
Performance-oriented programming on

multicore-based systems,

with a focus on the Cray XE6/XC30

Georg Hager(a), Jan Treibig(a), and Gerhard Wellein(a,b)

(a)HPC Services, Erlangen Regional Computing Center (RRZE)

(b)Department for Computer Science

 Friedrich-Alexander-University Erlangen-Nuremberg

Cray XE6 optimization workshop, April 16-19, 2013, HLRS

mailto:georg.hager@fau.de
mailto:jan.treibig@fau.de
mailto:gerhard.wellein@fau.de

2

The Rules™

There is no alternative to knowing what is going on

between your code and the hardware

Without performance modeling,

optimizing code is like stumbling in the dark

Cray Workshop Performance for Multicore

3

Agenda

 Basics of multicore processor and node architecture

 Multicore performance and tools

 Affinity enforcement

 Performance counter measurements

 Basics and best practice for performance counter profiling

 Microbenchmarking for architectural exploration

 Roadblocks for scalability on multicore chips

 Scaling properties and typical OpenMP overhead

 Bandwidth saturation in cache and main memory

 Simple Performance Modeling: The Roofline model

 Optimal utilization of parallel resources

 Programming for SIMD parallelism

 Programming in ccNUMA environments

 Case study: The roofline model for a 3D Jacobi solver

 Understanding performance characteristics

 Model-guided optimization

Cray Workshop Performance for Multicore

Multicore processor and system

architecture – an overview

Performance composition

Memory organization: UMA vs. ccNUMA

Simultaneous Multi-Threading (SMT)

Data paths in HPC systems

Memory access

Single Instruction Multiple Data (SIMD)

Topology and programming models

5

There is no longer a single driving force

for chip performance!

Floating Point (FP) Performance:

 P = ncore * F * S * n

ncore number of cores: 8

F FP instructions per cycle: 2

 (1 MULT and 1 ADD)

S FP ops / instruction: 4 (dp) / 8 (sp)

 (256 Bit SIMD registers – “AVX”)

n Clock speed : 2.5 GHz

P = 160 GF/s (dp) / 320 GF/s (sp)

Intel Xeon

“Sandy Bridge EP” socket

4,6,8 core variants available

But: P=5 GF/s (dp) for serial, non-SIMD code

Cray Workshop Performance for Multicore

TOP500 rank 1 (1996)

6

Today: Dual-socket Intel (Westmere) node:

Yesterday (2006): Dual-socket Intel “Core2” node:

From UMA to ccNUMA
Basic architecture of commodity compute cluster nodes

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

But: system “anisotropy”

Cache-coherent Non-Uniform Memory

Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at

the price of ccNUMA architectures:

Where does my data finally end up?

On AMD it is even more complicated ccNUMA within a socket!

Cray Workshop Performance for Multicore

7

Back to the 2-chip-per-case age

16 core AMD Interlagos – a 2x8-core ccNUMA socket

 AMD: single-socket ccNUMA since Magny Cours

 1 socket: 16-core Interlagos built from two 8-core chips

 2 NUMA domains

 2 socket server 4 NUMA domains

 4 socket server: 8 NUMA domains

 WHY? Shared resources are hard two scale:

 2 x 2 memory channels vs. 1 x 4 memory channels per socket

Cray Workshop Performance for Multicore

Memory

L3

Memory Interface

L2

FP

C1 C2

L1D

L2

FP

C1 C2

L1D

L2

FP

C1 C2

L1D

L2

FP

C1 C2

L1D L1D L1D L1D L1D

Memory

L3

Memory Interface

L2

FP

C1 C2

L1D L2

FP

C1 C2

L1D L2

FP

C1 C2

L1D L2

FP

C1 C2

L1D L1D L1D L1D L1D

8

Cray XE6 (Hermit) “Interlagos” 16-core dual socket node

 Two 8- (integer-) core chips per

socket @ 2.3 GHz (3.3 @ turbo)

 Separate DDR3 memory

interface per chip

 ccNUMA on the socket!

 Shared FP unit per pair of

integer cores (“module”)

 2 128bit FMA FP units

 SSE4.2, AVX, FMA4

 16 kB L1 data cache per core

 2 MB L2 cache per module

 8 MB L3 cache per chip

(6 MB usable)

Cray Workshop Performance for Multicore

9 Cray Workshop Performance for Multicore

SMT Makes a single physical core appear as two or more

“logical” cores multiple threads/processes run concurrently

 SMT principle (2-way example):

S
ta

n
d

a
rd

 c
o

re

2
-w

a
y
 S

M
T

10

Another flavor of “SMT”

AMD Interlagos / Bulldozer

 Up to 16 cores (8 Bulldozer modules) in a single socket

 Max. 2.6 GHz (+ Turbo Core)

 Pmax = (2.6 x 8 x 8) GF/s

 = 166.4 GF/s

Each Bulldozer module:

 2 “lightweight” cores

 1 FPU: 4 MULT & 4 ADD

(double precision) / cycle

 Supports AVX

 Supports FMA4

2 NUMA domains per socket

16 kB

dedicated

L1D cache

2 DDR3 (shared) memory

channel > 15 GB/s

2048 kB

shared

L2 cache

8 (6) MB

shared

L3 cache

Cray Workshop Performance for Multicore

11

Cray XC30 “SandyBridge-EP” 8-core dual socket node

 8 cores per socket 2.7 GHz

(3.5 @ turbo)

 DDR3 memory interface with 4

channels per chip

 Two-way SMT

 Two 256-bit SIMD FP units

 SSE4.2, AVX

 32 kB L1 data cache per core

 256 kB L2 cache per core

 20 MB L3 cache per chip

Cray Workshop Performance for Multicore

12

Latency and bandwidth in modern computer environments

ns

ms

ms

1 GB/s

Cray Workshop Performance for Multicore

We care about this

region today

Avoiding slow data

paths is the key to

most performance

optimizations!

13

Interlude: Data transfers in a memory hierarchy

 How does data travel from memory to the CPU and back?

 Example: Array copy A(:)=C(:)

Cray Workshop Performance for Multicore

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1) MISS

write

allocate

evict

(delayed)

3 CL

transfers

LD C(2..Ncl)

ST A(2..Ncl)

HIT

CPU registers

Cache

Memory

CL

CL

CL CL

LD C(1)

NTST A(1)
MISS

2 CL

transfers

LD C(2..Ncl)

NTST A(2..Ncl)

HIT

Standard stores Nontemporal (NT)

stores

50%

performance

boost for

COPY

C(:) A(:) C(:) A(:)

14

SIMD-processing – Basics

 Single Instruction Multiple Data (SIMD) operations allow the

concurrent execution of the same operation on “wide” registers.

 x86 SIMD instruction sets:

 SSE: register width = 128 Bit 2 double precision floating point operands

 AVX: register width = 256 Bit 4 double precision floating point operands

 Adding two registers holding double precision floating point operands

Cray Workshop Performance for Multicore
A

[0
]

A
[1

]
A

[2
]

A
[3

]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

A
[0

]

B
[0

]

C
[0

]

64 Bit

256 Bit

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:

R2 ADD [R0,R1]

SIMD execution:

V64ADD [R0,R1] R2

15

Challenges of modern compute nodes

GPU #1

GPU #2

PCIe link

Other I/O

Core:

SIMD vectorization

SMT

Socket:

Parallelization

Shared Resources

Node:

ccNUMA/data locality
Accelerators:

Data transfer to/from host

Heterogeneous programming

SIMD + OpenMP + MPI + CUDA, OpenCL,…

Cray Workshop Performance for Multicore

Where is the data?

16

Parallelism in modern computer systems

 Parallel and shared resources within a shared-memory node

GPU #1

GPU #2

PCIe link

 Parallel resources:

 Execution/SIMD units

 Cores

 Inner cache levels

 Sockets / memory domains

 Multiple accelerators

 Shared resources:

 Outer cache level per socket

 Memory bus per socket

 Intersocket link

 PCIe bus(es)

 Other I/O resources

Other I/O

1

2

3

4 5

1

2

3

4

5

6

6

7

7

8

8

9

9

10

10

How does your application react to all of those details?

Cray Workshop Performance for Multicore

17 Cray Workshop Performance for Multicore

Parallel programming models
on multicore multisocket nodes

 Shared-memory (intra-node)

 Good old MPI (current standard: 2.2)

 OpenMP (current standard: 3.0)

 POSIX threads

 Intel Threading Building Blocks

 Cilk++, OpenCL, StarSs,… you name it

 Distributed-memory (inter-node)

 MPI (current standard: 2.2)

 PVM (gone)

 Hybrid

 Pure MPI

 MPI+OpenMP

 MPI + any shared-memory model

All models require

awareness of

topology and affinity

issues for getting

best performance

out of the machine!

18 Cray Workshop Performance for Multicore

Parallel programming models:
Pure MPI

 Machine structure is invisible to user:

 Very simple programming model

 MPI “knows what to do”!?

 Performance issues

 Intranode vs. internode MPI

 Node/system topology

19 Cray Workshop Performance for Multicore

Parallel programming models:
Pure threading on the node

 Machine structure is invisible to user

 Very simple programming model

 Threading SW (OpenMP, pthreads,

TBB,…) should know about the details

 Performance issues

 Synchronization overhead

 Memory access

 Node topology

Multicore Performance and Tools

Probing node topology

 Standard tools

 likwid-topology

21 Cray Workshop Performance for Multicore

How do we figure out the node topology?

 Topology =

 Where in the machine does core #n reside? And do I have to remember this

awkward numbering anyway?

 Which cores share which cache levels?

 Which hardware threads (“logical cores”) share a physical core?

 Linux

 cat /proc/cpuinfo is of limited use

 Core numbers may change across kernels

and BIOSes even on identical hardware

 numactl --hardware prints

ccNUMA node information

 Information on caches is harder

to obtain

$ numactl --hardware

available: 4 nodes (0-3)

node 0 cpus: 0 1 2 3 4 5

node 0 size: 8189 MB

node 0 free: 3824 MB

node 1 cpus: 6 7 8 9 10 11

node 1 size: 8192 MB

node 1 free: 28 MB

node 2 cpus: 18 19 20 21 22 23

node 2 size: 8192 MB

node 2 free: 8036 MB

node 3 cpus: 12 13 14 15 16 17

node 3 size: 8192 MB

node 3 free: 7840 MB

22 Cray Workshop Performance for Multicore

How do we figure out the node topology?

 LIKWID tool suite:

Like

I

Knew

What

I’m

Doing

 Open source tool collection

(developed at RRZE):

http://code.google.com/p/likwid

J. Treibig, G. Hager, G. Wellein: LIKWID: A

lightweight performance-oriented tool suite

for x86 multicore environments. Accepted for

PSTI2010, Sep 13-16, 2010, San Diego, CA

http://arxiv.org/abs/1004.4431

23 Cray Workshop Performance for Multicore

Likwid Tool Suite

 Command line tools for Linux:

 easy to install

 works with standard linux 2.6 kernel

 simple and clear to use

 supports Intel and AMD CPUs

 Current tools:

 likwid-topology: Print thread and cache topology

 likwid-pin: Pin threaded application without touching code

 likwid-perfctr: Measure performance counters

 likwid-mpirun: mpirun wrapper script for easy LIKWID integration

 likwid-bench: Low-level bandwidth benchmark generator tool

 … some more

24 Cray Workshop Performance for Multicore

Output of likwid-topology –g

on one node of Cray XE6 “Hermit”

CPU type: AMD Interlagos processor

Hardware Thread Topology

Sockets: 2

Cores per socket: 16

Threads per core: 1

HWThread Thread Core Socket

0 0 0 0

1 0 1 0

2 0 2 0

3 0 3 0

[...]

16 0 0 1

17 0 1 1

18 0 2 1

19 0 3 1

[...]

Socket 0: (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

Socket 1: (16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)

Cache Topology

Level: 1

Size: 16 kB

Cache groups: (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13

) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (

28) (29) (30) (31)

25

Output of likwid-topology continued

Cray Workshop Performance for Multicore

Level: 2

Size: 2 MB

Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15) (16 17) (18

19) (20 21) (22 23) (24 25) (26 27) (28 29) (30 31)

Level: 3

Size: 6 MB

Cache groups: (0 1 2 3 4 5 6 7) (8 9 10 11 12 13 14 15) (16 17 18 19 20 21 22 23) (24 25 26

27 28 29 30 31)

NUMA Topology

NUMA domains: 4

Domain 0:

Processors: 0 1 2 3 4 5 6 7

Memory: 7837.25 MB free of total 8191.62 MB

Domain 1:

Processors: 8 9 10 11 12 13 14 15

Memory: 7860.02 MB free of total 8192 MB

Domain 2:

Processors: 16 17 18 19 20 21 22 23

Memory: 7847.39 MB free of total 8192 MB

Domain 3:

Processors: 24 25 26 27 28 29 30 31

Memory: 7785.02 MB free of total 8192 MB

26

Output of likwid-topology continued

Cray Workshop Performance for Multicore

Graphical:

Socket 0:

+---+

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | | 8 | | 9 | | 10 | | 11 | | 12 | | 13 | | 14 | | 15 | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| +---+ +---+ |

| | 6MB | | 6MB | |

| +---+ +---+ |

+---+

Socket 1:

+---+

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16 | | 17 | | 18 | | 19 | | 20 | | 21 | | 22 | | 23 | | 24 | | 25 | | 26 | | 27 | | 28 | | 29 | | 30 | | 31 | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| +---+ +---+ |

| | 6MB | | 6MB | |

| +---+ +---+ |

+---+

Enforcing thread/process-core affinity

under the Linux OS

 Standard tools and OS affinity facilities

under program control

 likwid-pin

 aprun (Cray)

28 Cray Workshop Performance for Multicore

Example: STREAM benchmark on 12-core Intel Westmere:

Anarchy vs. thread pinning

No pinning

Pinning (physical cores first,

alternating sockets)

There are several reasons for caring about

affinity:

 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention

29 Cray Workshop Performance for Multicore

Generic thread/process-core affinity under Linux
Overview

 taskset [OPTIONS] [MASK | -c LIST] \

 [PID | command [args]...]

 taskset binds processes/threads to a set of CPUs. Examples:

taskset 0x0006 ./a.out

taskset –c 4 33187

mpirun –np 2 taskset –c 0,2 ./a.out # doesn’t always work

 Processes/threads can still move within the set!

 Alternative: let process/thread bind itself by executing syscall
#include <sched.h>

int sched_setaffinity(pid_t pid, unsigned int len,

 unsigned long *mask);

 Disadvantage: which CPUs should you bind to on a non-exclusive
machine?

 Still of value on multicore/multisocket cluster nodes, UMA or ccNUMA

30 Cray Workshop Performance for Multicore

Generic thread/process-core affinity under Linux

 Complementary tool: numactl

Example: numactl --physcpubind=0,1,2,3 command [args]

Bind process to specified physical core numbers

Example: numactl --cpunodebind=1 command [args]

Bind process to specified ccNUMA node(s)

 Many more options (e.g., interleave memory across nodes)

 see section on ccNUMA optimization

 Diagnostic command (see earlier):
numactl --hardware

 Again, this is not suitable for a shared machine

31 Cray Workshop Performance for Multicore

More thread/Process-core affinity (“pinning”) options

 Highly OS-dependent system calls

 But available on all systems

 Linux: sched_setaffinity(), PLPA (see below) hwloc
Solaris: processor_bind()

Windows: SetThreadAffinityMask()
…

 Support for “semi-automatic” pinning in some
compilers/environments

 Intel compilers > V9.1 (KMP_AFFINITY environment variable)

 PGI, Pathscale, GNU

 SGI Altix dplace (works with logical CPU numbers!)

 Generic Linux: taskset, numactl, likwid-pin (see below)

 Affinity awareness in MPI libraries

 SGI MPT

 OpenMPI

 Intel MPI

 …

Example for program-controlled

affinity: Using PLPA under Linux!

32 Cray Workshop Performance for Multicore

Likwid-pin
Overview

 Pins processes and threads to specific cores without touching code

 Directly supports pthreads, gcc OpenMP, Intel OpenMP

 Based on combination of wrapper tool together with overloaded pthread

library binary must be dynamically linked!

 Can also be used as a superior replacement for taskset

 Supports logical core numbering within a node and within an existing CPU

set

 Useful for running inside CPU sets defined by someone else, e.g., the MPI

start mechanism or a batch system

 Usage examples:

 likwid-pin -c 0,2,4-6 ./myApp parameters

 likwid-pin –c S0:0-3 ./myApp parameters

33 Cray Workshop Performance for Multicore

Likwid-pin
Example: Intel OpenMP

 Running the STREAM benchmark with likwid-pin:

 $ export OMP_NUM_THREADS=4

 $ likwid-pin -s 0x1 -c 0,1,4,5 ./stream

 [likwid-pin] Main PID -> core 0 - OK

 --

 Double precision appears to have 16 digits of accuracy

 Assuming 8 bytes per DOUBLE PRECISION word

 --

 [... some STREAM output omitted ...]

 The *best* time for each test is used

 EXCLUDING the first and last iterations

 [pthread wrapper] PIN_MASK: 0->1 1->4 2->5

 [pthread wrapper] SKIP MASK: 0x1

 [pthread wrapper 0] Notice: Using libpthread.so.0

 threadid 1073809728 -> SKIP

 [pthread wrapper 1] Notice: Using libpthread.so.0

 threadid 1078008128 -> core 1 - OK

 [pthread wrapper 2] Notice: Using libpthread.so.0

 threadid 1082206528 -> core 4 - OK

 [pthread wrapper 3] Notice: Using libpthread.so.0

 threadid 1086404928 -> core 5 - OK

 [... rest of STREAM output omitted ...]

Skip shepherd

thread

Main PID always

pinned

Pin all spawned

threads in turn

34 Cray Workshop Performance for Multicore

Likwid-pin
Using logical core numbering

 Core numbering may vary from system to system even with

identical hardware

 Likwid-topology delivers this information, which can then be fed into likwid-

pin

 Alternatively, likwid-pin can abstract this variation and provide a

purely logical numbering (physical cores first)

 Across all cores in the node:
OMP_NUM_THREADS=8 likwid-pin -c N:0-7 ./a.out

 Across the cores in each socket and across sockets in each node:
OMP_NUM_THREADS=8 likwid-pin -c S0:0-3@S1:0-3 ./a.out

Socket 0:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 0 1| | 2 3| | 4 5| | 6 7| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Socket 1:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 8 9| |10 11| |12 13| |14 15| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Socket 0:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 0 8| | 1 9| | 2 10| | 3 11| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Socket 1:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 4 12| | 5 13| | 6 14| | 7 15| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

35

Likwid-pin
Using logical core numbering

 Possible unit prefixes

N node

S socket

M NUMA domain

C outer level cache group

Cray Workshop Performance for Multicore

Chipset

Memory

Default if –c is not

specified!

36

aprun on Cray

 See Cray workshop slides

 aprun supports only physical core numbering

 This is OK since the cores are always numbered consecutively on Crays

 Use -ss switch to restrict allocation to local NUMA domain (see later for

more on ccNUMA)

 Use -d $OMP_NUM_THREADS or similar for MPI+OMP hybrid code

 See later on how using multiple cores per module/chip/socket

affects performance

Cray Workshop Performance for Multicore

Multicore performance tools:

Probing performance behavior

likwid-perfctr

38

likwid-perfctr

Basic approach to performance analysis

1. Runtime profile / Call graph (gprof)

2. Instrument those parts which consume a significant part of

runtime

3. Find performance signatures

Possible signatures:

 Bandwidth saturation

 Instruction throughput limitation (real or language-induced)

 Latency impact (irregular data access, high branch ratio)

 Load imbalance

 ccNUMA issues (data access across ccNUMA domains)

 Pathologic cases (false cacheline sharing, expensive operations)

Cray Workshop Performance for Multicore

39 Cray Workshop Performance for Multicore

Probing performance behavior

 How do we find out about the performance properties and

requirements of a parallel code?

 Profiling via advanced tools is often overkill

 A coarse overview is often sufficient

 likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on

Linux/Altix)

 Simple end-to-end measurement of hardware performance metrics

 “Marker” API for starting/stopping

counters

 Multiple measurement region

support

 Preconfigured and extensible

metric groups, list with
likwid-perfctr -a

BRANCH: Branch prediction miss rate/ratio

CACHE: Data cache miss rate/ratio

CLOCK: Clock of cores

DATA: Load to store ratio

FLOPS_DP: Double Precision MFlops/s

FLOPS_SP: Single Precision MFlops/s

FLOPS_X87: X87 MFlops/s

L2: L2 cache bandwidth in MBytes/s

L2CACHE: L2 cache miss rate/ratio

L3: L3 cache bandwidth in MBytes/s

L3CACHE: L3 cache miss rate/ratio

MEM: Main memory bandwidth in MBytes/s

TLB: TLB miss rate/ratio

40 Cray Workshop Performance for Multicore

likwid-perfctr

Example usage with preconfigured metric group

$ env OMP_NUM_THREADS=4 likwid-perfctr -C N:0-3 -g FLOPS_DP ./stream.exe

CPU type: Intel Core Lynnfield processor

CPU clock: 2.93 GHz

Measuring group FLOPS_DP

YOUR PROGRAM OUTPUT

+--------------------------------------+-------------+-------------+-------------+-------------+

| Event | core 0 | core 1 | core 2 | core 3 |

+--------------------------------------+-------------+-------------+-------------+-------------+

| INSTR_RETIRED_ANY | 1.97463e+08 | 2.31001e+08 | 2.30963e+08 | 2.31885e+08 |

| CPU_CLK_UNHALTED_CORE | 9.56999e+08 | 9.58401e+08 | 9.58637e+08 | 9.57338e+08 |

| FP_COMP_OPS_EXE_SSE_FP_PACKED | 4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |

| FP_COMP_OPS_EXE_SSE_FP_SCALAR | 882 | 0 | 0 | 0 |

| FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION | 0 | 0 | 0 | 0 |

| FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION | 4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |

+--------------------------------------+-------------+-------------+-------------+-------------+

+--------------------------+------------+---------+----------+----------+

| Metric | core 0 | core 1 | core 2 | core 3 |

+--------------------------+------------+---------+----------+----------+

| Runtime [s] | 0.326242 | 0.32672 | 0.326801 | 0.326358 |

| CPI | 4.84647 | 4.14891 | 4.15061 | 4.12849 |

| DP MFlops/s (DP assumed) | 245.399 | 189.108 | 189.024 | 189.304 |

| Packed MUOPS/s | 122.698 | 94.554 | 94.5121 | 94.6519 |

| Scalar MUOPS/s | 0.00270351 | 0 | 0 | 0 |

| SP MUOPS/s | 0 | 0 | 0 | 0 |

| DP MUOPS/s | 122.701 | 94.554 | 94.5121 | 94.6519 |

+--------------------------+------------+---------+----------+----------+

Always

measured

Derived

metrics

Configured metrics

(this group)

41

likwid-perfctr

Best practices for runtime counter analysis

Things to look at (in roughly this

order)

 Load balance (flops, instructions,

BW)

 In-socket memory BW saturation

 Shared cache BW saturation

 Flop/s, loads and stores per flop

metrics

 SIMD vectorization

 CPI metric

 # of instructions,

branches, mispredicted branches

Caveats

 Load imbalance may not show in

CPI or # of instructions
 Spin loops in OpenMP barriers/MPI

blocking calls

 Looking at “top” or the Windows Task

Manager does not tell you anything useful

 In-socket performance saturation

may have various reasons

 Cache miss metrics are overrated

 If I really know my code, I can often

calculate the misses

 Runtime and resource utilization is

much more important

Cray Workshop Performance for Multicore

42

likwid-perfctr

Identify load imbalance…

 Instructions retired / CPI may not be a good indication of

useful workload – at least for numerical / FP intensive codes….

 Floating Point Operations Executed is often a better indicator

 Waiting / “Spinning” in barrier generates a high instruction count

!$OMP PARALLEL DO

DO I = 1, N

 DO J = 1, I

 x(I) = x(I) + A(J,I) * y(J)

 ENDDO

ENDDO

!$OMP END PARALLEL DO

Cray Workshop Performance for Multicore

43

likwid-perfctr

… and load-balanced codes

!$OMP PARALLEL DO

DO I = 1, N

 DO J = 1, N

 x(I) = x(I) + A(J,I) * y(J)

 ENDDO

ENDDO

!$OMP END PARALLEL DO

Higher CPI but

better performance

env OMP_NUM_THREADS=6 likwid-perfctr –C S0:0-5 –g FLOPS_DP ./a.out

Cray Workshop Performance for Multicore

44

Detecting latency-bound codes

Example: graph and tree data structures

Metric Red-Black tree Optimized data structure

Instructions retired 1.34268e+11 1.28581e+11

CPI 9.0176 0.71887

L3-MEM data volume [GB] 301 3.22

TLB misses 3.71447e+09 4077

Branch rate 36% 8.5%

Branch mispredicted ratio 7.8% 0.0000013%

Memory bandwidth [GB/s] 10.5 1.1

Useful likwid-perfctr groups: L3, L3CACHE, MEM, TLB, BRANCH

High CPI, near perfect scaling if using SMT threads (Intel).

Note: Latency bound code can still produce significant aggregated bandwidth.

Cray Workshop Performance for Multicore

45

Language-induced problems

 The object-oriented programming paradigm implements

functionality resulting in many calls to small functions

 The ability of the compiler to inline functions (and still generate the

best possible machine code) is limited

 Frequent pattern with complex C++ codes

 Symptoms:

 Low (“good”) CPI

 Low resource utilization (Flops/s, bandwidth)

 Orders of magnitude more general purpose than arithmetic floating point

instructions

 High branch rate

 Solution:

 Use basic data types and plain arrays in compute intensive loops

 Use plain C-like code

 Keep things simple – do not obstruct the compiler’s view on the code

Cray Workshop Performance for Multicore

Microbenchmarking for architectural

exploration

The vector triad

Serial, throughput, and parallel benchmarks

47 Cray Workshop Performance for Multicore

The parallel vector triad benchmark

A “swiss army knife” for microbenchmarking

Simple streaming benchmark:

 Report performance for different N

 Choose NITER so that accurate time measurement is possible

 This kernel is limited by data transfer performance for all memory

levels on all current architectures!

double precision, dimension(N) :: A,B,C,D

A=1.d0; B=A; C=A; D=A

do j=1,NITER

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

 if(.something.that.is.never.true.) then

 call dummy(A,B,C,D)

 endif

enddo

Prevents smarty-pants

compilers from doing

“clever” stuff

49

A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz)

Cray Workshop Performance for Multicore

L1D cache (32k)

L2 cache (256k)

L3 cache (20M)

Memory

Theoretical limit

4 W / iteration

 128 GB/s

5 W / it.

 18 GB/s

(incl. write

allocate)

What about

multiple cores?

Do the

bandwidths

scale?

50

A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz)

Cray Workshop Performance for Multicore

2
.6

6
x
 S

IM
D

 i
m

p
a
c
t

Theoretical limit

4 W / iteration

 128 GB/s

Theoretical limit

4 W / iteration

 48 GB/s

51

The throughput-parallel vector triad benchmark

 Every core runs its own, independent triad benchmark

 pure hardware probing, no impact from OpenMP overhead

Cray Workshop Performance for Multicore

double precision, dimension(:), allocatable :: A,B,C,D

!$OMP PARALLEL private(i,j,A,B,C,D)

allocate(A(1:N),B(1:N),C(1:N),D(1:N))

A=1.d0; B=A; C=A; D=A

do j=1,NITER

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

 if(.something.that.is.never.true.) then

 call dummy(A,B,C,D)

 endif

enddo

!$OMP END PARALLEL

52

Throughput vector triad on Sandy Bridge socket (3 GHz)

Cray Workshop Performance for Multicore

Saturation effect

in memory

Scalable BW in

L1, L2, L3 cache

53

The OpenMP-parallel vector triad benchmark

 OpenMP work sharing in the benchmark loop

Cray Workshop Performance for Multicore

double precision, dimension(:), allocatable :: A,B,C,D

allocate(A(1:N),B(1:N),C(1:N),D(1:N))

A=1.d0; B=A; C=A; D=A

!$OMP PARALLEL private(i,j)

do j=1,NITER

!$OMP DO

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

!$OMP END DO

 if(.something.that.is.never.true.) then

 call dummy(A,B,C,D)

 endif

enddo

!$OMP END PARALLEL

Implicit barrier

54

OpenMP vector triad on Sandy Bridge socket (3 GHz)

Cray Workshop Performance for Multicore

sync

overhead

grows with #

of threads

bandwidth

scalability

across

memory

interfaces

OpenMP performance issues

on multicore

Synchronization (barrier) overhead

56 Cray Workshop Performance for Multicore

Welcome to the multi-/many-core era

Synchronization of threads may be expensive!

!$OMP PARALLEL …

…

!$OMP BARRIER

!$OMP DO

…

!$OMP ENDDO

!$OMP END PARALLEL

On x86 systems there is no hardware support for synchronization!

 Next slide: Test OpenMP Barrier performance…

 for different compilers

 and different topologies:

 shared cache

 shared socket

 between sockets

 and different thread counts

 2 threads

 full domain (chip, socket, node)

Threads are synchronized at explicit AND

implicit barriers. These are a main source of

overhead in OpenMP progams.

Determine costs via modified OpenMP

Microbenchmarks testcase (epcc)

57 Cray Workshop Performance for Multicore

Thread synchronization overhead on Interlagos
Barrier overhead in CPU cycles

2 Threads Cray 8.03 GCC 4.6.2 PGI 11.8 Intel 12.1.3

Shared L2 258 3995 1503 128623

Shared L3 698 2853 1076 128611

Same socket 879 2785 1297 128695

Other socket 940 2740 / 4222 1284 / 1325 128718

Intel compiler barrier very expensive on Interlagos

 OpenMP & Cray compiler

Full domain Cray 8.03 GCC 4.6.2 PGI 11.8 Intel 12.1.3

Shared L3 2272 27916 5981 151939

Socket 3783 49947 7479 163561

Node 7663 167646 9526 178892

58 Cray Workshop Performance for Multicore

Thread synchronization overhead on SandyBridge-EP
Barrier overhead in CPU cycles

2 Threads Intel 13.1.0 GCC 4.7.0 GCC 4.6.1

Shared L3 384 5242 4616

SMT threads 2509 3726 3399

Other socket 1375 5959 4909

Gcc still not very competitive

 Intel compiler

Full domain Intel 13.1.0 GCC 4.7.0 GCC 4.6.1

Socket 1497 14546 14418

Node 3401 34667 29788

Node SMT 6881 59038 58898

Simple performance modeling:

The Roofline Model

60

The Roofline Model1,2

1. Pmax = Applicable peak performance of a loop, assuming that

data comes from L1 cache

2. I = Computational intensity (“work” per byte transferred) over the

slowest data path utilized (“the bottleneck”)

 Code balance BC = I -1

3. bS = Applicable peak bandwidth of the slowest data path utilized

Expected performance:

Cray Workshop Performance for Multicore

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

1 W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. (2000)
2 S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

61

A simple Roofline example

Example: do i=1,N; s=s+a(i); enddo

in double precision on hypothetical 3 GHz CPU, 4-way SIMD, N large

Cray Workshop Performance for Multicore

ADD peak (half of full peak)

no SIMD

4-cycle latency per ADD if not unrolled

Computational intensity

Performance

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

62

Applicable peak for the summation loop

Plain scalar code, no SIMD

LOAD r1.0 0

i 1

loop:

 LOAD r2.0 a(i)

 ADD r1.0 r1.0+r2.0

 ++i ? loop

result r1.0

Cray Workshop Performance for Multicore

ADD pipes utilization:

t

 1/16 of ADD peak

63

Applicable peak for the summation loop

Scalar code, 4-way unrolling
LOAD r1.0 0

LOAD r2.0 0

LOAD r3.0 0

LOAD r4.0 0

i 1

loop:

 LOAD r5.0 a(i)

 LOAD r6.0 a(i+1)

 LOAD r7.0 a(i+2)

 LOAD r8.0 a(i+3)

 ADD r1.0 r1.0+r5.0

 ADD r2.0 r2.0+r6.0

 ADD r3.0 r3.0+r7.0

 ADD r4.0 r4.0+r8.0

 i+=4 ? loop

result r1.0+r2.0+r3.0+r4.0

Cray Workshop Performance for Multicore

ADD pipes utilization:

t

 1/4 of ADD peak

64

Applicable peak for the summation loop

SIMD-vectorized, 4-way unrolled
LOAD [r1.0,…,r1.3] [0,0]

LOAD [r2.0,…,r2.3] [0,0]

LOAD [r3.0,…,r3.3] [0,0]

LOAD [r4.0,…,r4.3] [0,0]

i 1

loop:

 LOAD [r5.0,…,r5.3] [a(i),…,a(i+3)]

 LOAD [r6.0,…,r6.3] [a(i+4),…,a(i+7)]

 LOAD [r7.0,…,r7.3] [a(i+8),…,a(i+11)]

 LOAD [r8.0,…,r8.3] [a(i+12),…,a(i+15)]

 ADD r1 r1+r5

 ADD r2 r2+r6

 ADD r3 r3+r7

 ADD r4 r4+r8

 i+=16 ? loop

result r1.0+r1.1+...+r4.2+r4.3

Cray Workshop Performance for Multicore

ADD pipes utilization:

t

 ADD peak

65

Input to the roofline model

… on the example of do i=1,N; s=s+a(i); enddo

Cray Workshop Performance for Multicore

analysis

Code analysis:

1 ADD + 1 LOAD

SIMD vectorized

architecture Throughput: 1 ADD + 1 LD/cy

Pipeline depth: 4 cy (ADD)

4-way SIMD

measurement

Maximum memory

bandwidth 10 GB/s

Memory-bound @ large N!

Pmax = 1.25 GF/s

3-12 GF/s

1.25 GF/s

66

A very bandwidth-bound kernel

Example: Vector triad A(:)=B(:)+C(:)*D(:) on 2.3 GHz Interlagos

 bS = 34 GB/s

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)

 I = 0.4 F/W = 0.05 F/B

Lightspeed:

I ∙ bS = 1.7 GF/s (1.2 % of peak performance)

Cray Workshop Performance for Multicore

67

Assumptions for the Roofline Model

 The balance metric formalism is based on some (crucial)

assumptions:

 There is a clear concept of “work” vs. “traffic”

 “work” = flops, updates, iterations…

 “traffic” = required data to do “work”

 Attainable bandwidth of code = input parameter! Determine effective

bandwidth via simple streaming benchmarks to model more complex

kernels and applications

 Data transfer and core execution overlap perfectly!

 Slowest data path is modeled only; all others are assumed to be infinitely

fast

 If data transfer is the limiting factor, the bandwidth of the slowest data path

can be utilized to 100% (“saturation”)

 Latency effects are ignored, i.e. perfect streaming mode

Cray Workshop Performance for Multicore

68

Factors to consider in the roofline model

Bandwidth-bound (simple case)

 Accurate traffic calculation (write-

allocate, strided access, …)

 Practical ≠ theoretical BW limits

 Erratic access patterns

Core-bound (may be complex)

 Multiple bottlenecks: LD/ST,

arithmetic, pipelines, SIMD,

execution ports

 See next slide…

Cray Workshop Performance for Multicore

69

Complexities of in-core execution

Multiple bottlenecks:

 L1 Icache bandwidth

 Decode/retirement

throughput

 Port contention

(direct or indirect)

 Arithmetic pipeline stalls

(dependencies)

 Overall pipeline stalls

(branching)

 L1 Dcache bandwidth

(LD/ST throughput)

 Scalar vs. SIMD execution

 …

 Register pressure

 Alignment issues

 Cray Workshop Performance for Multicore

70

Shortcomings of the roofline model

 Saturation effects in multicore chips are not explained

 Reason: “saturation assumption”

 Cache line transfers and core execution do sometimes not overlap

perfectly

 Only increased “pressure” on the memory

interface can saturate the bus

 need more cores!

 ECM model gives more insight (see later)

A(:)=B(:)+C(:)*D(:)

Roofline predicts

full socket BW

Cray Workshop Performance for Multicore

Optimal utilization of parallel resources

Hardware-software interaction

SIMD parallelism

72

Computer Architecture
The evil of hardware optimizations

Flexible, but optimization

is hard!

Architect’s view:

Make the common case fast !

Provide improvements for relevant software

What are the technical opportunities?

Economical concerns

Multi-way special purpose

ENIAC 1948

EDSAC 1949

What is your relevant aspect of

the architecture?

Cray Workshop Performance for Multicore

73

Hardware- Software Co-Design?
From algorithm to execution

The machine view:

ISA (Machine code)

Reality:

Algorithm

Programming language

Hardware = Black Box

Libraries Compiler

Cray Workshop Performance for Multicore

74

Basic Resources
Instruction throughput and data movement

1. Instruction execution

This is the primary resource of the processor. All efforts in hardware design

are targeted towards increasing the instruction throughput.

2. Data transfer bandwidth

Data transfers are a consequence of instruction execution and therefore a

secondary resource. Maximum bandwidth is determined by the request rate of

executed instructions and technical limitations (bus width, speed).

Real machine: Processors are imperfect and have technical limitations. This

results in hazards preventing to fully exploit the elementary resources.

Cray Workshop Performance for Multicore

75

Things to remember

Goals for optimization:

1. Map your work to an instruction mix with highest throughput

using the most effective instructions.

2. Reduce data volume over slow data paths fully utilizing available

bandwidth.

3. Avoid possible hazards/overhead which prevent reaching goals

one and two.

Cray Workshop Performance for Multicore

Coding for

SingleInstructionMultipleData-processing

77

SIMD processing – Basics

 Single Instruction Multiple Data (SIMD) operations allow the

concurrent execution of the same operation on “wide” registers.

 x86 SIMD instruction sets:

 SSE: register width = 128 Bit 2 double precision floating point operands

 AVX: register width = 256 Bit 4 double precision floating point operands

 Adding two registers holding double precision floating point operands

Cray Workshop Performance for Multicore
A

[0
]

A
[1

]
A

[2
]

A
[3

]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

A
[0

]

B
[0

]

C
[0

]

64 Bit

256 Bit

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:

R2 ADD [R0,R1]

SIMD execution:

V64ADD [R0,R1] R2

78

SIMD processing – Basics

 Steps (done by the compiler) for “SIMD processing”

Cray Workshop Performance for Multicore

for(int i=0; i<n;i++)

 C[i]=A[i]+B[i];

for(int i=0; i<n;i+=4){

 C[i] =A[i] +B[i];

 C[i+1]=A[i+1]+B[i+1];

 C[i+2]=A[i+2]+B[i+2];

 C[i+3]=A[i+3]+B[i+3];}

//remainder loop omitted

LABEL1:

 VLOAD R0 A[i]

 VLOAD R1 B[i]

 V64ADD[R0,R1] R2

 VSTORE R2 C[i]

 ii+4

 i<(n-4)? JMP LABEL1

//remainder loop omitted

“Loop unrolling”

Load 256 Bits starting from address of A[i] to

register R0

Add the corresponding 64 Bit entries in R0 and

R1 and store the 4 results to R2

Store R2 (256 Bit) to address

starting at C[i]

79

SIMD processing – Basics

 No SIMD-processing for loops with data dependencies

 “Pointer aliasing” may prevent compiler from SIMD-processing

 C/C++ allows that A &C[-1] and B &C[-2]

 C[i] = C[i-1] + C[i-2]: dependency No SIMD-processing

 If no “Pointer aliasing” is used, tell it to the compiler, e.g. use
–fno-alias switch for Intel compiler SIMD-processing

Cray Workshop Performance for Multicore

for(int i=0; i<n; i++)

 A[i]=A[i-1]*s;

void scale_shift(double *A, double *B, double *C, int n) {

 for(int i=0; i<n; ++i)

 C[i] = A[i] + B[i];

}

80

SIMD processing – Basics

 SIMD processing of a vector norm

Cray Workshop Performance for Multicore

s=0.0;

for(int i=0; i<n; i++)

 s = s + A[i]*A[i];

…

V64MULT(R1,R2) R1

V64ADD(R0,R1) R0

…

R0 R1 R2

Data dependency on s must be

resolved for SIMD-processing

s0=0.0;

s1=0.0;

s2=0.0;

s3=0.0;

for(int i=0; i<n; i+=4){

 s0 = s0+ A[i] *A[i];

 s1 = s1+ A[i+1]*A[i+1];

 s2 = s2+ A[i+2]*A[i+2];

 s3 = s3+ A[i+3]*A[i+3];

}

//remainder omitted

s=s0+s1+s2+s3

Compiler does transformation –

if programmer allows it to do so!
(–O3 instead of –O1)

Reading x86 assembly code

82 Cray Workshop Performance for Multicore

Basic approach to check the instruction code

 Get the assembler code (Intel compiler):

 icc –S –O3 -xHost triad.c -o triad.s

 Disassemble Executable:

 objdump –d ./cacheBench | less

 Things to check for:

 Is the code vectorized? Search for pd/ps suffix.

 mulpd, addpd, vaddpd, vmulpd

 Is the data loaded with 16 byte moves?

 movapd, movaps, vmovupd

 For memory-bound code: Search for nontemporal stores:

 movntpd, movntps

The x86 ISA is documented in:

Intel Software Development Manual (SDM) 2A and 2B

AMD64 Architecture Programmer's Manual Vol. 1-5

83 Cray Workshop Performance for Multicore

Basics of the x86-64 ISA

 Instructions have 0 to 2 operands

 Operands can be registers, memory references or immediates

 Opcodes (binary representation of instructions) vary from 1 to 17

bytes

 There are two syntax forms: Intel (left) and AT&T (right)

 Addressing Mode: BASE + INDEX * SCALE + DISPLACEMENT

 C: A[i] equivalent to *(A+i) (a pointer has a type: A+i*8)

movaps [rdi + rax*8+48], xmm3

add rax, 8

js 1b

401b9f: 0f 29 5c c7 30 movaps %xmm3,0x30(%rdi,%rax,8)

401ba4: 48 83 c0 08 add $0x8,%rax

401ba8: 78 a6 js 401b50 <triad_asm+0x4b>

movaps %xmm4, 48(%rdi,%rax,8)

addq $8, %rax

js ..B1.4

84 Cray Workshop Performance for Multicore

Basics of the x86-64 ISA II

16 general Purpose Registers (64bit):

rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp, r8-r15

alias with eight 32 bit register set:

eax, ebx, ecx, edx, esi, edi, esp, ebp

Floating Point SIMD Registers:

xmm0-xmm15 SSE (128bit) alias with 256bit registers

ymm0-ymm15 AVX (256bit)

SIMD instructions are distinguished by:

AVX (VEX) prefix: v

Operation: mul, add, mov

Modifier: non temporal (nt), unaligned (u), aligned (a), high (h)

Data type: single (s), double (d)

85 Cray Workshop Performance for Multicore

Basics of x86-64 ABI

 Regulations how functions are called on binary level

 Differs between 32 bit / 64 bit and Operating Systems

x86-64 on Linux:

 Integer or address parameters are passed in the order :

 rdi, rsi, rdx, rcx, r8, r9

 Floating Point parameters are passed in the order xmm0-xmm7

 Registers which must be preserved across function calls:
 rbx, rbp, r12-r15

 Return values are passed in rax/rdx and xmm0/xmm1

86

Case Study: summation

float sum = 0.0;

for (int j=0; j<size; j++){

 sum += data[j];

}

Instruction code:

401d08: f3 0f 58 04 82 addss (%rdx,%rax,4),%xmm0

401d0d: 48 83 c0 01 add $0x1,%rax

401d11: 39 c7 cmp %eax,%edi

401d13: 77 f3 ja 401d08

Cray Workshop Performance for Multicore

Instruction

address
Opcodes Assembly

code

To get object code use
objdump –d on object file or

executable or compile with -S

87

Summation code variants

1:

addss xmm0, [rsi + rax * 4]

add rax, 1

cmp eax,edi

js 1b

Cray Workshop Performance for Multicore

1:

addss xmm0, [rsi + rax * 4]

addss xmm1, [rsi + rax * 4 + 4]

addss xmm2, [rsi + rax * 4 + 8]

addss xmm3, [rsi + rax * 4 + 12]

add rax, 4

cmp eax,edi

js 1b

1:

addps xmm0, [rsi + rax * 4]

addps xmm1, [rsi + rax * 4 + 16]

addps xmm2, [rsi + rax * 4 + 32]

addps xmm3, [rsi + rax * 4 + 48]

add rax, 16

cmp eax,edi

js 1b

Unrolling with sub sums to break up

register dependency

SSE SIMD vectorization

3 cycles add

pipeline

latency

88

SIMD-processing – Sequential

Cray Workshop Performance for Multicore

SIMD influences instruction execution in

the core – other bottlenecks stay the same!

48

16

4

4 4

Execution Cache Memory

8cy

16cy 16cy
24cy

Full

benefit in

L1 cache

Data transfers

are overlapped

with execution

Some penalty

for SIMD (12 cy

predicted)

Peak

Per-cacheline

cycle counts

89

SIMD-processing – Full chip (all cores)
Influence of SMT

Cray Workshop Performance for Multicore

Bandwidth saturation is the primary

performance limitation on the chip level!

8c

8 threads on physical cores 16 threads using SMT

Full scaling

using SMT due

to bubbles in

pipeline

All variants

saturate the

memory

bandwidth

Conclusion: If the code saturates the

bottleneck, all variants are accpetable!

90

How to leverage SIMD

 The compiler does it for you (aliasing, alignment, language)

 Compiler directives (pragmas)

 Alternative programming models for compute kernels (OpenCL, ispc)

 Intrinsics (restricted to C/C++)

 Implement directly in assembler

To use intrinsics the following headers are available. To enable

instruction sets often additional flags are necessary:

 xmmintrin.h (SSE)

 pmmintrin.h (SSE2)

 immintrin.h (AVX)

 x86intrin.h (all instruction set extensions)

 See next slide for an example

Cray Workshop Performance for Multicore

91

Example: array summation using C intrinsics

Cray Workshop Performance for Multicore

__m128 sum0, sum1, sum2, sum3;

__m128 t0, t1, t2, t3;

float scalar_sum;

sum0 = _mm_setzero_ps();

sum1 = _mm_setzero_ps();

sum2 = _mm_setzero_ps();

sum3 = _mm_setzero_ps();

for (int j=0; j<size; j+=16){

 t0 = _mm_loadu_ps(data+j);

 t1 = _mm_loadu_ps(data+j+4);

 t2 = _mm_loadu_ps(data+j+8);

 t3 = _mm_loadu_ps(data+j+12);

 sum0 = _mm_add_ps(sum0, t0);

 sum1 = _mm_add_ps(sum1, t1);

 sum2 = _mm_add_ps(sum2, t2);

 sum3 = _mm_add_ps(sum3, t3);

}

sum0 = _mm_add_ps(sum0, sum1);

sum0 = _mm_add_ps(sum0, sum2);

sum0 = _mm_add_ps(sum0, sum3);

sum0 = _mm_hadd_ps(sum0, sum0);

sum0 = _mm_hadd_ps(sum0, sum0);

_mm_store_ss(&scalar_sum, sum0);

92

Example: array summation from intrinsics, instruction code

14: 0f 57 c9 xorps %xmm1,%xmm1

17: 31 c0 xor %eax,%eax

19: 0f 28 d1 movaps %xmm1,%xmm2

1c: 0f 28 c1 movaps %xmm1,%xmm0

1f: 0f 28 d9 movaps %xmm1,%xmm3

22: 66 0f 1f 44 00 00 nopw 0x0(%rax,%rax,1)

28: 0f 10 3e movups (%rsi),%xmm7

2b: 0f 10 76 10 movups 0x10(%rsi),%xmm6

2f: 0f 10 6e 20 movups 0x20(%rsi),%xmm5

33: 0f 10 66 30 movups 0x30(%rsi),%xmm4

37: 83 c0 10 add $0x10,%eax

3a: 48 83 c6 40 add $0x40,%rsi

3e: 0f 58 df addps %xmm7,%xmm3

41: 0f 58 c6 addps %xmm6,%xmm0

44: 0f 58 d5 addps %xmm5,%xmm2

47: 0f 58 cc addps %xmm4,%xmm1

4a: 39 c7 cmp %eax,%edi

4c: 77 da ja 28 <compute_sum_SSE+0x18>

4e: 0f 58 c3 addps %xmm3,%xmm0

51: 0f 58 c2 addps %xmm2,%xmm0

54: 0f 58 c1 addps %xmm1,%xmm0

57: f2 0f 7c c0 haddps %xmm0,%xmm0

5b: f2 0f 7c c0 haddps %xmm0,%xmm0

5f: c3 retq

Cray Workshop Performance for Multicore

Loop body

93 Cray Workshop Performance for Multicore

Vectorization and the Intel compiler

 Intel compiler will try to use SIMD instructions when enabled

to do so

 “Poor man’s vector computing”

 Compiler will emit messages about vectorized loops:

plain.c(11): (col. 9) remark: LOOP WAS VECTORIZED.

 Use option -vec_report3 to get full compiler output about which

loops were vectorized and which were not and why (data

dependencies!)

 Some obstructions will prevent the compiler from applying

vectorization even if it is possible

 You can use source code directives to provide more

information to the compiler

94 Cray Workshop Performance for Multicore

Vectorization compiler options

 The compiler will vectorize starting with –O2.

 To enable specific SIMD extensions use the –x option:

 -xSSE2 vectorize for SSE2 capable machines

Available SIMD extensions:

SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX

 -xAVX on Sandy Bridge processors

Recommend option:

 -xHost will optimize for the architecture you compile on

On AMD Opteron: use plain –O3 as the -x options may involve CPU
type checks.

95 Cray Workshop Performance for Multicore

Vectorization compiler options

 Controlling non-temporal stores

 -opt-streaming-stores always|auto|never

always use NT stores, assume application is memory

 bound (use with caution!)

auto compiler decides when to use NT stores

never do not use NT stores unless activated by

 source code directive

96 Cray Workshop Performance for Multicore

Rules for vectorizable loops

1. Countable

2. Single entry and single exit

3. Straight line code

4. No function calls (exception intrinsic math functions)

Better performance with:

1. Simple inner loops with unit stride

2. Minimize indirect addressing

3. Align data structures (SSE 16 bytes, AVX 32 bytes)

4. In C use the restrict keyword for pointers to rule out aliasing

Obstacles for vectorization:

 Non-contiguous memory access

 Data dependencies

97 Cray Workshop Performance for Multicore

Vectorization source code directives

 Fine-grained control of loop vectorization

 Use !DEC$ (Fortran) or #pragma (C/C++) sentinel to start a compiler

directive

 #pragma vector always

vectorize even if it seems inefficient (hint!)

 #pragma novector

do not vectorize even if possible

 #pragma vector nontemporal

use NT stores when allowed (i.e. alignment conditions are met)

 #pragma vector aligned

specifies that all array accesses are aligned to 16-byte boundaries

(DANGEROUS! You must not lie about this!)

98 Cray Workshop Performance for Multicore

User mandated vectorization

 Starting with Intel Compiler 12.0 the simd pragma is available

 #pragma simd enforces vectorization where the other pragmas fail

 Prerequesites:

 Countable loop

 Innermost loop

 Must conform to for-loop style of OpenMP worksharing constructs

 There are additional clauses: reduction, vectorlength, private

 Refer to the compiler manual for further details

 NOTE: Using the #pragma simd the compiler may generate incorrect code if

the loop violates the vectorization rules!

#pragma simd reduction(+:x)

 for (int i=0; i<n; i++) {

 x = x + A[i];

 }

99 Cray Workshop Performance for Multicore

x86 Architecture:

SIMD and Alignment

 Alignment issues

 Alignment of arrays in SSE calculations should be on 16-byte boundaries

to allow packed loads and NT stores (for Intel processors)

 AMD has a scalar nontemporal store instruction

 Otherwise the compiler will revert to unaligned loads and not use NT
stores – even if you say vector nontemporal

 How is manual alignment accomplished?

 Dynamic allocation of aligned memory
(align = alignment boundary):

#define _XOPEN_SOURCE 600

#include <stdlib.h>

int posix_memalign(void **ptr,

 size_t align,

 size_t size);

Efficient parallel programming

on ccNUMA nodes

Performance characteristics of ccNUMA nodes

First touch placement policy

C++ issues

ccNUMA locality and dynamic scheduling

ccNUMA locality beyond first touch

102 Cray Workshop Performance for Multicore

ccNUMA performance problems
“The other affinity” to care about

 ccNUMA:

 Whole memory is transparently accessible by all processors

 but physically distributed

 with varying bandwidth and latency

 and potential contention (shared memory paths)

 How do we make sure that memory access is always as "local"

and "distributed" as possible?

 Page placement is implemented in units of OS pages (often 4kB, possibly

more)

C C C C

M M

C C C C

M M

103

Cray XE6 Interlagos node

4 chips, two sockets, 8 threads per ccNUMA domain

 ccNUMA map: Bandwidth penalties for remote access

 Run 8 threads per ccNUMA domain (1 chip)

 Place memory in different domain 4x4 combinations

 STREAM triad benchmark using nontemporal stores

Cray Workshop Performance for Multicore

S
T

R
E

A
M

 t
ri

a
d

 p
e
rf

o
rm

a
n

c
e
 [

M
B

/s
]

Memory node

C
P

U
 n

o
d

e

104 Cray Workshop Performance for Multicore

ccNUMA locality tool numactl:

How do we enforce some locality of access?

 numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out # map pages only on <nodes>

 --preferred=<node> a.out # map pages on <node>

 # and others if <node> is full

 --interleave=<nodes> a.out # map pages round robin across

 # all <nodes>

 Examples:

env OMP_NUM_THREADS=2 numactl --membind=0 –-cpunodebind=1 ./stream

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \

 likwid-pin -c N:0,4,8,12 ./stream

 But what is the default without numactl?

105 Cray Workshop Performance for Multicore

ccNUMA default memory locality

 "Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the

processor that first touches it!

 Except if there is not enough local memory available

 This might be a problem, see later

 Caveat: "touch" means "write", not "allocate"

 Example:

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE

 huge[i] = 0.0;

 It is sufficient to touch a single item to map the entire page

Memory not

mapped here yet

Mapping takes

place here

106 Cray Workshop Performance for Multicore

Coding for ccNUMA data locality

integer,parameter :: N=10000000

double precision A(N), B(N)

A=0.d0

!$OMP parallel do

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

 A(i)=0.d0

end do

!$OMP end do

...

!$OMP do schedule(static)

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

 Most simple case: explicit initialization

107 Cray Workshop Performance for Multicore

Coding for ccNUMA data locality

integer,parameter :: N=10000000

double precision A(N), B(N)

READ(1000) A

!$OMP parallel do

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

 A(i)=0.d0

end do

!$OMP end do

!$OMP single

READ(1000) A

!$OMP end single

!$OMP do schedule(static)

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

 Sometimes initialization is not so obvious: I/O cannot be easily

parallelized, so “localize” arrays before I/O

108 Cray Workshop Performance for Multicore

Coding for Data Locality

 Required condition: OpenMP loop schedule of initialization must

be the same as in all computational loops

 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to

be sure…

 Imposes some constraints on possible optimizations (e.g. load balancing)

 Presupposes that all worksharing loops with the same loop length have the

same thread-chunk mapping

 Guaranteed by OpenMP 3.0 only for loops in the same enclosing parallel region

and static schedule

 In practice, it works with any compiler even across regions

 If dynamic scheduling/tasking is unavoidable, more advanced methods may

be in order

 How about global objects?

 Better not use them

 If communication vs. computation is favorable, might consider properly

placed copies of global data

 In C++, STL allocators provide an elegant solution (see hidden slides)

112 Cray Workshop Performance for Multicore

Diagnosing Bad Locality

 If your code is cache-bound, you might not notice any locality

problems

 Otherwise, bad locality limits scalability at very low CPU numbers

(whenever a node boundary is crossed)

 If the code makes good use of the memory interface

 But there may also be a general problem in your code…

 Consider using performance counters

 LIKWID-perfctr can be used to measure nonlocal memory accesses

 Example for Intel Nehalem (Core i7):

env OMP_NUM_THREADS=8 likwid-perfctr -g MEM –C N:0-7 ./a.out

113 Cray Workshop Performance for Multicore

Using performance counters for diagnosing bad ccNUMA

access locality

 Intel Nehalem EP node:

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+

| Event | core 0 | core 1 | core 2 | core 3 | core 4 | core 5 | core 6 | core 7 |

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+

| INSTR_RETIRED_ANY | 5.20725e+08 | 5.24793e+08 | 5.21547e+08 | 5.23717e+08 | 5.28269e+08 | 5.29083e+08 | 5.30103e+08 | 5.29479e+08 |

| CPU_CLK_UNHALTED_CORE | 1.90447e+09 | 1.90599e+09 | 1.90619e+09 | 1.90673e+09 | 1.90583e+09 | 1.90746e+09 | 1.90632e+09 | 1.9071e+09 |

| UNC_QMC_NORMAL_READS_ANY | 8.17606e+07 | 0 | 0 | 0 | 8.07797e+07 | 0 | 0 | 0 |

| UNC_QMC_WRITES_FULL_ANY | 5.53837e+07 | 0 | 0 | 0 | 5.51052e+07 | 0 | 0 | 0 |

| UNC_QHL_REQUESTS_REMOTE_READS | 6.84504e+07 | 0 | 0 | 0 | 6.8107e+07 | 0 | 0 | 0 |

| UNC_QHL_REQUESTS_LOCAL_READS | 6.82751e+07 | 0 | 0 | 0 | 6.76274e+07 | 0 | 0 | 0 |

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+

RDTSC timing: 0.827196 s

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+

| Metric | core 0 | core 1 | core 2 | core 3 | core 4 | core 5 | core 6 | core 7 |

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+

| Runtime [s] | 0.714167 | 0.714733 | 0.71481 | 0.715013 | 0.714673 | 0.715286 | 0.71486 | 0.71515 |

| CPI | 3.65735 | 3.63188 | 3.65488 | 3.64076 | 3.60768 | 3.60521 | 3.59613 | 3.60184 |

| Memory bandwidth [MBytes/s] | 10610.8 | 0 | 0 | 0 | 10513.4 | 0 | 0 | 0 |

| Remote Read BW [MBytes/s] | 5296 | 0 | 0 | 0 | 5269.43 | 0 | 0 | 0 |

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+

Uncore events only

counted once per socket

Half of read BW comes

from other socket!

114 Cray Workshop Performance for Multicore

If all fails…

 Even if all placement rules have been carefully observed, you may

still see nonlocal memory traffic. Reasons?

 Program has erratic access patters may still achieve some access

parallelism (see later)

 OS has filled memory with buffer cache data:

numactl --hardware # idle node!

available: 2 nodes (0-1)

node 0 size: 2047 MB

node 0 free: 906 MB

node 1 size: 1935 MB

node 1 free: 1798 MB

top - 14:18:25 up 92 days, 6:07, 2 users, load average: 0.00, 0.02, 0.00

Mem: 4065564k total, 1149400k used, 2716164k free, 43388k buffers

Swap: 2104504k total, 2656k used, 2101848k free, 1038412k cached

115 Cray Workshop Performance for Multicore

ccNUMA problems beyond first touch:

Buffer cache

 OS uses part of main memory for

disk buffer (FS) cache

 If FS cache fills part of memory,

apps will probably allocate from

foreign domains

 non-local access!

 “sync” is not sufficient to

drop buffer cache blocks

 Remedies

 Drop FS cache pages after user job has run (admin’s job)

 seems to be automatic after aprun has finished on Crays

 User can run “sweeper” code that allocates and touches all physical

memory before starting the real application

 numactl tool or aprun can force local allocation (where applicable)

 Linux: There is no way to limit the buffer cache size in standard kernels

P1
C

P2
C

C C

MI

P3
C

P4
C

C C

MI

BC

data(3)

BC

data(3)

d
a
ta

(1
)

116 Cray Workshop Performance for Multicore

ccNUMA problems beyond first touch:

Buffer cache

Real-world example: ccNUMA and the Linux buffer cache

Benchmark:

1. Write a file of some size

from LD0 to disk

2. Perform bandwidth

benchmark using

all cores in LD0 and

maximum memory

available in LD0

Result: By default,

Buffer cache is given

priority over local

page placement

 restrict to local

 domain if possible!

aprun –ss ...

117 Cray Workshop Performance for Multicore

ccNUMA placement and erratic access patterns

 Sometimes access patterns are

just not nicely grouped into

contiguous chunks:

 In both cases page placement cannot easily be fixed for perfect parallel

access

double precision :: r, a(M)

!$OMP parallel do private(r)

do i=1,N

 call RANDOM_NUMBER(r)

 ind = int(r * M) + 1

 res(i) = res(i) + a(ind)

enddo

!OMP end parallel do

 Or you have to use tasking/dynamic

scheduling:

!$OMP parallel

!$OMP single

do i=1,N

 call RANDOM_NUMBER(r)

 if(r.le.0.5d0) then

!$OMP task

 call do_work_with(p(i))

!$OMP end task

 endif

enddo

!$OMP end single

!$OMP end parallel

118 Cray Workshop Performance for Multicore

ccNUMA placement and erratic access patterns

 Worth a try: Interleave memory across ccNUMA domains to get at least

some parallel access

1. Explicit placement:

2. Using global control via numactl:

numactl --interleave=0-3 ./a.out

 Fine-grained program-controlled placement via libnuma (Linux)

using, e.g., numa_alloc_interleaved_subset(),

numa_alloc_interleaved() and others

!$OMP parallel do schedule(static,512)

do i=1,M

 a(i) = …

enddo

!$OMP end parallel do

This is for all memory, not

just the problematic

arrays!

Observe page alignment of

array to get proper

placement!

119

The curse and blessing of interleaved placement:

OpenMP STREAM on a Cray XE6 Interlagos node

 Parallel init: Correct parallel initialization

 LD0: Force data into LD0 via numactl –m 0

 Interleaved: numactl --interleave <LD range>

Cray Workshop Performance for Multicore

Case study:

A 3D Jacobi smoother

The basics in two dimensions

Roofline performance analysis and modeling

121

A Jacobi smoother

 Laplace equation in 2D:

 Solve with Dirichlet boundary conditions using Jacobi iteration

scheme:

Naive balance (incl. write allocate):

phi(:,:,t0): 3 LD +

phi(:,:,t1): 1 ST+ 1LD

 BC = 5 W / 4 FLOPs = 1.25 W / F

Reuse when computing
phi(i+2,k,t1)

WRITE ALLOCATE:
LD + ST phi(i,k,t1)

Cray Workshop Performance for Multicore

∆𝚽 = 𝟎

122

Balance metric: 2 D Jacobi

 Modern cache subsystems may further reduce memory traffic

 “layer conditions”

If cache is large enough to hold at least 2 rows
(shaded region): Each phi(:,:,t0) is loaded

once from main memory and re-used 3 times

from cache:

phi(:,:,t0): 1 LD + phi(:,:,t1): 1 ST+ 1LD

BC = 3 W / 4 F = 0.75 W / F

If cache is too small to hold one row:
phi(:,:,t0): 2 LD + phi(:,:,t1): 1 ST+ 1LD

BC = 5 W / 4 F = 1.25 W / F

Cray Workshop Performance for Multicore

123

Performance metrics: 2D Jacobi

 Alternative implementation (“Macho FLOP version”)

 MFlops/sec increases by 7/4 but time to solution remains the same

 Better metric (for many iterative stencil schemes):

 Lattice Site Updates per Second (LUPs/sec)

 2D Jacobi example: Compute LUPs/sec metric via

Cray Workshop Performance for Multicore

𝑃[LUPs s] =
𝑖𝑡max ∙ 𝑖max ∙ 𝑘max

𝑇wall

124

2D 3D

 3D sweep:

 Best case balance: 1 LD phi(i,j,k+1,t0)

 1 ST + 1 write allocate phi(i,j,k,t1)

 6 flops

 BC = 0.5 W/F (24 bytes/LUP)

 No 2-layer condition but 2 rows fit: BC = 5/6 W/F (40 bytes/LUP)

 Worst case (2 rows do not fit): BC = 7/6 W/F (56 bytes/LUP)

Cray Workshop Performance for Multicore

do k=1,kmax

 do j=1,jmax

 do i=1,imax

 phi(i,j,k,t1) = 1/6. *(phi(i-1,j,k,t0)+phi(i+1,j,k,t0) &

 + phi(i,j-1,k,t0)+phi(i,j+1,k,t0) &

 + phi(i,j,k-1,t0)+phi(i,j,k+1,t0))

 enddo

 enddo

enddo

125

3D Jacobi solver
Performance of vanilla code on one Interlagos chip (8 cores)

Cray Workshop Performance for Multicore

cache memory

2 layers of source array

drop out of L2 cache

Problem size: N3

Roofline inappropriate

for unsaturated case

126

Conclusions from the Jacobi example

 We have made sense of the memory-bound performance vs.

problem size

 “Layer conditions” lead to predictions of code balance

 Achievable memory bandwidth is input parameter

 The model works only if the bandwidth is “saturated”

 In-cache modeling is more involved

 Optimization == reducing the code balance by code

transformations

 See below

Cray Workshop Performance for Multicore

Data access optimizations

Case study: Optimizing the 3D Jacobi solver

128

Remember the 3D Jacobi solver on Interlagos?

Cray Workshop Performance for Multicore

2 layers of source array

drop out of L2 cache

 avoid through spatial

blocking!

129 Cray Workshop Performance for Multicore

Jacobi iteration (2D): No spatial Blocking

 Assumptions:

 cache can hold 32 elements (16 for each array)

 Cache line size is 4 elements

 Perfect eviction strategy for source array

This element is needed for three more updates; but 29 updates happen before this element is

used for the last time

i

k

130 Cray Workshop Performance for Multicore

Jacobi iteration (2D): No spatial blocking

 Assumptions:

 cache can hold 32 elements (16 for each array)

 Cache line size is 4 elements

 Perfect eviction strategy for source array

This element is needed for

three more updates but has

been evicted

131 Cray Workshop Performance for Multicore

Jacobi iteration (2D): Spatial Blocking

 divide system into blocks

 update block after block

 same performance as if three complete rows of the systems fit

into cache

132 Cray Workshop Performance for Multicore

Jacobi iteration (2D): Spatial Blocking

 Spatial blocking reorders traversal of data to account for the data

update rule of the code

Elements stay sufficiently long in cache to be fully reused

Spatial blocking improves temporal locality!
(Continuous access in inner loop ensures spatial locality)

This element remains in cache until it is fully used (only 6 updates happen before

last use of this element)

133 Cray Workshop Performance for Multicore

Jacobi iteration (3D): Spatial blocking

 Implementation:

 Guidelines:

 Blocking of inner loop levels (traversing continuously through main memory)

 Blocking sizes large enough to fulfill “layer condition”

 Cache size is a hard limit!

 Blocking loops may have some impact on ccNUMA page placement

 do ioffset=1,imax,iblock

 do joffset=1,jmax,jblock

 do k=1,kmax

 do j=joffset, min(jmax,joffset+jblock-1)

 do i=ioffset, min(imax,ioffset+iblock-1)

 phi(i,j,k,t1) = (phi(i-1,j,k,t0)+phi(i+1,j,k,t0)

 + ... + phi(i,j,k-1,t0)+phi(i,j,k+1,t0))/6.d0

 enddo

 enddo

 enddo

 enddo

 enddo

loop over i-blocks

loop over j-blocks

134

3D Jacobi solver (problem size 4003)
Blocking different loop levels (8 cores Interlagos)

Cray Workshop Performance for Multicore

OpenMP parallelization?

Optimal block size?

k-loop blocking?

24B/update

performance

model

inner (i) loop

blocking

middle (j) loop

blocking

optimum j

block size

135

3D Jacobi solver (problem size 4003)
Calculating the optimal block size (8 cores Interlagos)

 Interlagos chip: aggregate L2 size of 8 MB (say 4 MB to be safe)

 Static OpenMP scheduling 0.5 MB cache per core

 Layer condition with j-loop blocking:

2 layers of size N x bj must fit into the cache

 2 ∙ N ∙ bj ∙ 8 byte < 0.5 MB

 bj < 78

Cray Workshop Performance for Multicore

136 Cray Workshop Performance for Multicore

Jacobi iteration (3D): Nontemporal stores

 Intel x86: NT stores are packed SIMD stores with 16-byte aligned

address

 Sometimes hard to apply

 AMD x86: Scalar NT stores without alignment restrictions

available

 Options for using NT stores

 Let the compiler decide unreliable

 Use compiler options

 Intel: -opt-streaming-stores never|always|auto

 Use compiler directives

 Intel: !DIR$ vector [non]temporal

 Cray: !DIR$ LOOP_INFO cache[_nt](...)

 Compiler must be able to “prove” that the use of SIMD and NT

stores is “safe”!

 “line update kernel” concept: Make critical loop its own subroutine

137

Jacobi iteration (3D): Nontemporal stores for Cray

 Line update kernel (separate compilation unit or -fno-inline):

 Main loop:

Cray Workshop Performance for Multicore

do joffset=1,jmax,jblock

 do k=1,kmax

 do j=joffset, min(jmax,joffset+jblock-1)

 call jacobi_line(phi(1,j,k,t1),phi(1,j,k,t0),phi(1,j,k-1,t0), &

 phi(1,j,k+1,t0),phi(1,j-1,k,t0),phi(1,j+1,k,t0)

 ,size)

 enddo

 enddo

enddo

subroutine jacobi_line(d,s,top,bottom,front,back,n)

 integer :: n,i,start

 double precision, dimension(*) :: d,s,top,bottom,front,back

 double precision, parameter :: oos=1.d0/6.d0

!DIR$ LOOP_INFO cache_nt(d)

 do i=2,n-1

 d(i) = oos*(s(i-1)+s(i+1)+top(i)+bottom(i)+front(i)+back(i))

 enddo

end subroutine

138

3D Jacobi solver
Spatial blocking + nontemporal stores

Cray Workshop Performance for Multicore

blocking
NT

stores

expected

boost:

50%

16 B/update perf. model

139

Conclusions from the Jacobi optimization example

 “What part of the data comes from where” is a crucial question

 Avoiding slow data paths == re-establishing the layer condition

 Improved code showed the speedup predicted by the model

 Optimal blocking factor can be predicted

 Be guided by the cache size the layer condition

 No need for exhaustive scan of “optimization space”

Cray Workshop Performance for Multicore

Case study:

OpenMP-parallel sparse matrix-vector

multiplication

A simple (but sometimes not-so-simple)

example for bandwidth-bound code and

saturation effects in memory

141

Sparse matrix-vector multiply (spMVM)

 Key ingredient in some matrix diagonalization algorithms

 Lanczos, Davidson, Jacobi-Davidson

 Important for sparse solvers (CG,…)

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors

with Nr (number of matrix rows) entries

 “Sparse”: Nnz ~ Nr

= + • Nr

General case:

some indirect

addressing

required!

Cray Workshop Performance for Multicore

142

…

CRS matrix storage scheme

column index

ro
w

 i
n

d
e
x

1 2 3 4 …

1

2

3

4

…

val[]

1 5 3 7 2 1 4 6 3 2 3 4 2 1 5 8 1 5 … col_idx[]

1 5 15 19 8 12 … row_ptr[]

 val[] stores all the nonzeros

(length Nnz)

 col_idx[] stores the column

index of each nonzero (length Nnz)

 row_ptr[] stores the starting

index of each new row in val[]

(length: Nr)

Cray Workshop Performance for Multicore

143 Cray Workshop Performance for Multicore

Case study: Sparse matrix-vector multiply

 Important kernel in many applications (matrix diagonalization,

solving linear systems)

 Strongly memory-bound for large data sets

 Streaming + partially indirect access:

 Usually many spMVMs required to solve a problem

 Following slides: Performance data on one 24-core AMD Magny

Cours node

do i = 1,Nr

 do j = row_ptr(i), row_ptr(i+1) - 1

 c(i) = c(i) + val(j) * b(col_idx(j))

 enddo

enddo

!$OMP parallel do

!$OMP end parallel do

144

Bandwidth-bound parallel algorithms:
Sparse MVM

 Data storage format is crucial for performance properties

 Most useful general format: Compressed Row Storage (CRS)

 SpMVM is easily parallelizable in shared and distributed memory

 For large problems, spMVM is

inevitably memory-bound

 Intra-LD saturation effect

on modern multicores

 Problem for Roofline

 Possibly erratic (non-streaming)

access

 Memory BW saturates @ lower

value than with simple benchmarks

 MPI-parallel spMVM is often

communication-bound

Cray Workshop Performance for Multicore

145

Example: SpMVM node performance model

 Sparse MVM in

double precision

w/ CRS data storage:

 DP CRS comp. intensity

 quantifies extra traffic

for loading RHS more than

once

 Predicted Performance = bS∙ICRS

 Determine by measuring performance and actual memory bandwidth

 “If the model does not work we can still learn something from deviations”

Cray Workshop Performance for Multicore

G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector multiplication with

explicit communication overlap on current multicore-based systems. Parallel Processing Letters 21(3), 339-

358 (2011). DOI: 10.1142/S0129626411000254, Preprint: arXiv:1106.5908

http://dx.doi.org/10.1142/S0129626411000254
http://arxiv.org/abs/1106.5908

146 Cray Workshop Performance for Multicore

Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

 Case 1: Large matrix

Intrasocket

bandwidth

bottleneck
Good scaling

across sockets

147 Cray Workshop Performance for Multicore

 Case 2: Medium size

Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

Intrasocket

bandwidth

bottleneck

Working set fits

in aggregate

cache

148 Cray Workshop Performance for Multicore

Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

 Case 3: Small size

No bandwidth

bottleneck

Parallelization

overhead

dominates

149

Conclusions from the spMVM example

 spMVM shows “typical” bandwidth-bound scaling behavior

 Roofline is good for a first shot at modeling

 Deviations are to be expected

 Erratic RHS access

 Saturation bandwidth is lower than the maximum

 Deviations can be used to learn more about the code execution

 How much excess memory traffic is generated from the indirect access?

Cray Workshop Performance for Multicore

150

Conclusions

Cray Workshop Performance for Multicore

There is no alternative to knowing what is going on

between your code and the hardware

Without performance modeling,

optimizing code is like stumbling in the dark

