
The Practitioner's Cookbook  

for Good Parallel Performance  

on Multi- and Many-Core Systems 

Georg Hager, Jan Treibig, Gerhard Wellein  

Erlangen Regional Computing Center (RRZE) 
and Department of Computer Science 

University of Erlangen-Nuremberg 

 

SC13 full-day tutorial 
June 18, 2013 

Denver, CO 

8:30 



Agenda 

 Preliminaries 

 Introduction to multicore architecture 

 Cores, caches, chips, sockets, ccNUMA, SIMD 

 LIKWID tools 

 Microbenchmarking for architectural exploration 

 Streaming benchmarks: throughput mode 
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Prelude: 

Scalability 4 the win! 



Scalability Myth: Code scalability is the key issue 

 

 

 

Lore 1 

In a world of highly parallel computer architectures only highly 

scalable codes will survive 

 

 

Lore 2 

Single core performance no longer matters since we have so many 

of them and use scalable codes 
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Scalability Myth: Code scalability is the key issue 
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Prepared for  
the highly  
parallel era! 

!$OMP PARALLEL DO 

do k = 1 , Nk 

 do j = 1 , Nj; do i = 1 , Ni 

    y(i,j,k)= b*(  x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+  
   x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1)) 

    enddo; enddo  

enddo 

!$OMP END PARALLEL DO 

 

Changing only the compile 
options makes this code 
scalable on an 8-core chip 

–O3 -xAVX 



Scalability Myth: Code scalability is the key issue 
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!$OMP PARALLEL DO 

do k = 1 , Nk 

 do j = 1 , Nj; do i = 1 , Ni 

    y(i,j,k)= b*(  x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+  
   x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1)) 

    enddo; enddo  

enddo 

!$OMP END PARALLEL DO 

Single core/socket efficiency  
is key issue! 

Upper limit from simple 
performance model: 
35 GB/s & 24 Byte/update 



Questions to ask in high performance computing 

 Do I understand the performance behavior of my code? 

 Does the performance match a model I have made? 

 

 What is the optimal performance for my code on a given machine? 

 High Performance Computing == Computing at the bottleneck 

 

 Can I change my code so that the “optimal performance” gets 

higher? 

 Circumventing/ameliorating the impact of the bottleneck 

 

 My model  does not work – what’s wrong? 

 This is the good case, because you learn something 

 Performance monitoring / microbenchmarking may help clear up the 

situation 
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Performance Engineering as a process 

The Performance Engineering (PE) 
process: 

 

 

 

 

 

 

 

 

 

 
 

The performance model is the central 
component – if the model fails to predict 
the measurement, you learn something! 

 

The analysis has to be done for every 
loop / basic block! 
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Algorithm/Code analysis 

Runtime profiling 

Machine characteristics 

Microbenchmarking 

Traces/HW metrics 

Performance model Code optimization 

 White Box Performance Model 
 Simple enough to do on paper 
 Catching the important 

influences  



How model-building works: Physics 
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Newtonian mechanics 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fails @ small scales! 

𝑖ℏ
𝜕

𝜕𝑡
𝜓 𝑟 , 𝑡 = 𝐻𝜓 𝑟 , 𝑡  

𝐹 = 𝑚𝑎  

Nonrelativistic  

quantum  

mechanics 

Fails @ even smaller scales! 

Relativistic  

quantum  

field theory 

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐 
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The Rules™ 

There is no alternative to knowing what is going on 

between your code and the hardware 

 

Without performance modeling, 

optimizing code is like stumbling in the dark 
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Introduction: 

Modern node architecture 

Multi- and manycore chips and nodes 

A glance at basic core features 

Caches and data transfers through the memory hierarchy 

Memory organization 

Accelerators 

Programming models 

 

 

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAAA 



Multi-Core: Intel Xeon 2600 (2012) 

 Xeon 2600 “Sandy Bridge EP”: 

8 cores running at 2.7 GHz (max 3.2 GHz)   

 

 Simultaneous Multithreading 

 reports as 16-way chip 

 

 2.3 Billion Transistors / 32 nm 

 

 Die size: 435 mm2  

 

2-socket server 
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General-purpose cache based microprocessor core 

 (Almost) the same basic design in all modern systems 
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Not shown: most of the control unit, e.g. instruction fetch/decode, branch prediction,… 
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Pipelining of arithmetic/functional units  

 Idea: 
 Split complex instruction into several simple / fast steps (stages) 

 Each step takes the same amount of time, e.g. a single cycle 

 Execute different steps on different instructions at the same time (in parallel) 

 

 Allows for shorter cycle times (simpler logic circuits), e.g.:  
 floating point multiplication takes 5 cycles, but  

 processor can work on 5 different multiplications simultaneously 

 one result at each cycle after the pipeline is full 

 

 Drawback:  
 Pipeline must be filled - startup times  (#Instructions >> pipeline steps) 

 Efficient use of pipelines requires large number of independent instructions  
instruction level parallelism 

 Requires complex instruction scheduling by compiler/hardware – software-
pipelining / out-of-order 

 

 Pipelining is widely used in modern computer architectures 
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5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N 

Wind-up/-down phases: Empty pipeline stages 

First result is available after 5 cycles (=latency of pipeline)! 
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Pipelining: The Instruction pipeline 

 Besides arithmetic & functional unit, instruction execution itself is 

pipelined also, e.g.: one instruction performs at least 3 steps: 

Fetch Instruction 

from L1I 

Decode  

instruction 

Execute 

Instruction 

Fetch Instruction 1 

from L1I 

Decode  

Instruction 1 

Execute 

Instruction 1 

Fetch Instruction 2 

from L1I 

Decode  

Instruction 2 

Decode  

Instruction 3 

Execute 

Instruction 2 

Fetch Instruction 3 

from L1I 

Fetch Instruction 4 

from L1I 

t 

… 

 Branches can stall this pipeline! (Speculative Execution, Predication) 

 Each unit is pipelined itself (e.g., Execute = Multiply Pipeline) 

1 

2 

3 

4 
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 Multiple units enable use of Instrucion Level Parallelism (ILP): 

Instruction stream is “parallelized” on the fly 

 

 

 

 

 

 

 

 

 

 Issuing m concurrent instructions per cycle: m-way superscalar 

 Modern processors are 3- to 6-way superscalar &  

can perform 2 or 4 floating point operations per cycles 

Superscalar Processors – Instruction Level Parallelism 

Fetch Instruction 4 

from L1I 

Decode  

Instruction 1 

Execute 

Instruction 1 

Fetch Instruction 2 

from L1I 

Decode  

Instruction 2 

Decode  

Instruction 3 

Execute 

Instruction 2 

Fetch Instruction 3 

from L1I 

Fetch Instruction 4 

from L1I 

Fetch Instruction 3 

from L1I 

Decode  

Instruction 1 

Execute 

Instruction 1 

Fetch Instruction 2 

from L1I 

Decode  

Instruction 2 

Decode  

Instruction 3 

Execute 

Instruction 2 

Fetch Instruction 3 

from L1I 

Fetch Instruction 4 

from L1I 

Fetch Instruction 2 

from L1I 

Decode  

Instruction 1 

Execute 

Instruction 1 

Fetch Instruction 2 

from L1I 

Decode  

Instruction 2 

Decode  

Instruction 3 

Execute 

Instruction 2 

Fetch Instruction 3 

from L1I 

Fetch Instruction 4 

from L1I 

Fetch Instruction 1 

from L1I 

Decode  

Instruction 1 

Execute 

Instruction 1 

Fetch Instruction 5 

from L1I 

Decode  

Instruction 5 

Decode  

Instruction 9 

Execute 

Instruction 5 

Fetch Instruction 9 

from L1I 

Fetch Instruction 13 

from L1I 

4-way 

„superscalar“ 

t 
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Core details: Simultaneous multi-threading (SMT) 
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SMT principle (2-way example): 
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Core details: SIMD processing 

 Single Instruction Multiple Data (SIMD) operations allow the 

concurrent execution of the same operation on “wide” registers  

 x86 SIMD instruction sets: 

 SSE: register width = 128 Bit  2 double precision floating point operands  

 AVX: register width = 256 Bit  4 double precision floating point operands 

 Adding two registers holding double precision floating point 

operands  
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Scalar execution: 

R2 ADD [R0,R1] 

SIMD execution: 

V64ADD [R0,R1] R2 
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Registers and caches: Data transfers in a memory hierarchy 

 How does data travel from memory to the CPU and back? 

 

 Remember: Caches are organized 

in cache lines (e.g., 64 bytes) 

 Only complete cache lines are 

transferred between memory 

hierarchy levels (except registers) 

 MISS: Load or store instruction does 

not find the data in a cache level 

 CL transfer required 

 

 

 Example: Array copy A(:)=C(:) 
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CPU registers 

Cache 

Memory 

CL 

CL CL 

CL 

LD C(1) 

MISS 

ST A(1) MISS 

write 
allocate 

evict 
(delayed) 

3 CL 

transfers 

LD C(2..Ncl) 
ST A(2..Ncl) 

 

HIT 

C(:) A(:) 

22 
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Today: Dual-socket Intel (Westmere,…) node: 

Yesterday (2006): Dual-socket Intel “Core2” node: 

From UMA to ccNUMA  
Basic architecture of commodity compute cluster nodes 

 

Uniform Memory Architecture (UMA) 

Flat memory ; symmetric MPs 

But: system “anisotropy” 

 

 

 
Cache-coherent Non-Uniform Memory 

Architecture (ccNUMA) 

HT / QPI provide scalable bandwidth at the 

price of ccNUMA architectures: Where 

does my data finally end up? 

On AMD it is even more complicated  ccNUMA within a socket! 
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Current AMD design: 

AMD Interlagos / Bulldozer 

 Up to 16 cores (8 Bulldozer modules) in a single socket 

 Max. 2.6 GHz  (+ Turbo Core) 

 Pmax = (2.6 x 8 x 8) GF/s  

     = 166.4 GF/s 

Each Bulldozer module: 

 2 “lightweight” cores 

 1 FPU: 4 MULT & 4 ADD 

(double precision) / cycle 

 Supports AVX 

 Supports FMA4  

2 NUMA domains per socket 

16 kB 
dedicated  
L1D cache 

2 DDR3 (shared) memory 

channels > 15 GB/s 

2048 kB 
shared  

L2 cache 

8 (6) MB 
shared 

L3 cache  
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Floating Point (FP) Performance: 
 

   P = ncore * F * S * n 
 

ncore  number of cores:  8 
 

F  FP instructions per cycle:  2  

 (1 MULT and 1 ADD) 
 

S  FP ops / instruction:    4 (dp) / 8 (sp)  

 (256 Bit SIMD registers – “AVX”) 
 

n   Clock speed :           ∽2.7 GHz 

 

P = 173 GF/s (dp) / 346 GF/s (sp) 

 

There is no single driving force for chip performance! 

Intel Xeon 

“Sandy Bridge EP” socket  

4,6,8 core variants available 

But: P=5.4 GF/s (dp) for serial, non-SIMD code  

TOP500 rank 1 (mid-90s) 

SC13 Tutorial 



Challenges with modern compute nodes 
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GPU #1 

GPU #2 

PCIe link 

Other I/O 

Heterogeneous programming is here to stay! 

SIMD + OpenMP  + MPI + CUDA, OpenCL,…  

Core: 

SIMD vectorization  

SMT  

Socket: 

Parallelization 

Shared Resources 

Accelerators: 

Data transfer to/from host 

Node: 

ccNUMA/data locality  

Where is the data? 
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Interlude: 

A glance at current accelerator technology 
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NVIDIA Kepler GK110 Block Diagram 

Architecture 

 7.1B Transistors 

 15 “SMX” units 

 192 (SP) “cores” each 

 > 1 TFLOP DP peak 

 1.5 MB L2 Cache 

 384-bit GDDR5 

 PCI Express Gen3 

 

 3:1 SP:DP performance 

 

© NVIDIA Corp. Used with permission. 
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Intel Xeon Phi block diagram 
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Architecture 

 3B Transistors 

 60+ cores 

 512 bit SIMD 

 ≈ 1 TFLOP  

DP peak 

 0.5 MB  

L2/core 

 GDDR5 

 

 2:1 SP:DP 

performance 

 

64 byte/cy 
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TOP500 

rankings 

Nov 2012  

Comparing accelerators 

 Intel Xeon Phi 

 60+ IA32 cores each with 512 Bit SIMD  

FMA unit  480/960 SIMD DP/SP tracks 

 

 Clock Speed: ~1000 MHz 

 Transistor count: ~3 B (22nm) 

 Power consumption: ~250 W 

 

 Peak Performance (DP): ~ 1 TF/s 

 Memory BW: ~250 GB/s (GDDR5) 

 

 Threads to execute: 60-240+ 

 Programming: 

Fortran/C/C++ +OpenMP + SIMD 

 

 Top7: “Stampede” at Texas Center  

for Advanced Computing 
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 NVIDIA Kepler K20 

 15 SMX units each with  

192 “cores”   

960/2880 DP/SP “cores”  

 Clock Speed: ~700 MHz 

 Transistor count: 7.1 B (28nm) 

 Power consumption: ~250 W 

 

 Peak Performance (DP): ~ 1.3 TF/s 

 Memory BW:  ~ 250 GB/s (GDDR5) 

 

 Threads to execute: 10,000+ 

 Programming:  

CUDA, OpenCL, (OpenACC) 

 

 Top1: “Titan” at Oak Ridge National 

Laboratory 
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Trading single thread performance for parallelism: 

GPGPUs vs. CPUs 

 GPU vs. CPU  

light speed estimate: 
 

1. Compute bound:  2-10x 

2. Memory Bandwidth: 1-5x 

   Intel Core i5 – 2500 

(“Sandy Bridge”) 

Intel Xeon E5-2680 DP 

node (“Sandy Bridge”) 

NVIDIA K20x  

(“Kepler”) 

Cores@Clock 4 @ 3.3 GHz 2 x 8 @ 2.7 GHz 2880 @ 0.7 GHz 

Performance+/core 52.8 GFlop/s 43.2 GFlop/s 1.4 GFlop/s 

Threads@STREAM <4 <16 >8000? 

Total performance+ 210 GFlop/s 691 GFlop/s 4,000 GFlop/s 

Stream BW 18 GB/s 2 x 40 GB/s 168 GB/s (ECC=1) 

Transistors / TDP 1 Billion* / 95 W 2 x (2.27 Billion/130W) 7.1 Billion/250W 

* Includes on-chip GPU and PCI-Express + Single Precision Complete compute device 
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Node topology and  

programming models 
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Parallelism in a modern compute node 

 Parallel and shared resources within a shared-memory node 

GPU #1 

GPU #2 
PCIe link 

    Parallel resources: 

 Execution/SIMD units 

 Cores 

 Inner cache levels 

 Sockets / ccNUMA domains 

 Multiple accelerators 

    Shared resources: 

 Outer cache level per socket 

 Memory bus per socket 

 Intersocket link 

 PCIe bus(es) 

 Other I/O resources 

Other I/O 

1 

2 

3 

4 5 

1 

2 

3 

4 

5 

6 

6 

7 

7 

8 

8 

9 

9 

10 

10 

How does your application react to all of those details? 
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Parallel programming models 

on modern compute nodes 

 Shared-memory (intra-node) 

 Good old MPI  

 OpenMP 

 POSIX threads 

 Intel Threading Building Blocks (TBB) 

 Cilk+, OpenCL, StarSs,… you name it 

 

 Distributed-memory (inter-node) 

 MPI 

 PVM (gone) 

 

 Hybrid 

 Pure MPI 

 MPI+OpenMP 

 MPI + any shared-memory model 

 MPI (+OpenMP) + CUDA/OpenCL/… 

All models require 

awareness of topology 

and affinity issues for 

getting best 

performance out of the 

machine! 
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Parallel programming models: 
Pure MPI 

 Machine structure is invisible to user: 

  Very simple programming model 

  MPI “knows what to do”!? 

 Performance issues 

 Intranode vs. internode MPI 

 Node/system topology 
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Parallel programming models: 
Pure threading on the node 

 Machine structure is invisible to user 

  Very simple programming model 

 Threading SW (OpenMP, pthreads, 

TBB,…) should know about the details 

 Performance issues 

 Synchronization overhead 

 Memory access 

 Node topology 
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Parallel programming models: Lots of choices 
Hybrid MPI+OpenMP on a multicore multisocket cluster 

 

One MPI process / node 

 

 

One MPI process / socket: 

OpenMP threads on same 

socket: “blockwise” 

 

OpenMP threads pinned 

“round robin” across 

cores in node 

 

Two MPI processes / socket 

OpenMP threads  

on same socket 
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Conclusions about architecture 

 Modern computer architecture has a rich “topology” 

 

 Node-level hardware parallelism takes many forms 

 Sockets/devices – CPU: 1-8, GPGPU: 1-6 

 Cores – moderate (CPU: 4-16) to massive (GPGPU: 1000’s) 

 SIMD – moderate (CPU: 2-8) to massive (GPGPU: 10’s-100’s)  

 Superscalarity (CPU: 2-6) 

 

 Exploiting performance: parallelism + bottleneck awareness 

 “High Performance Computing” == computing at a bottleneck 

 

 Performance of programs is sensitive to architecture 

 Topology/affinity influences overheads of popular programming models 

 Standards do not contain (many) topology-aware features 

 Things are starting to improve slowly (MPI 3.0, OpenMP 4.0) 

 Apart from overheads, performance features are largely independent of the 
programming model 

 

 

 

(c) RRZE 2013 SC13 Tutorial 40 



Agenda 

 Preliminaries 

 Introduction to multicore architecture 

 Cores, caches, chips, sockets, ccNUMA, SIMD 

 LIKWID tools 

 Microbenchmarking for architectural exploration 

 Streaming benchmarks: throughput mode 

 Streaming benchmarks: work sharing 

 Roadblocks for scalability: Saturation effects and OpenMP overhead 

 Lunch break 

 Node-level performance modeling 

 The Roofline Model 

 Case study: 3D Jacobi solver and model-guided optimization 

 Optimal resource utilization 

 SIMD parallelism 

 ccNUMA 

 Simultaneous multi-threading (SMT) 

 Optional: The ECM multicore performance model 

(c) RRZE 2013 41 SC13 Tutorial 



Multicore Performance and Tools 

 

Probing node topology 

 Standard tools 

 likwid-topology 
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How do we figure out the node topology? 

 Topology = 

 Where in the machine does core #n reside? And do I have to remember this 

awkward numbering anyway? 

 Which cores share which cache levels? 

 Which hardware threads (“logical cores”) share a physical core? 

 Linux 

 cat /proc/cpuinfo is of limited use 

 Core numbers may change across kernels 

and BIOSes even on identical hardware 

 

 numactl --hardware prints  

ccNUMA node information                  

 

 Information on caches is harder 

to obtain 

$ numactl --hardware 

available: 4 nodes (0-3) 

node 0 cpus: 0 1 2 3 4 5 

node 0 size: 8189 MB 

node 0 free: 3824 MB 

node 1 cpus: 6 7 8 9 10 11 

node 1 size: 8192 MB 

node 1 free: 28 MB 

node 2 cpus: 18 19 20 21 22 23 

node 2 size: 8192 MB 

node 2 free: 8036 MB 

node 3 cpus: 12 13 14 15 16 17 

node 3 size: 8192 MB 

node 3 free: 7840 MB 
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How do we figure out the node topology? 

 

 LIKWID tool suite: 

 

Like 

I 

Knew 

What 

I’m 

Doing 

 

 Open source tool collection  

(developed at RRZE): 

 

http://code.google.com/p/likwid 

J. Treibig, G. Hager, G. Wellein: LIKWID: A 

lightweight performance-oriented tool suite 

for x86 multicore environments. Accepted for 

PSTI2010, Sep 13-16, 2010, San Diego, CA 

http://arxiv.org/abs/1004.4431 
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Likwid Tool Suite 

 Command line tools for Linux: 

 easy to install  

 works with standard linux 2.6 kernel 

 simple and clear to use  

 supports Intel and AMD CPUs 

 

 

 

 

 Current tools: 

 likwid-topology: Print thread and cache topology 

 likwid-pin: Pin threaded application without touching code 

 likwid-perfctr: Measure performance counters 

 likwid-mpirun: mpirun wrapper script for easy LIKWID integration 

 likwid-bench: Low-level bandwidth benchmark generator tool 

 … some more 
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Output of  likwid-topology –g 
on one node of Cray XE6 “Hermit” 
------------------------------------------------------------- 

CPU type:       AMD Interlagos processor  

************************************************************* 

Hardware Thread Topology 

************************************************************* 

Sockets:                2  

Cores per socket:       16  

Threads per core:       1  

------------------------------------------------------------- 

HWThread        Thread          Core            Socket 

0               0               0               0 

1               0               1               0 

2               0               2               0 

3               0               3               0 

[...] 

16              0               0               1 

17              0               1               1 

18              0               2               1 

19              0               3               1 

[...] 

------------------------------------------------------------- 

Socket 0: ( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ) 

Socket 1: ( 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ) 

------------------------------------------------------------- 

 

************************************************************* 

Cache Topology 

************************************************************* 

Level:  1 

Size:   16 kB 

Cache groups:   ( 0 ) ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 ) ( 11 ) ( 12 ) ( 13 

) ( 14 ) ( 15 ) ( 16 ) ( 17 ) ( 18 ) ( 19 ) ( 20 ) ( 21 ) ( 22 ) ( 23 ) ( 24 ) ( 25 ) ( 26 ) ( 27 ) ( 

28 ) ( 29 ) ( 30 ) ( 31 ) 
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Output of likwid-topology continued 
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------------------------------------------------------------- 

Level:  2 

Size:   2 MB 

Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 ) ( 16 17 ) ( 18 

19 ) ( 20 21 ) ( 22 23 ) ( 24 25 ) ( 26 27 ) ( 28 29 ) ( 30 31 ) 

------------------------------------------------------------- 

Level:  3 

Size:   6 MB 

Cache groups:   ( 0 1 2 3 4 5 6 7 ) ( 8 9 10 11 12 13 14 15 ) ( 16 17 18 19 20 21 22 23 ) ( 24 25 26 

27 28 29 30 31 ) 

------------------------------------------------------------- 

 

************************************************************* 

NUMA Topology 

************************************************************* 

NUMA domains: 4  

------------------------------------------------------------- 

Domain 0: 

Processors:  0 1 2 3 4 5 6 7 

Memory: 7837.25 MB free of total 8191.62 MB 

------------------------------------------------------------- 

Domain 1: 

Processors:  8 9 10 11 12 13 14 15 

Memory: 7860.02 MB free of total 8192 MB 

------------------------------------------------------------- 

Domain 2: 

Processors:  16 17 18 19 20 21 22 23 

Memory: 7847.39 MB free of total 8192 MB 

------------------------------------------------------------- 

Domain 3: 

Processors:  24 25 26 27 28 29 30 31 

Memory: 7785.02 MB free of total 8192 MB 

------------------------------------------------------------- 
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************************************************************* 

Graphical: 

************************************************************* 

Socket 0: 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| |   0  | |   1  | |   2  | |   3  | |   4  | |   5  | |   6  | |   7  | |   8  | |   9  | |  10  | |  11  | |  12  | |  13  | |  14  | |  15  | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

| |                                 6MB                                 | |                                 6MB                                 | | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

Socket 1: 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| |  16  | |  17  | |  18  | |  19  | |  20  | |  21  | |  22  | |  23  | |  24  | |  25  | |  26  | |  27  | |  28  | |  29  | |  30  | |  31  | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

| |                                 6MB                                 | |                                 6MB                                 | | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

10:00 (vor 1. 

Pause) 



Enforcing thread/process-core affinity 

under the Linux OS 

 Standard tools and OS affinity facilities 

under program control 

 likwid-pin 

 aprun (Cray) 

 

10:30 (nach 1. 

Pause) 
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Example: STREAM benchmark on 16-core Sandy Bridge: 

Anarchy vs. thread pinning 

No pinning 

Pinning (physical cores first, 

first socket first) 

There are several reasons for caring 

about affinity: 

 Eliminating performance variation 

 Making use of architectural features 

 Avoiding resource contention 
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Generic thread/process-core affinity under Linux 
Overview 

 taskset [OPTIONS] [MASK | -c LIST ] \                      

                      [PID | command [args]...] 

 

 taskset restricts processes/threads to a set of CPUs. Examples: 
 
taskset 0x0006 ./a.out 

taskset –c 4 33187 

 

 Processes/threads can still move within the set! 

 

 Alternative: let process/thread bind itself by executing syscall 
#include <sched.h> 

int sched_setaffinity(pid_t pid, unsigned int len,  

                   unsigned long *mask); 

 

 Disadvantage: which CPUs should you bind to on a non-exclusive 
machine? 

 

 Still of value on multicore/multisocket cluster nodes, UMA or ccNUMA 
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Generic thread/process-core affinity under Linux 

 Complementary tool: numactl 

 
Example: numactl --physcpubind=0,1,2,3 command [args] 

Restricts process to specified physical core numbers 

 
Example: numactl --cpunodebind=1 command [args] 

Restricts process to specified ccNUMA node(s) 

 

 Many more options (e.g., interleave memory across nodes) 

  see section on ccNUMA optimization 

 

 Diagnostic command (see earlier): 
numactl --hardware 

 

 

 Again, this is not suitable for a shared machine 
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More thread/Process-core affinity (“pinning”) options 

 Highly OS-dependent system calls 

 But available on all systems 

 Linux:  sched_setaffinity(), PLPA (see below)  hwloc 
Windows:  SetThreadAffinityMask() 
… 

 Support for “semi-automatic” pinning in some 
compilers/environments 

 Intel compilers > V9.1 (KMP_AFFINITY environment variable) 

 PGI, Pathscale, GNU 

 SGI Altix dplace (works with logical CPU numbers!) 

 Generic Linux: taskset, numactl, likwid-pin (see below) 

 OpenMP 4.0 (see OpenMP tutorial) 

 Affinity awareness in MPI libraries 

 SGI MPT 

 OpenMPI 

 Intel MPI 

 … 
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Likwid-pin 
Overview 

 Pins processes and threads to specific cores without touching code 

 Directly supports pthreads, gcc OpenMP, Intel OpenMP 

 Based on combination of wrapper tool together with overloaded pthread 

library  binary must be dynamically linked! 

 Can also be used as a superior replacement for taskset 

 Supports logical core numbering within a node and within an existing CPU 

set 

 Useful for running inside CPU sets defined by someone else, e.g., the MPI 

start mechanism or a batch system 

 

 Usage examples: 

 Physical numbering (as given by likwid-topology): 

likwid-pin -c 0,2,4-6 ./myApp parameters  

 Logical numbering by topological entities: 

likwid-pin –c S0:0-3 ./myApp parameters 
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Likwid-pin 
Example: Intel OpenMP 

 Running the STREAM benchmark with likwid-pin: 

   

  $ export OMP_NUM_THREADS=4   

  $ likwid-pin -c 0,1,4,5 ./stream 

  [likwid-pin] Main PID -> core 0 - OK 

  ---------------------------------------------- 

   Double precision appears to have 16 digits of accuracy 

   Assuming 8 bytes per DOUBLE PRECISION word 

  ---------------------------------------------- 

  [... some STREAM output omitted ...] 

   The *best* time for each test is used 

   *EXCLUDING* the first and last iterations 

  [pthread wrapper] PIN_MASK: 0->1  1->4  2->5   

  [pthread wrapper] SKIP MASK: 0x1 

  [pthread wrapper 0] Notice: Using libpthread.so.0 

          threadid 1073809728 -> SKIP  

  [pthread wrapper 1] Notice: Using libpthread.so.0  

          threadid 1078008128 -> core 1 - OK 

  [pthread wrapper 2] Notice: Using libpthread.so.0  

          threadid 1082206528 -> core 4 - OK 

  [pthread wrapper 3] Notice: Using libpthread.so.0  

          threadid 1086404928 -> core 5 - OK 

  [... rest of STREAM output omitted ...] 

Skip shepherd  

thread 

Main PID always  

pinned 

Pin all spawned  

threads in turn 
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Likwid-pin 
Using logical core numbering 

 Core numbering may vary from system to system even with 

identical hardware 

 Likwid-topology delivers this information, which can then be fed into likwid-

pin 

 Alternatively, likwid-pin can abstract this variation and provide a 

purely logical numbering (physical cores first) 

 

 

 

 

 

 

 

 Across all cores in the node: 
OMP_NUM_THREADS=8  likwid-pin -c N:0-7 ./a.out 

 Across the cores in each socket and across sockets in each node: 
OMP_NUM_THREADS=8  likwid-pin -c S0:0-3@S1:0-3 ./a.out 

Socket 0: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  0  1| |  2  3| |  4  5| |  6  7| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 

Socket 1: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  8  9| |10  11| |12  13| |14  15| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 

Socket 0: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  0  8| |  1  9| |  2 10| |  3 11| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 

Socket 1: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  4 12| |  5 13| |  6 14| |  7 15| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 
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Using logical core numbering 

(c) RRZE 2013 SC13 Tutorial 

Chipset 

Memory 

Default if -c is not 

specified! 

 Possible unit prefixes 

 

N  node 

 

 

 

S  socket 

 

 

 

 

M  NUMA domain 

 

 

 

C  outer level cache group 
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DEMO 

(c) RRZE 2013 SC13 Tutorial 



Multicore performance tools: 

Probing performance behavior 

likwid-perfctr 
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likwid-perfctr 

Basic approach to performance analysis 

1. Runtime profile / Call graph (gprof) 

2. Instrument those parts which consume a significant part of 

runtime 

3. Find performance signatures 

 

Possible signatures: 

 Bandwidth saturation 

 Instruction throughput limitation (real or language-induced) 

 Latency impact (irregular data access, high branch ratio) 

 Load imbalance 

 ccNUMA issues (data access across ccNUMA domains) 

 Pathologic cases (false cacheline sharing, expensive operations) 

 

(c) RRZE 2013 SC13 Tutorial 
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Probing performance behavior 

 How do we find out about the performance properties and 

requirements of a parallel code? 

 Profiling via advanced tools is often overkill 

 A coarse overview is often sufficient 

 likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on 

Linux/Altix) 

 Simple end-to-end measurement of hardware performance metrics 

 “Marker” API for starting/stopping  

counters 

 Multiple measurement region  

support 

 Preconfigured and extensible  

metric groups, list with 
likwid-perfctr -a     

 

BRANCH: Branch prediction miss rate/ratio 

CACHE: Data cache miss rate/ratio 

CLOCK: Clock of cores 

DATA: Load to store ratio 

FLOPS_DP: Double Precision MFlops/s 

FLOPS_SP: Single Precision MFlops/s 

FLOPS_X87: X87 MFlops/s 

L2: L2 cache bandwidth in MBytes/s 

L2CACHE: L2 cache miss rate/ratio 

L3: L3 cache bandwidth in MBytes/s 

L3CACHE: L3 cache miss rate/ratio 

MEM: Main memory bandwidth in MBytes/s 

TLB: TLB miss rate/ratio 
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likwid-perfctr 

Example usage with preconfigured metric group  

$ env OMP_NUM_THREADS=4 likwid-perfctr -C N:0-3 -g FLOPS_DP  ./stream.exe 

------------------------------------------------------------- 

CPU type:       Intel Core Lynnfield processor  

CPU clock:      2.93 GHz  

------------------------------------------------------------- 

Measuring group FLOPS_DP 

------------------------------------------------------------- 

YOUR PROGRAM OUTPUT 

+--------------------------------------+-------------+-------------+-------------+-------------+ 

|                Event                 |   core 0    |   core 1    |   core 2    |   core 3    | 

+--------------------------------------+-------------+-------------+-------------+-------------+ 

|          INSTR_RETIRED_ANY           | 1.97463e+08 | 2.31001e+08 | 2.30963e+08 | 2.31885e+08 | 

|        CPU_CLK_UNHALTED_CORE         | 9.56999e+08 | 9.58401e+08 | 9.58637e+08 | 9.57338e+08 | 

|    FP_COMP_OPS_EXE_SSE_FP_PACKED     | 4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 | 

|    FP_COMP_OPS_EXE_SSE_FP_SCALAR     |     882     |      0      |      0      |      0      | 

| FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION |      0      |      0      |      0      |      0      | 

| FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION | 4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 | 

+--------------------------------------+-------------+-------------+-------------+-------------+ 

+--------------------------+------------+---------+----------+----------+ 

|          Metric          |   core 0   | core 1  |  core 2  |  core 3  | 

+--------------------------+------------+---------+----------+----------+ 

|       Runtime [s]        |  0.326242  | 0.32672 | 0.326801 | 0.326358 | 

|           CPI            |  4.84647   | 4.14891 | 4.15061  | 4.12849  | 

| DP MFlops/s (DP assumed) |  245.399   | 189.108 | 189.024  | 189.304  | 

|      Packed MUOPS/s      |  122.698   | 94.554  | 94.5121  | 94.6519  | 

|      Scalar MUOPS/s      | 0.00270351 |    0    |    0     |    0     | 

|        SP MUOPS/s        |     0      |    0    |    0     |    0     | 

|        DP MUOPS/s        |  122.701   | 94.554  | 94.5121  | 94.6519  | 

+--------------------------+------------+---------+----------+----------+  

Always 

measured 

Derived 

metrics 

Configured metrics 

(this group) 
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likwid-perfctr 

Best practices for runtime counter analysis  

Things to look at (in roughly this 

order) 

 

 Load balance (flops, instructions, 

BW) 

 

 In-socket memory BW saturation 

 

 Shared cache BW saturation 

 

 Flop/s, loads and stores per flop 

metrics 

 

 SIMD vectorization 

 

 CPI metric 

 

 # of instructions,  

branches, mispredicted branches 

 

 

 

Caveats 

 

 Load imbalance may not show in 

CPI or # of instructions 
 Spin loops in OpenMP barriers/MPI 

blocking calls 

 Looking at “top” or the Windows Task 

Manager does not tell you anything useful 

 

 In-socket performance saturation 

may have various reasons 

 

 Cache miss metrics are overrated 

 If I really know my code, I can often  

calculate the misses 

 Runtime and resource utilization is 

much more important 

(c) RRZE 2013 SC13 Tutorial 
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likwid-perfctr 

Identify load imbalance… 

 Instructions retired / CPI may not be a good indication of 

useful workload – at least for numerical / FP intensive codes…. 

 Floating Point Operations Executed is often a better indicator 

 Waiting / “Spinning” in barrier generates a high instruction count  

!$OMP PARALLEL DO 

DO I = 1, N 

 DO J = 1, I 

    x(I) = x(I) + A(J,I) * y(J) 

 ENDDO 

ENDDO 

!$OMP END PARALLEL DO 

(c) RRZE 2013 SC13 Tutorial 



65 

likwid-perfctr 

… and load-balanced codes 

!$OMP PARALLEL DO 

DO I = 1, N 

 DO J = 1, N 

    x(I) = x(I) + A(J,I) * y(J) 

 ENDDO 

ENDDO 

!$OMP END PARALLEL DO 

Higher CPI but 

better performance 

env OMP_NUM_THREADS=6 likwid-perfctr –C S0:0-5 –g FLOPS_DP ./a.out 

(c) RRZE 2013 SC13 Tutorial 
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 likwid-perfctr counts events on cores; it has no notion of what 

kind of code is running (if any) 

 

This enables to listen on what currently happens without any 

overhead: 

 

likwid-perfctr -c N:0-11 -g FLOPS_DP  -s 10 

 

 It can be used as cluster/server monitoring tool 

 

 A frequent use is to measure a certain part of a long running 

parallel application from outside 

(c) RRZE 2013 

likwid-perfctr 

Stethoscope mode 

SC13 Tutorial 
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likwid-perfctr 

Timeline mode 

 likwid-perfctr supports time resolved measurements of full node: 

  likwid-perfctr –c N:0-11 -g MEM –d 50ms  > out.txt 

 

(c) RRZE 2013 SC13 Tutorial 
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likwid-perfctr 

Marker API 

 To measure only parts of an application a marker API is available. 

 The API only turns counters on/off. The configuration of the 

counters is still done by likwid-perfctr application. 

 Multiple named regions can be measured 

 Results on multiple calls are accumulated 

 Inclusive and overlapping Regions are allowed 

(c) RRZE 2013 

likwid_markerInit();  // must be called from serial region 

 

likwid_markerStartRegion(“Compute”); 

. . . 

likwid_markerStopRegion(“Compute”); 

 

 

likwid_markerStartRegion(“postprocess”); 

. . . 

likwid_markerStopRegion(“postprocess”); 

 

 

likwid_markerClose();  // must be called from serial region 

 

SC13 Tutorial 
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likwid-perfctr 

Group files 

SHORT PSTI 

EVENTSET 

FIXC0 INSTR_RETIRED_ANY 

FIXC1 CPU_CLK_UNHALTED_CORE 

FIXC2 CPU_CLK_UNHALTED_REF 

PMC0  FP_COMP_OPS_EXE_SSE_FP_PACKED 

PMC1  FP_COMP_OPS_EXE_SSE_FP_SCALAR 

PMC2  FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION 

PMC3  FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION 

UPMC0  UNC_QMC_NORMAL_READS_ANY 

UPMC1  UNC_QMC_WRITES_FULL_ANY 

UPMC2 UNC_QHL_REQUESTS_REMOTE_READS 

UPMC3 UNC_QHL_REQUESTS_LOCAL_READS  

METRICS 

Runtime [s] FIXC1*inverseClock 

CPI  FIXC1/FIXC0 

Clock [MHz]  1.E-06*(FIXC1/FIXC2)/inverseClock 

DP MFlops/s (DP assumed) 1.0E-06*(PMC0*2.0+PMC1)/time 

Packed MUOPS/s   1.0E-06*PMC0/time 

Scalar MUOPS/s 1.0E-06*PMC1/time 

SP MUOPS/s 1.0E-06*PMC2/time 

DP MUOPS/s 1.0E-06*PMC3/time 

Memory bandwidth [MBytes/s] 1.0E-06*(UPMC0+UPMC1)*64/time; 

Remote Read BW [MBytes/s] 1.0E-06*(UPMC2)*64/time; 

LONG 

Formula: 

DP MFlops/s =  (FP_COMP_OPS_EXE_SSE_FP_PACKED*2 +  FP_COMP_OPS_EXE_SSE_FP_SCALAR)/ runtime. 

 

(c) RRZE 2013 

 Groups are architecture-specific 

 They are defined in simple text files 

 Code is generated on recompile of 

likwid 

 likwid-perfctr  -a outputs  list of groups 

 For every group an extensive 

documentation is available 

SC13 Tutorial 



Measuring energy consumption 

with LIKWID 
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Measuring  energy consumption 

likwid-powermeter  and  likwid-perfctr -g ENERGY 

 Implements Intel RAPL interface (Sandy Bridge) 

 RAPL = “Running average power limit” 
------------------------------------------------------------- 

CPU name:       Intel Core SandyBridge processor  

CPU clock:      3.49 GHz  

------------------------------------------------------------- 

Base clock:     3500.00 MHz  

Minimal clock:  1600.00 MHz  

Turbo Boost Steps: 

C1 3900.00 MHz  

C2 3800.00 MHz  

C3 3700.00 MHz  

C4 3600.00 MHz  

------------------------------------------------------------- 

Thermal Spec Power: 95 Watts  

Minimum  Power: 20 Watts  

Maximum  Power: 95 Watts  

Maximum  Time Window: 0.15625 micro sec  

------------------------------------------------------------- 

(c) RRZE 2013 SC13 Tutorial 
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Example: 
A medical image reconstruction code on Sandy Bridge 

(c) RRZE 2013 SC13 Tutorial 

Test case Runtime [s] Power [W] Energy [J] 

8 cores, plain C 90.43 90 8110 

8 cores, SSE 29.63 93 2750 

8 cores (SMT), SSE 22.61 102 2300 

8 cores (SMT), AVX 18.42 111 2040 

Sandy Bridge EP (8 cores, 2.7 GHz base freq.) 

F
a
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y
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Agenda 

 Preliminaries 

 Introduction to multicore architecture 

 Cores, caches, chips, sockets, ccNUMA, SIMD 

 LIKWID tools 

 Microbenchmarking for architectural exploration 

 Streaming benchmarks: throughput mode 

 Streaming benchmarks: work sharing 

 Roadblocks for scalability: Saturation effects and OpenMP overhead 

 Lunch break 

 Node-level performance modeling 

 The Roofline Model 

 Case study: 3D Jacobi solver and model-guided optimization 

 Optimal resource utilization 

 SIMD parallelism 

 ccNUMA 

 Simultaneous multi-threading (SMT) 

 Optional: The ECM multicore performance model 

(c) RRZE 2013 SC13 Tutorial 



Microbenchmarking for 

architectural exploration 

Probing of the memory hierarchy 

Saturation effects in cache and memory 

Typical OpenMP overheads 
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Latency and bandwidth in modern computer environments 

ns 

ms 

ms 

1 GB/s 

(c) RRZE 2013 SC13 Tutorial 

HPC plays here 

Avoiding slow data 

paths is the key to 

most performance 

optimizations! 
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Recap: Data transfers in a memory hierarchy 

 How does data travel from memory to the CPU and back? 

 Example: Array copy A(:)=C(:) 

(c) RRZE 2013 SC13 Tutorial 

CPU registers 

Cache 

Memory 

CL 

CL CL 

CL 

LD C(1) 

MISS 

ST A(1) MISS 

write 

allocate 

evict 

(delayed) 

3 CL 

transfers 

LD C(2..Ncl) 

ST A(2..Ncl) 

 

HIT 

CPU registers 

Cache 

Memory 

CL 

CL 

CL CL 

LD C(1) 

NTST A(1) 
MISS 

2 CL 

transfers 

LD C(2..Ncl) 

NTST A(2..Ncl) 

 

HIT 

Standard stores Nontemporal (NT) 

stores 

50% 

performance 

boost for 

COPY 

C(:) A(:) C(:) A(:) 
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The parallel vector triad benchmark 

A “swiss army knife” for microbenchmarking 

Simple streaming benchmark: 

 

 

 

 

 

 

 

 

 

 

 Report performance for different N 

 Choose NITER so that accurate time measurement is possible 

 This kernel is limited by data transfer performance for all memory 

levels on all current architectures! 

double precision, dimension(N) :: A,B,C,D 

A=1.d0; B=A; C=A; D=A 

 

do j=1,NITER 

  do i=1,N 

    A(i) = B(i) + C(i) * D(i) 

  enddo 

  if(.something.that.is.never.true.) then 

    call dummy(A,B,C,D) 

  endif 

enddo 

Prevents smarty-pants 

compilers from doing 

“clever” stuff 
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A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz) 

(c) RRZE 2013 SC13 Tutorial 

L1D cache (32k) 

L2 cache (256k) 

L3 cache (20M) 

Memory 

Theoretical limit 

4 W / iteration 

 128 GB/s 

5 W / it. 

 18 GB/s 

(incl. write 

allocate) 

What about 

multiple cores?  

 

Do the 

bandwidths 

scale? 
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A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz) 

(c) RRZE 2013 SC13 Tutorial 

2
.6

6
x

 S
IM

D
 i
m

p
a

c
t 

Theoretical limit 

4 W / iteration 

 128 GB/s 

Theoretical limit 

4 W / iteration 

 48 GB/s 

See later for 

more on SIMD 

benefits 

Max. LD/ST throughput: 

1 AVX Load & ½ AVX Store per cycle  

 3 cy / 8 Flops  8 Flops/3 cy 

(2 LD or 1 LD & 1 ST) / cy  

 2 Flops/2 cy 
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The throughput-parallel vector triad benchmark 

Every core runs its own, independent triad benchmark 

 

 

 

 

 

 

 

 

 

 

 

 

 

 pure hardware probing, no impact from OpenMP overhead 

(c) RRZE 2013 SC13 Tutorial 

double precision, dimension(:), allocatable :: A,B,C,D 

 

!$OMP PARALLEL private(i,j,A,B,C,D) 

allocate(A(1:N),B(1:N),C(1:N),D(1:N)) 

A=1.d0; B=A; C=A; D=A 

do j=1,NITER 

  do i=1,N 

    A(i) = B(i) + C(i) * D(i) 

  enddo 

  if(.something.that.is.never.true.) then 

    call dummy(A,B,C,D) 

  endif 

enddo 

!$OMP END PARALLEL 
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Throughput vector triad on Sandy Bridge socket (3 GHz) 

(c) RRZE 2013 SC13 Tutorial 

Saturation effect 

in memory 

Scalable BW in 

L1, L2, L3 cache 
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Bandwidth limitations: Main Memory 
Scalability of shared data paths inside a NUMA domain  (V-Triad) 

1 thread cannot 

saturate bandwidth 

Saturation with 

3 threads 

Saturation with 

2 threads 

Saturation with 

4 threads 
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Attainable memory bandwidth: Comparing architectures 

Intel Sandy Bridge AMD Interlagos 

NVIDIA K20 Intel Xeon Phi 5110P 

ECC=on ECC=on 

2-socket 

CPU node 

(c) RRZE 2013 SC13 Tutorial 



84 (c) RRZE 2013 SC13 Tutorial 

Bandwidth limitations: Outer-level cache 

Scalability of shared data paths in L3 cache 



85 

The OpenMP-parallel vector triad benchmark 

OpenMP work sharing in the benchmark loop 
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double precision, dimension(:), allocatable :: A,B,C,D 

 

allocate(A(1:N),B(1:N),C(1:N),D(1:N)) 

A=1.d0; B=A; C=A; D=A 

!$OMP PARALLEL private(i,j) 

do j=1,NITER 

!$OMP DO 

  do i=1,N 

    A(i) = B(i) + C(i) * D(i) 

  enddo 

!$OMP END DO 

  if(.something.that.is.never.true.) then 

    call dummy(A,B,C,D) 

  endif 

enddo 

!$OMP END PARALLEL 

Implicit barrier 
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OpenMP vector triad on Sandy Bridge socket (3 GHz) 

(c) RRZE 2013 SC13 Tutorial 

sync 

overhead 

grows with # 

of threads 

bandwidth 

scalability 

across 

memory 

interfaces 

L1 core limit 



OpenMP performance issues  

on multicore 

Synchronization (barrier) overhead 

 



88 (c) RRZE 2013 SC13 Tutorial 

Welcome to the multi-/many-core era 

Synchronization of threads may be expensive! 

!$OMP PARALLEL … 

… 

!$OMP BARRIER  

!$OMP DO  

… 

!$OMP ENDDO 

!$OMP END PARALLEL 

 

On x86 systems there is no hardware support for synchronization! 

 Next slide: Test OpenMP Barrier performance… 

 for different compilers 

 and different topologies: 

 shared cache 

 shared socket 

 between sockets 

 and different thread counts 

 2 threads 

 full domain (chip, socket, node) 

Threads are synchronized at explicit AND 

implicit barriers. These are a main source of 

overhead in OpenMP progams. 
 

Determine costs via modified OpenMP 

Microbenchmarks  testcase  (epcc) 
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Thread synchronization overhead on SandyBridge-EP  
Barrier overhead in CPU cycles 

2 Threads Intel  13.1.0 GCC 4.7.0 GCC 4.6.1 

Shared L3 384 5242 4616 

SMT threads 2509 3726 3399 

Other socket 1375 5959 4909 

Gcc still not very competitive 

     Intel compiler 

Full domain Intel 13.1.0 GCC 4.7.0 GCC 4.6.1 

Socket 1497 14546 14418 

Node 3401 34667 29788 

Node +SMT 6881 59038 58898 
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Thread synchronization overhead on Intel Xeon Phi  
Barrier overhead in CPU cycles 

SMT1 SMT2 SMT3 SMT4 

One core n/a 1597 2825 3557 

Full chip 10604 12800 15573 18490 

That does not look bad for 240 threads! 

 

Still the pain may be much larger, as more work can be done in 

one cycle on Phi compared to a full Sandy Bridge node 

 

3.75 x cores (16 vs 60) on Phi 

2 x more operations per cycle on Phi 

2.7 x more barrier penalty (cycles) on Phi 

 

                                   7.5 x more work done on Xeon Phi per cycle 

 

One barrier causes  2.7 x 7.5 = 20x more pain . 

2 threads on 

distinct cores: 

1936 
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Conclusions from the microbenchmarks 

 Affinity matters! 

 Almost all performance properties depend on the position of 

 Data 

 Threads/processes 

 Consequences 

 Know where your threads are running 

 Know where your data is 

 

 

 Bandwidth bottlenecks are ubiquitous 

 

 

 Synchronization overhead may be an issue 

 … and also depends on affinity! 

 Many-core poses new challenges in terms of synchronization 
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Case study:  

OpenMP-parallel sparse matrix-vector 

multiplication (part 1) 

 

A simple (but sometimes not-so-simple) 

example for bandwidth-bound code and 

saturation effects in memory 
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Case study: Sparse matrix-vector multiply 

 Important kernel in many applications (matrix diagonalization, 

solving linear systems) 

 Strongly memory-bound for large data sets 

 Streaming, with partially indirect access: 

 

 

 

 

 

 

 

 

 Usually many spMVMs required to solve a problem 

 

 Following slides: Performance data on one 24-core AMD Magny 

Cours node 

 

do i = 1,Nr  

 do j = row_ptr(i), row_ptr(i+1) - 1  

  c(i) = c(i) + val(j) * b(col_idx(j))  

 enddo 

enddo 

 

!$OMP parallel do 

 

 

 

 

 

!$OMP end parallel do 
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Application: Sparse matrix-vector multiply 
Strong scaling on one XE6 Magny-Cours node 

 Case 1: Large matrix 

Intrasocket 

bandwidth 

bottleneck 
Good scaling 

across NUMA 

domains 
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 Case 2: Medium size 

Application: Sparse matrix-vector multiply 
Strong scaling on one XE6 Magny-Cours node 

Intrasocket 

bandwidth 

bottleneck 

Working set fits 

in aggregate 

cache 
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Application: Sparse matrix-vector multiply 
Strong scaling on one Magny-Cours node 

 Case 3: Small size 

No bandwidth 

bottleneck 
Parallelization 

overhead 

dominates 
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Conclusions from the spMVM benchmarks 

 If the problem is “large”, bandwidth saturation on the socket is 

a reality 

  There are “spare cores” 

 Very common performance pattern 

 What to do with spare cores? 

 Let them idle  saves energy with minor  

loss in time to solution 

 Use them for other tasks, such as MPI  

communication 

 Can we predict the saturated performance? 

 Bandwidth-based performance modeling! 

 What is the significance of the indirect access?  

Can it be modeled? 

 Can we predict the saturation point? 

 … and why is this important? 

(c) RRZE 2013 SC13 Tutorial 
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Before lunch 

(12:00) 
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Agenda 

 Preliminaries 

 Introduction to multicore architecture 

 Cores, caches, chips, sockets, ccNUMA, SIMD 

 LIKWID tools 

 Microbenchmarking for architectural exploration 

 Streaming benchmarks: throughput mode 

 Streaming benchmarks: work sharing 

 Roadblocks for scalability: Saturation effects and OpenMP overhead 

 Lunch break 

 Node-level performance modeling 

 The Roofline Model 

 Case study: 3D Jacobi solver and model-guided optimization 

 Optimal resource utilization 

 SIMD parallelism 

 ccNUMA 

 Simultaneous multi-threading (SMT) 

 Optional: The ECM multicore performance model 
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“Simple” performance modeling: 

The Roofline Model 

 
Loop-based performance modeling: Execution vs. data transfer 

Example: array summation 

Example: A 3D Jacobi solver 

Model-guided optimization  

 

After lunch 

(13:30) 
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The Roofline Model1,2 

1. Pmax = Applicable peak performance of a loop, assuming that 

data comes from L1 cache (this is not necessarily Ppeak) 

 

2. I = Computational intensity (“work” per byte transferred) over the 

slowest data path utilized (“the bottleneck”) 

 Code balance BC = I -1 

 

3. bS = Applicable peak bandwidth of the slowest data path utilized 

 

 

Expected performance: 

(c) RRZE 2013 SC13 Tutorial 

𝑃 = min (𝑃max, 𝐼 ∙ 𝑏𝑆) 

1 W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. (2000) 
2 S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008) 

[B/s] [F/B] 

http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
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“Simple” Roofline: The vector triad 

Example: Vector triad A(:)=B(:)+C(:)*D(:)  

on a 2.7 GHz 8-core Sandy Bridge chip (AVX vectorized) 

 

 bS = 40 GB/s 

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate) 

  I = 0.4 F/W = 0.05 F/B 

 

   I ∙ bS = 2.0 GF/s (1.2 % of peak performance) 

 

 Ppeak = 173 Gflop/s (8 FP units x (4+4) Flops/cy x 2.7 GHz) 

 Pmax?   Observe LD/ST throughput maximum of 1 AVX Load and ½ 

AVX store per cycle  3 cy / 8 Flops  Pmax = 57.6 Gflop/s (33% peak) 
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𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 57.6,2.0 GFlop s 
= 2.0 GFlop s  
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“Simple” Roofline: The vector triad 

Example: Vector triad A(:)=B(:)+C(:)*D(:)  

on a 1.05 GHz 60-core Intel Xeon Phi chip (vectorized) 

 

 bS = 160 GB/s 

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate) 

  I = 0.4 F/W = 0.05 F/B 

 

   I ∙ bS = 8.0 GF/s (0.8 % of peak performance) 

 

 Ppeak = 1008 Gflop/s (60 FP units x (8+8) Flops/cy x 1.05 GHz) 

 Pmax?   Observe LD/ST throughput maximum of 1 Load or 1 Store 

per cycle  4 cy / 16 Flops  Pmax = 252 Gflop/s (25% of peak) 
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𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 252,8.0 GFlop s 
= 8.0 GFlop s  
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A not so simple Roofline example 

Example:     do i=1,N; s=s+a(i); enddo 

in double precision on a 2.7 GHz Sandy Bridge socket @ “large” N 

 

(c) RRZE 2013 SC13 Tutorial 

 

ADD peak   

(best possible code) 

no SIMD 

 

3-cycle latency per ADD  

if not unrolled 

 

 

P = 5 Gflop/s 

𝑃 = min (𝑃max, 𝐼 ∙ 𝑏𝑆) 

How do we get 

these? 

 See next! 

I = 1 Flop / 8 byte (in DP) 

86.4 GF/s 

21.6 GF/s 

7.2 GF/s 
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Applicable peak for the summation loop 

Plain scalar code, no SIMD 

 

 

LOAD r1.0  0 

i  1 

loop:  

  LOAD r2.0  a(i) 

  ADD r1.0  r1.0+r2.0 

  ++i ? loop 

result  r1.0 

 

(c) RRZE 2013 SC13 Tutorial 

ADD pipes utilization: 

 1/12 of ADD peak 
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D
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Applicable peak for the summation loop 

Scalar code, 3-way unrolling 
LOAD r1.0  0 

LOAD r2.0  0 

LOAD r3.0  0 

i  1 

 

loop:  

  LOAD r4.0  a(i) 

  LOAD r5.0  a(i+1) 

  LOAD r6.0  a(i+2) 

 

  ADD r1.0  r1.0+r4.0 

  ADD r2.0  r2.0+r5.0 

  ADD r3.0  r3.0+r6.0 

 

  i+=3 ? loop 

result  r1.0+r2.0+r3.0 

 

(c) RRZE 2013 SC13 Tutorial 

ADD pipes utilization: 

 1/4 of ADD peak 
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Applicable peak for the summation loop 

SIMD-vectorized, 3-way unrolled 
LOAD [r1.0,…,r1.3]  [0,0] 

LOAD [r2.0,…,r2.3]  [0,0] 

LOAD [r3.0,…,r3.3]  [0,0] 

i  1 

 

loop:  

  LOAD [r4.0,…,r4.3]  [a(i),…,a(i+3)] 

  LOAD [r5.0,…,r5.3]  [a(i+4),…,a(i+7)] 

  LOAD [r6.0,…,r6.3]  [a(i+8),…,a(i+11)] 

 

  ADD r1  r1+r4 

  ADD r2  r2+r5 

  ADD r3  r3+r6 

 

  i+=12 ? loop 

result  r1.0+r1.1+...+r3.2+r3.3 
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ADD pipes utilization: 

 ADD peak 
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Input to the roofline model 

… on the example of       do i=1,N; s=s+a(i); enddo  

(c) RRZE 2013 SC13 Tutorial 

analysis 

Code analysis: 

1 ADD + 1 LOAD 

architecture Throughput: 1 ADD + 1 LD/cy 

Pipeline depth: 3 cy (ADD) 

4-way SIMD, 8 cores 

measurement 

Maximum memory 

bandwidth 40 GB/s 

Memory-bound @ large N! 

Pmax = 5 GF/s 

7.2 … 86.4 GF/s 

5 GF/s 
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Assumptions for the Roofline Model 

 The roofline formalism is based on some (crucial) assumptions: 

 There is a clear concept of “work” vs. “traffic” 

 “work” = flops, updates, iterations… 

 “traffic” = required data to do “work” 

 

 Attainable bandwidth of code = input parameter! Determine effective 

bandwidth via simple streaming benchmarks to model more complex 

kernels and applications 

 Data transfer and core execution overlap perfectly! 

 Slowest data path is modeled only; all others are assumed to be infinitely 

fast 

 

 If data transfer is the limiting factor, the bandwidth of the slowest data path 

can be utilized to 100% (“saturation”) 

 

 Latency effects are ignored, i.e. perfect streaming mode 

(c) RRZE 2013 SC13 Tutorial 
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Factors to consider in the roofline model 

Bandwidth-bound (simple case) 

 Accurate traffic calculation (write-

allocate, strided access, …) 

 Practical ≠ theoretical BW limits 

 Erratic access patterns 

 

Core-bound (may be complex) 

 Multiple bottlenecks: LD/ST, 

arithmetic, pipelines, SIMD, 

execution ports 

 Limit is linear in # of cores 

(c) RRZE 2013 SC13 Tutorial 
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Complexities of in-core execution 

Multiple bottlenecks:  

 

 L1 Icache (LD/ST) bandwidth 

 Decode/retirement 

throughput 

 Port contention  

(direct or indirect) 

 Arithmetic pipeline stalls 

(dependencies) 

 Overall pipeline stalls 

(branching) 

 L1 Dcache bandwidth 

(LD/ST throughput) 

 Scalar vs. SIMD execution 

 … 

 

 Register pressure 

 Alignment issues 
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Shortcomings of the roofline model 

 Saturation effects in multicore chips are not explained 

 Reason: “saturation assumption”  

 Cache line transfers and core execution do sometimes not overlap 

perfectly 

 Only increased “pressure” on the memory 

interface can saturate the bus 

 need more cores! 

 

 ECM model gives more insight (see later) 

A(:)=B(:)+C(:)*D(:) 

Roofline predicts 

full socket BW 
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Case study:  

OpenMP-parallel sparse matrix-vector 

multiplication (part 2) 

 

Putting Roofline to use where it should not work 
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Example: SpMVM node performance model 

 Sparse MVM in 

double precision  

w/ CRS data storage: 

 

 

 

 

 DP CRS comp. intensity 

  quantifies extra traffic 

for loading RHS more than 

once 

 

 Expected performance = bS x ICRS 

 

 Determine   by measuring performance and actual memory bandwidth 

 Maximum memory BW may not be achieved with spMVM 
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Roofline analysis for spMVM 

 Analysis for HMeP matrix on Nehalem EP socket 

 BW used by spMVM kernel b = 18.1 GB/s  should get ≈ 2.66 Gflop/s 

spMVM performance if  = 0 

 Measured spMVM performance = 2.25 Gflop/s 

 Solve 2.25 Gflop/s = b x ICRS  for   ≈ 2.5 

 

 37.5 extra bytes per row  

 RHS is loaded 6 times from memory 

 about 33% of BW goes into RHS 

 

 

 

 Conclusion: Even if the roofline model does not work 100%, we 

can still learn something from the deviations 

(c) RRZE 2013 SC13 Tutorial 
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Input to the roofline model 

… on the example of spMVM with HMeP matrix 

Code analysis: 

1 ADD, 1 MULT, 

(2.5+2/Nnzr) LOADs, 

1/Nnzr STOREs +  

Throughput: 1 ADD, 1 MULT 

+ 1 LD + 1ST/cy 

Maximum memory 

bandwidth 20 GB/s 

Memory-bound! 

 = 2.5 

Measured memory BW 

for spMVM 18.1 GB/s 
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Measured performance 

for spMVM 2.25 GF/s 
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DEMO 

(c) RRZE 2013 SC13 Tutorial 



Case study:  

A 3D Jacobi smoother 

The basics in two dimensions 

Roofline performance analysis and modeling 
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A Jacobi smoother 

 Laplace equation in 2D: 

 

 Solve with Dirichlet boundary conditions using Jacobi iteration 

scheme: 

Naive balance (incl. write allocate):  

phi(:,:,t0): 3 LD +  

phi(:,:,t1): 1 ST+ 1LD 

 BC = 5 W / 4 FLOPs = 1.25 W / F  

Re-use when computing 
phi(i+2,k,t1) 

WRITE ALLOCATE:  
LD + ST  phi(i,k,t1) 
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∆𝚽 = 𝟎 
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Balance metric: 2 D Jacobi 

 Modern cache subsystems may further reduce memory traffic 

 “layer conditions”  

If cache is large enough to hold at least 2 rows 
(shaded region): Each phi(:,:,t0) is loaded 

once from main memory and re-used 3 times 

from cache: 

phi(:,:,t0): 1 LD + phi(:,:,t1): 1 ST+ 1LD 

BC = 3 W / 4 F = 0.75 W / F 

 

 

 

If cache is too small to hold one row: 
phi(:,:,t0): 2 LD + phi(:,:,t1): 1 ST+ 1LD 

BC = 5 W / 4 F = 1.25 W / F 
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Performance metrics: 2D Jacobi 

 Alternative implementation (“Macho FLOP version”) 

 

 

 

 

 

 MFlops/sec increases by 7/4 but time to solution remains the same 

 

 Better metric (for many iterative stencil schemes): 

 Lattice Site Updates per Second (LUPs/sec) 

 

 2D Jacobi example: Compute LUPs/sec metric via 
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2D  3D 

 3D sweep: 

 

 

 

 

 

 

 

 Best case balance: 1 LD  phi(i,j,k+1,t0) 

 1 ST + 1 write allocate phi(i,j,k,t1) 

 6 flops 

 BC = 0.5 W/F (24 bytes/LUP) 

 

 No 2-layer condition but 2 rows fit:  BC = 5/6 W/F (40 bytes/LUP) 

 Worst case (2 rows do not fit):  BC = 7/6 W/F (56 bytes/LUP) 
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do k=1,kmax 

  do j=1,jmax 

    do i=1,imax 

      phi(i,j,k,t1) = 1/6. *(phi(i-1,j,k,t0)+phi(i+1,j,k,t0) & 

                           + phi(i,j-1,k,t0)+phi(i,j+1,k,t0) & 

                           + phi(i,j,k-1,t0)+phi(i,j,k+1,t0)) 

    enddo 

  enddo 

enddo 



123 

3D Jacobi solver 
Performance of vanilla code on one Sandy Bridge chip (8 cores) 

(c) RRZE 2013 SC13 Tutorial 

cache memory 

2 layers of source array 

drop out of L3 cache 

Problem size: N3 

Roofline inappropriate 

for unsaturated case 

24 B/update model 

40 B/update model 
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Conclusions from the Jacobi example 

 We have made sense of the memory-bound performance vs. 

problem size 

 “Layer conditions” lead to predictions of code balance 

 Achievable memory bandwidth is input parameter 

 

 

 The model works only if the bandwidth is “saturated” 

 In-cache modeling is more involved 

 

 

 Optimization == reducing the code balance by code 

transformations 

 See below 
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Data access optimizations  
  

Case study: Optimizing the 3D Jacobi solver 
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Remember the 3D Jacobi solver on Sandy Bridge? 

(c) RRZE 2013 SC13 Tutorial 

2 layers of source array 

drop out of L3 cache 

 

 Avoid through spatial 

blocking! 

Problem size: N3 

24 B/update model 

40 B/update model 
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Jacobi iteration (2D): No spatial blocking 

 Assumptions:  

 cache can hold 32 elements (16 for each array) 

 Cache line size is 4 elements 

 Perfect eviction strategy for source array 

 

This element is needed for three more updates; but 29 updates happen before this element is 

used for the last time 

i 

k 
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Jacobi iteration (2D): No spatial blocking 

 Assumptions:  

 cache can hold 32 elements (16 for each array) 

 Cache line size is 4 elements 

 Perfect eviction strategy for source array 

This element is needed for 

three more updates but has 

been evicted 
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Jacobi iteration (2D): Spatial blocking 

 Divide system into blocks 

 Update block after block 

 Same performance as if three complete rows of the systems fit 

into cache 

 

 

 

 

 

 

 

 

 

 

 Some excess traffic at boundaries may be unavoidable 
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Jacobi iteration (2D): Spatial blocking  

 Spatial blocking reorders traversal of data to account for the data 

update rule of the code 

Elements stay sufficiently long in cache to be fully reused  

Spatial blocking improves temporal locality! 
(Continuous access in inner loop ensures spatial locality) 

This element remains in cache until it is fully used (only 6 updates happen before 

last use of this element) 
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Jacobi iteration (3D): Spatial blocking 

 Implementation: 

 

 

 

 

 

 

 

 

 

 Guidelines: 

 Blocking of inner loop levels (traversing continuously through main memory) 

 Blocking sizes large enough to fulfill “layer condition”  

 Cache size is a hard limit! 

 Blocking loops may have some impact on ccNUMA page placement 

  do ioffset=1,imax,iblock 

    do joffset=1,jmax,jblock 

      do k=1,kmax 

        do j=joffset, min(jmax,joffset+jblock-1) 

          do i=ioffset, min(imax,ioffset+iblock-1) 

            phi(i,j,k,t1) = ( phi(i-1,j,k,t0)+phi(i+1,j,k,t0) 

                      + ... + phi(i,j,k-1,t0)+phi(i,j,k+1,t0) )/6.d0 

          enddo 

        enddo 

      enddo 

    enddo 

  enddo  

loop over i-blocks 

loop over j-blocks 

2 ∙ iblock ∙ jblock ∙ 8 byte ∙ #cores  <  (cache size)/2  
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3D Jacobi solver (problem size 5003) 
Blocking different loop levels (8 cores Sandy Bridge) 
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OpenMP parallelization? 

Optimal block size? 

k-loop blocking? 

ccNUMA page placement? 

 

24B/update  

performance 

model 

inner (i) loop 

blocking  

middle (j) loop 

blocking  

optimum j 

block size 40B/update  

performance 

model 
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Jacobi iteration (3D): Nontemporal stores 

 Intel x86: NT stores are packed SIMD stores with 16-byte aligned 

address 

 Sometimes hard to apply 

 AMD x86: Scalar NT stores without alignment restrictions 

available 

 

 Options for using NT stores 

 Let the compiler decide  unreliable 

 Use compiler options 

 Intel: -opt-streaming-stores never|always|auto 

 Use compiler directives 

 Intel:  !DEC$ vector [non]temporal 

 Cray: !DIR$ LOOP_INFO cache[_nt](...) 

 Compiler must be able to “prove” that the use of SIMD and NT 

stores is “safe”! 

 “line update kernel” concept: Make critical loop its own subroutine 

 

 

 

 

 

 

 

 

 

 

 

 



135 

Jacobi iteration (3D): Nontemporal stores for Intel 

Line update kernel (separate compilation unit or -fno-inline): 

 

 

 

 

 

 

Main loop: 

(c) RRZE 2013 SC13 Tutorial 

do joffset=1,jmax,jblock 

  do k=1,kmax 

    do j=joffset, min(jmax,joffset+jblock-1) 

      call jacobi_line(phi(1,j,k,t1),phi(1,j,k,t0),phi(1,j,k-1,t0), & 

                       phi(1,j,k+1,t0),phi(1,j-1,k,t0),phi(1,j+1,k,t0) 

                      ,size) 

    enddo 

  enddo 

enddo  

subroutine jacobi_line(d,s,top,bottom,front,back,n) 

  integer :: n,i,start 

  double precision, dimension(*) :: d,s,top,bottom,front,back 

  double precision, parameter :: oos=1.d0/6.d0 

!DEC$ VECTOR NONTEMPORAL 

    do i=2,n-1 

       d(i) = oos*(s(i-1)+s(i+1)+top(i)+bottom(i)+front(i)+back(i)) 

    enddo 

end subroutine 
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3D Jacobi solver 
Spatial blocking + nontemporal stores 
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blocking 

16 B/update perf. model 

NT stores 
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Conclusions from the Jacobi optimization example 

 “What part of the data comes from where” is a crucial question 

 

 Avoiding slow data paths == re-establishing the most favorable 

layer condition 

 

 Improved code showed the speedup predicted by the model 

 

 Optimal blocking factor can be estimated 

 Be guided by the cache size the layer condition 

 No need for exhaustive scan of “optimization space” 
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Agenda 

 Preliminaries 

 Introduction to multicore architecture 

 Cores, caches, chips, sockets, ccNUMA, SIMD 

 LIKWID tools 

 Microbenchmarking for architectural exploration 

 Streaming benchmarks: throughput mode 

 Streaming benchmarks: work sharing 

 Roadblocks for scalability: Saturation effects and OpenMP overhead 

 Lunch break 

 Node-level performance modeling 

 The Roofline Model 

 Case study: 3D Jacobi solver and model-guided optimization 

 Optimal resource utilization 

 SIMD parallelism 

 ccNUMA 

 Simultaneous multi-threading (SMT) 

 Optional: The ECM multicore performance model 
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Optimal utilization of parallel resources 

Exploiting SIMD parallelism and reading assembly code 

Simultaneous multi-threading (SMT): facts & myths 

Programming for ccNUMA memory architecture 
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SIMD processing – Basics  

 Single Instruction Multiple Data (SIMD) operations allow the 

concurrent execution of the same operation on “wide” registers.  

 x86 SIMD instruction sets: 

 SSE: register width = 128 Bit  2 double precision floating point operands  

 AVX: register width = 256 Bit  4 double precision floating point operands 

 Adding two registers holding double precision floating point operands  
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A

[0
] 

A
[1

] 
A

[2
] 

A
[3

] 

B
[0

] 
B

[1
] 

B
[2

] 
B

[3
] 

C
[0

] 
C

[1
] 

C
[2

] 
C

[3
] 

A
[0

] 

B
[0

] 

C
[0

] 

64 Bit 

256 Bit 

+ + 

+ 

+ 

+ 

R0 R1 R2 R0 R1 R2 

Scalar execution: 

R2 ADD [R0,R1] 

SIMD execution: 

V64ADD [R0,R1] R2 
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SIMD processing – Basics  

 Steps (done by the compiler) for “SIMD processing” 
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for(int i=0; i<n;i++) 

 C[i]=A[i]+B[i]; 

for(int i=0; i<n;i+=4){ 

  C[i]  =A[i]  +B[i]; 

 C[i+1]=A[i+1]+B[i+1]; 

 C[i+2]=A[i+2]+B[i+2]; 

 C[i+3]=A[i+3]+B[i+3];} 

//remainder loop handling 

LABEL1:  

 VLOAD R0  A[i] 

 VLOAD R1  B[i] 

 V64ADD[R0,R1]  R2 

 VSTORE R2  C[i] 

 ii+4 

 i<(n-4)? JMP LABEL1  

//remainder loop handling 

“Loop unrolling” 

Load 256 Bits starting from address of A[i] to 

register R0 

Add the corresponding 64 Bit entries in  R0 and 

R1 and store the 4 results to R2 

Store R2 (256 Bit) to address  

starting at C[i] 
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SIMD processing – Basics  

 No SIMD vectorization  for loops with data dependencies: 

 

 

 

 “Pointer aliasing” may prevent  SIMDfication 

 

 

 

 

 

 C/C++ allows that A  &C[-1] and B  &C[-2] 

 C[i] = C[i-1] + C[i-2]: dependency  No SIMD 

 

 If “pointer aliasing” is not used, tell it to the compiler, e.g. use  
–fno-alias switch for Intel compiler  SIMD 
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for(int i=0; i<n;i++) 

 A[i]=A[i-1]*s; 

void scale_shift(double *A, double *B, double *C, int n) { 

 for(int i=0; i<n; ++i)   

    C[i] = A[i] + B[i]; 

} 

Vor Kaffee 

(15:00) 



Reading x86 assembly code and exploting 

SIMD parallelism 

Understanding SIMD execution by inspecting   

    assembly code 

SIMD vectorization how-to 

Intel compiler options and features for SIMD 

Sparse MVM part 3: SIMD-friendly data layouts 

Nach Kaffee 

(15:30) 



148 (c) RRZE 2013 SC13 Tutorial 

Why and how? 

Why check the assembly code? 

 Sometimes the only way to make sure the compiler  “did the right 

thing” 

 Example: “LOOP WAS VECTORIZED” message is printed, but Loads & 

Stores may still be scalar!  

 

 Get the assembler code (Intel compiler): 

 icc –S –O3  -xHost  triad.c  -o a.out 

 Disassemble Executable: 

    objdump –d  ./a.out | less 

 

 

The x86 ISA is documented in: 

Intel Software Development Manual (SDM) 2A and 2B 

AMD64 Architecture Programmer's Manual Vol. 1-5 
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Basics of the x86-64 ISA 

16 general Purpose Registers (64bit):   

rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp, r8-r15 

alias with eight  32 bit register set: 

eax, ebx, ecx, edx, esi, edi, esp, ebp 

 

Floating Point SIMD Registers: 

xmm0-xmm15  SSE (128bit)   alias with 256-bit registers 

ymm0-ymm15  AVX (256bit) 

 

SIMD instructions are distinguished by: 

AVX (VEX) prefix:   v 

Operation:    mul, add, mov 

Modifier:   nontemporal (nt), unaligned (u), aligned (a), high (h) 

Width:    scalar (s), packed (p) 

Data type:   single (s),  double  (d) 
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Case Study: Simplest code for the summation of 

the elements of a vector (single precision) 

float sum = 0.0; 

 

for (int j=0; j<size; j++){ 

    sum += data[j]; 

} 

 

 

Instruction code: 

401d08:   f3 0f 58 04 82          addss  xmm0,[rdx + rax * 4] 

401d0d:   48 83 c0 01             add    rax,1 

401d11:   39 c7                   cmp    edi,eax 

401d13:   77 f3                   ja     401d08 
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Instruction 

address 
Opcodes Assembly 

code 

To get  object code use 
objdump –d on object file or 

executable or compile with -S 
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Summation code (single precision): Improvements 

1: 

addss  xmm0, [rsi + rax * 4] 

add    rax, 1 

cmp    eax,edi 

js 1b 
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1: 

addss xmm0, [rsi + rax * 4] 

addss xmm1, [rsi + rax * 4 + 4] 

addss xmm2, [rsi + rax * 4 + 8] 

addss xmm3, [rsi + rax * 4 + 12] 

add   rax, 4 

cmp   eax,edi 

js 1b 

1: 

vaddps ymm0, [rsi + rax * 4] 

vaddps ymm1, [rsi + rax * 4 + 32] 

vaddps ymm2, [rsi + rax * 4 + 64] 

vaddps ymm3, [rsi + rax * 4 + 96] 

add rax, 32 

cmp   eax,edi 

js 1b 

Unrolling with sub-sums to break up 

register dependency 

AVX SIMD vectorization  

3 cycles add 

pipeline 

latency 
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How to leverage SIMD 

Alternatives: 

 The compiler does it for you (but: aliasing, alignment, language) 

 Compiler directives (pragmas) 

 Alternative programming models for compute kernels (OpenCL, ispc) 

 Intrinsics (restricted to C/C++) 

 Implement directly in  assembler 

 

To use intrinsics the following headers are available: 

 xmmintrin.h  (SSE) 

 pmmintrin.h (SSE2) 

 immintrin.h  (AVX) 

 

 x86intrin.h (all instruction set extensions) 

 See next slide for an example 
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Example: array summation using C intrinsics  

(SSE, single precision) 
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__m128 sum0, sum1, sum2, sum3; 

__m128 t0, t1, t2, t3; 

float scalar_sum; 

sum0 =  _mm_setzero_ps(); 

sum1 =  _mm_setzero_ps(); 

sum2 =  _mm_setzero_ps(); 

sum3 =  _mm_setzero_ps(); 

 

for (int j=0; j<size; j+=16){ 

    t0 = _mm_loadu_ps(data+j); 

    t1 = _mm_loadu_ps(data+j+4); 

    t2 = _mm_loadu_ps(data+j+8); 

    t3 = _mm_loadu_ps(data+j+12); 

    sum0 = _mm_add_ps(sum0, t0); 

    sum1 = _mm_add_ps(sum1, t1); 

    sum2 = _mm_add_ps(sum2, t2); 

    sum3 = _mm_add_ps(sum3, t3); 

} 

  

 

sum0 = _mm_add_ps(sum0, sum1); 

sum0 = _mm_add_ps(sum0, sum2); 

sum0 = _mm_add_ps(sum0, sum3); 

sum0 = _mm_hadd_ps(sum0, sum0); 

sum0 = _mm_hadd_ps(sum0, sum0); 

 

_mm_store_ss(&scalar_sum, sum0); 
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Example: array summation from intrinsics, instruction code 

14:   0f 57 c9                xorps  %xmm1,%xmm1 

17:   31 c0                   xor    %eax,%eax 

19:   0f 28 d1                movaps %xmm1,%xmm2 

1c:   0f 28 c1                movaps %xmm1,%xmm0 

1f:   0f 28 d9                movaps %xmm1,%xmm3 

22:   66 0f 1f 44 00 00       nopw   0x0(%rax,%rax,1) 

28:   0f 10 3e                movups (%rsi),%xmm7 

2b:   0f 10 76 10             movups 0x10(%rsi),%xmm6 

2f:   0f 10 6e 20             movups 0x20(%rsi),%xmm5 

33:   0f 10 66 30             movups 0x30(%rsi),%xmm4 

37:   83 c0 10                add    $0x10,%eax 

3a:   48 83 c6 40             add    $0x40,%rsi 

3e:   0f 58 df                addps  %xmm7,%xmm3 

41:   0f 58 c6                addps  %xmm6,%xmm0 

44:   0f 58 d5                addps  %xmm5,%xmm2 

47:   0f 58 cc                addps  %xmm4,%xmm1 

4a:   39 c7                   cmp    %eax,%edi 

4c:   77 da                   ja     28 <compute_sum_SSE+0x18> 

4e:   0f 58 c3                addps  %xmm3,%xmm0 

51:   0f 58 c2                addps  %xmm2,%xmm0 

54:   0f 58 c1                addps  %xmm1,%xmm0 

57:   f2 0f 7c c0             haddps %xmm0,%xmm0 

5b:   f2 0f 7c c0             haddps %xmm0,%xmm0 

5f:   c3                      retq  
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Loop body 
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Vectorization and the Intel compiler 

 Intel compiler will try to use SIMD instructions when enabled 

to do so 

 “Poor man’s vector computing” 

 Compiler can emit messages about vectorized loops (not by default): 

 
plain.c(11): (col. 9) remark: LOOP WAS VECTORIZED. 

 

 Use option -vec_report3 to get full compiler output about which 

loops were vectorized and which were not and why (data 

dependencies!) 

 Some obstructions will prevent the compiler from applying 

vectorization even if it is possible 

 

 You can use source code directives to provide more 

information to the compiler  
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Vectorization compiler options 

 The compiler will vectorize starting with –O2. 

 To enable specific SIMD extensions use the –x option: 

 -xSSE2 vectorize for SSE2 capable machines 

Available SIMD extensions: 

SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX 

 

 -xAVX on Sandy Bridge processors 

 

Recommended option: 

 -xHost will optimize for the architecture you compile on 

 

On AMD Opteron: use plain –O3 as the  -x options may involve CPU 
type  checks. 
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Vectorization compiler options 

 Controlling non-temporal stores  (part of the SIMD extensions) 

 

 -opt-streaming-stores always|auto|never 

 
always use NT stores, assume application is memory 

  bound (use with caution!) 

 
auto compiler decides when to use NT stores 

 
never do not use NT stores unless activated by 

  source code directive 
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Rules for vectorizable loops 

1. Countable 

2. Single entry and single exit 

3. Straight line code 

4. No function calls (exception intrinsic math functions) 

 

Better performance with: 

1. Simple inner loops with unit stride 

2. Minimize indirect addressing 

3. Align data structures (SSE 16 bytes, AVX 32 bytes) 

4. In C use the restrict keyword for pointers to rule out aliasing  

 

Obstacles for vectorization: 

 Non-contiguous memory access 

 Data dependencies 
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User mandated vectorization 

 Since Intel Compiler 12.0 the simd pragma is available 

 #pragma simd enforces vectorization where the other pragmas fail 

 Prerequesites: 

 Countable loop 

 Innermost loop 

 Must conform to for-loop style of OpenMP worksharing constructs 

 There are additional clauses:  reduction, vectorlength, private 

 Refer to the compiler manual for further details 

 

 

 

 

 

 

 NOTE: Using the #pragma simd the compiler may generate incorrect code if 

the loop violates the vectorization rules! 

#pragma simd reduction(+:x) 

  for (int i=0; i<n; i++) { 

     x = x + A[i]; 

  } 
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x86 Architecture: 

SIMD and Alignment 

 Alignment  issues 
 Alignment of arrays with SSE (AVX) should be on 16-byte (32-byte) 

boundaries to allow packed aligned loads and NT stores (for Intel 
processors) 
 AMD has a scalar nontemporal store instruction 

 Otherwise the compiler will revert to unaligned loads and not use NT 
stores – even if you say vector nontemporal 

 Modern x86 CPUs have less (not zero) impact for misaligned LD/ST, but 
Xeon Phi relies heavily on it! 

 How is manual alignment accomplished? 

 

 Dynamic allocation of aligned memory  
(align = alignment boundary): 
 

#define _XOPEN_SOURCE 600 

#include <stdlib.h> 

 

int posix_memalign(void **ptr, 

    size_t align, 

    size_t size); 



 

Case study:  OpenMP-parallel  

sparse matrix-vector multiplication  (part 3) 

 

 

 
SIMD-friendly data layouts for sparse matrices 

M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop: A unified sparse 

matrix data format for modern processors with wide SIMD units. Submitted. 

Preprint: arXiv:1307.6209 

http://arxiv.org/abs/1307.6209
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Programming for heterogeneous systems: 

A unified code for CPU and Accelerators? 

GPU #1 

GPU #2 

#pragma acc for 
for(i = 0; i< number_of_unknowns; ++i){ 

    for(j = row(i); i < row(i+1);++j){ 

      y[i] =y[i] +entry[j] *x[column[j]];}} 

size_t i = get_global_id(0);  

if (i < number_of_unknowns) {  

   for(int j=row[i]; j<row[i+1]; ++j) {  

      y[i] = y[i] + entry[j]*= x[column[j]];}}  
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Programming for heterogeneous systems: 

A unified code for CPU and Accelerators? 

 All kernels written in  

 OpenCL / OpenMP 

 

 Code portability is  

not the challenge! 

 

 

 

 

 

 

 

 

 

The data format is the key to performance! 

Data 

format 
dlr1 rrze3 RM07R 

Rel. BW 

to 1 CPU 

Intel  

Xeon E5-2690  
CRS 7.1 GF/s 5.3 GF/s 6.9 GF/s 1 

Tesla K20c 

(Kepler) 
CRS 1.3 GF/s 1.6 GF/s 1.8 GF/s 4 

Intel Xeon Phi 

5110P 
CRS 18.9 GF/s 5.9 GF/s 16.9 GF/s 4 

Potential speed up based on  

memory bandwidth (BW) 
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A unified data format for spMVM?! 

GPGPU-friendly format (Sliced)ELLPACK 

GPGPUs: 

 Size of slices ~ warp sizes (slice=32 rows)  

 Padding of data structures for load coalescing 

 Sort within blocks (multiple slices) according to nonzeros per row (JDS 

format – vector computers!)  reduce padding overhead 
 

SIMD CPUs: 

 Choose size of slices appropriately for x86 processors with SSE or AVX 
(slice=4) and Intel Xeon Phi (slice=16) 

ELLPACK Sliced ELLPACK SELL-C-σ 

GPU warp /  

SIMD width 
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A unified data format CPU and Accelerators! 

 Vectorizable code + 

vectorizable data structures  

are (often) beneficial for  

modern compute devices!  

Data 

format 
dlr1 rrze3 RM07R 

Rel. BW 

to 1 CPU 

Intel  

Xeon E5-2690  

CRS 7.1 GF/s 5.3 GF/s 6.9 GF/s 
1 

SELL-256 7.2 GF/s 5.3 GF/s 6.9 GF/s 

NVIDIA Tesla 

K20 

CRS 1.3 GF/s 1.6 GF/s 1.8 GF/s 
4 

SELL-256 23.0 GF/s 16.1 GF/s 21.0 GF/s 

Intel Xeon Phi 

5110P 

CRS 18.9 GF/s 5.9 GF/s 16.9 GF/s 
4 

SELL-256 21.3 GF/s 13.5 GF/s 19.2 GF/s 

 Speed-up of K20 or Phi vs. 2-socket CPU compute node ~ 1.5X 

1
 s

o
c
k
e
t 
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Accelerators and SIMD CPUs:  

 New frameworks / tools may provide code portability,… 

 but portable performance will remain the challenge 
 

 Back to the roots: Vectorized codes / data structures   
 

 Memory bound codes: Vectorization  Multicore parallel 

 

but code vectorization provides 

optimal energy to solution… 

Parallelization “heals” scalar 

performance –  
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Efficient parallel programming  

on ccNUMA nodes 

Performance characteristics of ccNUMA nodes 

First touch placement policy 

C++ issues 

ccNUMA locality and dynamic scheduling 

ccNUMA locality beyond first touch 
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ccNUMA performance problems 
“The other affinity” to care about 

 ccNUMA: 

 Whole memory is transparently accessible by all processors 

 but physically distributed 

 with varying bandwidth and latency 

 and potential contention (shared memory paths) 

 How do we make sure that memory access is always as "local" 

and "distributed" as possible? 

 

 

 

 

 

 

 

 Page placement is implemented in units of OS pages (often 4kB, possibly 

more) 
 

C C C C 

M M 

C C C C 

M M 
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Cray XE6 Interlagos node 

4 chips, two sockets, 8 threads per ccNUMA domain 

 
 ccNUMA map: Bandwidth penalties for remote access 

 Run 8 threads per ccNUMA domain (1 chip) 

 Place memory in different domain  4x4 combinations 

 STREAM triad benchmark using nontemporal stores  
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Intel Sandy Bridge 2-socket system 

2 chips, 2 sockets, 8 threads per ccNUMA domain 

 General rule: 

 

The more ccNUMA domains, the larger the non-local access 

penalty 

Memory node 

C
P

U
 n

o
d

e
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numactl as a simple ccNUMA locality tool : 

How do we enforce some locality of access? 

 numactl can influence the way a binary maps its memory pages: 
 

numactl --membind=<nodes> a.out # map pages only on <nodes> 

        --preferred=<node> a.out  # map pages on <node>  

                             # and others if <node> is full 

        --interleave=<nodes> a.out # map pages round robin across 

                              # all <nodes> 

 Examples: 

 
for m in `seq 0 3`; do 

  for c in `seq 0 3`; do  

    env OMP_NUM_THREADS=8 \ 

        numactl --membind=$m --cpunodebind=$c ./stream 

  enddo 

enddo 

 

 

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \ 

    likwid-pin -c N:0,4,8,12 ./stream 
 

 But what is the default without numactl? 

ccNUMA map scan 
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ccNUMA default memory locality 

 "Golden Rule" of ccNUMA: 

 

A memory page gets mapped into the local memory of the 

processor that first touches it! 

 

 Except if there is not enough local memory available 

 This might be a problem, see later 

 Caveat: "touch" means "write", not "allocate" 

 Example:  

 
double *huge = (double*)malloc(N*sizeof(double)); 

 

for(i=0; i<N; i++) // or i+=PAGE_SIZE 

   huge[i] = 0.0;   

 

 

 It is sufficient to touch a single item to map the entire page 

Memory not 

mapped here yet 

Mapping takes 

place here 
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Coding for ccNUMA data locality 

integer,parameter :: N=10000000 

double precision A(N), B(N) 

 

 

 

A=0.d0 

 

 

 

!$OMP parallel do 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end parallel do 

integer,parameter :: N=10000000 

double precision A(N),B(N) 

!$OMP parallel  

!$OMP do schedule(static) 

do i = 1, N 

  A(i)=0.d0 

end do 

!$OMP end do 

... 

!$OMP do schedule(static) 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end do 

!$OMP end parallel 

 Most simple case: explicit initialization  
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Coding for ccNUMA data locality 

integer,parameter :: N=10000000 

double precision A(N), B(N) 

 

 

 

 

READ(1000) A 

 

 

 

!$OMP parallel do 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end parallel do 

integer,parameter :: N=10000000 

double precision A(N),B(N) 

!$OMP parallel  

!$OMP do schedule(static) 

do i = 1, N 

  A(i)=0.d0 

end do 

!$OMP end do 

!$OMP single 

READ(1000) A 

!$OMP end single 

!$OMP do schedule(static) 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end do 

!$OMP end parallel 

 Sometimes initialization is not so obvious: I/O cannot be easily 

parallelized, so “localize” arrays before I/O 
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Coding for Data Locality 

 Required condition: OpenMP loop schedule of initialization must 

be the same as in all computational loops 

 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to 

be sure… 

 Imposes some constraints on possible optimizations (e.g. load balancing) 

 Presupposes that all worksharing loops with the same loop length have the 

same thread-chunk mapping 

 If dynamic scheduling/tasking is unavoidable, more advanced methods may 

be in order 

 See below 

 How about global objects? 

 Better not use them 

 If communication vs. computation is favorable, might consider properly 

placed copies of global data 

 C++: Arrays of objects and std::vector<> are by default 

initialized sequentially 

 STL allocators provide an elegant solution 
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Diagnosing Bad Locality 

 If your code is cache-bound, you might not notice any locality 

problems 

 

 Otherwise, bad locality limits scalability at very low CPU numbers 

(whenever a node boundary is crossed) 

 If the code makes good use of the memory interface 

 But there may also be a general problem in your code… 

 

 Running with  numactl --interleave might give you a hint 

 See later 

 

 Consider using performance counters 

 LIKWID-perfctr can be used to measure nonlocal memory accesses 

 Example for Intel Westmere dual-socket system (Core i7, hex-core): 

 
env OMP_NUM_THREADS=12 likwid-perfctr -g MEM –C N:0-11 ./a.out 
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Using performance counters for diagnosing bad ccNUMA 

access locality 

 Intel Westmere EP node (2x6 cores): 

 

 

 

 

 

 

 

 

 

 

 

 

 

Only one memory BW 

per socket (“Uncore”) 

Half of BW comes from 

other socket! 

+-----------------------------+----------+----------+     +----------+----------+ 

|           Metric            |  core 0  |  core 1  |     |  core 6  |  core 7  | 

+-----------------------------+----------+----------+     +----------+----------+ 

|         Runtime [s]         | 0.730168 | 0.733754 |     | 0.732808 | 0.732943 | 

|             CPI             | 10.4164  | 10.2654  |     | 10.5002  | 10.7641  | 

| Memory bandwidth [MBytes/s] | 11880.9  |    0     | ... | 11732.4  |    0     | ... 

|  Remote Read BW [MBytes/s]  |   4219   |    0     |     | 4163.45  |    0     | 

| Remote Write BW [MBytes/s]  | 1706.19  |    0     |     | 1705.09  |    0     | 

|    Remote BW [MBytes/s]     | 5925.19  |    0     |     | 5868.54  |    0     | 

+-----------------------------+----------+----------+     +----------+----------+ 
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If all fails… 

 Even if all placement rules have been carefully observed, you may 

still see nonlocal memory traffic. Reasons? 
 

 Program has erratic access patters  may still achieve some access 

parallelism (see later) 

 OS has filled memory with buffer cache data: 

 

 

 

 

 

 

# numactl --hardware    # idle node! 

available: 2 nodes (0-1) 

node 0 size: 2047 MB 

node 0 free: 906 MB 

node 1 size: 1935 MB 

node 1 free: 1798 MB 

top - 14:18:25 up 92 days,  6:07,  2 users,  load average: 0.00, 0.02, 0.00 

Mem:   4065564k total,  1149400k used,  2716164k free,    43388k buffers 

Swap:  2104504k total,     2656k used,  2101848k free,  1038412k cached 
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ccNUMA problems beyond first touch: 

Buffer cache 

 OS uses part of main memory for 

disk buffer (FS) cache 

 If FS cache fills part of memory,  

apps will probably allocate from  

foreign domains 

  non-local access! 

 “sync” is not sufficient to 

drop buffer cache blocks 

 

 

 Remedies 

 Drop FS cache pages after user job has run (admin’s job) 

 seems to be automatic after aprun has finished on Crays  

 User can run “sweeper” code that allocates and touches all physical 

memory before starting the real application 

 numactl tool or aprun can force local allocation (where applicable) 

 Linux: There is no way to limit the buffer cache size in standard kernels 

P1 
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P2 
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ccNUMA problems beyond first touch: 

Buffer cache 

Real-world example: ccNUMA and the Linux buffer cache 

Benchmark: 

1. Write a file of some size 

from LD0 to disk 

2. Perform bandwidth 

benchmark using 

all cores in LD0 and 

maximum memory 

installed in LD0 

 

Result: By default, 

Buffer cache is given  

priority over local  

page placement 

 restrict to local  

    domain if possible! 

aprun –ss ... 

(Cray only) 
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ccNUMA placement and erratic access patterns 

 Sometimes access patterns are  

just not nicely grouped into  

contiguous chunks: 

 

 

 

 

 

 

 

 

 

 

 In both cases page placement cannot easily be fixed for perfect parallel 

access 

double precision :: r, a(M) 

!$OMP parallel do private(r) 

do i=1,N 

  call RANDOM_NUMBER(r) 

  ind = int(r * M) + 1 

  res(i) = res(i) + a(ind) 

enddo 

!OMP end parallel do 

 Or you have to use tasking/dynamic 

scheduling: 

!$OMP parallel 

!$OMP single 

do i=1,N 

  call RANDOM_NUMBER(r) 

  if(r.le.0.5d0) then 

!$OMP task 

    call do_work_with(p(i)) 

!$OMP end task 

  endif 

enddo 

!$OMP end single 

!$OMP end parallel 
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ccNUMA placement and erratic access patterns 

 Worth a try: Interleave memory across ccNUMA domains to get at least 

some parallel access 

1. Explicit placement: 

 

 

 

 

 

2. Using global control via numactl: 

 

numactl --interleave=0-3 ./a.out 

 

 Fine-grained program-controlled placement via libnuma (Linux) 

using, e.g., numa_alloc_interleaved_subset(), 

numa_alloc_interleaved() and others 

 

!$OMP parallel do schedule(static,512) 

do i=1,M 

  a(i) = … 

enddo 

!$OMP end parallel do 

This is for all memory, not 

just the problematic 

arrays! 

Observe page alignment of 

array to get proper 

placement! 
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The curse and blessing of interleaved placement:  

OpenMP STREAM on a Cray XE6 Interlagos node 

 Parallel init: Correct parallel initialization 

 LD0: Force data into LD0 via  numactl –m 0 

 Interleaved:  numactl --interleave <LD range> 
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The curse and blessing of interleaved placement:  

OpenMP STREAM triad on 4-socket (48 core) Magny Cours node 

 Parallel init: Correct parallel initialization 

 LD0: Force data into LD0 via  numactl –m 0 

 Interleaved:  numactl --interleave <LD range> 
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Summary on ccNUMA issues 

 Identify the problem 

 Is ccNUMA an issue in your code? 

 Simple test: run with numactl --interleave  

 

 Apply first-touch placement 

 Look at initialization loops 

 Consider loop lengths and static scheduling 

 C++ and global/static objects may require special care 

 

 If dynamic scheduling cannot be avoided 

 Consider round-robin placement 

 

 Buffer cache may impact proper placement 

 Kick your admins 

 or apply sweeper code 

 If available, use runtime options to force local placement 
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DEMO 
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Simultaneous multithreading (SMT) 

Principles and performance impact 

SMT vs. independent instruction streams 

Facts and fiction 
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SMT Makes a single physical core appear as two or more 

“logical” cores  multiple threads/processes run concurrently 

 SMT principle (2-way example): 

S
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T
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SMT impact 

 SMT is primarily suited for increasing processor throughput 

 With multiple threads/processes running concurrently 

 Scientific codes tend to utilize chip resources quite well 

 Standard optimizations (loop fusion, blocking, …)  

 High data and instruction-level parallelism 

 Exceptions do exist 

 

 SMT is an important topology issue 

 SMT threads share almost all core 

resources 

 Pipelines, caches, data paths 

 Affinity matters! 

 If SMT is not needed 

 pin threads to physical cores 

 or switch it off via BIOS etc. 
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SMT impact 

 SMT adds another layer of topology  

(inside the physical core) 

 Caveat: SMT threads share all caches! 

 Possible benefit: Better pipeline throughput 

 Filling otherwise unused pipelines 

 Filling pipeline bubbles with other thread’s executing instructions: 

 

 

 

 

 

 

 

 Beware: Executing it all in a single thread  

(if possible) may reach the same goal  

without SMT: 

 

Thread 0: 
do i=1,N 

  a(i) = a(i-1)*c 

enddo  

Dependency  pipeline 

stalls until previous MULT 

is over 

Westmere EP  
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Thread 1: 
do i=1,N 

  b(i) = s*b(i-2)+d 

enddo  

Unrelated work in other 

thread can fill the pipeline 

bubbles 

do i=1,N 

  a(i) = a(i-1)*c 

  b(i) = s*b(i-2)+d  

enddo  
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a(2)*c 

Thread 0: 
do i=1,N 

a(i)=a(i-1)*c 

enddo  

a(2)*c 

a(7)*c 

Thread 0: 
do i=1,N 

a(i)=a(i-1)*c 

enddo  

Thread 1: 
do i=1,N 

a(i)=a(i-1)*c 

enddo  

B(7)*d 

A(2)*c 

A(7)*d 

B(2)*c 

Thread 0: 
do i=1,N 

A(i)=A(i-1)*c 

B(i)=B(i-1)*d 

enddo  

Thread 1: 
do i=1,N 

A(i)=A(i-1)*c 

B(i)=B(i-1)*d 

enddo  

Simultaneous recursive updates with SMT  
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Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT 

MULT Pipeline depth: 5 stages  1 F / 5 cycles for recursive update 

Fill bubbles via: 
 SMT 

 Multiple streams 

M
U

L
T
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ip

e
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Simultaneous recursive updates with SMT  

(c) RRZE 2013 SC13 Tutorial 

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT 

MULT Pipeline depth: 5 stages  1 F / 5 cycles for recursive update 

5 independent updates on a single thread do the same job! 

B(2)*s 

A(2)*s 

E(1)*s 

D(1)*s 

C(1)*s 

Thread 0: 
do i=1,N 

 A(i)=A(i-1)*s 

 B(i)=B(i-1)*s 

 C(i)=C(i-1)*s 

 D(i)=D(i-1)*s 

 E(i)=E(i-1)*s 

enddo  

M
U

L
T

 p
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e
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Simultaneous recursive updates with SMT  
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Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT 

Pure update benchmark can be vectorized  2 F / cycle (store limited) 

Recursive update: 
 

 SMT can fill pipeline 

bubles 

 

 A single thread can 

do so as well 

 

 Bandwidth does not 

increase through 

SMT 

 

 SMT can not 

replace SIMD! 
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SMT myths: Facts and fiction (1) 

 Myth: “If the code is compute-bound, then the functional units 

should be saturated and SMT should show no improvement.” 

 

 

 

 Truth 

1. A compute-bound loop does not  

necessarily saturate the pipelines;  

dependencies can cause a lot of bubbles,  

which may be filled by SMT threads. 

 

2. If a pipeline is already full, SMT will not improve its 

utilization 
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B(7)*d 

A(2)*c 

A(7)*d 

B(2)*c 

Thread 0: 
do i=1,N 

A(i)=A(i-1)*c 

B(i)=B(i-1)*d 

enddo  

Thread 1: 
do i=1,N 

A(i)=A(i-1)*c 

B(i)=B(i-1)*d 

enddo  
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SMT myths: Facts and fiction (2) 

 Myth: “If the code is memory-bound, SMT should help because it 

can fill the bubbles left by waiting for data from memory.” 

 Truth:  

1. If the maximum memory bandwidth is already reached, SMT will not 

help since the relevant  

resource (bandwidth)  

is exhausted. 

 

2. If the relevant  

bottleneck is not  

exhausted, SMT may  

help since it can fill  

bubbles in the LOAD  

pipeline. 

 

This applies also to other 

“relevant bottlenecks!” 
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SMT myths: Facts and fiction (3) 

 Myth: “SMT can help bridge the latency to 

memory (more outstanding references).” 

 

 Truth:  
Outstanding references may or may not be 

bound to SMT threads; they may be a resource 

of the memory interface and shared by all 

threads. The benefit of SMT with memory-bound 

code is usually due to better utilization of the 

pipelines so that less time gets “wasted” in the 

cache hierarchy. 

 

 

See also the “ECM Performance Model” 

later on. 
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Things to remember 

Goals for optimization: 

 

1. Map your work to an instruction mix with highest throughput 

using the most effective instructions. 

 

2. Reduce data volume over slow data paths fully utilizing available 

bandwidth. 

 

3. Avoid possible hazards/overhead which prevent reaching goals 

one and two. 
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Agenda 

 Preliminaries 

 Introduction to multicore architecture 

 Cores, caches, chips, sockets, ccNUMA, SIMD 

 LIKWID tools 

 Microbenchmarking for architectural exploration 

 Streaming benchmarks: throughput mode 

 Streaming benchmarks: work sharing 

 Roadblocks for scalability: Saturation effects and OpenMP overhead 

 Lunch break 

 Node-level performance modeling 

 The Roofline Model 

 Case study: 3D Jacobi solver and model-guided optimization 

 Optimal resource utilization 

 SIMD parallelism 

 ccNUMA 

 Simultaneous multi-threading (SMT) 

 Optional: The ECM multicore performance model 
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Multicore Scaling: 

The ECM Model 

Improving the Roofline Model 

 

See Poster   

“Pattern-Driven Node-Level Performance Engineering” 

(Tomorrow 5:15pm – 7pm) 



Assumptions and shortcomings of the roofline model 

 Assumes one of two bottlenecks  

1. In-core execution 

2. Bandwidth of a single hierarchy level 

 Latency effects are not modeled  pure data streaming assumed 

 In-core execution is sometimes hard to 

model 

 

 

 Saturation effects in multicore  

chips are not explained 

 ECM model gives more insight 

 

A(:)=B(:)+C(:)*D(:) 

Roofline predicts full 
socket BW 
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ECM Model 

 ECM = “Execution-Cache-Memory” 

 

 Assumptions:  

 Single-core execution time is composed of 

1. In-core execution 

2. Data transfers in the memory hierarchy 

 Data transfers may or may not overlap with 

each other or with in-core execution 

 Scaling is linear until the relevant bottleneck 

is reached  

 

 Input: 

 Same as for Roofline 

 + data transfer times in hierarchy 
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Example: Schönauer Vector Triad in L2 cache 

 REPEAT[ A(:) = B(:) + C(:) * D(:)] @ double precision 

 Analysis for Sandy Bridge core w/ AVX (unit of work: 1 cache line) 
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1 LD/cy + 0.5 ST/cy 

Registers 

L1 

L2 

32 B/cy (2 cy/CL) 

Machine characteristics: 

Arithmetic:  
1 ADD/cy+ 1 MULT/cy 

Registers 

L1 

L2 

Triad analysis (per CL): 

6 cy/CL 

10 cy/CL 

Arithmetic:  
AVX: 2 cy/CL 
 

LD LD 
ST/2 

LD 
ST/2 LD LD 

ST/2 
LD 

ST/2 

LD 

ADD 
MULT 

ADD 
MULT 

LD LD WA ST 

Roofline prediction: 16/10 F/cy 

Timeline: 

16 F/CL (AVX) 

Measurement: 16F / ≈17cy 



Example: ECM model for Schönauer Vector Triad 
A(:)=B(:)+C(:)*D(:) on a Sandy Bridge Core with AVX  
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CL 
transfer 

Write-
allocate 
CL transfer 



Full vs. partial vs. no overlap 
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Results 
suggest no 
overlap! 



Multicore scaling in the ECM model 

 Identify relevant bandwidth bottlenecks 

 L3 cache 

 Memory interface 

 Scale single-thread performance until first bottleneck is hit: 
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𝑃 𝑡 = min(𝑡𝑃0, 𝑃roof ),  with  𝑃roof = min (𝑃max, 𝐼 ∙ 𝑏𝑆) 

. . . Example: 
Scalable L3  

on Sandy 
Bridge 



ECM prediction vs. measurements for  A(:)=B(:)+C(:)*D(:)  

on a Sandy Bridge socket (no-overlap assumption) 

Model: Scales until saturation 

sets in  

 

Saturation point (# cores) well 

predicted 

 

Measurement: scaling not perfect 

 

 

Caveat: This is specific for this 

architecture and this benchmark! 

 

Check: Use “overlappable” kernel 

code 
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ECM prediction vs. measurements for  A(:)=B(:)+C(:)/D(:)  

on a Sandy Bridge socket (full overlap assumption) 
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In-core execution is dominated by 

divide operation  

(44 cycles with AVX, 22 scalar) 

 

 Almost perfect agreement with    

    ECM model 

 

 

Parallelism  “heals” bad 
single-core performance 

… just barely! 



The impact of in-core optimizations 

 Remember the sequential vector triad? 

(c) RRZE 2013 216 SC13 Tutorial 

L1 

L2 

L3 

M
em

 

AVX 

L1 

L2 

L3 

M
em

 

scalar 

Less SIMD benefit 
for far-away data 
 “Amdahl’s Law”! 



Summary: The ECM Model 

 Saturation effects are ubiquitous; understanding them gives us 
opportunity to 

 Find out about optimization opportunities 

 Save energy by letting cores idle  see power model later on 

 Putting idle cores to better use  asynchronous communication, functional 
parallelism 

 

 ECM correctly describes several effects 

 Saturation for memory-bound loops 

 Diminishing returns of in-core optimizations for far-away data 

 Parallelism heals bad sequential code (sometimes…) 

 

 Simple models work best. Do not try to complicate things unless it is 
really necessary! 

 

 Possible extensions to the ECM model 

 Accommodate latency effects 

 Model simple “architectural hazards” 
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Tutorial conclusion 

 Multicore architecture == multiple complexities 

 Affinity matters  pinning/binding is essential 

 Bandwidth bottlenecks  inefficiency is often made on the chip level 

 Topology dependence of performance features  know your hardware! 

 Put cores to good use 

 Bandwidth bottlenecks  surplus cores  functional parallelism!? 

 Shared caches  fast communication/synchronization  better 

implementations/algorithms? 

 

 Simple modeling techniques help us 

 … understand the limits of our code on the given hardware 

 … identify optimization opportunities 

 … learn more, especially when they do not work! 

 

 Simple tools get you 95% of the way 

 e.g., LIKWID tool suite. Best tool: 
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your brain! 
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THANK YOU. 
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Moritz Kreutzer 

Markus Wittmann 

Thomas Zeiser 

Michael Meier 

 

OMI4papps 

HSMB 
 

hpcADD 

FEPA 

SKALB 
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Abstract 

 SC13 tutorial: The Practitioner's Cookbook for Good Parallel Performance 
on Multi- and Many-Core Systems 

 Presenter(s): Georg Hager, Jan Treibig, Gerhard Wellein 

 

 ABSTRACT: 
 
The advent of multi- and many-core chips has led to a further opening of the gap between 
peak and application performance for many scientific codes. This trend is accelerating as 
we move from petascale to exascale. Paradoxically, bad node-level performance helps to 
"efficiently" scale to massive parallelism, but at the price of increased overall time to 
solution. If the user cares about time to solution on any scale, optimal performance on the 
node level is often the key factor. Also, the potential of node-level improvements is widely 
underestimated, thus it is vital to understand the performance-limiting factors on modern 
hardware. We convey the architectural features of current processor chips, 
multiprocessor nodes, and accelerators, as well as the performance properties of the 
dominant MPI and OpenMP programming models, as far as they are relevant for the 
practitioner. Peculiarities like SIMD vectorization, shared vs. separate caches, bandwidth 
bottlenecks, and ccNUMA characteristics are introduced, and the influence of system 
topology and affinity on the performance of typical parallel programming constructs is 
demonstrated. Performance engineering is introduced as a powerful tool that helps the 
user assess the impact of possible code optimizations by establishing models for the 
interaction of the software with the hardware. 
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HPC textbook 
 
Georg Hager and Gerhard Wellein: 

Introduction to High Performance 
Computing for Scientists and Engineers 
 
CRC Press, ISBN 978-1439811924 
356 pages 
July 2010 

"Georg Hager and Gerhard Wellein have developed a  
very approachable introduction to high performance  
computing for scientists and engineers. Their style and  
descriptions are easy to read and follow. … This book  
presents a balanced treatment of the theory, technology,  
architecture, and software for modern high performance computers and the use of high 
performance computing systems. The focus on scientific and engineering problems 
makes it both educational and unique. I highly recommend this timely book for 
scientists and engineers. I believe it will benefit many readers and provide a fine 
reference." 
— From the Foreword by Jack Dongarra, University of Tennessee, Knoxville, USA 



Georg Hager & Gerhard Wellein:  
Introduction to High Performance Computing for Scientists and Engineers 

 Covers basic sequential optimization strategies and the dominating 
parallelization paradigms, including shared-memory parallelization with 
OpenMP and distributed-memory parallel programming with MPI  

 Highlights the importance of performance modeling of applications on all 
levels of a system’s architecture 

 Contains numerous case studies drawn from the authors’ invaluable 
experiences in HPC user support, performance optimization, and 
benchmarking  

 Explores important contemporary concepts, such as  
multicore architecture and affinity issues  

 Includes code examples in Fortran and, if relevant,  
C and C++  

 Provides end-of-chapter exercises with solutions in  
an appendix 

 http://www.hpc.rrze.uni-erlangen.de/HPC4SE/ 

http://www.hpc.rrze.uni-erlangen.de/HPC4SE/
http://www.hpc.rrze.uni-erlangen.de/HPC4SE/
http://www.hpc.rrze.uni-erlangen.de/HPC4SE/
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