_NUM_THREADS=2 numactl --membind=0 --cpunodebind=1 ./stream

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \

 likwid-pin -c N:0,4,8,12 ./stream

 But what is the default without numactl?

124 SC12 Tutorial Performance on Multicore

ccNUMA default memory locality

 "Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the

processor that first touches it!

 Except if there is not enough local memory available

 This might be a problem, see later

 Caveat: "touch" means "write", not "allocate"

 Example:

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE

 huge[i] = 0.0;

 It is sufficient to touch a single item to map the entire page

Memory not

mapped here yet

Mapping takes

place here

125 SC12 Tutorial Performance on Multicore

Coding for ccNUMA data locality

integer,parameter :: N=10000000

double precision A(N), B(N)

A=0.d0

!$OMP parallel do

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

 A(i)=0.d0

end do

!$OMP end do

...

!$OMP do schedule(static)

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

 Most simple case: explicit initialization

126 SC12 Tutorial Performance on Multicore

Coding for ccNUMA data locality

integer,parameter :: N=10000000

double precision A(N), B(N)

READ(1000) A

!$OMP parallel do

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

 A(i)=0.d0

end do

!$OMP end do

!$OMP single

READ(1000) A

!$OMP end single

!$OMP do schedule(static)

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

 Sometimes initialization is not so obvious: I/O cannot be easily

parallelized, so “localize” arrays before I/O

127 SC12 Tutorial Performance on Multicore

Coding for Data Locality

 Required condition: OpenMP loop schedule of initialization must

be the same as in all computational loops

 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to

be sure…

 Imposes some constraints on possible optimizations (e.g. load balancing)

 Presupposes that all worksharing loops with the same loop length have the

same thread-chunk mapping

 Guaranteed by OpenMP 3.0 only for loops in the same enclosing parallel region

and static schedule

 In practice, it works with any compiler even across regions

 If dynamic scheduling/tasking is unavoidable, more advanced methods may

be in order

 How about global objects?

 Better not use them

 If communication vs. computation is favorable, might consider properly

placed copies of global data

 In C++, STL allocators provide an elegant solution (see hidden slides)

128 SC12 Tutorial Performance on Multicore

Coding for Data Locality:

Placement of static arrays or arrays of objects

 Speaking of C++: Don't forget that constructors tend to touch the

data members of an object. Example:

 class D {
 double d;

public:

 D(double _d=0.0) throw() : d(_d) {}

 inline D operator+(const D& o) throw() {

 return D(d+o.d);

 }

 inline D operator*(const D& o) throw() {

 return D(d*o.d);

 }

...

};

→ placement problem with
 D* array = new D[1000000];

129 SC12 Tutorial Performance on Multicore

Coding for Data Locality:

Parallel first touch for arrays of objects

 Solution: Provide overloaded D::operator new[]

 Placement of objects is then done automatically by the C++ runtime via

“placement new”

void* D::operator new[](size_t n) {

 char *p = new char[n]; // allocate

 size_t i,j;

#pragma omp parallel for private(j) schedule(...)

 for(i=0; i<n; i += sizeof(D))

 for(j=0; j<sizeof(D); ++j)

 p[i+j] = 0;

 return p;

}

void D::operator delete[](void* p) throw() {

 delete [] static_cast<char*>p;

}

parallel first

touch

130 SC12 Tutorial Performance on Multicore

Coding for Data Locality:
NUMA allocator for parallel first touch in std::vector<>

template <class T> class NUMA_Allocator {

public:

 T* allocate(size_type numObjects, const void

 *localityHint=0) {

 size_type ofs,len = numObjects * sizeof(T);

 void *m = malloc(len);

 char *p = static_cast<char*>(m);

 int i,pages = len >> PAGE_BITS;

#pragma omp parallel for schedule(static) private(ofs)

 for(i=0; i<pages; ++i) {

 ofs = static_cast<size_t>(i) << PAGE_BITS;

 p[ofs]=0;

 }

 return static_cast<pointer>(m);

 }

...

}; Application:
vector<double,NUMA_Allocator<double> > x(10000000)

131 SC12 Tutorial Performance on Multicore

Diagnosing Bad Locality

 If your code is cache-bound, you might not notice any locality

problems

 Otherwise, bad locality limits scalability at very low CPU numbers

(whenever a node boundary is crossed)

 If the code makes good use of the memory interface

 But there may also be a general problem in your code…

 Consider using performance counters

 LIKWID-perfctr can be used to measure nonlocal memory accesses

 Example for Intel Nehalem (Core i7):

env OMP_NUM_THREADS=8 likwid-perfctr -g MEM –C N:0-7 \

 -t intel ./a.out

132 SC12 Tutorial Performance on Multicore

Using performance counters for diagnosing bad ccNUMA

access locality

 Intel Nehalem EP node:

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+

| Event | core 0 | core 1 | core 2 | core 3 | core 4 | core 5 | core 6 | core 7 |

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+

| INSTR_RETIRED_ANY | 5.20725e+08 | 5.24793e+08 | 5.21547e+08 | 5.23717e+08 | 5.28269e+08 | 5.29083e+08 | 5.30103e+08 | 5.29479e+08 |

| CPU_CLK_UNHALTED_CORE | 1.90447e+09 | 1.90599e+09 | 1.90619e+09 | 1.90673e+09 | 1.90583e+09 | 1.90746e+09 | 1.90632e+09 | 1.9071e+09 |

| UNC_QMC_NORMAL_READS_ANY | 8.17606e+07 | 0 | 0 | 0 | 8.07797e+07 | 0 | 0 | 0 |

| UNC_QMC_WRITES_FULL_ANY | 5.53837e+07 | 0 | 0 | 0 | 5.51052e+07 | 0 | 0 | 0 |

| UNC_QHL_REQUESTS_REMOTE_READS | 6.84504e+07 | 0 | 0 | 0 | 6.8107e+07 | 0 | 0 | 0 |

| UNC_QHL_REQUESTS_LOCAL_READS | 6.82751e+07 | 0 | 0 | 0 | 6.76274e+07 | 0 | 0 | 0 |

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+

RDTSC timing: 0.827196 s

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+

| Metric | core 0 | core 1 | core 2 | core 3 | core 4 | core 5 | core 6 | core 7 |

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+

| Runtime [s] | 0.714167 | 0.714733 | 0.71481 | 0.715013 | 0.714673 | 0.715286 | 0.71486 | 0.71515 |

| CPI | 3.65735 | 3.63188 | 3.65488 | 3.64076 | 3.60768 | 3.60521 | 3.59613 | 3.60184 |

| Memory bandwidth [MBytes/s] | 10610.8 | 0 | 0 | 0 | 10513.4 | 0 | 0 | 0 |

| Remote Read BW [MBytes/s] | 5296 | 0 | 0 | 0 | 5269.43 | 0 | 0 | 0 |

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+

Uncore events only

counted once per socket

Half of read BW comes

from other socket!

133 SC12 Tutorial Performance on Multicore

If all fails…

 Even if all placement rules have been carefully observed, you may

still see nonlocal memory traffic. Reasons?

 Program has erratic access patters  may still achieve some access

parallelism (see later)

 OS has filled memory with buffer cache data:

numactl --hardware # idle node!

available: 2 nodes (0-1)

node 0 size: 2047 MB

node 0 free: 906 MB

node 1 size: 1935 MB

node 1 free: 1798 MB

top - 14:18:25 up 92 days, 6:07, 2 users, load average: 0.00, 0.02, 0.00

Mem: 4065564k total, 1149400k used, 2716164k free, 43388k buffers

Swap: 2104504k total, 2656k used, 2101848k free, 1038412k cached

134 SC12 Tutorial Performance on Multicore

ccNUMA problems beyond first touch:

Buffer cache

 OS uses part of main memory for

disk buffer (FS) cache

 If FS cache fills part of memory,

apps will probably allocate from

foreign domains

  non-local access!

 “sync” is not sufficient to

drop buffer cache blocks

 Remedies

 Drop FS cache pages after user job has run (admin’s job)

 seems to be automatic after aprun has finished on Crays

 User can run “sweeper” code that allocates and touches all physical

memory before starting the real application

 numactl tool or aprun can force local allocation (where applicable)

 Linux: There is no way to limit the buffer cache size in standard kernels

P1
C

P2
C

C C

MI

P3
C

P4
C

C C

MI

BC

data(3)

BC

data(3)

d
a
ta

(1
)

135 SC12 Tutorial Performance on Multicore

ccNUMA problems beyond first touch:

Buffer cache

Real-world example: ccNUMA and the Linux buffer cache

Benchmark:

1. Write a file of some size

from LD0 to disk

2. Perform bandwidth

benchmark using

all cores in LD0 and

maximum memory

installed in LD0

Result: By default,

Buffer cache is given

priority over local

page placement

 restrict to local

 domain if possible!

aprun –ss ...

(Cray only)

136 SC12 Tutorial Performance on Multicore

ccNUMA placement and erratic access patterns

 Sometimes access patterns are

just not nicely grouped into

contiguous chunks:

 In both cases page placement cannot easily be fixed for perfect parallel

access

double precision :: r, a(M)

!$OMP parallel do private(r)

do i=1,N

 call RANDOM_NUMBER(r)

 ind = int(r * M) + 1

 res(i) = res(i) + a(ind)

enddo

!OMP end parallel do

 Or you have to use tasking/dynamic

scheduling:

!$OMP parallel

!$OMP single

do i=1,N

 call RANDOM_NUMBER(r)

 if(r.le.0.5d0) then

!$OMP task

 call do_work_with(p(i))

!$OMP end task

 endif

enddo

!$OMP end single

!$OMP end parallel

137 SC12 Tutorial Performance on Multicore

ccNUMA placement and erratic access patterns

 Worth a try: Interleave memory across ccNUMA domains to get at least

some parallel access

1. Explicit placement:

2. Using global control via numactl:

numactl --interleave=0-3 ./a.out

 Fine-grained program-controlled placement via libnuma (Linux)

using, e.g., numa_alloc_interleaved_subset(),

numa_alloc_interleaved() and others

!$OMP parallel do schedule(static,512)

do i=1,M

 a(i) = …

enddo

!$OMP end parallel do

This is for all memory, not

just the problematic

arrays!

Observe page alignment of

array to get proper

placement!

138

The curse and blessing of interleaved placement:

OpenMP STREAM on a Cray XE6 Interlagos node

 Parallel init: Correct parallel initialization

 LD0: Force data into LD0 via numactl –m 0

 Interleaved: numactl --interleave <LD range>

SC12 Tutorial Performance on Multicore

139

The Plan

Performance on Multicore

Basic multicore architecture

Data access on modern

processors

Performance properties of

multicore/multisocket systems

Micro-

bench

marks

Sync

over-

head

Band-

width

saturation

Case study: Sparse matrix-

vector multiply (part 1)

Multicore performance tools

Part 1

Probing

topology

Enforcing

affinity

Basic performance modeling

Balance

metrics

“Motivated”

optimizations

Case study:

3D Jacobi smoother

The Roofline Model

Hands-On session 1

Efficient programming on

ccNUMA nodes

Simultaneous multi-threading

(SMT)

Theory
Impli-

cations

Facts &

fiction

MPI in multicore environments

Intranode vs.

internode

Rank-

subdomain

mapping

Multicore performance tools

Part 2

Hardware

metrics

Best

practices

Advanced case studies:

Putting cores to better use

Wavefront

temporal

blocking

Sparse MVM

(part 2)

Outlook: Advanced

performance engineering

Sparse MVM

(part 3)
ECM model

Conclusions

Hands-On session 2

SC12 Tutorial

Simultaneous multithreading (SMT)

Principles and performance impact

SMT vs. independent instruction streams

Facts and fiction

141 SC12 Tutorial Performance on Multicore

SMT Makes a single physical core appear as two or more

“logical” cores  multiple threads/processes run concurrently

 SMT principle (2-way example):

S
ta

n
d

a
rd

 c
o

re

2
-w

a
y
 S

M
T

142 SC12 Tutorial Performance on Multicore

SMT impact

 SMT is primarily suited for increasing processor throughput

 With multiple threads/processes running concurrently

 Scientific codes tend to utilize chip resources quite well

 Standard optimizations (loop fusion, blocking, …)

 High data and instruction-level parallelism

 Exceptions do exist

 SMT is an important topology issue

 SMT threads share almost all core

resources

 Pipelines, caches, data paths

 Affinity matters!

 If SMT is not needed

 pin threads to physical cores

 or switch it off via BIOS etc.

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

T
h

re
a

d
 0

T
h

re
a

d
 1

T
h

re
a

d
 2

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

T
h

re
a

d
 0

T

h
re

a
d

 1

T
h

re
a

d
 2

143 SC12 Tutorial Performance on Multicore

SMT impact

 SMT adds another layer of topology

(inside the physical core)

 Caveat: SMT threads share all caches!

 Possible benefit: Better pipeline throughput

 Filling otherwise unused pipelines

 Filling pipeline bubbles with other thread’s executing instructions:

 Beware: Executing it all in a single thread

(if possible) may reach the same goal

without SMT:

Thread 0:
do i=1,N

 a(i) = a(i-1)*c

enddo

Dependency  pipeline

stalls until previous MULT

is over

Westmere EP

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

Thread 1:
do i=1,N

 b(i) = func(i)*d

enddo

Unrelated work in other

thread can fill the pipeline

bubbles

do i=1,N

 a(i) = a(i-1)*c

 b(i) = func(i)*d

enddo

144

a(2)*c

Thread 0:
do i=1,N

a(i)=a(i-1)*c

enddo

a(2)*c

a(7)*c

Thread 0:
do i=1,N

a(i)=a(i-1)*c

enddo

Thread 1:
do i=1,N

a(i)=a(i-1)*c

enddo

B(7)*d

A(2)*c

A(7)*d

B(2)*c

Thread 0:
do i=1,N

A(i)=A(i-1)*c

B(i)=B(i-1)*d

enddo

Thread 1:
do i=1,N

A(i)=A(i-1)*c

B(i)=B(i-1)*d

enddo

Simultaneous recursive updates with SMT

SC12 Tutorial Performance on Multicore

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT

MULT Pipeline depth: 5 stages  1 F / 5 cycles for recursive update

Fill bubbles via:
 SMT

 Multiple streams

M
U

L
T

 p
ip

e

145

Simultaneous recursive updates with SMT

SC12 Tutorial Performance on Multicore

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT

MULT Pipeline depth: 5 stages  1 F / 5 cycles for recursive update

5 independent updates on a single thread do the same job!

B(2)*s

A(2)*s

E(1)*s

D(1)*s

C(1)*s

Thread 0:
do i=1,N

 A(i)=A(i-1)*s

 B(i)=B(i-1)*s

 C(i)=C(i-1)*s

 D(i)=D(i-1)*s

 E(i)=E(i-1)*s

enddo

M
U

L
T

 p
ip

e

146

Simultaneous recursive updates with SMT

SC12 Tutorial Performance on Multicore

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT

Pure update benchmark can be vectorized  2 F / cycle (store limited)

Recursive update:

 SMT can fill pipeline

bubles

 A single thread can

do so as well

 Bandwidth does not

increase through

SMT

 SMT can not

replace SIMD!

147

SMT myths: Facts and fiction (1)

 Myth: “If the code is compute-bound, then the functional units

should be saturated and SMT should show no improvement.”

 Truth

1. A compute-bound loop does not

necessarily saturate the pipelines;

dependencies can cause a lot of bubbles,

which may be filled by SMT threads.

2. If a pipeline is already full, SMT will not improve its

utilization

SC12 Tutorial Performance on Multicore

B(7)*d

A(2)*c

A(7)*d

B(2)*c

Thread 0:
do i=1,N

A(i)=A(i-1)*c

B(i)=B(i-1)*d

enddo

Thread 1:
do i=1,N

A(i)=A(i-1)*c

B(i)=B(i-1)*d

enddo

M
U

L
T

 p
ip

e

148

SMT myths: Facts and fiction (2)

 Myth: “If the code is memory-bound, SMT should help because it

can fill the bubbles left by waiting for data from memory.”

 Truth:

1. If the maximum memory bandwidth is already reached, SMT will not

help since the relevant

resource (bandwidth)

is exhausted.

2. If the relevant

bottleneck is not

exhausted, SMT may

help since it can fill

bubbles in the LOAD

pipeline.

This applies also to other

“relevant bottlenecks!”

SC12 Tutorial Performance on Multicore

149

SMT myths: Facts and fiction (3)

 Myth: “SMT can help bridge the latency to

memory (more outstanding references).”

 Truth:
Outstanding references may or may not be

bound to SMT threads; they may be a resource

of the memory interface and shared by all

threads. The benefit of SMT with memory-bound

code is usually due to better utilization of the

pipelines so that less time gets “wasted” in the

cache hierarchy.

See also the “ECM Performance Model”

later on.

SC12 Tutorial Performance on Multicore

150 SC12 Tutorial Performance on Multicore

SMT: When it may help, and when not

Functional parallelization

FP-only parallel loop code

Frequent thread synchronization

Code sensitive to cache size

Strongly memory-bound code

Independent pipeline-unfriendly instruction streams

151

The Plan

Performance on Multicore

Basic multicore architecture

Data access on modern

processors

Performance properties of

multicore/multisocket systems

Micro-

bench

marks

Sync

over-

head

Band-

width

saturation

Case study: Sparse matrix-

vector multiply (part 1)

Multicore performance tools

Part 1

Probing

topology

Enforcing

affinity

Basic performance modeling

Balance

metrics

“Motivated”

optimizations

Case study:

3D Jacobi smoother

The Roofline Model

Hands-On session 1

Efficient programming on

ccNUMA nodes

Simultaneous multi-threading

(SMT)

Theory
Impli-

cations

Facts &

fiction

MPI in multicore environments

Intranode vs.

internode

Rank-

subdomain

mapping

Multicore performance tools

Part 2

Hardware

metrics

Best

practices

Advanced case studies:

Putting cores to better use

Wavefront

temporal

blocking

Sparse MVM

(part 2)

Outlook: Advanced

performance engineering

Sparse MVM

(part 3)
ECM model

Conclusions

Hands-On session 2

SC12 Tutorial

Understanding MPI communication in

multicore environments

Intra-node vs. inter-node MPI

MPI Cartesian topologies and rank-subdomain

mapping

153

Intranode MPI

 Common misconception: Intranode MPI is infinitely fast compared

to internode

 Reality

 Intranode latency is much smaller than internode

 Intranode asymptotic bandwidth is surprisingly comparable to internode

 Difference in saturation behavior

 Other issues

 Mapping between ranks, subdomains and cores with Cartesian MPI

topologies

 Overlapping intranode with internode communication

SC12 Tutorial Performance on Multicore

154

MPI and Multicores

Clusters: Unidirectional internode Ping-Pong bandwidth

QDR/GBit ~ 30X

SC12 Tutorial Performance on Multicore

155

MPI and Multicores

Clusters: Unidirectional intranode Ping-Pong bandwidth

Mapping problem for most efficient communication paths!?

P
C
C

P
C
C

P
C
C

MI

P
C
C

C

Memory Memory

P
C
C

P
C
C

P
C
C

MI

P
C
C

C

Cross-Socket (CS)

Intra-Socket (IS)

Single point-to-

point BW similar

to internode

Some BW

scalability for

multi-intranode

connections

SC12 Tutorial Performance on Multicore

156

“Best possible” MPI:

Minimizing cross-node communication

■ Example: Stencil solver with halo exchange

■ Goal: Reduce inter-node halo traffic

■ Subdomains exchange halo with neighbors

■ Populate a node's ranks with “maximum neighboring” subdomains

■ This minimizes a node's communication surface

■ Shouldn’t MPI_CART_CREATE (w/ reorder) take care of this?

SC12 Tutorial Performance on Multicore

157

MPI rank-subdomain mapping in Cartesian topologies:

A 3D stencil solver and the growing number of cores per node

“Common” MPI

library behavior

N
e

h
a

le
m

 E
P

 2
-s

o
c

k
e

t

Is
ta

n
b

u
l
2

-s
o

c
k

e
t

S
h

a
n

g
h

a
i
4
-s

o
c

k
e

t

M
a

g
n

y
 C

o
u

rs

2

-s
o

c
k

e
t

Nehalem EX

4-socket

Magny Cours

4-socket

W
o

o
d

c
re

s
t

 2
-s

o
c

k
e

t

S
u

n
 N

ia
g

a
ra

 2

SC12 Tutorial Performance on Multicore

158

~ 1.5x

4 ppn SDR-IB

MPI rank-subdomain mapping:

3D stencil solver – measurements for 8ppn and 4ppn GBE vs. IB

8 ppn QDR-IB

32 MPI processes

SC12 Tutorial Performance on Multicore

159

Summary on MPI multicore issues

 Intranode MPI

 May not be as fast as you think…

 Becomes more important as core counts increase

 May not be handled optimally by your MPI library

 Rank-core mapping may be crucial for best performance

 Reduce inter-node traffic

 Most MPIs do not recognize this

 Some (e.g., Cray) can give you hints toward optimal placement

SC12 Tutorial Performance on Multicore

160

The Plan

Performance on Multicore

Basic multicore architecture

Data access on modern

processors

Performance properties of

multicore/multisocket systems

Micro-

bench

marks

Sync

over-

head

Band-

width

saturation

Case study: Sparse matrix-

vector multiply (part 1)

Multicore performance tools

Part 1

Probing

topology

Enforcing

affinity

Basic performance modeling

Balance

metrics

“Motivated”

optimizations

Case study:

3D Jacobi smoother

The Roofline Model

Hands-On session 1

Efficient programming on

ccNUMA nodes

Simultaneous multi-threading

(SMT)

Theory
Impli-

cations

Facts &

fiction

MPI in multicore environments

Intranode vs.

internode

Rank-

subdomain

mapping

Multicore performance tools

Part 2

Hardware

metrics

Best

practices

Advanced case studies:

Putting cores to better use

Wavefront

temporal

blocking

Sparse MVM

(part 2)

Outlook: Advanced

performance engineering

Sparse MVM

(part 3)
ECM model

Conclusions

Hands-On session 2

SC12 Tutorial

Best practices for using

hardware performance

metrics

likwid-perfctr

162 SC12 Tutorial Performance on Multicore

Probing performance behavior

 How do we find out about the performance properties and

requirements of a parallel code?

 Profiling via advanced tools is often overkill

 A coarse overview is often sufficient

 likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on

Linux/Altix)

 Simple end-to-end measurement of hardware performance metrics

 Operating modes:

 Wrapper

 Stethoscope

 Timeline

 Marker API

 Preconfigured and extensible

metric groups, list with
likwid-perfctr -a

BRANCH: Branch prediction miss rate/ratio

CACHE: Data cache miss rate/ratio

CLOCK: Clock of cores

DATA: Load to store ratio

FLOPS_DP: Double Precision MFlops/s

FLOPS_SP: Single Precision MFlops/s

FLOPS_X87: X87 MFlops/s

L2: L2 cache bandwidth in MBytes/s

L2CACHE: L2 cache miss rate/ratio

L3: L3 cache bandwidth in MBytes/s

L3CACHE: L3 cache miss rate/ratio

MEM: Main memory bandwidth in MBytes/s

TLB: TLB miss rate/ratio

163 SC12 Tutorial Performance on Multicore

likwid-perfctr

Example usage with preconfigured metric group

$ env OMP_NUM_THREADS=4 likwid-perfctr -C N:0-3 –t intel -g FLOPS_DP ./stream.exe

CPU type: Intel Core Lynnfield processor

CPU clock: 2.93 GHz

Measuring group FLOPS_DP

YOUR PROGRAM OUTPUT

+--------------------------------------+-------------+-------------+-------------+-------------+

| Event | core 0 | core 1 | core 2 | core 3 |

+--------------------------------------+-------------+-------------+-------------+-------------+

| INSTR_RETIRED_ANY | 1.97463e+08 | 2.31001e+08 | 2.30963e+08 | 2.31885e+08 |

| CPU_CLK_UNHALTED_CORE | 9.56999e+08 | 9.58401e+08 | 9.58637e+08 | 9.57338e+08 |

| FP_COMP_OPS_EXE_SSE_FP_PACKED | 4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |

| FP_COMP_OPS_EXE_SSE_FP_SCALAR | 882 | 0 | 0 | 0 |

| FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION | 0 | 0 | 0 | 0 |

| FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION | 4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |

+--------------------------------------+-------------+-------------+-------------+-------------+

+--------------------------+------------+---------+----------+----------+

| Metric | core 0 | core 1 | core 2 | core 3 |

+--------------------------+------------+---------+----------+----------+

| Runtime [s] | 0.326242 | 0.32672 | 0.326801 | 0.326358 |

| CPI | 4.84647 | 4.14891 | 4.15061 | 4.12849 |

| DP MFlops/s (DP assumed) | 245.399 | 189.108 | 189.024 | 189.304 |

| Packed MUOPS/s | 122.698 | 94.554 | 94.5121 | 94.6519 |

| Scalar MUOPS/s | 0.00270351 | 0 | 0 | 0 |

| SP MUOPS/s | 0 | 0 | 0 | 0 |

| DP MUOPS/s | 122.701 | 94.554 | 94.5121 | 94.6519 |

+--------------------------+------------+---------+----------+----------+

Always

measured

Derived

metrics

Configured metrics

(this group)

164

likwid-perfctr
Best practices for runtime counter analysis

Things to look at (in roughly this

order)

 Load balance (flops, instructions,

BW)

 In-socket memory BW saturation

 Shared cache BW saturation

 Flop/s, loads and stores per flop

metrics

 SIMD vectorization

 CPI metric

 # of instructions,

branches, mispredicted branches

Caveats

 Load imbalance may not show in

CPI or # of instructions
 Spin loops in OpenMP barriers/MPI

blocking calls

 Looking at “top” or the Windows Task

Manager does not tell you anything useful

 In-socket performance saturation

may have various reasons

 Cache miss metrics are overrated

 If I really know my code, I can often

calculate the misses

 Runtime and resource utilization is

much more important

SC12 Tutorial Performance on Multicore

165

likwid-perfctr

Identify load imbalance…

 Instructions retired / CPI may not be a good indication of

useful workload – at least for numerical / FP intensive codes….

 Floating Point Operations Executed is often a better indicator

 Waiting / “Spinning” in barrier generates a high instruction count

!$OMP PARALLEL DO

DO I = 1, N

 DO J = 1, I

 x(I) = x(I) + A(J,I) * y(J)

 ENDDO

ENDDO

!$OMP END PARALLEL DO

SC12 Tutorial Performance on Multicore

166

likwid-perfctr

… and load-balanced codes

!$OMP PARALLEL DO

DO I = 1, N

 DO J = 1, N

 x(I) = x(I) + A(J,I) * y(J)

 ENDDO

ENDDO

!$OMP END PARALLEL DO

Higher CPI but

better performance

env OMP_NUM_THREADS=6 likwid-perfctr –t intel –C S0:0-5 –g FLOPS_DP ./a.out

SC12 Tutorial Performance on Multicore

167

 likwid-perfctr counts events on cores; it has no notion of what

kind of code is running (if any)

This enables to listen on what currently happens without any

overhead:

likwid-perfctr -c N:0-11 -g FLOPS_DP -s 10

 It can be used as cluster/server monitoring tool

 A frequent use is to measure a certain part of a long running

parallel application from outside

SC12 Tutorial

likwid-perfctr

Stethoscope mode

Performance on Multicore

168

likwid-perfctr

Timeline mode

 likwid-perfctr supports time resolved measurements of full node:

 likwid-perfctr –c N:0-11 -g MEM –d 50ms > out.txt

SC12 Tutorial Performance on Multicore

169

likwid-perfctr

Marker API

 To measure only parts of an application a marker API is available.

 The API only turns counters on/off. The configuration of the

counters is still done by likwid-perfctr application.

 Multiple named regions can be measured

 Results on multiple calls are accumulated

 Inclusive and overlapping Regions are allowed

SC12 Tutorial

likwid_markerInit(); // must be called from serial region

likwid_markerStartRegion(“Compute”);

. . .

likwid_markerStopRegion(“Compute”);

likwid_markerStartRegion(“postprocess”);

. . .

likwid_markerStopRegion(“postprocess”);

likwid_markerClose(); // must be called from serial region

Performance on Multicore

170

likwid-perfctr

Group files

SHORT PSTI

EVENTSET

FIXC0 INSTR_RETIRED_ANY

FIXC1 CPU_CLK_UNHALTED_CORE

FIXC2 CPU_CLK_UNHALTED_REF

PMC0 FP_COMP_OPS_EXE_SSE_FP_PACKED

PMC1 FP_COMP_OPS_EXE_SSE_FP_SCALAR

PMC2 FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION

PMC3 FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION

UPMC0 UNC_QMC_NORMAL_READS_ANY

UPMC1 UNC_QMC_WRITES_FULL_ANY

UPMC2 UNC_QHL_REQUESTS_REMOTE_READS

UPMC3 UNC_QHL_REQUESTS_LOCAL_READS

METRICS

Runtime [s] FIXC1*inverseClock

CPI FIXC1/FIXC0

Clock [MHz] 1.E-06*(FIXC1/FIXC2)/inverseClock

DP MFlops/s (DP assumed) 1.0E-06*(PMC0*2.0+PMC1)/time

Packed MUOPS/s 1.0E-06*PMC0/time

Scalar MUOPS/s 1.0E-06*PMC1/time

SP MUOPS/s 1.0E-06*PMC2/time

DP MUOPS/s 1.0E-06*PMC3/time

Memory bandwidth [MBytes/s] 1.0E-06*(UPMC0+UPMC1)*64/time;

Remote Read BW [MBytes/s] 1.0E-06*(UPMC2)*64/time;

LONG

Formula:

DP MFlops/s = (FP_COMP_OPS_EXE_SSE_FP_PACKED*2 + FP_COMP_OPS_EXE_SSE_FP_SCALAR)/ runtime.

SC12 Tutorial

 Groups are architecture-specific

 They are defined in simple text files

 Code is generated on recompile of

likwid

 likwid-perfctr -a outputs list of groups

 For every group an extensive

documentation is available

Performance on Multicore

Measuring energy consumption

with LIKWID

172

Measuring energy consumption

likwid-powermeter and likwid-perfctr -g ENERGY

 Implements Intel RAPL interface (Sandy Bridge)

 RAPL = “Running average power limit”

CPU name: Intel Core SandyBridge processor

CPU clock: 3.49 GHz

Base clock: 3500.00 MHz

Minimal clock: 1600.00 MHz

Turbo Boost Steps:

C1 3900.00 MHz

C2 3800.00 MHz

C3 3700.00 MHz

C4 3600.00 MHz

Thermal Spec Power: 95 Watts

Minimum Power: 20 Watts

Maximum Power: 95 Watts

Maximum Time Window: 0.15625 micro sec

SC12 Tutorial Performance on Multicore

173

Example:
A medical image reconstruction code on Sandy Bridge

SC12 Tutorial Performance on Multicore

Test case Runtime [s] Power [W] Energy [J]

8 cores, plain C 90.43 90 8110

8 cores, SSE 29.63 93 2750

8 cores (SMT), SSE 22.61 102 2300

8 cores (SMT), AVX 18.42 111 2040

Sandy Bridge EP (8 cores, 2.7 GHz base freq.)

F
a
s
te

r c
o

d
e


 le

s
s

 e
n

e
rg

y

174

The Plan

Performance on Multicore

Basic multicore architecture

Data access on modern

processors

Performance properties of

multicore/multisocket systems

Micro-

bench

marks

Sync

over-

head

Band-

width

saturation

Case study: Sparse matrix-

vector multiply (part 1)

Multicore performance tools

Part 1

Probing

topology

Enforcing

affinity

Basic performance modeling

Balance

metrics

“Motivated”

optimizations

Case study:

3D Jacobi smoother

The Roofline Model

Hands-On session 1

Efficient programming on

ccNUMA nodes

Simultaneous multi-threading

(SMT)

Theory
Impli-

cations

Facts &

fiction

MPI in multicore environments

Intranode vs.

internode

Rank-

subdomain

mapping

Multicore performance tools

Part 2

Hardware

metrics

Best

practices

Advanced case studies:

Putting cores to better use

Wavefront

temporal

blocking

Sparse MVM

(part 2)

Outlook: Advanced

performance engineering

Sparse MVM

(part 3)
ECM model

Conclusions

Hands-On session 2

SC12 Tutorial

Case studies

“Multicore-aware” wavefront temporal blocking:

 Making use of shared caches

Asynchronous MPI communication in sparse MVM

Multicore-aware wavefront temporal

blocking:

Making use of shared caches

177 SC12 Tutorial Performance on Multicore

Multicore awareness

Classical Approaches: Parallelize & Reduce memory pressure

Multicore processors are still mostly programmed

the same way as classic n-way SMP single-core

compute nodes!

Memory

P
C
C

P
C
C

P
C
C

MI

P
C
C

P
C
C

P
C
C

C

do k = 1 , Nk

 do j = 1 , Nj

 do i = 1 , Ni

 y(i,j,k) = a*x(i,j,k) + b*

 (x(i-1,j,k)+x(i+1,j,k)+

 x(i,j-1,k)+x(i,j+1,k)+

 x(i,j,k-1)+x(i,j,k+1))

 enddo

 enddo

enddo

Simple 3D Jacobi stencil update (sweep):

 Performance Metric: Million Lattice Site Updates per second (MLUPs)

Equivalent MFLOPs: 8 FLOP/LUP * MLUPs

178 SC12 Tutorial Performance on Multicore

Multicore awareness

Standard sequential implementation

k-direction

j-
d

ir
e
c
ti

o
n

do t=1,tMax

 do k=1,N

 do j=1,N

 do i=1,N

 y(i,j,k) = …

 enddo

 enddo

 enddo

enddo

core0 core1

Cache

Memory

x

179 SC12 Tutorial Performance on Multicore

Multicore awareness

Classical Approaches: Parallelize!

k-direction

j-
d

ir
e
c
ti

o
n

core0 core1

Cache

Memory

x

do t=1,tMax
!$OMP PARALLEL DO private(…)

 do k=1,N

 do j=1,N

 do i=1,N

 y(i,j,k) = …

 enddo

 enddo

 enddo

!$OMP END PARALLEL DO

enddo

180 SC12 Tutorial Performance on Multicore

Multicore awareness

Parallelization – reuse data in cache between threads

k-direction

j-
d

ir
e
c
ti

o
n

core0: x(:,:,k-1:k+1)t  y(:,:,k)t+1

core1: y(:,:,(k-3):(k-1))t+1  x(:,:,k-2)t+2

core0 core1

y(:,:,:)

Memory

x(:,:,:)

Do not use domain

decomposition!

Instead shift 2nd thread by

three i-j planes and

proceed to the same

domain

 2nd thread loads input

data from shared OL cache!

Sync threads/cores after

each k-iteration!

“Wavefront

Parallelization (WFP)”

181 SC12 Tutorial Performance on Multicore

Use small ring buffer
tmp(:,:,0:3)

which fits into the cache

Save main memory data
transfers for y(:,:,:) !

16 Byte / 2 LUP !

8 Byte / LUP !

Multicore awareness

WF parallelization – reuse data in cache between threads

Compare with optimal baseline (nontemporal stores on y):

Maximum speedup of 2 can be expected

 (assuming infinitely fast cache and

no overhead for OMP BARRIER after each k-iteration)

182 SC12 Tutorial Performance on Multicore

Multicore awareness

WF parallelization – reuse data in cache between threads

Thread 0: x(:,:,k-1:k+1)t  tmp(:,:,mod(k,4))

Thread 1: tmp(:,:,mod(k-3,4):mod(k-1,4))  x(:,:,k-2)t+2

Performance model including finite cache bandwidth (BC)

Time for 2 LUP:

 T2LUP = 16 Byte/BM + x * 8 Byte / BC = T0 (1 + x/2 * BM/BC)

core0 core1

tmp(:,:,0:3)

Memory

x

Minimum value: x =2

Speed-Up vs. baseline: SW = 2*T0/T2LUP

 = 2 / (1 + BM/BC)

BC and BM are measured in saturation runs:

Clovertown: BM/BC = 1/12  SW = 1.85

Nehalem : BM/BC = 1/4  SW = 1.6

183 SC12 Tutorial Performance on Multicore

Jacobi solver

WFP: Propagating four wavefronts on native quadcores (1x4)

core0 core1

tmp1(0:3) | tmp2(0:3) | tmp3(0:3)

x(: , : , :)

core2 core3

1 x 4 distribution

Running tb wavefronts requires tb-1

temporary arrays tmp to be held in

cache!

Max. performance gain (vs. optimal
baseline): tb = 4

Extensive use of cache bandwidth!

184 SC12 Tutorial Performance on Multicore

Jacobi solver

WF parallelization: New choices on native quad-cores

Thread 0: x(:,:,k-1:k+1)t  tmp1(mod(k,4))

Thread 1: tmp1(mod(k-3,4):mod(k-1,4))  tmp2(mod(k-2,4))

core0 core1

tmp1(0:3) | tmp2(0:3) | tmp3(0:3)

x(: , : , :)

core2 core3

Thread 2: tmp2(mod(k-5,4:mod(k-3,4))  tmp3(mod(k-4,4))

Thread 3: tmp3(mod(k-7,4):mod(k-5,4))  x(:,:,k-6)t+4

1 x 4 distribution

core0 core1

tmp0(: , : , 0:3)

x(:,1:N/2,:) x(:,N/2+1:N,:)

core2 core3

2 x 2 distribution

185 SC12 Tutorial Performance on Multicore

Jacobi solver

Wavefront parallelization: L3 group Nehalem

Performance model indicates some potential gain  new compiler tested.

Only marginal benefit when using 4 wavefronts  A single copy stream does not

achieve full bandwidth

P
C
C

P
C
C

P
C
C

MI

Memory

P
C
C

C

P
C
C

P
C
C

P
C
C

MI

Memory

P
C
C

C

4003

bj=40
MLUPs

1 x 2 786

2 x 2 1230

1 x 4 1254

186 SC12 Tutorial Performance on Multicore

Multicore-aware parallelization

Wavefront – Jacobi on state-of-the art multicores

P
C

P
C

C

P
C

P
C

C

P
C
C

P
C
C

P
C
C

MI

P
C
C

P
C
C

P
C
C

P
C
C

P
C
C

C

P
C
C

P
C
C

P
C
C

MI

P
C
C

C

P
C
C

P
C
C

P
C
C

MI

P
C
C

P
C
C

P
C
C

C

Compare against optimal baseline!

Performance gain ~ Bolc = L3 bandwidth / memory bandwidth

Bolc ~ 10

Bolc ~ 2-3

Bolc ~ 10

187 SC12 Tutorial Performance on Multicore

Conclusions from wavefront temporal blocking

 Shared caches are the interesting new feature on current

multicore chips

 Shared caches provide opportunities for fast synchronization (see sections

on OpenMP and intra-node MPI performance)

 Parallel software should leverage shared caches for performance

 One approach: Shared cache reuse by wavefront temporal blocking

 In addition fast synchronization (pref. within a socket) allows to exploit

parallel structures at finer granularity (shorter loops, frequent

synchronisation)

 Wavefront technique can be extended to many regular stencil

based iterative methods, e.g.

 Gauß-Seidel ( done)

 Lattice-Boltzmann flow solvers ( done)

 Multigrid-smoother ( work in progress)

 Wavefront technique can be extended to hybrid MPI+OpenMP

parallelizaton

 See references

Asynchronous MPI communication in

sparse MVM

189

Distributed-memory parallelization of spMVM

SC12 Tutorial Performance on Multicore

=

P0

P3

P2

P1


Nonlocal

RHS

elements

for P0

Local operation –

no communication

required

190

Distributed-memory parallelization of spMVM

 Variant 1: “Vector mode” without overlap

 Standard concept

for “hybrid MPI+OpenMP”

 Multithreaded computation

(all threads)

 Communication only

outside of computation

 Benefit of threaded MPI process only due to message aggregation

and (probably) better load balancing

SC12 Tutorial Performance on Multicore

G. Hager, G. Jost, and R. Rabenseifner: Communication Characteristics and Hybrid MPI/OpenMP Parallel Programming on

Clusters of Multi-core SMP Nodes.In: Proceedings of the Cray Users Group Conference 2009 (CUG 2009), Atlanta, GA, USA,

May 4-7, 2009. PDF

http://www.cug.org/5-publications/proceedings_attendee_lists/CUG09CD/S09_Proceedings/pages/authors/06-10Tuesday/9B-Rabenseifner/rabenseifner-paper.pdf

191

Distributed-memory parallelization of spMVM

 Variant 2: “Vector mode” with naïve overlap (“good faith hybrid”)

 Relies on MPI to support

async nonblocking PtP

 Multithreaded computation

(all threads)

 Still simple programming

 Drawback: Result vector

is written twice to memory

 modified performance

model

SC12 Tutorial Performance on Multicore

192

Distributed-memory parallelization of spMVM

 Variant 3: “Task mode” with dedicated communication thread

 Explicit overlap, more complex to implement

 One thread missing in

team of compute threads

 But that doesn’t hurt here…

 Using tasking seems simpler

but may require some

work on NUMA locality

 Drawbacks

 Result vector is written

twice to memory

 No simple OpenMP

worksharing (manual,

tasking)

SC12 Tutorial Performance on Multicore

R. Rabenseifner and G. Wellein: Communication and Optimization Aspects of Parallel Programming Models on Hybrid

Architectures. International Journal of High Performance Computing Applications 17, 49-62, February 2003.

DOI:10.1177/1094342003017001005

M. Wittmann and G. Hager: Optimizing ccNUMA locality for task-parallel execution under OpenMP and TBB on multicore-

based systems. Technical report. Preprint:arXiv:1101.0093

http://dx.doi.org/10.1177/1094342003017001005
http://arxiv.org/abs/1101.0093

193

Performance results for the HMeP matrix

 Dominated by communication (and some load imbalance for large #procs)

 Single-node Cray performance cannot be maintained beyond a few nodes

 Task mode pays off esp. with one process (12 threads) per node

 Task mode overlap (over-)compensates additional LHS traffic

SC12 Tutorial Performance on Multicore

Task mode uses

virtual core for

communication

@ 1 process/core

50% efficiency

w/ respect to

best 1-node

performance

194

Performance results for the sAMG matrix

 Much less communication-bound

 XE6 outperforms Westmere cluster, can maintain good node performance

 Hardly any discernible difference as to # of threads per process

 If pure MPI is good enough, don’t bother going hybrid!

SC12 Tutorial Performance on Multicore

195

Conclusions from hybrid spMVM results

 Do not rely on asynchronous MPI progress

 Sparse MVM leaves resources (cores) free for use by

communication threads

 Simple “vector mode” hybrid MPI+OpenMP parallelization is not

good enough if communication is a real problem

 “Task mode” hybrid can truly hide communication and

overcompensate penalty from additional memory traffic in spMVM

 Comm thread can share a core with comp thread via SMT and still

be asynchronous

 If pure MPI scales ok and maintains its node performance

according to the node-level performance model, don’t bother

going hybrid

 Extension to multi-GPGPU is possible

 See later

SC12 Tutorial Performance on Multicore

196

The Plan

Performance on Multicore

Basic multicore architecture

Data access on modern

processors

Performance properties of

multicore/multisocket systems

Micro-

bench

marks

Sync

over-

head

Band-

width

saturation

Case study: Sparse matrix-

vector multiply (part 1)

Multicore performance tools

Part 1

Probing

topology

Enforcing

affinity

Basic performance modeling

Balance

metrics

“Motivated”

optimizations

Case study:

3D Jacobi smoother

The Roofline Model

Hands-On session 1

Efficient programming on

ccNUMA nodes

Simultaneous multi-threading

(SMT)

Theory
Impli-

cations

Facts &

fiction

MPI in multicore environments

Intranode vs.

internode

Rank-

subdomain

mapping

Multicore performance tools

Part 2

Hardware

metrics

Best

practices

Advanced case studies:

Putting cores to better use

Wavefront

temporal

blocking

Sparse MVM

(part 2)

Outlook: Advanced

performance engineering

Sparse MVM

(part 3)
ECM model

Conclusions

Hands-On session 2

SC12 Tutorial

Outlook:

Examples for

Advanced Performance Engineering

Modeling sparse MVM on GPGPU clusters

Beyond the roofline model: ECM

198

Performance Engineering – What’s that?

The Performance Engineering (PE) process:

The performance model is the central component – if the model fails

to predict the measurement, you learn something!

The analysis has to be done for every loop / basic block!

Algorithm/Code analysis

Runtime profiling

Machine characteristics

Kernel benchmarking

Traces/HW metrics

Performance model Code optimization

SC12 Tutorial Performance on Multicore

Sparse MVM on GPGPU clusters

200

Distributed memory parallelization of SpMVM

=

P0

P3

P2

P1


Nonlocal

RHS

elements

for P0

Local operation –

no communication

required

SC12 Tutorial Performance on Multicore

201

Performance model (pJDS matrix format on GPGPU)

 Code balance:

𝑩W
DP =

 bytes

flop

 𝑵𝒏𝒛𝒓
𝒎𝒂𝒙… maximum number of nonzeros per row

 𝟏/𝑵𝒏𝒛𝒓
𝒎𝒂𝒙 ≤ 𝜶 ≤ 𝟏 quantifies possible RHS vector re-usage

 Assumption: colStart[] always comes from cache

8 4 8α 16/𝑵𝒏𝒛𝒓
𝒎𝒂𝒙

 + + + 16/𝑵𝒏𝒛𝒓
𝒎𝒂𝒙

 16/𝑵𝒏𝒛𝒓
𝒎𝒂𝒙

2

c[i] = c[i] + A_val [colStart[j]+i] * x [A_col [colStart[j]+i]];

M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann, and A.R. Bishop: Sparse matrix-vector

multiplication on GPGPU clusters: A new storage format and a scalable implementation. Workshop on

Large-Scale Parallel Processing 2012 (LSPP12) at IPDPS 2012. DOI: 10.1109/IPDPSW.2012.211

SC12 Tutorial Performance on Multicore

http://dx.doi.org/10.1109/IPDPSW.2012.211

202

Impact of PCIe transfers of LHS/RHS for iterative schemes

 Time for SpMVM:

 𝑻MVM =
𝑩DP

𝑩𝑾GPU
∗ 𝑵 ∗ 𝑵𝒏𝒛𝒓 ∗ 𝑵𝒊𝒕 =

𝟖𝑵

𝑩𝑾GPU
𝑵𝒏𝒛𝒓 𝜶 +

𝟑

𝟐
+ 𝟐 ∗ 𝑵𝒊𝒕

 𝑵𝒊𝒕 … number of SpMVMs before PCIe communication has to be done

 Time for PCIe transfers of LHS and RHS: 𝑻PCI =
𝟏𝟔𝑵

𝑩𝑾PCI

 We want small impact of PCIe transfer, e.g.:

 𝑻MVM ≥ 𝟏𝟎𝑻PCI

Matrix type  HMEp sAMG DLR1 DLR2 UHBR

𝑵𝒏𝒛𝑟 15 7 144 315 123

Suitable? × × ✓ ✓ ✓

𝑩𝑾GPU ≈ 10𝑩𝑾PCI

𝛂 = 𝟏
𝑵𝒊𝒕 = 𝟏

 𝑵𝒏𝒛𝒓 ≥
𝟐𝟎𝑩𝑾𝑮𝑷𝑼/𝑩𝑾𝑷𝑪𝑰−𝟐

𝜶+3/2
 ≥ 𝟖𝟎

SC12 Tutorial Performance on Multicore

203

Multi-GPGPU SpMVM: Design patterns

 Three design patterns for distributed-memory parallel SpMVM:

1. Vector Mode without overlap of communication and computation
communication of non-local RHS elements is done before the actual SpMVM

2. Vector Mode with naive overlap (“good faith hybrid”)
SpMVM is split into local / non-local part; the local SpMVM may be overlapped with

non-local RHS communication using non-blocking MPI (but: not asynchronous in

most MPI libraries)

3. Task Mode with explicit overlap
using a dedicated thread for MPI  reliably asynchronous communication

G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector multiplication

with explicit communication overlap on current multicore-based systems. Parallel Processing Letters

21(3), 339-358 (2011). DOI: 10.1142/S0129626411000254

SC12 Tutorial Performance on Multicore

204

Multi-GPGPU SpMVM: Performance results

 𝑵 is rather small

 only few rows left per GPGPU

for larger node counts

 communication becomes

dominant

 𝑵 large

 no break-down for larger node

counts

 Low comm. requirements: no big

benefit from overlap

SC12 Tutorial Performance on Multicore

Multi-core saturation:

The ECM Model

206

The multicore saturation mystery

 Why can a single core often not saturate the memory bus?

 Non-overlapping contributions from data transfers and in-cache execution to

overall runtime

 What determines the saturation point?

 Important question for energy efficiency

 Saturation == Bandwidth pressure on relevant bottleneck exhausts the

maximum BW cacpacity

 Requirements for an appropriate multicore performance model

 Should predict single-core performance

 Should predict saturation point

 ECM (Execution – Cache – Memory) model

SC12 Tutorial Performance on Multicore

207

Example: ECM model for Schönauer Vector Triad
A(:)=B(:)+C(:)*D(:) on a Sandy Bridge Core with AVX

CL

transfer

Write-

allocate

CL transfer

SC12 Tutorial Performance on Multicore

208

Full vs. partial vs. no overlap

Results

suggest no

overlap!

SC12 Tutorial Performance on Multicore

209

ECM prediction vs. measurements for A(:)=B(:)+C(:)*D(:)

on a Sandy Bridge socket (no-overlap assumption)

Model: Scales until saturation

sets in

Saturation point (# cores) well

predicted

Measurement: scaling not perfect

Caveat: This is specific for this

architecture and this benchmark!

Check: Use “overlappable” kernel

code

SC12 Tutorial Performance on Multicore

210

ECM prediction vs. measurements for A(:)=B(:)+C(:)/D(:)

on a Sandy Bridge socket (full overlap assumption)

In-core execution is dominated by

divide operation

(44 cycles with AVX, 22 scalar)

 Almost perfect agreement with

 ECM model

SC12 Tutorial Performance on Multicore

211

Example: Lattice-Boltzmann flow solver

 D3Q19 model

 Empty channel, 2283 fluid lattice

sites (3.7 GB of memory)

 AVX implementation with compiler

intrinsics

 ECM model input

 Core execution from Intel IACA tool

 Max. memory bandwidth from multi-

stream measurements

SC12 Tutorial Performance on Multicore

212

Lattice-Boltzmann solver: ECM (no-overlap) vs. measurements

Saturation point again predicted

accurately

Saturation performance matches

streaming benchmarks

No-overlap assumption seems a

little pessimistic

Not all execution is LD and ST

SC12 Tutorial Performance on Multicore

G. Hager, J. Treibig, J. Habich, and G. Wellein:

Exploring performance and power properties of modern

multicore chips via simple machine models. Submitted.

Preprint: arXiv:1208.2908

http://arxiv.org/abs/1208.2908

213

Conclusions from the case studies

 There is no substitute for knowing what’s going on between your

code and the hardware

 Make sense of performance behavior through sensible application

of performance models

 However, there is no “golden formula” to do it all for you automagically

 Model inputs:

 Code analysis/inspection

 Hardware counter data

 Microbenachmark analysis

 Architectural features

 Simple models work best; do not try to make it more complex than

necessary

 ECM model refines simple bandwidth/roofline analysis

SC12 Tutorial Performance on Multicore

214

The Plan

Performance on Multicore

Basic multicore architecture

Data access on modern

processors

Performance properties of

multicore/multisocket systems

Micro-

bench

marks

Sync

over-

head

Band-

width

saturation

Case study: Sparse matrix-

vector multiply (part 1)

Multicore performance tools

Part 1

Probing

topology

Enforcing

affinity

Basic performance modeling

Balance

metrics

“Motivated”

optimizations

Case study:

3D Jacobi smoother

The Roofline Model

Hands-On session 1

Efficient programming on

ccNUMA nodes

Simultaneous multi-threading

(SMT)

Theory
Impli-

cations

Facts &

fiction

MPI in multicore environments

Intranode vs.

internode

Rank-

subdomain

mapping

Multicore performance tools

Part 2

Hardware

metrics

Best

practices

Advanced case studies:

Putting cores to better use

Wavefront

temporal

blocking

Sparse MVM

(part 2)

Outlook: Advanced

performance engineering

Sparse MVM

(part 3)
ECM model

Conclusions

Hands-On session 2

SC12 Tutorial

215

Tutorial conclusion

 Multicore architecture == multiple complexities

 Affinity matters  pinning/binding is essential

 Bandwidth bottlenecks  inefficiency is often made on the chip level

 Topology dependence of performance features  know your hardware!

 Put cores to good use

 Bandwidth bottlenecks  surplus cores  functional parallelism!?

 Shared caches  fast communication/synchronization  better

implementations/algorithms?

 Simple modeling techniques help us

 … understand the limits of our code on the given hardware

 … identify optimization opportunities

 … learn more, especially when they do not work!

 Simple tools get you 95% of the way

 e.g., LIKWID tool suite

SC12 Tutorial Performance on Multicore

216

THANK YOU.

SC12 Tutorial Performance on Multicore

Jan Treibig

Johannes Habich

Moritz Kreutzer

Markus Wittmann

Thomas Zeiser

Michael Meier

Faisal Shahzad

Gerald Schubert

OMI4papps

HQS@HPC II

hpcADD

SKALB

217

The Plan

Performance on Multicore

Basic multicore architecture

Data access on modern

processors

Performance properties of

multicore/multisocket systems

Micro-

bench

marks

Sync

over-

head

Band-

width

saturation

Case study: Sparse matrix-

vector multiply (part 1)

Multicore performance tools

Part 1

Probing

topology

Enforcing

affinity

Basic performance modeling

Balance

metrics

“Motivated”

optimizations

Case study:

3D Jacobi smoother

The Roofline Model

Hands-On session 1

Efficient programming on

ccNUMA nodes

Simultaneous multi-threading

(SMT)

Theory
Impli-

cations

Facts &

fiction

MPI in multicore environments

Intranode vs.

internode

Rank-

subdomain

mapping

Multicore performance tools

Part 2

Hardware

metrics

Best

practices

Advanced case studies:

Putting cores to better use

Wavefront

temporal

blocking

Sparse MVM

(part 2)

Outlook: Advanced

performance engineering

Sparse MVM

(part 3)
ECM model

Conclusions

Hands-On session 2

SC12 Tutorial

218 SC12 Tutorial Performance on Multicore

Presenter Biographies

 Georg Hager holds a PhD in computational physics from

the University of Greifswald. He has been working with high performance

systems since 1995, and is now a senior research scientist in the HPC

group at Erlangen Regional Computing Center (RRZE). Recent research

includes architecture-specific optimization for current microprocessors,

performance modeling on processor and system levels, and the efficient use

of hybrid parallel systems. See his blog at http://blogs.fau.de/hager for

current activities, publications, and talks.

 Gerhard Wellein holds a PhD in solid state physics from the University of

Bayreuth and is a professor at the Department for Computer Science at the

University of Erlangen. He leads the HPC group at Erlangen Regional

Computing Center (RRZE) and has more than ten years of experience in

teaching HPC techniques to students and scientists from computational

science and engineering programs. His research interests include solving

large sparse eigenvalue problems, novel parallelization approaches,

performance modeling, and architecture-specific optimization.

http://blogs.fau.de/hager

219 SC12 Tutorial Performance on Multicore

Abstract

 SC12 tutorial tut161: The practitioner’s cookbook for good parallel
performance on multi- and manycore systems

 Presenter(s): Georg Hager, Gerhard Wellein

 ABSTRACT:

The advent of multi- and manycore chips has led to a further opening of the gap between
peak and application performance for many scientific codes. This trend is accelerating as
we move from petascale to exascale. Paradoxically, bad node-level performance helps to
"efficiently" scale to massive parallelism, but at the price of increased overall time to
solution. If the user cares about time to solution on any scale, optimal performance on the
node level is often the key factor. Also, the potential of node-level improvements is widely
underestimated, thus it is vital to understand the performance-limiting factors on modern
hardware. We convey the architectural features of current processor chips,
multiprocessor nodes, and accelerators, as well as the dominant MPI and OpenMP
programming models, as far as they are relevant for the practitioner. Peculiarities like
shared vs. separate caches, bandwidth bottlenecks, and ccNUMA characteristics are
pointed out, and the influence of system topology and affinity on the performance of
typical parallel programming constructs is demonstrated. Performance engineering is
introduced as a powerful tool that helps the user assess the impact of possible code
optimizations by establishing models for the interaction of the software with the hardware
on which it runs.

220

References

Books:

 G. Hager and G. Wellein: Introduction to High Performance Computing for Scientists and

Engineers. CRC Computational Science Series, 2010. ISBN 978-1439811924

Papers:

 G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring performance and power

properties of modern multicore chips via simple machine models. Submitted. Preprint:

arXiv:1208.2908

 J. Treibig, G. Hager and G. Wellein: Performance patterns and hardware metrics on

modern multicore processors: Best practices for performance engineering. Workshop on

Productivity and Performance (PROPER 2012) at Euro-Par 2012, August 28, 2012,

Rhodes Island, Greece. Preprint: arXiv:1206.3738

 M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann and A. R. Bishop: Sparse

Matrix-vector Multiplication on GPGPU Clusters: A New Storage Format and a Scalable

Implementation. Workshop on Large-Scale Parallel Processing 2012 (LSPP12),

DOI: 10.1109/IPDPSW.2012.211

 J. Treibig, G. Hager, H. Hofmann, J. Hornegger and G. Wellein: Pushing the limits for

medical image reconstruction on recent standard multicore processors. International

Journal of High Performance Computing Applications, (published online before print).

DOI: 10.1177/1094342012442424

SC12 Tutorial Performance on Multicore

http://www.crcpress.com/product/isbn/9781439811924
http://www.crcpress.com/product/isbn/9781439811924
http://arxiv.org/abs/1208.2908
http://arxiv.org/abs/1206.3738
http://dx.doi.org/10.1109/IPDPSW.2012.211
http://dx.doi.org/10.1177/1094342012442424

221

References

Papers continued:

 G. Wellein, G. Hager, T. Zeiser, M. Wittmann and H. Fehske: Efficient temporal blocking

for stencil computations by multicore-aware wavefront parallelization. Proc. COMPSAC

2009.

DOI: 10.1109/COMPSAC.2009.82

 M. Wittmann, G. Hager, J. Treibig and G. Wellein: Leveraging shared caches for parallel

temporal blocking of stencil codes on multicore processors and clusters. Parallel

Processing Letters 20 (4), 359-376 (2010).

DOI: 10.1142/S0129626410000296. Preprint: arXiv:1006.3148

 J. Treibig, G. Hager and G. Wellein: LIKWID: A lightweight performance-oriented tool

suite for x86 multicore environments. Proc. PSTI2010, the First International Workshop

on Parallel Software Tools and Tool Infrastructures, San Diego CA, September 13, 2010.

DOI: 10.1109/ICPPW.2010.38. Preprint: arXiv:1004.4431

 G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector

multiplication with explicit communication overlap on current multicore-based systems.

Parallel Processing Letters 21(3), 339-358 (2011).

DOI: 10.1142/S0129626411000254

 J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization strategies for

iterative stencil computations. Journal of Computational Science 2 (2), 130-137 (2011).

DOI 10.1016/j.jocs.2011.01.010

 SC12 Tutorial Performance on Multicore

http://dx.doi.org/10.1109/COMPSAC.2009.82
http://dx.doi.org/10.1109/COMPSAC.2009.82
http://dx.doi.org/10.1142/S0129626410000296
http://arxiv.org/abs/1006.3148
http://www.psti-workshop.org/
http://doi.ieeecomputersociety.org/10.1109/ICPPW.2010.38
http://arxiv.org/abs/1004.4431
http://dx.doi.org/10.1142/S0129626411000254
http://dx.doi.org/10.1142/S0129626411000254
http://dx.doi.org/10.1016/j.jocs.2011.01.010

222

References

Papers continued:

 J. Habich, T. Zeiser, G. Hager and G. Wellein: Performance analysis and optimization

strategies for a D3Q19 Lattice Boltzmann Kernel on nVIDIA GPUs using CUDA.

Advances in Engineering Software and Computers & Structures 42 (5), 266–272 (2011).

DOI: 10.1016/j.advengsoft.2010.10.007

 J. Treibig, G. Hager and G. Wellein: Multicore architectures: Complexities of performance

prediction for Bandwidth-Limited Loop Kernels on Multi-Core Architectures.

DOI: 10.1007/978-3-642-13872-0_1, Preprint: arXiv:0910.4865.

 G. Hager, G. Jost, and R. Rabenseifner: Communication Characteristics and Hybrid

MPI/OpenMP Parallel Programming on Clusters of Multi-core SMP Nodes. In:

Proceedings of the Cray Users Group Conference 2009 (CUG 2009), Atlanta, GA, USA,

May 4-7, 2009. PDF

 R. Rabenseifner and G. Wellein: Communication and Optimization Aspects of Parallel

Programming Models on Hybrid Architectures. International Journal of High Performance

Computing Applications 17, 49-62, February 2003.

DOI:10.1177/1094342003017001005

SC12 Tutorial Performance on Multicore

http://dx.doi.org/10.1016/j.advengsoft.2010.10.007
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://arxiv.org/abs/0910.4865
http://www.cug.org/5-publications/proceedings_attendee_lists/CUG09CD/S09_Proceedings/pages/authors/06-10Tuesday/9B-Rabenseifner/rabenseifner-paper.pdf
http://www.cug.org/5-publications/proceedings_attendee_lists/CUG09CD/S09_Proceedings/pages/authors/06-10Tuesday/9B-Rabenseifner/rabenseifner-paper.pdf
http://dx.doi.org/10.1177/1094342003017001005

