
Fooling the Masses with Performance
Results: Old Classics & Some New Ideas

Gerhard Wellein(1,2) , Georg Hager(2)

(1)Department for Computer Science
(2)Erlangen Regional Computing Center

Friedrich-Alexander-Universität Erlangen-Nürnberg

Legal disclaimer

The information contained in this talk is for general guidance on matters of interest only. The application and
impact of laws can vary widely based on the specific facts involved. Given the changing nature of laws, rules and
regulations, and the inherent hazards of electronic communication, there may be delays, omissions or
inaccuracies in information contained in this talk. Accordingly, the information in this talk is provided with the
understanding that the authors and publishers are not herein engaged in rendering legal, accounting, tax, or other
professional advice and services. As such, it should not be used as a substitute for consultation with professional
accounting, tax, legal or other competent advisers. Before making any decision or taking any action, you should
consult an HPC professional.

While we have made every attempt to ensure that the information contained in this talk has been obtained from
reliable sources, we are not responsible for any errors or omissions, or for the results obtained from the use of this
information. All information in this talk is provided "as is", with no guarantee of completeness, accuracy, timeliness
or of the results obtained from the use of this information, and without warranty of any kind, express or implied,
including, but not limited to warranties of performance, merchantability and fitness for a particular purpose. In no
event will we, our related partnerships or corporations, or the partners, agents or employees thereof be liable to
you or anyone else for any decision made or action taken in reliance on the information in this talk or for any
consequential, special or similar damages, even if advised of the possibility of such damages.

Certain links in this talk connect to other websites maintained by third parties over whom we have no control. We
make no representations as to the accuracy or any other aspect of information contained in other talks, websites,
or papers.

And finally, we take no responsibility whatsoever for the consequences of you showing these slides around and
getting spanked by your boss, your peers, your spouse, your kids, your mother, or anyone who might be offended
because they don’t get the inherent irony. So there.

Fooling the masses with performance results: The history

1991 …

If you were plowing a field, which would
you rather use?

Two strong oxen
or 1024 chickens?

(Attributed to Seymour Cray)

Today we have…

Ants all over the place
GPGPUs, Intel Xeon/Phi, ARM... Some already gone…

“Twelve Ways to Fool the Masses

When Giving Performance Results on Parallel Computers”

David H. Bailey, Supercomputing Review, August 1991 , p. 54-55

1. Quote only 32-bit performance results, not 64-bit results.
2. Present performance figures for an inner kernel, and then represent these

figures as the performance of the entire application.
3. Quietly employ assembly code and other low-level language constructs.
4. Scale up the problem size with the number of processors, but omit any

mention of this fact.
5. Quote performance results projected to a full system.
6. Compare your results against scalar, unoptimized code on Crays.
7. When direct run time comparisons are required, compare with old code on an obsolete system.
8. If MFLOPS rates must be quoted, base the operation count on the parallel implementation, not

on the best sequential implementation.
9. Quote performance in terms of processor utilization, parallel speedups or MFLOPS per dollar.
10. Mutilate the algorithm used in the parallel implementation to match the architecture.
11. Measure parallel run times on a dedicated system, but measure conventional run times in a

busy environment.
12. If all else fails, show pretty pictures and animated videos, and don't talk about performance.

The landscape of HPC and the way we think about
HPC has changed over the last 2 decades,

and we present an update!

Still, most of Bailey’s points are valid without change

Scalability matters!

 Report scalability,
never talk about absolute performance or even time to solution

Parallel Speedup:

“Good” scalability ↔ S(N) ≈ N

Frequent Assumption:
 If your code does not scale you can not use current or next generation

parallel computers  modern supercomputers have 106+ cores!

 Make your code scale and never talk about time to solution

Scalability matters!

 worker1 with work/time
 workers with work/time)(NNS =

Scalability matters!

Prepared for
multi-/many
core era!

!$OMP PARALLEL DO
do k = 1 , Nk
 do j = 1 , Nj; do i = 1 , Ni
 y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+

 x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))
 enddo; enddo
enddo

There is no reason that
applications on multicore
processors do not scale!

Aggressive
compiler optimizations

Scalability matters!
!$OMP PARALLEL DO
do k = 1 , Nk
 do j = 1 , Nj; do i = 1 , Ni
 y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+

 x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))
 enddo; enddo
enddo

Is this the maximum
performance ?!

 Our tutorial last Sunday

10x

3.5x

Slow down code execution!

Slow Computing

Slow down code execution!

This improves scalability whenever there is some noticeable “non-
execution” overhead, e.g. communication

Parallel speedup with work ~ Nα:

(α=0: strong, α=1: weak scaling)

Now let’s slow down execution by a factor of μ>1 (for strong scaling):

i.e., if there is overhead (c(N)>0), the slow code/machine scales better:

)()1(
)1()(1 NcNss
NssNS

α
α

α

+−+
−+

= −

() µµ
µ

µ /)(/)1(
1

)(/)1(
)(

NcNssNcNss
NS

+−+
=

+−+
=

0)()()(1 >> = NcNSNS if µµ

Slow Computing 101

1. Do not use high compiler optimization levels or the latest
compiler versions, because of numerical stability

2. Use fancy C++/JAVA/Python/… frameworks – they are much

more maintainable and flexible

3. Scalability is still bad?
  Parallelize short loops with OpenMP
 and earn some extra bonus for a scalable hybrid code.

 Time to solution?
 “If I had a bigger machine, I could get the solution as fast as you

want. This is of course due to the superior scalability of my code
which is ready to scale on exaflop machines…..”

The fine arts of graph design

The Log Scale is your friend!

 If scalability doesn’t look good enough, use a logarithmic scale to
drive your point home.

Everything looks OK if you plot it the right way!

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

Speedup Ideal

1

10

100

1 10 100

Speedup Ideal

0

10

20

30

40

50

60

70

1 10 100

Speedup Ideal

1. Linear plot: bad scaling,
strange things at N=32

2. Log-log plot: better
scaling, but still the
N=32 problem

3. Log-linear plot: N=32
problem gone

4. … and remove the ideal
scaling line to make it
perfect!

0

5

10

15

20

25

30

35

40

45

1 10 100

Speedup

ISC ’13 in Leipzig

List 1 (Jun 1993) to 41 (Jun 2013)

page 17

Performance Projection

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

SUM

N=1

N=500

 1 Gflop/s

 1 Tflop/s

 100 Mflop/s

100 Gflop/s

100 Tflop/s

 10 Gflop/s

 10 Tflop/s

 1 Pflop/s

100 Pflop/s

 10 Pflop/s

 1 Eflop/s

100 Eflop/s

 10 Eflop/s

6-8 years

1 Eflop/s

By courtesy of Hans Meuer

Use the power of present day visualization tools!

Nodes System A System B

1 1.0000 1.0000

2 0.5101 0.5053

4 0.2652 0.25757

8 0.14255 0.133754

16 0.081257 0.0718751

32 0.0506258 0.0409389

64 0.0353133 0.0254696

Execution time

System A is
up to 40% slower

Use many digits to
demonstrate the
accuracy of your data System A

System B
0

0,2

0,4

0,6

0,8

1

1

2

4

8

16

32
64

It is obvious that both
systems perform
equally well!

Keep focus on relevant information

Keep graphs simple and focus to the most important region of data
to make your point.

“Fig. 3 demonstrates the benefit of our new scheme for Part B which
reduces overall execution time of B by 71%”

484

486

488

490

492

494

496

498

500

OLD NEW

Part B
Part A

Adding a strong/bold arrow further emphasizes the importance of your
achievement and 3D bars really look professional.

Professional presentation
is a must

for professionals

0

100

200

300

400

500

600

OLD NEW

PART B

PART A

http://www.pgroup.com/images/charts/spec_omp2012_chart_big.png

http://www.pgroup.com/images/charts/spec_omp2012_chart_big.png

Getting a decent speed-up for new, fancy
compute devices aka accelerators

“Compare your results against scalar,
unoptimized code on Crays.”

How to tell the 200x GPGPU speed-up story

Dense
Matrix-Vector-

Multiplication (N=4500)

Bad compiler
switch

Disable
SIMD

Go serial

Change from single precision to
double precision (DB1-1)

“Our CPU code is
based on double

precision and hard
to change”

“Numerically
sensitive code: Does

not require ECC!”

NVIDIA Fermi vs. Intel Westmere EP

“Our OpenMP
parallel code was
compiled with gcc

4.0.1”

“Numerically sensitive
codes require

–fp-model strict
or –O0”

“Let compiler
continue to assume,
that you use pointer

aliasing”

Pe
rf

or
m

an
ce

If they get you cornered, blame it on OS jitter

Strange scalability? Blame it on OS jitter [1]  Audience nod knowingly.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12

Measured
Expected

cores
[1]Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin. 2003. The Case of the Missing Supercomputer Performance: Achieving Optimal
Performance on the 8,192 Processors of ASCI Q. In Proceedings of the 2003 ACM/IEEE conference on Supercomputing (SC '03).

Single CPU node

N
od

es

…equivalent single core best sellers

L1 cache hit ratio
𝑳𝑳 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 −𝑳𝑳 𝒎𝒊𝒊𝒊𝒎𝒊

𝑳𝑳 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊

CPI (cycles per instruction) rate – The higher the better
  Scalar execution is your friend again!

Depending on the audience, TLB misses may work just as fine.

Variant1 Variant2

L1 hit ratio 𝟓𝟓.𝟓𝟎 𝟖𝟖.𝟓𝟎

Performance 2.4 GF/s 1.85 GF/s

a(1:N)=a(1:N)*s Scalar execution:
Every 8th 64-Bit LOAD
generates an L1 miss (512 Bit cache line)

AVX SIMD execution:
Every 2nd 256-Bit LOAD generates an L1
miss (512 Bit cache line)

Scalar AVX

Show plenty of real data…

… there are so many things to check/optimize

Don’t try to make sense of your data in terms of a performance model!

Show many densely populated colored graphs - You did a lot of work!

If nasty questions pop up:
 Code is so complex that no model can describe it

 If you need to explain some of the measurements (nobody will ask for all) – L1

hit ratio, CPI, DTLB,… will do their job

Show plenty of real data

Accelerated parallel speed-ups!

Be creative – there are nowadays so many opportunities

Accelerated speed-ups

16

32

64

128

256

512

1024

2048

4096

4 32 256 2048 16384

CPU
GPU

Amdahl’s law with s=0.003.
GPGPU/CPU speedup:

2.5X (parallel part)
1.3X (serial part)

se
co

nd
s

nodes

Accelerated speed-ups

Only the slope is the limit: Be creative in the scaling analysis of
accelerated systems

“The single node speed-up is 2.5x,

… our 512 GPGPU nodes
computation performs

better than
8,192 CPU nodes….”

26

52

104

64 128 256 512 1024 2048 4096 8192 16384 32768

CPU
GPU

se
co

nd
s

nodes

32X

1.6X

If all else fails,…

 show pretty pictures and animated videos, and don’t talk about
performance.

 In four decades of supercomputing, this was always the best-selling
plan, and it will stay that way forever.

Summary – Recommendations

 Be careful!
 Do not use Bailey’s 12 ways or our stunts straight away

 Be creative!
 There are so many new hardware parameters
 If none of the existing metrics matches your problem –
 create a new one

We are looking forward to your new ideas!

http://blogs.fau.de/hager/category/fooling-the-masses/

	Fooling the Masses with Performance Results: Old Classics & Some New Ideas
	Legal disclaimer
	Fooling the masses with performance results: The history
	1991 …
	Today we have…
	�“Twelve Ways to Fool the Masses �When Giving Performance Results on Parallel Computers”�
	Foliennummer 7
	Scalability matters!
	Scalability matters!
	Scalability matters!
	Scalability matters!
	Slow down code execution!
	Slow Computing
	Slow Computing 101
	The fine arts of graph design
	The Log Scale is your friend!
	List 1 (Jun 1993) to 41 (Jun 2013)
	Use the power of present day visualization tools!
	Keep focus on relevant information
	http://www.pgroup.com/images/charts/spec_omp2012_chart_big.png
	Getting a decent speed-up for new, fancy compute devices aka accelerators
	How to tell the 200x GPGPU speed-up story 	
	If they get you cornered, blame it on OS jitter
	…equivalent single core best sellers
	Show plenty of real data…
	Show plenty of real data
	Accelerated parallel speed-ups!
	Accelerated speed-ups
	Accelerated speed-ups
	If all else fails,…
	Summary – Recommendations

