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The Rules™ 

There is no alternative to knowing what is going on 

between your code and the hardware 

Without performance modeling, 

optimizing code is like stumbling in the dark 

Cray Workshop Performance for Multicore 
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Agenda 

 Basics of multicore processor and node architecture 

 Multicore performance and tools 

 Affinity enforcement 

 Performance counter measurements 

 Basics and best practice for performance counter profiling 

 Microbenchmarking for architectural exploration 

 Roadblocks for scalability on multicore chips 

 Scaling properties and typical OpenMP overhead 

 Bandwidth saturation in cache and main memory 

 Simple Performance Modeling: The Roofline model 

 Optimal utilization of parallel resources 

 Programming for SIMD parallelism 

 Programming in ccNUMA environments 

 Case study: The roofline model for a 3D Jacobi solver 

 Understanding performance characteristics 

 Model-guided optimization 

Cray Workshop Performance for Multicore 



Multicore processor and system 

architecture – an overview 

Performance composition 

Memory organization: UMA vs. ccNUMA 

Simultaneous Multi-Threading (SMT) 

Data paths in HPC systems 

Memory access 

Single Instruction Multiple Data (SIMD) 

Topology and programming models 
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There is no longer a single driving force  

for chip performance! 

Floating Point (FP) Performance: 
 

   P = ncore * F * S * n 
 

ncore  number of cores:  8 
 

F  FP instructions per cycle:  2  

 (1 MULT and 1 ADD) 
 

S  FP ops / instruction:    4 (dp) / 8 (sp)  

 (256 Bit SIMD registers – “AVX”) 
 

n   Clock speed :             2.5 GHz 

 

P = 160 GF/s (dp) / 320 GF/s (sp) 

 

Intel Xeon 

“Sandy Bridge EP” socket  

4,6,8 core variants available 

But: P=5 GF/s (dp) for serial, non-SIMD code  

Cray Workshop Performance for Multicore 

TOP500 rank 1 (1996) 
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Today: Dual-socket Intel (Westmere) node: 

Yesterday (2006): Dual-socket Intel “Core2” node: 

From UMA to ccNUMA  
Basic architecture of commodity compute cluster nodes 

 

Uniform Memory Architecture (UMA) 

Flat memory ; symmetric MPs 

But: system “anisotropy” 

 

 

Cache-coherent Non-Uniform Memory 

Architecture (ccNUMA) 

HT / QPI provide scalable bandwidth at 

the price of ccNUMA architectures: 

Where does my data finally end up? 

On AMD it is even more complicated  ccNUMA within a socket! 

Cray Workshop Performance for Multicore 
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Back to the 2-chip-per-case age 

16 core AMD Interlagos – a 2x8-core ccNUMA socket 

 AMD: single-socket ccNUMA since Magny Cours 

 

 1 socket: 16-core Interlagos built from two 8-core chips 

    2 NUMA domains    

 2 socket server   4 NUMA domains 

    

 

 

 

 

 

 

 

 

 

 4 socket server:  8 NUMA domains        

 WHY?  Shared resources are hard two scale:  

 2 x 2 memory channels  vs. 1 x 4 memory channels per socket 

Cray Workshop Performance for Multicore 
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Cray XE6 (Hermit) “Interlagos” 16-core dual socket node 

 Two 8- (integer-) core chips per 

socket @ 2.3 GHz (3.3 @ turbo) 

 Separate DDR3 memory 

interface per chip 

 ccNUMA on the socket! 

 

 Shared FP unit per pair of 

integer cores (“module”) 

 2 128bit FMA FP units 

 SSE4.2, AVX, FMA4 

 

 16 kB L1 data cache per core 

 2 MB L2 cache per module 

 8 MB L3 cache per chip  

(6 MB usable) 

 
Cray Workshop Performance for Multicore 



9 Cray Workshop Performance for Multicore 

SMT Makes a single physical core appear as two or more 

“logical” cores  multiple threads/processes run concurrently 

 SMT principle (2-way example): 
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Another flavor of “SMT”  

AMD Interlagos / Bulldozer 

 Up to 16 cores (8 Bulldozer modules) in a single socket 

 Max. 2.6 GHz  (+ Turbo Core) 

 Pmax = (2.6 x 8 x 8) GF/s  

     = 166.4 GF/s 

Each Bulldozer module: 

 2 “lightweight” cores 

 1 FPU: 4 MULT & 4 ADD 

(double precision) / cycle 

 Supports AVX 

 Supports FMA4  

2 NUMA domains per socket 

16 kB 

dedicated  

L1D cache 

2 DDR3 (shared) memory 

channel > 15 GB/s 

2048 kB 

shared  

L2 cache 

8 (6) MB 

shared 

L3 cache  

Cray Workshop Performance for Multicore 
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Cray XC30 “SandyBridge-EP” 8-core dual socket node 

 8 cores per socket 2.7 GHz   

(3.5 @ turbo) 

 DDR3 memory interface with 4 

channels per chip 

 Two-way SMT 

 Two 256-bit SIMD FP units 

 SSE4.2, AVX 

 

 32 kB L1 data cache per core 

 256 kB L2 cache per core 

 20 MB L3 cache per chip 

Cray Workshop Performance for Multicore 
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Latency and bandwidth in modern computer environments 

ns 

ms 

ms 

1 GB/s 

Cray Workshop Performance for Multicore 

We care about this 

region today 

Avoiding slow data 

paths is the key to 

most performance 

optimizations! 
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Interlude: Data transfers in a memory hierarchy 

 How does data travel from memory to the CPU and back? 

 Example: Array copy A(:)=C(:) 

Cray Workshop Performance for Multicore 

CPU registers 

Cache 

Memory 

CL 

CL CL 

CL 

LD C(1) 

MISS 

ST A(1) MISS 

write 

allocate 

evict 

(delayed) 

3 CL 

transfers 

LD C(2..Ncl) 

ST A(2..Ncl) 

 

HIT 

CPU registers 

Cache 

Memory 

CL 

CL 

CL CL 

LD C(1) 

NTST A(1) 
MISS 

2 CL 

transfers 

LD C(2..Ncl) 

NTST A(2..Ncl) 

 

HIT 

Standard stores Nontemporal (NT) 

stores 

50% 

performance 

boost for 

COPY 

C(:) A(:) C(:) A(:) 
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SIMD-processing – Basics  

 Single Instruction Multiple Data (SIMD) operations allow the 

concurrent execution of the same operation on “wide” registers.  

 x86 SIMD instruction sets: 

 SSE: register width = 128 Bit  2 double precision floating point operands  

 AVX: register width = 256 Bit  4 double precision floating point operands 

 Adding two registers holding double precision floating point operands  
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Challenges of modern compute nodes 

GPU #1 

GPU #2 

PCIe link 

Other I/O 

Core: 

SIMD vectorization  

SMT  

Socket: 

Parallelization 

Shared Resources 

Node: 

ccNUMA/data locality  
Accelerators: 

Data transfer to/from host 

Heterogeneous programming 

SIMD + OpenMP    + MPI +   CUDA, OpenCL,…  

Cray Workshop Performance for Multicore 

Where is the data? 
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Parallelism in modern computer systems 

 Parallel and shared resources within a shared-memory node 

GPU #1 

GPU #2 

PCIe link 

    Parallel resources: 

 Execution/SIMD units 

 Cores 

 Inner cache levels 

 Sockets / memory domains 

 Multiple accelerators 

    Shared resources: 

 Outer cache level per socket 

 Memory bus per socket 

 Intersocket link 

 PCIe bus(es) 

 Other I/O resources 

Other I/O 

1 
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1 
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10 

How does your application react to all of those details? 

Cray Workshop Performance for Multicore 
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Parallel programming models 
on multicore multisocket nodes 

 Shared-memory (intra-node) 

 Good old MPI (current standard: 2.2) 

 OpenMP (current standard: 3.0) 

 POSIX threads 

 Intel Threading Building Blocks 

 Cilk++, OpenCL, StarSs,… you name it 

 

 Distributed-memory (inter-node) 

 MPI (current standard: 2.2) 

 PVM (gone) 

 

 Hybrid 

 Pure MPI 

 MPI+OpenMP 

 MPI + any shared-memory model 

All models require 

awareness of 

topology and affinity 

issues for getting 

best performance 

out of the machine! 
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Parallel programming models: 
Pure MPI 

 Machine structure is invisible to user: 

  Very simple programming model 

  MPI “knows what to do”!? 

 Performance issues 

 Intranode vs. internode MPI 

 Node/system topology 
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Parallel programming models: 
Pure threading on the node 

 Machine structure is invisible to user 

  Very simple programming model 

 Threading SW (OpenMP, pthreads, 

TBB,…) should know about the details 

 Performance issues 

 Synchronization overhead 

 Memory access 

 Node topology 



Multicore Performance and Tools 

 

Probing node topology 

 Standard tools 

 likwid-topology 
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How do we figure out the node topology? 

 Topology = 

 Where in the machine does core #n reside? And do I have to remember this 

awkward numbering anyway? 

 Which cores share which cache levels? 

 Which hardware threads (“logical cores”) share a physical core? 

 Linux 

 cat /proc/cpuinfo is of limited use 

 Core numbers may change across kernels 

and BIOSes even on identical hardware 

 

 numactl --hardware prints  

ccNUMA node information                  

 

 Information on caches is harder 

to obtain 

$ numactl --hardware 

available: 4 nodes (0-3) 

node 0 cpus: 0 1 2 3 4 5 

node 0 size: 8189 MB 

node 0 free: 3824 MB 

node 1 cpus: 6 7 8 9 10 11 

node 1 size: 8192 MB 

node 1 free: 28 MB 

node 2 cpus: 18 19 20 21 22 23 

node 2 size: 8192 MB 

node 2 free: 8036 MB 

node 3 cpus: 12 13 14 15 16 17 

node 3 size: 8192 MB 

node 3 free: 7840 MB 
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How do we figure out the node topology? 

 

 LIKWID tool suite: 

 

Like 

I 

Knew 

What 

I’m 

Doing 

 

 Open source tool collection  

(developed at RRZE): 

 

http://code.google.com/p/likwid 

J. Treibig, G. Hager, G. Wellein: LIKWID: A 

lightweight performance-oriented tool suite 

for x86 multicore environments. Accepted for 

PSTI2010, Sep 13-16, 2010, San Diego, CA 

http://arxiv.org/abs/1004.4431 
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Likwid Tool Suite 

 Command line tools for Linux: 

 easy to install  

 works with standard linux 2.6 kernel 

 simple and clear to use  

 supports Intel and AMD CPUs 

 

 

 

 

 Current tools: 

 likwid-topology: Print thread and cache topology 

 likwid-pin: Pin threaded application without touching code 

 likwid-perfctr: Measure performance counters 

 likwid-mpirun: mpirun wrapper script for easy LIKWID integration 

 likwid-bench: Low-level bandwidth benchmark generator tool 

 … some more 
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Output of  likwid-topology –g 

on one node of Cray XE6 “Hermit” 
------------------------------------------------------------- 

CPU type:       AMD Interlagos processor  

************************************************************* 

Hardware Thread Topology 

************************************************************* 

Sockets:                2  

Cores per socket:       16  

Threads per core:       1  

------------------------------------------------------------- 

HWThread        Thread          Core            Socket 

0               0               0               0 

1               0               1               0 

2               0               2               0 

3               0               3               0 

[...] 

16              0               0               1 

17              0               1               1 

18              0               2               1 

19              0               3               1 

[...] 

------------------------------------------------------------- 

Socket 0: ( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ) 

Socket 1: ( 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ) 

------------------------------------------------------------- 

 

************************************************************* 

Cache Topology 

************************************************************* 

Level:  1 

Size:   16 kB 

Cache groups:   ( 0 ) ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 ) ( 11 ) ( 12 ) ( 13 

) ( 14 ) ( 15 ) ( 16 ) ( 17 ) ( 18 ) ( 19 ) ( 20 ) ( 21 ) ( 22 ) ( 23 ) ( 24 ) ( 25 ) ( 26 ) ( 27 ) ( 

28 ) ( 29 ) ( 30 ) ( 31 ) 
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Output of likwid-topology continued 

Cray Workshop Performance for Multicore 

------------------------------------------------------------- 

Level:  2 

Size:   2 MB 

Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 ) ( 16 17 ) ( 18 

19 ) ( 20 21 ) ( 22 23 ) ( 24 25 ) ( 26 27 ) ( 28 29 ) ( 30 31 ) 

------------------------------------------------------------- 

Level:  3 

Size:   6 MB 

Cache groups:   ( 0 1 2 3 4 5 6 7 ) ( 8 9 10 11 12 13 14 15 ) ( 16 17 18 19 20 21 22 23 ) ( 24 25 26 

27 28 29 30 31 ) 

------------------------------------------------------------- 

 

************************************************************* 

NUMA Topology 

************************************************************* 

NUMA domains: 4  

------------------------------------------------------------- 

Domain 0: 

Processors:  0 1 2 3 4 5 6 7 

Memory: 7837.25 MB free of total 8191.62 MB 

------------------------------------------------------------- 

Domain 1: 

Processors:  8 9 10 11 12 13 14 15 

Memory: 7860.02 MB free of total 8192 MB 

------------------------------------------------------------- 

Domain 2: 

Processors:  16 17 18 19 20 21 22 23 

Memory: 7847.39 MB free of total 8192 MB 

------------------------------------------------------------- 

Domain 3: 

Processors:  24 25 26 27 28 29 30 31 

Memory: 7785.02 MB free of total 8192 MB 

------------------------------------------------------------- 
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Output of likwid-topology continued 

Cray Workshop Performance for Multicore 

************************************************************* 

Graphical: 

************************************************************* 

Socket 0: 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| |   0  | |   1  | |   2  | |   3  | |   4  | |   5  | |   6  | |   7  | |   8  | |   9  | |  10  | |  11  | |  12  | |  13  | |  14  | |  15  | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

| |                                 6MB                                 | |                                 6MB                                 | | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

Socket 1: 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| |  16  | |  17  | |  18  | |  19  | |  20  | |  21  | |  22  | |  23  | |  24  | |  25  | |  26  | |  27  | |  28  | |  29  | |  30  | |  31  | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

| |                                 6MB                                 | |                                 6MB                                 | | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 



Enforcing thread/process-core affinity 

under the Linux OS 

 Standard tools and OS affinity facilities 

under program control 

 likwid-pin 

 aprun (Cray) 
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Example: STREAM benchmark on 12-core Intel Westmere: 

Anarchy vs. thread pinning 

No pinning 

Pinning (physical cores first, 

alternating sockets) 

There are several reasons for caring about 

affinity: 

 Eliminating performance variation 

 Making use of architectural features 

 Avoiding resource contention 
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Generic thread/process-core affinity under Linux 
Overview 

 taskset [OPTIONS] [MASK | -c LIST ] \                      

                      [PID | command [args]...] 

 

 taskset binds processes/threads to a set of CPUs. Examples: 
 
taskset 0x0006 ./a.out 

taskset –c 4 33187 

mpirun –np 2 taskset –c 0,2 ./a.out # doesn’t always work 

 

 Processes/threads can still move within the set! 

 Alternative: let process/thread bind itself by executing syscall 
#include <sched.h> 

int sched_setaffinity(pid_t pid, unsigned int len,  

                   unsigned long *mask); 

 

 Disadvantage: which CPUs should you bind to on a non-exclusive 
machine? 

 

 Still of value on multicore/multisocket cluster nodes, UMA or ccNUMA 
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Generic thread/process-core affinity under Linux 

 Complementary tool: numactl 

 
Example: numactl --physcpubind=0,1,2,3 command [args] 

Bind process to specified physical core numbers 

 
Example: numactl --cpunodebind=1 command [args] 

Bind process to specified ccNUMA node(s) 

 

 Many more options (e.g., interleave memory across nodes) 

  see section on ccNUMA optimization 

 

 Diagnostic command (see earlier): 
numactl --hardware 

 

 Again, this is not suitable for a shared machine 
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More thread/Process-core affinity (“pinning”) options 

 Highly OS-dependent system calls 

 But available on all systems 

 Linux:  sched_setaffinity(), PLPA (see below)  hwloc 
Solaris:  processor_bind() 

Windows:  SetThreadAffinityMask() 
… 

 Support for “semi-automatic” pinning in some 
compilers/environments 

 Intel compilers > V9.1 (KMP_AFFINITY environment variable) 

 PGI, Pathscale, GNU 

 SGI Altix dplace (works with logical CPU numbers!) 

 Generic Linux: taskset, numactl, likwid-pin (see below) 

 Affinity awareness in MPI libraries 

 SGI MPT 

 OpenMPI 

 Intel MPI 

 … 

Example for program-controlled 

affinity: Using PLPA under Linux! 
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Likwid-pin 
Overview 

 Pins processes and threads to specific cores without touching code 

 Directly supports pthreads, gcc OpenMP, Intel OpenMP 

 Based on combination of wrapper tool together with overloaded pthread 

library  binary must be dynamically linked! 

 Can also be used as a superior replacement for taskset 

 Supports logical core numbering within a node and within an existing CPU 

set 

 Useful for running inside CPU sets defined by someone else, e.g., the MPI 

start mechanism or a batch system 

 

 Usage examples: 

 likwid-pin -c 0,2,4-6  ./myApp parameters  

 likwid-pin –c S0:0-3 ./myApp parameters 
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Likwid-pin 
Example: Intel OpenMP 

 Running the STREAM benchmark with likwid-pin: 

   

  $ export OMP_NUM_THREADS=4   

  $ likwid-pin -s 0x1 -c 0,1,4,5 ./stream 

  [likwid-pin] Main PID -> core 0 - OK 

  ---------------------------------------------- 

   Double precision appears to have 16 digits of accuracy 

   Assuming 8 bytes per DOUBLE PRECISION word 

  ---------------------------------------------- 

  [... some STREAM output omitted ...] 

   The *best* time for each test is used 

   *EXCLUDING* the first and last iterations 

  [pthread wrapper] PIN_MASK: 0->1  1->4  2->5   

  [pthread wrapper] SKIP MASK: 0x1 

  [pthread wrapper 0] Notice: Using libpthread.so.0 

          threadid 1073809728 -> SKIP  

  [pthread wrapper 1] Notice: Using libpthread.so.0  

          threadid 1078008128 -> core 1 - OK 

  [pthread wrapper 2] Notice: Using libpthread.so.0  

          threadid 1082206528 -> core 4 - OK 

  [pthread wrapper 3] Notice: Using libpthread.so.0  

          threadid 1086404928 -> core 5 - OK 

  [... rest of STREAM output omitted ...] 

Skip shepherd  

thread 

Main PID always  

pinned 

Pin all spawned  

threads in turn 
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Likwid-pin 
Using logical core numbering 

 Core numbering may vary from system to system even with 

identical hardware 

 Likwid-topology delivers this information, which can then be fed into likwid-

pin 

 Alternatively, likwid-pin can abstract this variation and provide a 

purely logical numbering (physical cores first) 

 

 

 

 

 

 

 

 Across all cores in the node: 
OMP_NUM_THREADS=8 likwid-pin -c N:0-7 ./a.out 

 Across the cores in each socket and across sockets in each node: 
OMP_NUM_THREADS=8 likwid-pin -c S0:0-3@S1:0-3 ./a.out 

Socket 0: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  0  1| |  2  3| |  4  5| |  6  7| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 

Socket 1: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  8  9| |10  11| |12  13| |14  15| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 

Socket 0: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  0  8| |  1  9| |  2 10| |  3 11| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 

Socket 1: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  4 12| |  5 13| |  6 14| |  7 15| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 
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Likwid-pin 
Using logical core numbering 

 Possible unit prefixes 

 

N  node 

 

 

 

S  socket 

 

 

 

 

M  NUMA domain 

 

 

 

C  outer level cache group 

Cray Workshop Performance for Multicore 

Chipset 

Memory 

Default if –c is not 

specified! 
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aprun on Cray 

 See Cray workshop slides 

 

 aprun supports only physical core numbering 

 This is OK since the cores are always numbered consecutively on Crays 

 Use -ss switch to restrict allocation to local NUMA domain (see later for 

more on ccNUMA) 

 Use -d $OMP_NUM_THREADS or similar for MPI+OMP hybrid code 

 

 See later on how using multiple cores per module/chip/socket 

affects performance 

Cray Workshop Performance for Multicore 



Multicore performance tools: 

Probing performance behavior 

likwid-perfctr 
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likwid-perfctr 

Basic approach to performance analysis 

1. Runtime profile / Call graph (gprof) 

2. Instrument those parts which consume a significant part of 

runtime 

3. Find performance signatures 

 

Possible signatures: 

 Bandwidth saturation 

 Instruction throughput limitation (real or language-induced) 

 Latency impact (irregular data access, high branch ratio) 

 Load imbalance 

 ccNUMA issues (data access across ccNUMA domains) 

 Pathologic cases (false cacheline sharing, expensive operations) 

 

Cray Workshop Performance for Multicore 
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Probing performance behavior 

 How do we find out about the performance properties and 

requirements of a parallel code? 

 Profiling via advanced tools is often overkill 

 A coarse overview is often sufficient 

 likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on 

Linux/Altix) 

 Simple end-to-end measurement of hardware performance metrics 

 “Marker” API for starting/stopping  

counters 

 Multiple measurement region  

support 

 Preconfigured and extensible  

metric groups, list with 
likwid-perfctr -a     

 

BRANCH: Branch prediction miss rate/ratio 

CACHE: Data cache miss rate/ratio 

CLOCK: Clock of cores 

DATA: Load to store ratio 

FLOPS_DP: Double Precision MFlops/s 

FLOPS_SP: Single Precision MFlops/s 

FLOPS_X87: X87 MFlops/s 

L2: L2 cache bandwidth in MBytes/s 

L2CACHE: L2 cache miss rate/ratio 

L3: L3 cache bandwidth in MBytes/s 

L3CACHE: L3 cache miss rate/ratio 

MEM: Main memory bandwidth in MBytes/s 

TLB: TLB miss rate/ratio 
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likwid-perfctr 

Example usage with preconfigured metric group  

$ env OMP_NUM_THREADS=4 likwid-perfctr -C N:0-3 -g FLOPS_DP  ./stream.exe 

------------------------------------------------------------- 

CPU type:       Intel Core Lynnfield processor  

CPU clock:      2.93 GHz  

------------------------------------------------------------- 

Measuring group FLOPS_DP 

------------------------------------------------------------- 

YOUR PROGRAM OUTPUT 

+--------------------------------------+-------------+-------------+-------------+-------------+ 

|                Event                 |   core 0    |   core 1    |   core 2    |   core 3    | 

+--------------------------------------+-------------+-------------+-------------+-------------+ 

|          INSTR_RETIRED_ANY           | 1.97463e+08 | 2.31001e+08 | 2.30963e+08 | 2.31885e+08 | 

|        CPU_CLK_UNHALTED_CORE         | 9.56999e+08 | 9.58401e+08 | 9.58637e+08 | 9.57338e+08 | 

|    FP_COMP_OPS_EXE_SSE_FP_PACKED     | 4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 | 

|    FP_COMP_OPS_EXE_SSE_FP_SCALAR     |     882     |      0      |      0      |      0      | 

| FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION |      0      |      0      |      0      |      0      | 

| FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION | 4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 | 

+--------------------------------------+-------------+-------------+-------------+-------------+ 

+--------------------------+------------+---------+----------+----------+ 

|          Metric          |   core 0   | core 1  |  core 2  |  core 3  | 

+--------------------------+------------+---------+----------+----------+ 

|       Runtime [s]        |  0.326242  | 0.32672 | 0.326801 | 0.326358 | 

|           CPI            |  4.84647   | 4.14891 | 4.15061  | 4.12849  | 

| DP MFlops/s (DP assumed) |  245.399   | 189.108 | 189.024  | 189.304  | 

|      Packed MUOPS/s      |  122.698   | 94.554  | 94.5121  | 94.6519  | 

|      Scalar MUOPS/s      | 0.00270351 |    0    |    0     |    0     | 

|        SP MUOPS/s        |     0      |    0    |    0     |    0     | 

|        DP MUOPS/s        |  122.701   | 94.554  | 94.5121  | 94.6519  | 

+--------------------------+------------+---------+----------+----------+  

Always 

measured 

Derived 

metrics 

Configured metrics 

(this group) 
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likwid-perfctr 

Best practices for runtime counter analysis  

Things to look at (in roughly this 

order) 

 

 Load balance (flops, instructions, 

BW) 

 

 In-socket memory BW saturation 

 

 Shared cache BW saturation 

 

 Flop/s, loads and stores per flop 

metrics 

 

 SIMD vectorization 

 

 CPI metric 

 

 # of instructions,  

branches, mispredicted branches 

 

 

 

Caveats 

 

 Load imbalance may not show in 

CPI or # of instructions 
 Spin loops in OpenMP barriers/MPI 

blocking calls 

 Looking at “top” or the Windows Task 

Manager does not tell you anything useful 

 

 In-socket performance saturation 

may have various reasons 

 

 Cache miss metrics are overrated 

 If I really know my code, I can often  

calculate the misses 

 Runtime and resource utilization is 

much more important 

Cray Workshop Performance for Multicore 
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likwid-perfctr 

Identify load imbalance… 

 Instructions retired / CPI may not be a good indication of 

useful workload – at least for numerical / FP intensive codes…. 

 Floating Point Operations Executed is often a better indicator 

 Waiting / “Spinning” in barrier generates a high instruction count  

!$OMP PARALLEL DO 

DO I = 1, N 

 DO J = 1, I 

    x(I) = x(I) + A(J,I) * y(J) 

 ENDDO 

ENDDO 

!$OMP END PARALLEL DO 

Cray Workshop Performance for Multicore 
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likwid-perfctr 

… and load-balanced codes 

!$OMP PARALLEL DO 

DO I = 1, N 

 DO J = 1, N 

    x(I) = x(I) + A(J,I) * y(J) 

 ENDDO 

ENDDO 

!$OMP END PARALLEL DO 

Higher CPI but 

better performance 

env OMP_NUM_THREADS=6 likwid-perfctr –C S0:0-5 –g FLOPS_DP ./a.out 

Cray Workshop Performance for Multicore 
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Detecting latency-bound codes 

Example: graph and tree data structures 

Metric Red-Black tree Optimized data structure 

Instructions retired 1.34268e+11 1.28581e+11  

CPI 9.0176 0.71887  

L3-MEM data volume [GB] 301 3.22 

TLB misses 3.71447e+09 4077 

Branch rate 36% 8.5% 

Branch mispredicted ratio 7.8% 0.0000013% 

Memory bandwidth [GB/s] 10.5 1.1 

Useful likwid-perfctr groups:  L3, L3CACHE, MEM, TLB, BRANCH 

 

High CPI, near perfect scaling if using SMT threads (Intel). 

Note: Latency bound code can still produce significant aggregated  bandwidth.  

Cray Workshop Performance for Multicore 
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Language-induced problems 

 The object-oriented programming paradigm implements 

functionality resulting in many calls to small functions 

 The ability of the compiler to inline functions (and still generate the 

best possible machine code) is limited 

 Frequent pattern with complex C++ codes 

 

 Symptoms: 

 Low (“good”) CPI 

 Low resource utilization (Flops/s, bandwidth) 

 Orders of magnitude more general purpose than arithmetic floating point 

instructions 

 High branch rate 

 Solution: 

 Use basic data types and plain arrays in compute intensive loops 

 Use plain C-like code 

 Keep things simple – do not obstruct the compiler’s view on the code   
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Microbenchmarking for architectural 

exploration 

The vector triad 

Serial, throughput, and parallel benchmarks 
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The parallel vector triad benchmark 

A “swiss army knife” for microbenchmarking 

Simple streaming benchmark: 

 

 

 

 

 

 

 

 

 

 

 Report performance for different N 

 Choose NITER so that accurate time measurement is possible 

 This kernel is limited by data transfer performance for all memory 

levels on all current architectures! 

double precision, dimension(N) :: A,B,C,D 

A=1.d0; B=A; C=A; D=A 

 

do j=1,NITER 

  do i=1,N 

    A(i) = B(i) + C(i) * D(i) 

  enddo 

  if(.something.that.is.never.true.) then 

    call dummy(A,B,C,D) 

  endif 

enddo 

Prevents smarty-pants 

compilers from doing 

“clever” stuff 
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A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz) 

Cray Workshop Performance for Multicore 

L1D cache (32k) 

L2 cache (256k) 

L3 cache (20M) 

Memory 

Theoretical limit 

4 W / iteration 

 128 GB/s 

5 W / it. 

 18 GB/s 

(incl. write 

allocate) 

What about 

multiple cores?  

 

Do the 

bandwidths 

scale? 
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A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz) 

Cray Workshop Performance for Multicore 
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Theoretical limit 

4 W / iteration 

 128 GB/s 

Theoretical limit 

4 W / iteration 

 48 GB/s 
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The throughput-parallel vector triad benchmark 

 Every core runs its own, independent triad benchmark 

 

 

 

 

 

 

 

 

 

 

 

 

 

  pure hardware probing, no impact from OpenMP overhead 

Cray Workshop Performance for Multicore 

double precision, dimension(:), allocatable :: A,B,C,D 

 

!$OMP PARALLEL private(i,j,A,B,C,D) 

allocate(A(1:N),B(1:N),C(1:N),D(1:N)) 

A=1.d0; B=A; C=A; D=A 

do j=1,NITER 

  do i=1,N 

    A(i) = B(i) + C(i) * D(i) 

  enddo 

  if(.something.that.is.never.true.) then 

    call dummy(A,B,C,D) 

  endif 

enddo 

!$OMP END PARALLEL 
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Throughput vector triad on Sandy Bridge socket (3 GHz) 

Cray Workshop Performance for Multicore 

Saturation effect 

in memory 

Scalable BW in 

L1, L2, L3 cache 
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The OpenMP-parallel vector triad benchmark 

 OpenMP work sharing in the benchmark loop 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cray Workshop Performance for Multicore 

double precision, dimension(:), allocatable :: A,B,C,D 

 

allocate(A(1:N),B(1:N),C(1:N),D(1:N)) 

A=1.d0; B=A; C=A; D=A 

!$OMP PARALLEL private(i,j) 

do j=1,NITER 

!$OMP DO 

  do i=1,N 

    A(i) = B(i) + C(i) * D(i) 

  enddo 

!$OMP END DO 

  if(.something.that.is.never.true.) then 

    call dummy(A,B,C,D) 

  endif 

enddo 

!$OMP END PARALLEL 

Implicit barrier 



54 

OpenMP vector triad on Sandy Bridge socket (3 GHz) 

Cray Workshop Performance for Multicore 

sync 

overhead 

grows with # 

of threads 

bandwidth 

scalability 

across 

memory 

interfaces 



OpenMP performance issues  

on multicore 

Synchronization (barrier) overhead 
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Welcome to the multi-/many-core era 

Synchronization of threads may be expensive! 

!$OMP PARALLEL … 

… 

!$OMP BARRIER  

!$OMP DO  

… 

!$OMP ENDDO 

!$OMP END PARALLEL 

 

On x86 systems there is no hardware support for synchronization! 

 Next slide: Test OpenMP Barrier performance… 

 for different compilers 

 and different topologies: 

 shared cache 

 shared socket 

 between sockets 

 and different thread counts 

 2 threads 

 full domain (chip, socket, node) 

Threads are synchronized at explicit AND 

implicit barriers. These are a main source of 

overhead in OpenMP progams. 
 

Determine costs via modified OpenMP 

Microbenchmarks  testcase  (epcc) 
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Thread synchronization overhead on Interlagos  
Barrier overhead in CPU cycles 

2 Threads Cray 8.03 GCC 4.6.2 PGI 11.8 Intel 12.1.3 

Shared L2 258 3995 1503 128623 

Shared L3 698 2853 1076 128611 

Same socket 879 2785 1297 128695 

Other socket 940 2740 / 4222 1284 / 1325 128718 

Intel compiler barrier very expensive on Interlagos 

     OpenMP & Cray compiler 

Full domain Cray 8.03 GCC 4.6.2 PGI 11.8 Intel 12.1.3 

Shared L3 2272 27916 5981 151939 

Socket 3783 49947 7479 163561 

Node 7663 167646 9526 178892 
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Thread synchronization overhead on SandyBridge-EP  
Barrier overhead in CPU cycles 

2 Threads Intel  13.1.0 GCC 4.7.0 GCC 4.6.1 

Shared L3 384 5242 4616 

SMT threads 2509 3726 3399 

Other socket 1375 5959 4909 

Gcc still not very competitive 

     Intel compiler 

Full domain Intel 13.1.0 GCC 4.7.0 GCC 4.6.1 

Socket 1497 14546 14418 

Node 3401 34667 29788 

Node SMT 6881 59038 58898 



Simple performance modeling: 

The Roofline Model 
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The Roofline Model1,2 

1. Pmax = Applicable peak performance of a loop, assuming that 

data comes from L1 cache 

 

2. I = Computational intensity (“work” per byte transferred) over the 

slowest data path utilized (“the bottleneck”) 

 Code balance BC = I -1 

 

3. bS = Applicable peak bandwidth of the slowest data path utilized 

 

 

Expected performance: 

Cray Workshop Performance for Multicore 

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆) 

1 W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. (2000) 
2 S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008) 

http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
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A simple Roofline example 

Example:     do i=1,N; s=s+a(i); enddo 

in double precision on hypothetical 3 GHz CPU, 4-way SIMD, N large 
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ADD peak  (half of full peak) 

 

no SIMD 

 

4-cycle latency per ADD if not unrolled 

 

Computational intensity 

Performance 

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆) 
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Applicable peak for the summation loop 

Plain scalar code, no SIMD 

 

 

LOAD r1.0  0 

i  1 

loop:  

  LOAD r2.0  a(i) 

  ADD r1.0  r1.0+r2.0 

  ++i ? loop 

result  r1.0 
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ADD pipes utilization: 

t 

 1/16 of ADD peak 
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Applicable peak for the summation loop 

Scalar code, 4-way unrolling 
LOAD r1.0  0 

LOAD r2.0  0 

LOAD r3.0  0 

LOAD r4.0  0 

i  1 

loop:  

  LOAD r5.0  a(i) 

  LOAD r6.0  a(i+1) 

  LOAD r7.0  a(i+2) 

  LOAD r8.0  a(i+3) 

  ADD r1.0  r1.0+r5.0 

  ADD r2.0  r2.0+r6.0 

  ADD r3.0  r3.0+r7.0 

  ADD r4.0  r4.0+r8.0 

  i+=4 ? loop 

result  r1.0+r2.0+r3.0+r4.0 
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ADD pipes utilization: 

t 

 1/4 of ADD peak 
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Applicable peak for the summation loop 

SIMD-vectorized, 4-way unrolled 
LOAD [r1.0,…,r1.3]  [0,0] 

LOAD [r2.0,…,r2.3]  [0,0] 

LOAD [r3.0,…,r3.3]  [0,0] 

LOAD [r4.0,…,r4.3]  [0,0] 

i  1 

loop:  

  LOAD [r5.0,…,r5.3]  [a(i),…,a(i+3)] 

  LOAD [r6.0,…,r6.3]  [a(i+4),…,a(i+7)] 

  LOAD [r7.0,…,r7.3]  [a(i+8),…,a(i+11)] 

  LOAD [r8.0,…,r8.3]  [a(i+12),…,a(i+15)] 

  ADD r1  r1+r5 

  ADD r2  r2+r6 

  ADD r3  r3+r7 

  ADD r4  r4+r8 

  i+=16 ? loop 

result  r1.0+r1.1+...+r4.2+r4.3 

 

Cray Workshop Performance for Multicore 

ADD pipes utilization: 

t 

 ADD peak 
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Input to the roofline model 

… on the example of       do i=1,N; s=s+a(i); enddo  

Cray Workshop Performance for Multicore 

analysis 

Code analysis: 

1 ADD + 1 LOAD 

SIMD vectorized 

architecture Throughput: 1 ADD + 1 LD/cy 

Pipeline depth: 4 cy (ADD) 

4-way SIMD 

measurement 

Maximum memory 

bandwidth 10 GB/s 

Memory-bound @ large N! 

Pmax = 1.25 GF/s 

3-12 GF/s 

1.25 GF/s 
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A very bandwidth-bound kernel 

Example: Vector triad A(:)=B(:)+C(:)*D(:) on 2.3 GHz Interlagos 

 

 bS = 34 GB/s 

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate) 

  I = 0.4 F/W = 0.05 F/B 

 

Lightspeed: 

 

I ∙ bS = 1.7 GF/s (1.2 % of peak performance) 

Cray Workshop Performance for Multicore 
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Assumptions for the Roofline Model 

 The balance metric formalism is based on some (crucial) 

assumptions: 

 There is a clear concept of “work” vs. “traffic” 

 “work” = flops, updates, iterations… 

 “traffic” = required data to do “work” 

 

 Attainable bandwidth of code = input parameter! Determine effective 

bandwidth via simple streaming benchmarks to model more complex 

kernels and applications 

 Data transfer and core execution overlap perfectly! 

 Slowest data path is modeled only; all others are assumed to be infinitely 

fast 

 

 If data transfer is the limiting factor, the bandwidth of the slowest data path 

can be utilized to 100% (“saturation”) 

 

 Latency effects are ignored, i.e. perfect streaming mode 

Cray Workshop Performance for Multicore 
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Factors to consider in the roofline model 

Bandwidth-bound (simple case) 

 Accurate traffic calculation (write-

allocate, strided access, …) 

 Practical ≠ theoretical BW limits 

 Erratic access patterns 

 

Core-bound (may be complex) 

 Multiple bottlenecks: LD/ST, 

arithmetic, pipelines, SIMD, 

execution ports 

 See next slide… 

Cray Workshop Performance for Multicore 
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Complexities of in-core execution 

Multiple bottlenecks:  

 

 L1 Icache bandwidth 

 Decode/retirement 

throughput 

 Port contention  

(direct or indirect) 

 Arithmetic pipeline stalls 

(dependencies) 

 Overall pipeline stalls 

(branching) 

 L1 Dcache bandwidth 

(LD/ST throughput) 

 Scalar vs. SIMD execution 

 … 

 

 Register pressure 

 Alignment issues 
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Shortcomings of the roofline model 

 Saturation effects in multicore chips are not explained 

 Reason: “saturation assumption”  

 Cache line transfers and core execution do sometimes not overlap 

perfectly 

 Only increased “pressure” on the memory 

interface can saturate the bus 

 need more cores! 

 

 ECM model gives more insight (see later) 

A(:)=B(:)+C(:)*D(:) 

Roofline predicts 

full socket BW 
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Optimal utilization of parallel resources 

Hardware-software interaction 

SIMD parallelism 
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Computer Architecture 
The evil of hardware optimizations 

Flexible, but optimization  

is hard! 

Architect’s view: 

Make the common case fast ! 

Provide improvements for relevant software 

What are the technical opportunities? 

Economical concerns 

Multi-way special purpose 

ENIAC 1948 

EDSAC 1949 

What is your relevant aspect of 

the architecture? 
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Hardware- Software Co-Design? 
From algorithm to execution 

The machine view: 

 

ISA (Machine code) 

 

 

Reality: 

Algorithm 

Programming language 

Hardware = Black Box 

Libraries Compiler 

Cray Workshop Performance for Multicore 
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Basic Resources 
Instruction throughput and data movement 

1. Instruction execution 

This is the primary resource of the processor. All efforts in hardware design 

are targeted towards increasing the instruction throughput. 

2. Data transfer bandwidth 

Data transfers are a consequence of instruction execution and therefore a 

secondary resource. Maximum bandwidth is determined by the request rate of 

executed instructions and technical limitations (bus width, speed). 

Real machine: Processors are imperfect and have technical limitations. This 

results in hazards preventing to fully exploit the elementary resources. 

Cray Workshop Performance for Multicore 
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Things to remember 

Goals for optimization: 

 

1. Map your work to an instruction mix with highest throughput 

using the most effective instructions. 

 

2. Reduce data volume over slow data paths fully utilizing available 

bandwidth. 

 

3. Avoid possible hazards/overhead which prevent reaching goals 

one and two. 
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Coding for  

SingleInstructionMultipleData-processing 
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SIMD processing – Basics  

 Single Instruction Multiple Data (SIMD) operations allow the 

concurrent execution of the same operation on “wide” registers.  

 x86 SIMD instruction sets: 

 SSE: register width = 128 Bit  2 double precision floating point operands  

 AVX: register width = 256 Bit  4 double precision floating point operands 

 Adding two registers holding double precision floating point operands  
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R0 R1 R2 R0 R1 R2 

Scalar execution: 

R2 ADD [R0,R1] 

SIMD execution: 

V64ADD [R0,R1] R2 
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SIMD processing – Basics  

 Steps (done by the compiler) for “SIMD processing” 
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for(int i=0; i<n;i++) 

 C[i]=A[i]+B[i]; 

for(int i=0; i<n;i+=4){ 

  C[i]  =A[i]  +B[i]; 

 C[i+1]=A[i+1]+B[i+1]; 

 C[i+2]=A[i+2]+B[i+2]; 

 C[i+3]=A[i+3]+B[i+3];} 

//remainder loop omitted 

LABEL1:  

 VLOAD R0  A[i] 

 VLOAD R1  B[i] 

 V64ADD[R0,R1]  R2 

 VSTORE R2  C[i] 

 ii+4 

 i<(n-4)? JMP LABEL1  

//remainder loop omitted 

“Loop unrolling” 

Load 256 Bits starting from address of A[i] to 

register R0 

Add the corresponding 64 Bit entries in  R0 and 

R1 and store the 4 results to R2 

Store R2 (256 Bit) to address  

starting at C[i] 
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SIMD processing – Basics  

 No SIMD-processing for loops with data dependencies 

 

 

 

 “Pointer aliasing” may prevent compiler from SIMD-processing 

 

 

 

 

 

 C/C++ allows that A  &C[-1] and B  &C[-2] 

 C[i] = C[i-1] + C[i-2]: dependency  No SIMD-processing 

 

 If no “Pointer aliasing” is used, tell it to the compiler, e.g. use  
–fno-alias switch for Intel compiler  SIMD-processing 
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for(int i=0; i<n; i++) 

 A[i]=A[i-1]*s; 

void scale_shift(double *A, double *B, double *C, int n) { 

 for(int i=0; i<n; ++i)   

    C[i] = A[i] + B[i]; 

} 
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SIMD processing – Basics  

 SIMD processing of a vector norm 
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s=0.0; 

for(int i=0; i<n; i++) 

  s = s + A[i]*A[i]; 

… 

V64MULT(R1,R2)  R1 

V64ADD(R0,R1)   R0 

… 

R0 R1 R2 

Data dependency on s must be 

resolved for SIMD-processing 

s0=0.0; 

s1=0.0; 

s2=0.0; 

s3=0.0; 

for(int i=0; i<n; i+=4){  

   s0 = s0+ A[i]  *A[i]; 

   s1 = s1+ A[i+1]*A[i+1]; 

   s2 = s2+ A[i+2]*A[i+2]; 

   s3 = s3+ A[i+3]*A[i+3]; 

} 

//remainder omitted 

s=s0+s1+s2+s3 

Compiler does transformation –   

 

if programmer allows it to do so! 
( –O3 instead of –O1) 



Reading x86 assembly code 
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Basic approach to check the instruction code 

 Get the assembler code (Intel compiler): 

 icc –S –O3  -xHost  triad.c  -o triad.s 

 Disassemble Executable: 

    objdump –d  ./cacheBench | less 

 Things to check for: 

 Is the code vectorized? Search for pd/ps suffix. 

     mulpd, addpd, vaddpd, vmulpd 

 Is the data loaded with 16 byte moves? 

    movapd, movaps, vmovupd 

 For memory-bound code: Search for nontemporal stores: 

    movntpd, movntps 

 

The x86 ISA is documented in: 

Intel Software Development Manual (SDM) 2A and 2B 

AMD64 Architecture Programmer's Manual Vol. 1-5 
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Basics of the x86-64 ISA 

 Instructions have 0 to 2 operands 

 Operands can be registers, memory references or immediates  

 Opcodes (binary representation of instructions) vary from 1 to 17 

bytes 

 There are two syntax forms: Intel (left)  and AT&T (right) 

 Addressing Mode: BASE + INDEX * SCALE + DISPLACEMENT 

 C:  A[i]  equivalent to  *(A+i)  (a pointer has a type: A+i*8) 

movaps [rdi + rax*8+48], xmm3 

add rax, 8 

js 1b 

401b9f: 0f 29 5c c7 30     movaps %xmm3,0x30(%rdi,%rax,8) 

401ba4: 48 83 c0 08        add    $0x8,%rax 

401ba8: 78 a6              js     401b50 <triad_asm+0x4b> 

 

movaps    %xmm4, 48(%rdi,%rax,8)  

addq      $8, %rax 

js        ..B1.4  
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Basics of the x86-64 ISA II 

16 general Purpose Registers (64bit):   

rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp, r8-r15 

alias with eight  32 bit register set: 

eax, ebx, ecx, edx, esi, edi, esp, ebp 

 

Floating Point SIMD Registers: 

xmm0-xmm15  SSE (128bit)   alias with 256bit registers 

ymm0-ymm15  AVX (256bit) 

 

SIMD instructions are distinguished by: 

AVX (VEX) prefix:  v 

Operation:  mul, add, mov 

Modifier: non temporal (nt), unaligned (u), aligned (a), high (h) 

Data type: single (s),  double  (d) 
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Basics of x86-64 ABI 

 Regulations how functions are called on binary level 

 Differs between 32 bit / 64 bit and Operating Systems 

 

x86-64 on Linux: 

 

 Integer or address parameters are passed in the order : 

     rdi, rsi, rdx, rcx, r8, r9 

 

 Floating Point parameters are passed in the order xmm0-xmm7 

 

 Registers which must be preserved across function calls:  
 rbx, rbp, r12-r15 

 

 Return values are passed in rax/rdx and xmm0/xmm1  
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Case Study: summation 

float sum = 0.0; 

 

for (int j=0; j<size; j++){ 

    sum += data[j]; 

} 

 

 

Instruction code: 

401d08:   f3 0f 58 04 82          addss  (%rdx,%rax,4),%xmm0 

401d0d:   48 83 c0 01             add    $0x1,%rax 

401d11:   39 c7                   cmp    %eax,%edi 

401d13:   77 f3                   ja     401d08 
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Instruction 

address 
Opcodes Assembly 

code 

To get  object code use 
objdump –d on object file or 

executable or compile with -S 
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Summation code variants 

1: 

addss  xmm0, [rsi + rax * 4] 

add    rax, 1 

cmp    eax,edi 

js 1b 

Cray Workshop Performance for Multicore 

1: 

addss xmm0, [rsi + rax * 4] 

addss xmm1, [rsi + rax * 4 + 4] 

addss xmm2, [rsi + rax * 4 + 8] 

addss xmm3, [rsi + rax * 4 + 12] 

add   rax, 4 

cmp   eax,edi 

js 1b 

1: 

addps xmm0, [rsi + rax * 4] 

addps xmm1, [rsi + rax * 4 + 16] 

addps xmm2, [rsi + rax * 4 + 32] 

addps xmm3, [rsi + rax * 4 + 48] 

add rax, 16 

cmp   eax,edi 

js 1b 

Unrolling with sub sums to break up 

register dependency 

SSE SIMD vectorization  

3 cycles add 

pipeline 

latency 
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SIMD-processing – Sequential  

Cray Workshop Performance for Multicore 

SIMD influences instruction execution in 

the core – other bottlenecks stay the same! 

48 

16 

4 

4 4 

Execution Cache Memory 

8cy 

16cy 16cy 
24cy 

Full 

benefit in 

L1 cache 

Data transfers 

are overlapped 

with execution 

Some penalty 

for SIMD (12 cy 

predicted) 

Peak 

Per-cacheline 

cycle counts 
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SIMD-processing – Full chip (all cores) 
Influence of SMT  

Cray Workshop Performance for Multicore 

Bandwidth saturation is the primary 

performance limitation on the chip level! 

8c 

8 threads on physical cores 16 threads using SMT 

Full scaling 

using SMT due 

to bubbles in 

pipeline 

All variants 

saturate the 

memory 

bandwidth 

Conclusion: If the code saturates the 

bottleneck, all variants are accpetable! 
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How to leverage SIMD 

 The compiler does it for you (aliasing, alignment, language) 

 Compiler directives (pragmas) 

 Alternative programming models for compute kernels (OpenCL, ispc) 

 Intrinsics (restricted to C/C++) 

 Implement directly in  assembler 

 

To use intrinsics the following headers are available. To enable 

instruction sets often additional flags are necessary: 

 

 xmmintrin.h  (SSE) 

 pmmintrin.h (SSE2) 

 immintrin.h  (AVX) 

 

 x86intrin.h (all instruction set extensions) 

 See next slide for an example 

 

 
Cray Workshop Performance for Multicore 
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Example: array summation using C intrinsics 

Cray Workshop Performance for Multicore 

__m128 sum0, sum1, sum2, sum3; 

__m128 t0, t1, t2, t3; 

float scalar_sum; 

sum0 =  _mm_setzero_ps(); 

sum1 =  _mm_setzero_ps(); 

sum2 =  _mm_setzero_ps(); 

sum3 =  _mm_setzero_ps(); 

 

for (int j=0; j<size; j+=16){ 

    t0 = _mm_loadu_ps(data+j); 

    t1 = _mm_loadu_ps(data+j+4); 

    t2 = _mm_loadu_ps(data+j+8); 

    t3 = _mm_loadu_ps(data+j+12); 

    sum0 = _mm_add_ps(sum0, t0); 

    sum1 = _mm_add_ps(sum1, t1); 

    sum2 = _mm_add_ps(sum2, t2); 

    sum3 = _mm_add_ps(sum3, t3); 

} 

  

 

sum0 = _mm_add_ps(sum0, sum1); 

sum0 = _mm_add_ps(sum0, sum2); 

sum0 = _mm_add_ps(sum0, sum3); 

sum0 = _mm_hadd_ps(sum0, sum0); 

sum0 = _mm_hadd_ps(sum0, sum0); 

 

_mm_store_ss(&scalar_sum, sum0); 
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Example: array summation from intrinsics, instruction code 

14:   0f 57 c9                xorps  %xmm1,%xmm1 

17:   31 c0                   xor    %eax,%eax 

19:   0f 28 d1                movaps %xmm1,%xmm2 

1c:   0f 28 c1                movaps %xmm1,%xmm0 

1f:   0f 28 d9                movaps %xmm1,%xmm3 

22:   66 0f 1f 44 00 00       nopw   0x0(%rax,%rax,1) 

28:   0f 10 3e                movups (%rsi),%xmm7 

2b:   0f 10 76 10             movups 0x10(%rsi),%xmm6 

2f:   0f 10 6e 20             movups 0x20(%rsi),%xmm5 

33:   0f 10 66 30             movups 0x30(%rsi),%xmm4 

37:   83 c0 10                add    $0x10,%eax 

3a:   48 83 c6 40             add    $0x40,%rsi 

3e:   0f 58 df                addps  %xmm7,%xmm3 

41:   0f 58 c6                addps  %xmm6,%xmm0 

44:   0f 58 d5                addps  %xmm5,%xmm2 

47:   0f 58 cc                addps  %xmm4,%xmm1 

4a:   39 c7                   cmp    %eax,%edi 

4c:   77 da                   ja     28 <compute_sum_SSE+0x18> 

4e:   0f 58 c3                addps  %xmm3,%xmm0 

51:   0f 58 c2                addps  %xmm2,%xmm0 

54:   0f 58 c1                addps  %xmm1,%xmm0 

57:   f2 0f 7c c0             haddps %xmm0,%xmm0 

5b:   f2 0f 7c c0             haddps %xmm0,%xmm0 

5f:   c3                      retq  

Cray Workshop Performance for Multicore 

Loop body 
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Vectorization and the Intel compiler 

 Intel compiler will try to use SIMD instructions when enabled 

to do so 

 “Poor man’s vector computing” 

 Compiler will emit messages about vectorized loops: 

 
plain.c(11): (col. 9) remark: LOOP WAS VECTORIZED. 

 

 Use option -vec_report3 to get full compiler output about which 

loops were vectorized and which were not and why (data 

dependencies!) 

 Some obstructions will prevent the compiler from applying 

vectorization even if it is possible 

 

 You can use source code directives to provide more 

information to the compiler  
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Vectorization compiler options 

 The compiler will vectorize starting with –O2. 

 To enable specific SIMD extensions use the –x option: 

 -xSSE2 vectorize for SSE2 capable machines 

Available SIMD extensions: 

SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX 

 

 -xAVX on Sandy Bridge processors 

 

Recommend option: 

 -xHost will optimize for the architecture you compile on 

 

On AMD Opteron: use plain –O3 as the  -x options may involve CPU 
type  checks. 
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Vectorization compiler options 

 Controlling non-temporal stores  

 

 -opt-streaming-stores always|auto|never 

 
always use NT stores, assume application is memory 

  bound (use with caution!) 

 
auto compiler decides when to use NT stores 

 
never do not use NT stores unless activated by 

  source code directive 
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Rules for vectorizable loops 

1. Countable 

2. Single entry and single exit 

3. Straight line code 

4. No function calls (exception intrinsic math functions) 

 

Better performance with: 

1. Simple inner loops with unit stride 

2. Minimize indirect addressing 

3. Align data structures (SSE 16 bytes, AVX 32 bytes) 

4. In C use the restrict keyword for pointers to rule out aliasing  

 

Obstacles for vectorization: 

 Non-contiguous memory access 

 Data dependencies 
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Vectorization source code directives 

 Fine-grained control of loop vectorization 

 Use !DEC$  (Fortran)  or  #pragma  (C/C++) sentinel to start a compiler 

directive 

 

 #pragma vector always 

vectorize even if it seems inefficient (hint!) 

 

 #pragma novector 

do not vectorize even if possible 

 

 #pragma vector nontemporal 

use NT stores when allowed (i.e. alignment conditions are met) 

 

 #pragma vector aligned 

specifies that all array accesses are aligned to 16-byte boundaries 

(DANGEROUS! You must not lie about this!) 
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User mandated vectorization 

 Starting with Intel Compiler 12.0 the simd pragma is available 

 #pragma simd enforces vectorization where the other pragmas fail 

 Prerequesites: 

 Countable loop 

 Innermost loop 

 Must conform to for-loop style of OpenMP worksharing constructs 

 There are additional clauses:  reduction, vectorlength, private 

 Refer to the compiler manual for further details 

 

 NOTE: Using the #pragma simd the compiler may generate incorrect code if 

the loop violates the vectorization rules! 

#pragma simd reduction(+:x) 

  for (int i=0; i<n; i++) { 

     x = x + A[i]; 

  } 
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x86 Architecture: 

SIMD and Alignment 

 Alignment  issues 

 Alignment of arrays in SSE calculations should be on 16-byte boundaries 

to allow packed loads and NT stores (for Intel processors) 

 AMD has a scalar nontemporal store instruction 

 Otherwise the compiler will revert to unaligned loads and not use NT 
stores – even if you say vector nontemporal 

 How is manual alignment accomplished? 

 Dynamic allocation of aligned memory  
(align = alignment boundary): 

 

#define _XOPEN_SOURCE 600 

#include <stdlib.h> 

 

int posix_memalign(void **ptr, 

    size_t align, 

    size_t size); 



Efficient parallel programming  

on ccNUMA nodes 

Performance characteristics of ccNUMA nodes 

First touch placement policy 

C++ issues 

ccNUMA locality and dynamic scheduling 

ccNUMA locality beyond first touch 
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ccNUMA performance problems 
“The other affinity” to care about 

 ccNUMA: 

 Whole memory is transparently accessible by all processors 

 but physically distributed 

 with varying bandwidth and latency 

 and potential contention (shared memory paths) 

 How do we make sure that memory access is always as "local" 

and "distributed" as possible? 

 

 

 

 

 

 

 

 Page placement is implemented in units of OS pages (often 4kB, possibly 

more) 
 

C C C C 

M M 

C C C C 

M M 
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Cray XE6 Interlagos node 

4 chips, two sockets, 8 threads per ccNUMA domain 

 
 ccNUMA map: Bandwidth penalties for remote access 

 Run 8 threads per ccNUMA domain (1 chip) 

 Place memory in different domain  4x4 combinations 

 STREAM triad benchmark using nontemporal stores  
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ccNUMA locality tool numactl: 

How do we enforce some locality of access? 

 numactl can influence the way a binary maps its memory pages: 

 
numactl --membind=<nodes> a.out # map pages only on <nodes> 

        --preferred=<node> a.out  # map pages on <node>  

                             # and others if <node> is full 

        --interleave=<nodes> a.out # map pages round robin across 

                               # all <nodes> 

 

 Examples: 

 
env OMP_NUM_THREADS=2 numactl --membind=0 –-cpunodebind=1 ./stream 

 

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \ 

    likwid-pin -c N:0,4,8,12 ./stream 

 

 

 

 But what is the default without numactl? 
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ccNUMA default memory locality 

 "Golden Rule" of ccNUMA: 

 

A memory page gets mapped into the local memory of the 

processor that first touches it! 

 

 Except if there is not enough local memory available 

 This might be a problem, see later 

 Caveat: "touch" means "write", not "allocate" 

 Example:  

 
double *huge = (double*)malloc(N*sizeof(double)); 

 

for(i=0; i<N; i++) // or i+=PAGE_SIZE 

   huge[i] = 0.0;   

 

 

 It is sufficient to touch a single item to map the entire page 

Memory not 

mapped here yet 

Mapping takes 

place here 
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Coding for ccNUMA data locality 

integer,parameter :: N=10000000 

double precision A(N), B(N) 

 

 

 

A=0.d0 

 

 

 

!$OMP parallel do 

do i = 1, N 

   B(i) = function ( A(i) ) 

end do 

!$OMP end parallel do 

integer,parameter :: N=10000000 

double precision A(N),B(N) 

!$OMP parallel  

!$OMP do schedule(static) 

do i = 1, N 

   A(i)=0.d0 

end do 

!$OMP end do 

... 

!$OMP do schedule(static) 

do i = 1, N 

   B(i) = function ( A(i) ) 

end do 

!$OMP end do 

!$OMP end parallel 

 Most simple case: explicit initialization  
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Coding for ccNUMA data locality 

integer,parameter :: N=10000000 

double precision A(N), B(N) 

 

 

 

 

READ(1000) A 

 

 

 

!$OMP parallel do 

do i = 1, N 

   B(i) = function ( A(i) ) 

end do 

!$OMP end parallel do 

integer,parameter :: N=10000000 

double precision A(N),B(N) 

!$OMP parallel  

!$OMP do schedule(static) 

do i = 1, N 

   A(i)=0.d0 

end do 

!$OMP end do 

!$OMP single 

READ(1000) A 

!$OMP end single 

!$OMP do schedule(static) 

do i = 1, N 

   B(i) = function ( A(i) ) 

end do 

!$OMP end do 

!$OMP end parallel 

 Sometimes initialization is not so obvious: I/O cannot be easily 

parallelized, so “localize” arrays before I/O 
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Coding for Data Locality 

 Required condition: OpenMP loop schedule of initialization must 

be the same as in all computational loops 

 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to 

be sure… 

 Imposes some constraints on possible optimizations (e.g. load balancing) 

 Presupposes that all worksharing loops with the same loop length have the 

same thread-chunk mapping 

 Guaranteed by OpenMP 3.0 only for loops in the same enclosing parallel region 

and static schedule 

 In practice, it works with any compiler even across regions 

 If dynamic scheduling/tasking is unavoidable, more advanced methods may 

be in order 

 How about global objects? 

 Better not use them 

 If communication vs. computation is favorable, might consider properly 

placed copies of global data 

 In C++, STL allocators provide an elegant solution (see hidden slides) 
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Diagnosing Bad Locality 

 If your code is cache-bound, you might not notice any locality 

problems 

 

 Otherwise, bad locality limits scalability at very low CPU numbers 

(whenever a node boundary is crossed) 

 If the code makes good use of the memory interface 

 But there may also be a general problem in your code… 

 

 Consider using performance counters 

 LIKWID-perfctr can be used to measure nonlocal memory accesses 

 Example for Intel Nehalem (Core i7): 

 
env OMP_NUM_THREADS=8 likwid-perfctr -g MEM –C N:0-7 ./a.out 



113 Cray Workshop Performance for Multicore 

Using performance counters for diagnosing bad ccNUMA 

access locality 

 Intel Nehalem EP node: 

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+ 

|             Event             |   core 0    |   core 1    |   core 2    |   core 3    |   core 4    |   core 5    |   core 6    |   core 7    | 

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+ 

|       INSTR_RETIRED_ANY       | 5.20725e+08 | 5.24793e+08 | 5.21547e+08 | 5.23717e+08 | 5.28269e+08 | 5.29083e+08 | 5.30103e+08 | 5.29479e+08 | 

|     CPU_CLK_UNHALTED_CORE     | 1.90447e+09 | 1.90599e+09 | 1.90619e+09 | 1.90673e+09 | 1.90583e+09 | 1.90746e+09 | 1.90632e+09 | 1.9071e+09  | 

|   UNC_QMC_NORMAL_READS_ANY    | 8.17606e+07 |      0      |      0      |      0      | 8.07797e+07 |      0      |      0      |      0      | 

|    UNC_QMC_WRITES_FULL_ANY    | 5.53837e+07 |      0      |      0      |      0      | 5.51052e+07 |      0      |      0      |      0      | 

| UNC_QHL_REQUESTS_REMOTE_READS | 6.84504e+07 |      0      |      0      |      0      | 6.8107e+07  |      0      |      0      |      0      | 

| UNC_QHL_REQUESTS_LOCAL_READS  | 6.82751e+07 |      0      |      0      |      0      | 6.76274e+07 |      0      |      0      |      0      | 

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+ 

RDTSC timing: 0.827196 s 

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+ 

|           Metric            |  core 0  |  core 1  | core 2  |  core 3  |  core 4  |  core 5  | core 6  | core 7  | 

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+ 

|         Runtime [s]         | 0.714167 | 0.714733 | 0.71481 | 0.715013 | 0.714673 | 0.715286 | 0.71486 | 0.71515 | 

|             CPI             | 3.65735  | 3.63188  | 3.65488 | 3.64076  | 3.60768  | 3.60521  | 3.59613 | 3.60184 | 

| Memory bandwidth [MBytes/s] | 10610.8  |    0     |    0    |    0     | 10513.4  |    0     |    0    |    0    | 

|  Remote Read BW [MBytes/s]  |   5296   |    0     |    0    |    0     | 5269.43  |    0     |    0    |    0    | 

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+ 

Uncore events only 

counted once per socket 

Half of read BW comes 

from other socket! 
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If all fails… 

 Even if all placement rules have been carefully observed, you may 

still see nonlocal memory traffic. Reasons? 
 

 Program has erratic access patters  may still achieve some access 

parallelism (see later) 

 OS has filled memory with buffer cache data: 

 

 

 

 

 

 

# numactl --hardware    # idle node! 

available: 2 nodes (0-1) 

node 0 size: 2047 MB 

node 0 free: 906 MB 

node 1 size: 1935 MB 

node 1 free: 1798 MB 

top - 14:18:25 up 92 days,  6:07,  2 users,  load average: 0.00, 0.02, 0.00 

Mem:   4065564k total,  1149400k used,  2716164k free,    43388k buffers 

Swap:  2104504k total,     2656k used,  2101848k free,  1038412k cached 
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ccNUMA problems beyond first touch: 

Buffer cache 

 OS uses part of main memory for 

disk buffer (FS) cache 

 If FS cache fills part of memory,  

apps will probably allocate from  

foreign domains 

  non-local access! 

 “sync” is not sufficient to 

drop buffer cache blocks 

 

 

 Remedies 

 Drop FS cache pages after user job has run (admin’s job) 

 seems to be automatic after aprun has finished on Crays  

 User can run “sweeper” code that allocates and touches all physical 

memory before starting the real application 

 numactl tool or aprun can force local allocation (where applicable) 

 Linux: There is no way to limit the buffer cache size in standard kernels 

P1 
C 

P2 
C 

C C 

MI 

P3 
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P4 
C 

C C 

MI 

BC 

data(3) 

BC 

data(3) 

d
a
ta

(1
) 



116 Cray Workshop Performance for Multicore 

ccNUMA problems beyond first touch: 

Buffer cache 

Real-world example: ccNUMA and the Linux buffer cache 

Benchmark: 

1. Write a file of some size 

from LD0 to disk 

2. Perform bandwidth 

benchmark using 

all cores in LD0 and 

maximum memory 

available in LD0 

 

Result: By default, 

Buffer cache is given  

priority over local  

page placement 

 restrict to local  

    domain if possible! 

aprun –ss ... 
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ccNUMA placement and erratic access patterns 

 Sometimes access patterns are  

just not nicely grouped into  

contiguous chunks: 

 

 

 

 

 

 

 

 

 

 

 In both cases page placement cannot easily be fixed for perfect parallel 

access 

double precision :: r, a(M) 

!$OMP parallel do private(r) 

do i=1,N 

  call RANDOM_NUMBER(r) 

  ind = int(r * M) + 1 

  res(i) = res(i) + a(ind) 

enddo 

!OMP end parallel do 

 Or you have to use tasking/dynamic 

scheduling: 

!$OMP parallel 

!$OMP single 

do i=1,N 

  call RANDOM_NUMBER(r) 

  if(r.le.0.5d0) then 

!$OMP task 

    call do_work_with(p(i)) 

!$OMP end task 

  endif 

enddo 

!$OMP end single 

!$OMP end parallel 
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ccNUMA placement and erratic access patterns 

 Worth a try: Interleave memory across ccNUMA domains to get at least 

some parallel access 

1. Explicit placement: 

 

 

 

 

 

2. Using global control via numactl: 

 

numactl --interleave=0-3 ./a.out 

 

 Fine-grained program-controlled placement via libnuma (Linux) 

using, e.g., numa_alloc_interleaved_subset(), 

numa_alloc_interleaved() and others 

 

!$OMP parallel do schedule(static,512) 

do i=1,M 

  a(i) = … 

enddo 

!$OMP end parallel do 

This is for all memory, not 

just the problematic 

arrays! 

Observe page alignment of 

array to get proper 

placement! 
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The curse and blessing of interleaved placement:  

OpenMP STREAM on a Cray XE6 Interlagos node 

 Parallel init: Correct parallel initialization 

 LD0: Force data into LD0 via  numactl –m 0 

 Interleaved:  numactl --interleave <LD range> 

Cray Workshop Performance for Multicore 



Case study:  

A 3D Jacobi smoother 

The basics in two dimensions 

Roofline performance analysis and modeling 
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A Jacobi smoother 

 Laplace equation in 2D: 

 

 Solve with Dirichlet boundary conditions using Jacobi iteration 

scheme: 

Naive balance (incl. write allocate):  

phi(:,:,t0): 3 LD +  

phi(:,:,t1): 1 ST+ 1LD 

 BC = 5 W / 4 FLOPs = 1.25 W / F  

Reuse when computing 
phi(i+2,k,t1) 

WRITE ALLOCATE:  
LD + ST  phi(i,k,t1) 
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∆𝚽 = 𝟎 
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Balance metric: 2 D Jacobi 

 Modern cache subsystems may further reduce memory traffic 

  “layer conditions”  

If cache is large enough to hold at least 2 rows 
(shaded region): Each phi(:,:,t0) is loaded 

once from main memory and re-used 3 times 

from cache: 

phi(:,:,t0): 1 LD + phi(:,:,t1): 1 ST+ 1LD 

BC = 3 W / 4 F = 0.75 W / F 

 

 

 

If cache is too small to hold one row: 
phi(:,:,t0): 2 LD + phi(:,:,t1): 1 ST+ 1LD 

BC = 5 W / 4 F = 1.25 W / F 

Cray Workshop Performance for Multicore 
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Performance metrics: 2D Jacobi 

 Alternative implementation (“Macho FLOP version”) 

 

 

 

 

 

 MFlops/sec increases by 7/4 but time to solution remains the same 

 

 Better metric (for many iterative stencil schemes): 

 Lattice Site Updates per Second (LUPs/sec) 

 

 2D Jacobi example: Compute LUPs/sec metric via 
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𝑃[LUPs s] =
𝑖𝑡max ∙ 𝑖max ∙ 𝑘max

𝑇wall
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2D  3D 

 3D sweep: 

 

 

 

 

 

 

 

 Best case balance: 1 LD  phi(i,j,k+1,t0) 

 1 ST + 1 write allocate phi(i,j,k,t1) 

 6 flops 

 BC = 0.5 W/F (24 bytes/LUP) 

 

 No 2-layer condition but 2 rows fit: BC = 5/6 W/F (40 bytes/LUP) 

 Worst case (2 rows do not fit): BC = 7/6 W/F (56 bytes/LUP) 
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do k=1,kmax 

  do j=1,jmax 

    do i=1,imax 

      phi(i,j,k,t1) = 1/6. *(phi(i-1,j,k,t0)+phi(i+1,j,k,t0) & 

                           + phi(i,j-1,k,t0)+phi(i,j+1,k,t0) & 

                           + phi(i,j,k-1,t0)+phi(i,j,k+1,t0)) 

    enddo 

  enddo 

enddo 
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3D Jacobi solver 
Performance of vanilla code on one Interlagos chip (8 cores) 
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cache memory 

2 layers of source array 

drop out of L2 cache 

Problem size: N3 

Roofline inappropriate 

for unsaturated case 
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Conclusions from the Jacobi example 

 We have made sense of the memory-bound performance vs. 

problem size 

 “Layer conditions” lead to predictions of code balance 

 Achievable memory bandwidth is input parameter 

 

 

 The model works only if the bandwidth is “saturated” 

 In-cache modeling is more involved 

 

 

 Optimization == reducing the code balance by code 

transformations 

 See below 
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Data access optimizations  
  

Case study: Optimizing the 3D Jacobi solver 
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Remember the 3D Jacobi solver on Interlagos? 
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2 layers of source array 

drop out of L2 cache 

 

 avoid through spatial 

blocking! 
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Jacobi iteration (2D): No spatial Blocking 

 Assumptions:  

 cache can hold 32 elements (16 for each array) 

 Cache line size is 4 elements 

 Perfect eviction strategy for source array 

 

This element is needed for three more updates; but 29 updates happen before this element is 

used for the last time 

i 

k 
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Jacobi iteration (2D): No spatial blocking 

 Assumptions:  

 cache can hold 32 elements (16 for each array) 

 Cache line size is 4 elements 

 Perfect eviction strategy for source array 

This element is needed for 

three more updates but has 

been evicted 
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Jacobi iteration (2D): Spatial Blocking 

 divide system into blocks 

 update block after block 

 same performance as if three complete rows of the systems fit 

into cache 
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Jacobi iteration (2D): Spatial Blocking  

 Spatial blocking reorders traversal of data to account for the data 

update rule of the code 

Elements stay sufficiently long in cache to be fully reused  

Spatial blocking improves temporal locality! 
(Continuous access in inner loop ensures spatial locality) 

This element remains in cache until it is fully used (only 6 updates happen before 

last use of this element) 
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Jacobi iteration (3D): Spatial blocking 

 Implementation: 

 

 

 

 

 

 

 

 

 

 Guidelines: 

 Blocking of inner loop levels (traversing continuously through main memory) 

 Blocking sizes large enough to fulfill “layer condition”  

 Cache size is a hard limit! 

 Blocking loops may have some impact on ccNUMA page placement 

  do ioffset=1,imax,iblock 

    do joffset=1,jmax,jblock 

      do k=1,kmax 

        do j=joffset, min(jmax,joffset+jblock-1) 

          do i=ioffset, min(imax,ioffset+iblock-1) 

            phi(i,j,k,t1) = ( phi(i-1,j,k,t0)+phi(i+1,j,k,t0) 

                      + ... + phi(i,j,k-1,t0)+phi(i,j,k+1,t0) )/6.d0 

          enddo 

        enddo 

      enddo 

    enddo 

  enddo  

loop over i-blocks 

loop over j-blocks 
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3D Jacobi solver (problem size 4003) 
Blocking different loop levels (8 cores Interlagos) 
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OpenMP parallelization? 

Optimal block size? 

k-loop blocking? 

 

24B/update  

performance 

model 

inner (i) loop 

blocking  

middle (j) loop 

blocking  

optimum j 

block size 
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3D Jacobi solver (problem size 4003) 
Calculating the optimal block size (8 cores Interlagos) 

 Interlagos chip: aggregate L2 size of 8 MB (say 4 MB to be safe) 

 

 Static OpenMP scheduling  0.5 MB cache per core 

 

 Layer condition with j-loop blocking: 

 

2 layers of size N x bj must fit into the cache 

 

 2 ∙ N ∙ bj ∙ 8 byte < 0.5 MB  

 

 bj < 78 
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Jacobi iteration (3D): Nontemporal stores 

 Intel x86: NT stores are packed SIMD stores with 16-byte aligned 

address 

 Sometimes hard to apply 

 AMD x86: Scalar NT stores without alignment restrictions 

available 

 

 Options for using NT stores 

 Let the compiler decide  unreliable 

 Use compiler options 

 Intel: -opt-streaming-stores never|always|auto 

 Use compiler directives 

 Intel:  !DIR$ vector [non]temporal 

 Cray: !DIR$ LOOP_INFO cache[_nt](...) 

 Compiler must be able to “prove” that the use of SIMD and NT 

stores is “safe”! 

 “line update kernel” concept: Make critical loop its own subroutine 
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Jacobi iteration (3D): Nontemporal stores for Cray 

 Line update kernel (separate compilation unit or -fno-inline): 

 

 

 

 

 

 

 Main loop: 
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do joffset=1,jmax,jblock 

  do k=1,kmax 

    do j=joffset, min(jmax,joffset+jblock-1) 

      call jacobi_line(phi(1,j,k,t1),phi(1,j,k,t0),phi(1,j,k-1,t0), & 

                       phi(1,j,k+1,t0),phi(1,j-1,k,t0),phi(1,j+1,k,t0) 

                      ,size) 

    enddo 

  enddo 

enddo  

subroutine jacobi_line(d,s,top,bottom,front,back,n) 

  integer :: n,i,start 

  double precision, dimension(*) :: d,s,top,bottom,front,back 

  double precision, parameter :: oos=1.d0/6.d0 

!DIR$ LOOP_INFO cache_nt(d) 

    do i=2,n-1 

       d(i) = oos*(s(i-1)+s(i+1)+top(i)+bottom(i)+front(i)+back(i)) 

    enddo 

end subroutine 
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3D Jacobi solver 
Spatial blocking + nontemporal stores 

Cray Workshop Performance for Multicore 

blocking 
NT 

stores 

expected 

boost: 

50% 

16 B/update perf. model 
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Conclusions from the Jacobi optimization example 

 “What part of the data comes from where” is a crucial question 

 

 Avoiding slow data paths == re-establishing the layer condition 

 

 Improved code showed the speedup predicted by the model 

 

 Optimal blocking factor can be predicted 

 Be guided by the cache size the layer condition 

 No need for exhaustive scan of “optimization space” 
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Case study:  

OpenMP-parallel sparse matrix-vector 

multiplication 

 

A simple (but sometimes not-so-simple) 

example for bandwidth-bound code and 

saturation effects in memory 
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Sparse matrix-vector multiply (spMVM) 

 Key ingredient in some matrix diagonalization algorithms 

 Lanczos, Davidson, Jacobi-Davidson 

 Important for sparse solvers (CG,…) 

 

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors 

with Nr (number of matrix rows) entries 

 “Sparse”: Nnz ~ Nr  

 

= + • Nr 

General case: 

some indirect 

addressing 

required! 
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… 

CRS matrix storage scheme 

column index 

ro
w

 i
n

d
e
x
 

1 2 3 4 … 

1 

2 

3 

4 

… 

val[] 

1 5 3 7 2 1 4 6 3 2 3 4 2 1 5 8 1 5 … col_idx[] 

1 5 15 19 8 12 … row_ptr[] 

 val[] stores all the nonzeros 

(length Nnz) 

 col_idx[] stores the column 

index of each nonzero (length Nnz) 

 row_ptr[] stores the starting 

index of each new row in val[] 

(length: Nr) 
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Case study: Sparse matrix-vector multiply 

 Important kernel in many applications (matrix diagonalization, 

solving linear systems) 

 Strongly memory-bound for large data sets 

 Streaming + partially indirect access: 

 

 

 

 

 

 

 

 

 Usually many spMVMs required to solve a problem 

 

 Following slides: Performance data on one 24-core AMD Magny 

Cours node 

 

do i = 1,Nr  

 do j = row_ptr(i), row_ptr(i+1) - 1  

  c(i) = c(i) + val(j) * b(col_idx(j))  

 enddo 

enddo 

 

!$OMP parallel do 

 

 

 

 

 

!$OMP end parallel do 
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Bandwidth-bound parallel algorithms: 
Sparse MVM 

 Data storage format is crucial for performance properties 

 Most useful general format: Compressed Row Storage (CRS) 

 SpMVM is easily parallelizable in shared and distributed memory 

 

 For large problems, spMVM is 

inevitably memory-bound 

 Intra-LD saturation effect 

on modern multicores 

 Problem for Roofline 

 Possibly erratic (non-streaming)  

access 

 Memory BW saturates @ lower 

value than with simple benchmarks 

 

 MPI-parallel spMVM is often  

communication-bound 
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Example: SpMVM node performance model 

 Sparse MVM in 

double precision  

w/ CRS data storage: 

 

 

 

 DP CRS comp. intensity 

  quantifies extra traffic 

for loading RHS more than 

once 

 Predicted Performance = bS∙ICRS 

 Determine   by measuring performance and actual memory bandwidth 

 “If the model does not work we can still learn something from deviations” 
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Application: Sparse matrix-vector multiply 
Strong scaling on one XE6 Magny-Cours node 

 Case 1: Large matrix 

Intrasocket 

bandwidth 

bottleneck 
Good scaling 

across sockets 
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 Case 2: Medium size 

Application: Sparse matrix-vector multiply 
Strong scaling on one XE6 Magny-Cours node 

Intrasocket 

bandwidth 

bottleneck 

Working set fits 

in aggregate 

cache 
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Application: Sparse matrix-vector multiply 
Strong scaling on one Magny-Cours node 

 Case 3: Small size 

No bandwidth 

bottleneck 

Parallelization 

overhead 

dominates 



149 

Conclusions from the spMVM example 

 spMVM shows “typical” bandwidth-bound scaling behavior 

 

 Roofline is good for a first shot at modeling 

 

 Deviations are to be expected  

 Erratic RHS access 

 Saturation bandwidth is lower than the maximum 

 

 Deviations can be used to learn more about the code execution 

 How much excess memory traffic is generated from the indirect access?  
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Conclusions 
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There is no alternative to knowing what is going on 

between your code and the hardware 

Without performance modeling, 

optimizing code is like stumbling in the dark 


