
The Practitioner's Cookbook

for Good Parallel Performance

on Multi- and Many-Core Systems

Georg Hager, Jan Treibig, Gerhard Wellein

Erlangen Regional Computing Center (RRZE)
and Department of Computer Science

University of Erlangen-Nuremberg

SC13 full-day tutorial
June 18, 2013

Denver, CO

8:30

Agenda

 Preliminaries

 Introduction to multicore architecture

 Cores, caches, chips, sockets, ccNUMA, SIMD

 LIKWID tools

 Microbenchmarking for architectural exploration

 Streaming benchmarks: throughput mode

 Streaming benchmarks: work sharing

 Roadblocks for scalability: Saturation effects and OpenMP overhead

 Lunch break

 Node-level performance modeling

 The Roofline Model

 Case study: 3D Jacobi solver and model-guided optimization

 Optimal resource utilization

 SIMD parallelism

 ccNUMA

 Simultaneous multi-threading (SMT)

 Optional: The ECM multicore performance model

(c) RRZE 2013 2 SC13 Tutorial

10:00

12:00

15:00

17:00

13:30

15:30

10:30

08:30

G
H

a
JT

G

H
a

G
W

JT

G

W

G
H

a

Agenda

 Preliminaries

 Introduction to multicore architecture

 Cores, caches, chips, sockets, ccNUMA, SIMD

 LIKWID tools

 Microbenchmarking for architectural exploration

 Streaming benchmarks: throughput mode

 Streaming benchmarks: work sharing

 Roadblocks for scalability: Saturation effects and OpenMP overhead

 Lunch break

 Node-level performance modeling

 The Roofline Model

 Case study: 3D Jacobi solver and model-guided optimization

 Optimal resource utilization

 SIMD parallelism

 ccNUMA

 Simultaneous multi-threading (SMT)

 Optional: The ECM multicore performance model

(c) RRZE 2013 3 SC13 Tutorial

Prelude:

Scalability 4 the win!

Scalability Myth: Code scalability is the key issue

Lore 1

In a world of highly parallel computer architectures only highly

scalable codes will survive

Lore 2

Single core performance no longer matters since we have so many

of them and use scalable codes

(c) RRZE 2013 SC13 Tutorial 5

Scalability Myth: Code scalability is the key issue

(c) RRZE 2013 6 SC13 Tutorial

Prepared for
the highly
parallel era!

!$OMP PARALLEL DO

do k = 1 , Nk

 do j = 1 , Nj; do i = 1 , Ni

 y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
 x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

 enddo; enddo

enddo

!$OMP END PARALLEL DO

Changing only the compile
options makes this code
scalable on an 8-core chip

–O3 -xAVX

Scalability Myth: Code scalability is the key issue

(c) RRZE 2013 7 SC13 Tutorial

!$OMP PARALLEL DO

do k = 1 , Nk

 do j = 1 , Nj; do i = 1 , Ni

 y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
 x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

 enddo; enddo

enddo

!$OMP END PARALLEL DO

Single core/socket efficiency
is key issue!

Upper limit from simple
performance model:
35 GB/s & 24 Byte/update

Questions to ask in high performance computing

 Do I understand the performance behavior of my code?

 Does the performance match a model I have made?

 What is the optimal performance for my code on a given machine?

 High Performance Computing == Computing at the bottleneck

 Can I change my code so that the “optimal performance” gets

higher?

 Circumventing/ameliorating the impact of the bottleneck

 My model does not work – what’s wrong?

 This is the good case, because you learn something

 Performance monitoring / microbenchmarking may help clear up the

situation

(c) RRZE 2013 8 SC13 Tutorial

Performance Engineering as a process

The Performance Engineering (PE)
process:

The performance model is the central
component – if the model fails to predict
the measurement, you learn something!

The analysis has to be done for every
loop / basic block!

(c) RRZE 2013 9 SC13 Tutorial

Algorithm/Code analysis

Runtime profiling

Machine characteristics

Microbenchmarking

Traces/HW metrics

Performance model Code optimization

 White Box Performance Model
 Simple enough to do on paper
 Catching the important

influences

How model-building works: Physics

(c) RRZE 2013

Newtonian mechanics

Fails @ small scales!

𝑖ℏ
𝜕

𝜕𝑡
𝜓 𝑟 , 𝑡 = 𝐻𝜓 𝑟 , 𝑡

𝐹 = 𝑚𝑎

Nonrelativistic

quantum

mechanics

Fails @ even smaller scales!

Relativistic

quantum

field theory

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐

10 SC13 Tutorial

The Rules™

There is no alternative to knowing what is going on

between your code and the hardware

Without performance modeling,

optimizing code is like stumbling in the dark

(c) RRZE 2013 SC13 Tutorial 11

Agenda

 Preliminaries

 Introduction to multicore architecture

 Cores, caches, chips, sockets, ccNUMA, SIMD

 LIKWID tools

 Microbenchmarking for architectural exploration

 Streaming benchmarks: throughput mode

 Streaming benchmarks: work sharing

 Roadblocks for scalability: Saturation effects and OpenMP overhead

 Lunch break

 Node-level performance modeling

 The Roofline Model

 Case study: 3D Jacobi solver and model-guided optimization

 Optimal resource utilization

 SIMD parallelism

 ccNUMA

 Simultaneous multi-threading (SMT)

 Optional: The ECM multicore performance model

(c) RRZE 2013 12 SC13 Tutorial

Introduction:

Modern node architecture

Multi- and manycore chips and nodes

A glance at basic core features

Caches and data transfers through the memory hierarchy

Memory organization

Accelerators

Programming models

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAA

Multi-Core: Intel Xeon 2600 (2012)

 Xeon 2600 “Sandy Bridge EP”:

8 cores running at 2.7 GHz (max 3.2 GHz)

 Simultaneous Multithreading

 reports as 16-way chip

 2.3 Billion Transistors / 32 nm

 Die size: 435 mm2

2-socket server

(c) RRZE 2013 SC13 Tutorial 14

General-purpose cache based microprocessor core

 (Almost) the same basic design in all modern systems

(c) RRZE 2013 SC13 Tutorial

Not shown: most of the control unit, e.g. instruction fetch/decode, branch prediction,…

15

Pipelining of arithmetic/functional units

 Idea:
 Split complex instruction into several simple / fast steps (stages)

 Each step takes the same amount of time, e.g. a single cycle

 Execute different steps on different instructions at the same time (in parallel)

 Allows for shorter cycle times (simpler logic circuits), e.g.:
 floating point multiplication takes 5 cycles, but

 processor can work on 5 different multiplications simultaneously

 one result at each cycle after the pipeline is full

 Drawback:
 Pipeline must be filled - startup times (#Instructions >> pipeline steps)

 Efficient use of pipelines requires large number of independent instructions 
instruction level parallelism

 Requires complex instruction scheduling by compiler/hardware – software-
pipelining / out-of-order

 Pipelining is widely used in modern computer architectures

(c) RRZE 2013 SC13 Tutorial 16

5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N

Wind-up/-down phases: Empty pipeline stages

First result is available after 5 cycles (=latency of pipeline)!

(c) RRZE 2013 SC13 Tutorial 17

Pipelining: The Instruction pipeline

 Besides arithmetic & functional unit, instruction execution itself is

pipelined also, e.g.: one instruction performs at least 3 steps:

Fetch Instruction

from L1I

Decode

instruction

Execute

Instruction

Fetch Instruction 1

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

t

…

 Branches can stall this pipeline! (Speculative Execution, Predication)

 Each unit is pipelined itself (e.g., Execute = Multiply Pipeline)

1

2

3

4

(c) RRZE 2013 SC13 Tutorial 18

 Multiple units enable use of Instrucion Level Parallelism (ILP):

Instruction stream is “parallelized” on the fly

 Issuing m concurrent instructions per cycle: m-way superscalar

 Modern processors are 3- to 6-way superscalar &

can perform 2 or 4 floating point operations per cycles

Superscalar Processors – Instruction Level Parallelism

Fetch Instruction 4

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 3

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 2

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 1

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 5

from L1I

Decode

Instruction 5

Decode

Instruction 9

Execute

Instruction 5

Fetch Instruction 9

from L1I

Fetch Instruction 13

from L1I

4-way

„superscalar“

t

(c) RRZE 2013 SC13 Tutorial 19

Core details: Simultaneous multi-threading (SMT)

(c) RRZE 2013 SC13 Tutorial

St
an

d
ar

d
 c

o
re

2

-w
ay

 S
M

T

SMT principle (2-way example):

20

Core details: SIMD processing

 Single Instruction Multiple Data (SIMD) operations allow the

concurrent execution of the same operation on “wide” registers

 x86 SIMD instruction sets:

 SSE: register width = 128 Bit  2 double precision floating point operands

 AVX: register width = 256 Bit  4 double precision floating point operands

 Adding two registers holding double precision floating point

operands

(c) RRZE 2013 SC13 Tutorial
A

[0
]

A
[1

]
A

[2
]

A
[3

]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

A
[0

]

B
[0

]

C
[0

]

64 Bit

256 Bit

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:

R2 ADD [R0,R1]

SIMD execution:

V64ADD [R0,R1] R2

21

Registers and caches: Data transfers in a memory hierarchy

 How does data travel from memory to the CPU and back?

 Remember: Caches are organized

in cache lines (e.g., 64 bytes)

 Only complete cache lines are

transferred between memory

hierarchy levels (except registers)

 MISS: Load or store instruction does

not find the data in a cache level

 CL transfer required

 Example: Array copy A(:)=C(:)

(c) RRZE 2013 SC13 Tutorial

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1) MISS

write
allocate

evict
(delayed)

3 CL

transfers

LD C(2..Ncl)
ST A(2..Ncl)

HIT

C(:) A(:)

22

23

Today: Dual-socket Intel (Westmere,…) node:

Yesterday (2006): Dual-socket Intel “Core2” node:

From UMA to ccNUMA
Basic architecture of commodity compute cluster nodes

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

But: system “anisotropy”

Cache-coherent Non-Uniform Memory

Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at the

price of ccNUMA architectures: Where

does my data finally end up?

On AMD it is even more complicated  ccNUMA within a socket!

(c) RRZE 2013 SC13 Tutorial

Current AMD design:

AMD Interlagos / Bulldozer

 Up to 16 cores (8 Bulldozer modules) in a single socket

 Max. 2.6 GHz (+ Turbo Core)

 Pmax = (2.6 x 8 x 8) GF/s

 = 166.4 GF/s

Each Bulldozer module:

 2 “lightweight” cores

 1 FPU: 4 MULT & 4 ADD

(double precision) / cycle

 Supports AVX

 Supports FMA4

2 NUMA domains per socket

16 kB
dedicated
L1D cache

2 DDR3 (shared) memory

channels > 15 GB/s

2048 kB
shared

L2 cache

8 (6) MB
shared

L3 cache

(c) RRZE 2013 SC13 Tutorial 25

27 (c) RRZE 2013

Floating Point (FP) Performance:

 P = ncore * F * S * n

ncore number of cores: 8

F FP instructions per cycle: 2

 (1 MULT and 1 ADD)

S FP ops / instruction: 4 (dp) / 8 (sp)

 (256 Bit SIMD registers – “AVX”)

n Clock speed : ∽2.7 GHz

P = 173 GF/s (dp) / 346 GF/s (sp)

There is no single driving force for chip performance!

Intel Xeon

“Sandy Bridge EP” socket

4,6,8 core variants available

But: P=5.4 GF/s (dp) for serial, non-SIMD code

TOP500 rank 1 (mid-90s)

SC13 Tutorial

Challenges with modern compute nodes

(c) RRZE 2013 SC13 Tutorial

GPU #1

GPU #2

PCIe link

Other I/O

Heterogeneous programming is here to stay!

SIMD + OpenMP + MPI + CUDA, OpenCL,…

Core:

SIMD vectorization

SMT

Socket:

Parallelization

Shared Resources

Accelerators:

Data transfer to/from host

Node:

ccNUMA/data locality

Where is the data?

28

Interlude:

A glance at current accelerator technology

30

NVIDIA Kepler GK110 Block Diagram

Architecture

 7.1B Transistors

 15 “SMX” units

 192 (SP) “cores” each

 > 1 TFLOP DP peak

 1.5 MB L2 Cache

 384-bit GDDR5

 PCI Express Gen3

 3:1 SP:DP performance

© NVIDIA Corp. Used with permission.

(c) RRZE 2013 SC13 Tutorial

31

Intel Xeon Phi block diagram

(c) RRZE 2013 SC13 Tutorial

Architecture

 3B Transistors

 60+ cores

 512 bit SIMD

 ≈ 1 TFLOP

DP peak

 0.5 MB

L2/core

 GDDR5

 2:1 SP:DP

performance

64 byte/cy

32

TOP500

rankings

Nov 2012

Comparing accelerators

 Intel Xeon Phi

 60+ IA32 cores each with 512 Bit SIMD

FMA unit  480/960 SIMD DP/SP tracks

 Clock Speed: ~1000 MHz

 Transistor count: ~3 B (22nm)

 Power consumption: ~250 W

 Peak Performance (DP): ~ 1 TF/s

 Memory BW: ~250 GB/s (GDDR5)

 Threads to execute: 60-240+

 Programming:

Fortran/C/C++ +OpenMP + SIMD

 Top7: “Stampede” at Texas Center

for Advanced Computing

(c) RRZE 2013 SC13 Tutorial

 NVIDIA Kepler K20

 15 SMX units each with

192 “cores” 

960/2880 DP/SP “cores”

 Clock Speed: ~700 MHz

 Transistor count: 7.1 B (28nm)

 Power consumption: ~250 W

 Peak Performance (DP): ~ 1.3 TF/s

 Memory BW: ~ 250 GB/s (GDDR5)

 Threads to execute: 10,000+

 Programming:

CUDA, OpenCL, (OpenACC)

 Top1: “Titan” at Oak Ridge National

Laboratory

33

Trading single thread performance for parallelism:

GPGPUs vs. CPUs

 GPU vs. CPU

light speed estimate:

1. Compute bound: 2-10x

2. Memory Bandwidth: 1-5x

 Intel Core i5 – 2500

(“Sandy Bridge”)

Intel Xeon E5-2680 DP

node (“Sandy Bridge”)

NVIDIA K20x

(“Kepler”)

Cores@Clock 4 @ 3.3 GHz 2 x 8 @ 2.7 GHz 2880 @ 0.7 GHz

Performance+/core 52.8 GFlop/s 43.2 GFlop/s 1.4 GFlop/s

Threads@STREAM <4 <16 >8000?

Total performance+ 210 GFlop/s 691 GFlop/s 4,000 GFlop/s

Stream BW 18 GB/s 2 x 40 GB/s 168 GB/s (ECC=1)

Transistors / TDP 1 Billion* / 95 W 2 x (2.27 Billion/130W) 7.1 Billion/250W

* Includes on-chip GPU and PCI-Express + Single Precision Complete compute device

(c) RRZE 2013 SC13 Tutorial

Node topology and

programming models

35

Parallelism in a modern compute node

 Parallel and shared resources within a shared-memory node

GPU #1

GPU #2
PCIe link

 Parallel resources:

 Execution/SIMD units

 Cores

 Inner cache levels

 Sockets / ccNUMA domains

 Multiple accelerators

 Shared resources:

 Outer cache level per socket

 Memory bus per socket

 Intersocket link

 PCIe bus(es)

 Other I/O resources

Other I/O

1

2

3

4 5

1

2

3

4

5

6

6

7

7

8

8

9

9

10

10

How does your application react to all of those details?

(c) RRZE 2013 SC13 Tutorial

36 (c) RRZE 2013 SC13 Tutorial

Parallel programming models

on modern compute nodes

 Shared-memory (intra-node)

 Good old MPI

 OpenMP

 POSIX threads

 Intel Threading Building Blocks (TBB)

 Cilk+, OpenCL, StarSs,… you name it

 Distributed-memory (inter-node)

 MPI

 PVM (gone)

 Hybrid

 Pure MPI

 MPI+OpenMP

 MPI + any shared-memory model

 MPI (+OpenMP) + CUDA/OpenCL/…

All models require

awareness of topology

and affinity issues for

getting best

performance out of the

machine!

37 (c) RRZE 2013 SC13 Tutorial

Parallel programming models:
Pure MPI

 Machine structure is invisible to user:

  Very simple programming model

  MPI “knows what to do”!?

 Performance issues

 Intranode vs. internode MPI

 Node/system topology

38 (c) RRZE 2013 SC13 Tutorial

Parallel programming models:
Pure threading on the node

 Machine structure is invisible to user

  Very simple programming model

 Threading SW (OpenMP, pthreads,

TBB,…) should know about the details

 Performance issues

 Synchronization overhead

 Memory access

 Node topology

39

Parallel programming models: Lots of choices
Hybrid MPI+OpenMP on a multicore multisocket cluster

One MPI process / node

One MPI process / socket:

OpenMP threads on same

socket: “blockwise”

OpenMP threads pinned

“round robin” across

cores in node

Two MPI processes / socket

OpenMP threads

on same socket

(c) RRZE 2013 SC13 Tutorial

Conclusions about architecture

 Modern computer architecture has a rich “topology”

 Node-level hardware parallelism takes many forms

 Sockets/devices – CPU: 1-8, GPGPU: 1-6

 Cores – moderate (CPU: 4-16) to massive (GPGPU: 1000’s)

 SIMD – moderate (CPU: 2-8) to massive (GPGPU: 10’s-100’s)

 Superscalarity (CPU: 2-6)

 Exploiting performance: parallelism + bottleneck awareness

 “High Performance Computing” == computing at a bottleneck

 Performance of programs is sensitive to architecture

 Topology/affinity influences overheads of popular programming models

 Standards do not contain (many) topology-aware features

 Things are starting to improve slowly (MPI 3.0, OpenMP 4.0)

 Apart from overheads, performance features are largely independent of the
programming model

(c) RRZE 2013 SC13 Tutorial 40

Agenda

 Preliminaries

 Introduction to multicore architecture

 Cores, caches, chips, sockets, ccNUMA, SIMD

 LIKWID tools

 Microbenchmarking for architectural exploration

 Streaming benchmarks: throughput mode

 Streaming benchmarks: work sharing

 Roadblocks for scalability: Saturation effects and OpenMP overhead

 Lunch break

 Node-level performance modeling

 The Roofline Model

 Case study: 3D Jacobi solver and model-guided optimization

 Optimal resource utilization

 SIMD parallelism

 ccNUMA

 Simultaneous multi-threading (SMT)

 Optional: The ECM multicore performance model

(c) RRZE 2013 41 SC13 Tutorial

Multicore Performance and Tools

Probing node topology

 Standard tools

 likwid-topology

43 (c) RRZE 2013 SC13 Tutorial

How do we figure out the node topology?

 Topology =

 Where in the machine does core #n reside? And do I have to remember this

awkward numbering anyway?

 Which cores share which cache levels?

 Which hardware threads (“logical cores”) share a physical core?

 Linux

 cat /proc/cpuinfo is of limited use

 Core numbers may change across kernels

and BIOSes even on identical hardware

 numactl --hardware prints

ccNUMA node information 

 Information on caches is harder

to obtain

$ numactl --hardware

available: 4 nodes (0-3)

node 0 cpus: 0 1 2 3 4 5

node 0 size: 8189 MB

node 0 free: 3824 MB

node 1 cpus: 6 7 8 9 10 11

node 1 size: 8192 MB

node 1 free: 28 MB

node 2 cpus: 18 19 20 21 22 23

node 2 size: 8192 MB

node 2 free: 8036 MB

node 3 cpus: 12 13 14 15 16 17

node 3 size: 8192 MB

node 3 free: 7840 MB

44 (c) RRZE 2013 SC13 Tutorial

How do we figure out the node topology?

 LIKWID tool suite:

Like

I

Knew

What

I’m

Doing

 Open source tool collection

(developed at RRZE):

http://code.google.com/p/likwid

J. Treibig, G. Hager, G. Wellein: LIKWID: A

lightweight performance-oriented tool suite

for x86 multicore environments. Accepted for

PSTI2010, Sep 13-16, 2010, San Diego, CA

http://arxiv.org/abs/1004.4431

45 (c) RRZE 2013 SC13 Tutorial

Likwid Tool Suite

 Command line tools for Linux:

 easy to install

 works with standard linux 2.6 kernel

 simple and clear to use

 supports Intel and AMD CPUs

 Current tools:

 likwid-topology: Print thread and cache topology

 likwid-pin: Pin threaded application without touching code

 likwid-perfctr: Measure performance counters

 likwid-mpirun: mpirun wrapper script for easy LIKWID integration

 likwid-bench: Low-level bandwidth benchmark generator tool

 … some more

46 (c) RRZE 2013 SC13 Tutorial

Output of likwid-topology –g
on one node of Cray XE6 “Hermit”

CPU type: AMD Interlagos processor

Hardware Thread Topology

Sockets: 2

Cores per socket: 16

Threads per core: 1

HWThread Thread Core Socket

0 0 0 0

1 0 1 0

2 0 2 0

3 0 3 0

[...]

16 0 0 1

17 0 1 1

18 0 2 1

19 0 3 1

[...]

Socket 0: (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

Socket 1: (16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)

Cache Topology

Level: 1

Size: 16 kB

Cache groups: (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13

) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (

28) (29) (30) (31)

47

Output of likwid-topology continued

(c) RRZE 2013 SC13 Tutorial

Level: 2

Size: 2 MB

Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15) (16 17) (18

19) (20 21) (22 23) (24 25) (26 27) (28 29) (30 31)

Level: 3

Size: 6 MB

Cache groups: (0 1 2 3 4 5 6 7) (8 9 10 11 12 13 14 15) (16 17 18 19 20 21 22 23) (24 25 26

27 28 29 30 31)

NUMA Topology

NUMA domains: 4

Domain 0:

Processors: 0 1 2 3 4 5 6 7

Memory: 7837.25 MB free of total 8191.62 MB

Domain 1:

Processors: 8 9 10 11 12 13 14 15

Memory: 7860.02 MB free of total 8192 MB

Domain 2:

Processors: 16 17 18 19 20 21 22 23

Memory: 7847.39 MB free of total 8192 MB

Domain 3:

Processors: 24 25 26 27 28 29 30 31

Memory: 7785.02 MB free of total 8192 MB

48

Output of likwid-topology continued

(c) RRZE 2013 SC13 Tutorial

Graphical:

Socket 0:

+---+

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | | 8 | | 9 | | 10 | | 11 | | 12 | | 13 | | 14 | | 15 | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| +---+ +---+ |

| | 6MB | | 6MB | |

| +---+ +---+ |

+---+

Socket 1:

+---+

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16 | | 17 | | 18 | | 19 | | 20 | | 21 | | 22 | | 23 | | 24 | | 25 | | 26 | | 27 | | 28 | | 29 | | 30 | | 31 | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| +---+ +---+ |

| | 6MB | | 6MB | |

| +---+ +---+ |

+---+

10:00 (vor 1.

Pause)

Enforcing thread/process-core affinity

under the Linux OS

 Standard tools and OS affinity facilities

under program control

 likwid-pin

 aprun (Cray)

10:30 (nach 1.

Pause)

50 (c) RRZE 2013 SC13 Tutorial

Example: STREAM benchmark on 16-core Sandy Bridge:

Anarchy vs. thread pinning

No pinning

Pinning (physical cores first,

first socket first)

There are several reasons for caring

about affinity:

 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention

51 (c) RRZE 2013 SC13 Tutorial

Generic thread/process-core affinity under Linux
Overview

 taskset [OPTIONS] [MASK | -c LIST] \

 [PID | command [args]...]

 taskset restricts processes/threads to a set of CPUs. Examples:

taskset 0x0006 ./a.out

taskset –c 4 33187

 Processes/threads can still move within the set!

 Alternative: let process/thread bind itself by executing syscall
#include <sched.h>

int sched_setaffinity(pid_t pid, unsigned int len,

 unsigned long *mask);

 Disadvantage: which CPUs should you bind to on a non-exclusive
machine?

 Still of value on multicore/multisocket cluster nodes, UMA or ccNUMA

52 (c) RRZE 2013 SC13 Tutorial

Generic thread/process-core affinity under Linux

 Complementary tool: numactl

Example: numactl --physcpubind=0,1,2,3 command [args]

Restricts process to specified physical core numbers

Example: numactl --cpunodebind=1 command [args]

Restricts process to specified ccNUMA node(s)

 Many more options (e.g., interleave memory across nodes)

  see section on ccNUMA optimization

 Diagnostic command (see earlier):
numactl --hardware

 Again, this is not suitable for a shared machine

53 (c) RRZE 2013 SC13 Tutorial

More thread/Process-core affinity (“pinning”) options

 Highly OS-dependent system calls

 But available on all systems

 Linux: sched_setaffinity(), PLPA (see below)  hwloc
Windows: SetThreadAffinityMask()
…

 Support for “semi-automatic” pinning in some
compilers/environments

 Intel compilers > V9.1 (KMP_AFFINITY environment variable)

 PGI, Pathscale, GNU

 SGI Altix dplace (works with logical CPU numbers!)

 Generic Linux: taskset, numactl, likwid-pin (see below)

 OpenMP 4.0 (see OpenMP tutorial)

 Affinity awareness in MPI libraries

 SGI MPT

 OpenMPI

 Intel MPI

 …

54 (c) RRZE 2013 SC13 Tutorial

Likwid-pin
Overview

 Pins processes and threads to specific cores without touching code

 Directly supports pthreads, gcc OpenMP, Intel OpenMP

 Based on combination of wrapper tool together with overloaded pthread

library  binary must be dynamically linked!

 Can also be used as a superior replacement for taskset

 Supports logical core numbering within a node and within an existing CPU

set

 Useful for running inside CPU sets defined by someone else, e.g., the MPI

start mechanism or a batch system

 Usage examples:

 Physical numbering (as given by likwid-topology):

likwid-pin -c 0,2,4-6 ./myApp parameters

 Logical numbering by topological entities:

likwid-pin –c S0:0-3 ./myApp parameters

55 (c) RRZE 2013 SC13 Tutorial

Likwid-pin
Example: Intel OpenMP

 Running the STREAM benchmark with likwid-pin:

 $ export OMP_NUM_THREADS=4

 $ likwid-pin -c 0,1,4,5 ./stream

 [likwid-pin] Main PID -> core 0 - OK

 --

 Double precision appears to have 16 digits of accuracy

 Assuming 8 bytes per DOUBLE PRECISION word

 --

 [... some STREAM output omitted ...]

 The *best* time for each test is used

 EXCLUDING the first and last iterations

 [pthread wrapper] PIN_MASK: 0->1 1->4 2->5

 [pthread wrapper] SKIP MASK: 0x1

 [pthread wrapper 0] Notice: Using libpthread.so.0

 threadid 1073809728 -> SKIP

 [pthread wrapper 1] Notice: Using libpthread.so.0

 threadid 1078008128 -> core 1 - OK

 [pthread wrapper 2] Notice: Using libpthread.so.0

 threadid 1082206528 -> core 4 - OK

 [pthread wrapper 3] Notice: Using libpthread.so.0

 threadid 1086404928 -> core 5 - OK

 [... rest of STREAM output omitted ...]

Skip shepherd

thread

Main PID always

pinned

Pin all spawned

threads in turn

56 (c) RRZE 2013 SC13 Tutorial

Likwid-pin
Using logical core numbering

 Core numbering may vary from system to system even with

identical hardware

 Likwid-topology delivers this information, which can then be fed into likwid-

pin

 Alternatively, likwid-pin can abstract this variation and provide a

purely logical numbering (physical cores first)

 Across all cores in the node:
OMP_NUM_THREADS=8 likwid-pin -c N:0-7 ./a.out

 Across the cores in each socket and across sockets in each node:
OMP_NUM_THREADS=8 likwid-pin -c S0:0-3@S1:0-3 ./a.out

Socket 0:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 0 1| | 2 3| | 4 5| | 6 7| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Socket 1:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 8 9| |10 11| |12 13| |14 15| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Socket 0:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 0 8| | 1 9| | 2 10| | 3 11| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Socket 1:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 4 12| | 5 13| | 6 14| | 7 15| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

57

Likwid-pin
Using logical core numbering

(c) RRZE 2013 SC13 Tutorial

Chipset

Memory

Default if -c is not

specified!

 Possible unit prefixes

N node

S socket

M NUMA domain

C outer level cache group

58

DEMO

(c) RRZE 2013 SC13 Tutorial

Multicore performance tools:

Probing performance behavior

likwid-perfctr

60

likwid-perfctr

Basic approach to performance analysis

1. Runtime profile / Call graph (gprof)

2. Instrument those parts which consume a significant part of

runtime

3. Find performance signatures

Possible signatures:

 Bandwidth saturation

 Instruction throughput limitation (real or language-induced)

 Latency impact (irregular data access, high branch ratio)

 Load imbalance

 ccNUMA issues (data access across ccNUMA domains)

 Pathologic cases (false cacheline sharing, expensive operations)

(c) RRZE 2013 SC13 Tutorial

61 (c) RRZE 2013 SC13 Tutorial

Probing performance behavior

 How do we find out about the performance properties and

requirements of a parallel code?

 Profiling via advanced tools is often overkill

 A coarse overview is often sufficient

 likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on

Linux/Altix)

 Simple end-to-end measurement of hardware performance metrics

 “Marker” API for starting/stopping

counters

 Multiple measurement region

support

 Preconfigured and extensible

metric groups, list with
likwid-perfctr -a

BRANCH: Branch prediction miss rate/ratio

CACHE: Data cache miss rate/ratio

CLOCK: Clock of cores

DATA: Load to store ratio

FLOPS_DP: Double Precision MFlops/s

FLOPS_SP: Single Precision MFlops/s

FLOPS_X87: X87 MFlops/s

L2: L2 cache bandwidth in MBytes/s

L2CACHE: L2 cache miss rate/ratio

L3: L3 cache bandwidth in MBytes/s

L3CACHE: L3 cache miss rate/ratio

MEM: Main memory bandwidth in MBytes/s

TLB: TLB miss rate/ratio

62 (c) RRZE 2013 SC13 Tutorial

likwid-perfctr

Example usage with preconfigured metric group

$ env OMP_NUM_THREADS=4 likwid-perfctr -C N:0-3 -g FLOPS_DP ./stream.exe

CPU type: Intel Core Lynnfield processor

CPU clock: 2.93 GHz

Measuring group FLOPS_DP

YOUR PROGRAM OUTPUT

+--------------------------------------+-------------+-------------+-------------+-------------+

| Event | core 0 | core 1 | core 2 | core 3 |

+--------------------------------------+-------------+-------------+-------------+-------------+

| INSTR_RETIRED_ANY | 1.97463e+08 | 2.31001e+08 | 2.30963e+08 | 2.31885e+08 |

| CPU_CLK_UNHALTED_CORE | 9.56999e+08 | 9.58401e+08 | 9.58637e+08 | 9.57338e+08 |

| FP_COMP_OPS_EXE_SSE_FP_PACKED | 4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |

| FP_COMP_OPS_EXE_SSE_FP_SCALAR | 882 | 0 | 0 | 0 |

| FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION | 0 | 0 | 0 | 0 |

| FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION | 4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |

+--------------------------------------+-------------+-------------+-------------+-------------+

+--------------------------+------------+---------+----------+----------+

| Metric | core 0 | core 1 | core 2 | core 3 |

+--------------------------+------------+---------+----------+----------+

| Runtime [s] | 0.326242 | 0.32672 | 0.326801 | 0.326358 |

| CPI | 4.84647 | 4.14891 | 4.15061 | 4.12849 |

| DP MFlops/s (DP assumed) | 245.399 | 189.108 | 189.024 | 189.304 |

| Packed MUOPS/s | 122.698 | 94.554 | 94.5121 | 94.6519 |

| Scalar MUOPS/s | 0.00270351 | 0 | 0 | 0 |

| SP MUOPS/s | 0 | 0 | 0 | 0 |

| DP MUOPS/s | 122.701 | 94.554 | 94.5121 | 94.6519 |

+--------------------------+------------+---------+----------+----------+

Always

measured

Derived

metrics

Configured metrics

(this group)

63

likwid-perfctr

Best practices for runtime counter analysis

Things to look at (in roughly this

order)

 Load balance (flops, instructions,

BW)

 In-socket memory BW saturation

 Shared cache BW saturation

 Flop/s, loads and stores per flop

metrics

 SIMD vectorization

 CPI metric

 # of instructions,

branches, mispredicted branches

Caveats

 Load imbalance may not show in

CPI or # of instructions
 Spin loops in OpenMP barriers/MPI

blocking calls

 Looking at “top” or the Windows Task

Manager does not tell you anything useful

 In-socket performance saturation

may have various reasons

 Cache miss metrics are overrated

 If I really know my code, I can often

calculate the misses

 Runtime and resource utilization is

much more important

(c) RRZE 2013 SC13 Tutorial

64

likwid-perfctr

Identify load imbalance…

 Instructions retired / CPI may not be a good indication of

useful workload – at least for numerical / FP intensive codes….

 Floating Point Operations Executed is often a better indicator

 Waiting / “Spinning” in barrier generates a high instruction count

!$OMP PARALLEL DO

DO I = 1, N

 DO J = 1, I

 x(I) = x(I) + A(J,I) * y(J)

 ENDDO

ENDDO

!$OMP END PARALLEL DO

(c) RRZE 2013 SC13 Tutorial

65

likwid-perfctr

… and load-balanced codes

!$OMP PARALLEL DO

DO I = 1, N

 DO J = 1, N

 x(I) = x(I) + A(J,I) * y(J)

 ENDDO

ENDDO

!$OMP END PARALLEL DO

Higher CPI but

better performance

env OMP_NUM_THREADS=6 likwid-perfctr –C S0:0-5 –g FLOPS_DP ./a.out

(c) RRZE 2013 SC13 Tutorial

66

 likwid-perfctr counts events on cores; it has no notion of what

kind of code is running (if any)

This enables to listen on what currently happens without any

overhead:

likwid-perfctr -c N:0-11 -g FLOPS_DP -s 10

 It can be used as cluster/server monitoring tool

 A frequent use is to measure a certain part of a long running

parallel application from outside

(c) RRZE 2013

likwid-perfctr

Stethoscope mode

SC13 Tutorial

67

likwid-perfctr

Timeline mode

 likwid-perfctr supports time resolved measurements of full node:

 likwid-perfctr –c N:0-11 -g MEM –d 50ms > out.txt

(c) RRZE 2013 SC13 Tutorial

68

likwid-perfctr

Marker API

 To measure only parts of an application a marker API is available.

 The API only turns counters on/off. The configuration of the

counters is still done by likwid-perfctr application.

 Multiple named regions can be measured

 Results on multiple calls are accumulated

 Inclusive and overlapping Regions are allowed

(c) RRZE 2013

likwid_markerInit(); // must be called from serial region

likwid_markerStartRegion(“Compute”);

. . .

likwid_markerStopRegion(“Compute”);

likwid_markerStartRegion(“postprocess”);

. . .

likwid_markerStopRegion(“postprocess”);

likwid_markerClose(); // must be called from serial region

SC13 Tutorial

69

likwid-perfctr

Group files

SHORT PSTI

EVENTSET

FIXC0 INSTR_RETIRED_ANY

FIXC1 CPU_CLK_UNHALTED_CORE

FIXC2 CPU_CLK_UNHALTED_REF

PMC0 FP_COMP_OPS_EXE_SSE_FP_PACKED

PMC1 FP_COMP_OPS_EXE_SSE_FP_SCALAR

PMC2 FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION

PMC3 FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION

UPMC0 UNC_QMC_NORMAL_READS_ANY

UPMC1 UNC_QMC_WRITES_FULL_ANY

UPMC2 UNC_QHL_REQUESTS_REMOTE_READS

UPMC3 UNC_QHL_REQUESTS_LOCAL_READS

METRICS

Runtime [s] FIXC1*inverseClock

CPI FIXC1/FIXC0

Clock [MHz] 1.E-06*(FIXC1/FIXC2)/inverseClock

DP MFlops/s (DP assumed) 1.0E-06*(PMC0*2.0+PMC1)/time

Packed MUOPS/s 1.0E-06*PMC0/time

Scalar MUOPS/s 1.0E-06*PMC1/time

SP MUOPS/s 1.0E-06*PMC2/time

DP MUOPS/s 1.0E-06*PMC3/time

Memory bandwidth [MBytes/s] 1.0E-06*(UPMC0+UPMC1)*64/time;

Remote Read BW [MBytes/s] 1.0E-06*(UPMC2)*64/time;

LONG

Formula:

DP MFlops/s = (FP_COMP_OPS_EXE_SSE_FP_PACKED*2 + FP_COMP_OPS_EXE_SSE_FP_SCALAR)/ runtime.

(c) RRZE 2013

 Groups are architecture-specific

 They are defined in simple text files

 Code is generated on recompile of

likwid

 likwid-perfctr -a outputs list of groups

 For every group an extensive

documentation is available

SC13 Tutorial

Measuring energy consumption

with LIKWID

71

Measuring energy consumption

likwid-powermeter and likwid-perfctr -g ENERGY

 Implements Intel RAPL interface (Sandy Bridge)

 RAPL = “Running average power limit”

CPU name: Intel Core SandyBridge processor

CPU clock: 3.49 GHz

Base clock: 3500.00 MHz

Minimal clock: 1600.00 MHz

Turbo Boost Steps:

C1 3900.00 MHz

C2 3800.00 MHz

C3 3700.00 MHz

C4 3600.00 MHz

Thermal Spec Power: 95 Watts

Minimum Power: 20 Watts

Maximum Power: 95 Watts

Maximum Time Window: 0.15625 micro sec

(c) RRZE 2013 SC13 Tutorial

72

Example:
A medical image reconstruction code on Sandy Bridge

(c) RRZE 2013 SC13 Tutorial

Test case Runtime [s] Power [W] Energy [J]

8 cores, plain C 90.43 90 8110

8 cores, SSE 29.63 93 2750

8 cores (SMT), SSE 22.61 102 2300

8 cores (SMT), AVX 18.42 111 2040

Sandy Bridge EP (8 cores, 2.7 GHz base freq.)

F
a
s

te
r c

o
d

e


 le

s
s
 e

n
e
rg

y

73

Agenda

 Preliminaries

 Introduction to multicore architecture

 Cores, caches, chips, sockets, ccNUMA, SIMD

 LIKWID tools

 Microbenchmarking for architectural exploration

 Streaming benchmarks: throughput mode

 Streaming benchmarks: work sharing

 Roadblocks for scalability: Saturation effects and OpenMP overhead

 Lunch break

 Node-level performance modeling

 The Roofline Model

 Case study: 3D Jacobi solver and model-guided optimization

 Optimal resource utilization

 SIMD parallelism

 ccNUMA

 Simultaneous multi-threading (SMT)

 Optional: The ECM multicore performance model

(c) RRZE 2013 SC13 Tutorial

Microbenchmarking for

architectural exploration

Probing of the memory hierarchy

Saturation effects in cache and memory

Typical OpenMP overheads

75

Latency and bandwidth in modern computer environments

ns

ms

ms

1 GB/s

(c) RRZE 2013 SC13 Tutorial

HPC plays here

Avoiding slow data

paths is the key to

most performance

optimizations!

76

Recap: Data transfers in a memory hierarchy

 How does data travel from memory to the CPU and back?

 Example: Array copy A(:)=C(:)

(c) RRZE 2013 SC13 Tutorial

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1) MISS

write

allocate

evict

(delayed)

3 CL

transfers

LD C(2..Ncl)

ST A(2..Ncl)

HIT

CPU registers

Cache

Memory

CL

CL

CL CL

LD C(1)

NTST A(1)
MISS

2 CL

transfers

LD C(2..Ncl)

NTST A(2..Ncl)

HIT

Standard stores Nontemporal (NT)

stores

50%

performance

boost for

COPY

C(:) A(:) C(:) A(:)

77 (c) RRZE 2013 SC13 Tutorial

The parallel vector triad benchmark

A “swiss army knife” for microbenchmarking

Simple streaming benchmark:

 Report performance for different N

 Choose NITER so that accurate time measurement is possible

 This kernel is limited by data transfer performance for all memory

levels on all current architectures!

double precision, dimension(N) :: A,B,C,D

A=1.d0; B=A; C=A; D=A

do j=1,NITER

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

 if(.something.that.is.never.true.) then

 call dummy(A,B,C,D)

 endif

enddo

Prevents smarty-pants

compilers from doing

“clever” stuff

78

A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz)

(c) RRZE 2013 SC13 Tutorial

L1D cache (32k)

L2 cache (256k)

L3 cache (20M)

Memory

Theoretical limit

4 W / iteration

 128 GB/s

5 W / it.

 18 GB/s

(incl. write

allocate)

What about

multiple cores?

Do the

bandwidths

scale?

79

A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz)

(c) RRZE 2013 SC13 Tutorial

2
.6

6
x

 S
IM

D
 i
m

p
a

c
t

Theoretical limit

4 W / iteration

 128 GB/s

Theoretical limit

4 W / iteration

 48 GB/s

See later for

more on SIMD

benefits

Max. LD/ST throughput:

1 AVX Load & ½ AVX Store per cycle

 3 cy / 8 Flops  8 Flops/3 cy

(2 LD or 1 LD & 1 ST) / cy

 2 Flops/2 cy

80

The throughput-parallel vector triad benchmark

Every core runs its own, independent triad benchmark

 pure hardware probing, no impact from OpenMP overhead

(c) RRZE 2013 SC13 Tutorial

double precision, dimension(:), allocatable :: A,B,C,D

!$OMP PARALLEL private(i,j,A,B,C,D)

allocate(A(1:N),B(1:N),C(1:N),D(1:N))

A=1.d0; B=A; C=A; D=A

do j=1,NITER

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

 if(.something.that.is.never.true.) then

 call dummy(A,B,C,D)

 endif

enddo

!$OMP END PARALLEL

81

Throughput vector triad on Sandy Bridge socket (3 GHz)

(c) RRZE 2013 SC13 Tutorial

Saturation effect

in memory

Scalable BW in

L1, L2, L3 cache

82 (c) RRZE 2013 SC13 Tutorial

Bandwidth limitations: Main Memory
Scalability of shared data paths inside a NUMA domain (V-Triad)

1 thread cannot

saturate bandwidth

Saturation with

3 threads

Saturation with

2 threads

Saturation with

4 threads

83

Attainable memory bandwidth: Comparing architectures

Intel Sandy Bridge AMD Interlagos

NVIDIA K20 Intel Xeon Phi 5110P

ECC=on ECC=on

2-socket

CPU node

(c) RRZE 2013 SC13 Tutorial

84 (c) RRZE 2013 SC13 Tutorial

Bandwidth limitations: Outer-level cache

Scalability of shared data paths in L3 cache

85

The OpenMP-parallel vector triad benchmark

OpenMP work sharing in the benchmark loop

(c) RRZE 2013 SC13 Tutorial

double precision, dimension(:), allocatable :: A,B,C,D

allocate(A(1:N),B(1:N),C(1:N),D(1:N))

A=1.d0; B=A; C=A; D=A

!$OMP PARALLEL private(i,j)

do j=1,NITER

!$OMP DO

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

!$OMP END DO

 if(.something.that.is.never.true.) then

 call dummy(A,B,C,D)

 endif

enddo

!$OMP END PARALLEL

Implicit barrier

86

OpenMP vector triad on Sandy Bridge socket (3 GHz)

(c) RRZE 2013 SC13 Tutorial

sync

overhead

grows with #

of threads

bandwidth

scalability

across

memory

interfaces

L1 core limit

OpenMP performance issues

on multicore

Synchronization (barrier) overhead

88 (c) RRZE 2013 SC13 Tutorial

Welcome to the multi-/many-core era

Synchronization of threads may be expensive!

!$OMP PARALLEL …

…

!$OMP BARRIER

!$OMP DO

…

!$OMP ENDDO

!$OMP END PARALLEL

On x86 systems there is no hardware support for synchronization!

 Next slide: Test OpenMP Barrier performance…

 for different compilers

 and different topologies:

 shared cache

 shared socket

 between sockets

 and different thread counts

 2 threads

 full domain (chip, socket, node)

Threads are synchronized at explicit AND

implicit barriers. These are a main source of

overhead in OpenMP progams.

Determine costs via modified OpenMP

Microbenchmarks testcase (epcc)

89 (c) RRZE 2013 SC13 Tutorial

Thread synchronization overhead on SandyBridge-EP
Barrier overhead in CPU cycles

2 Threads Intel 13.1.0 GCC 4.7.0 GCC 4.6.1

Shared L3 384 5242 4616

SMT threads 2509 3726 3399

Other socket 1375 5959 4909

Gcc still not very competitive

 Intel compiler

Full domain Intel 13.1.0 GCC 4.7.0 GCC 4.6.1

Socket 1497 14546 14418

Node 3401 34667 29788

Node +SMT 6881 59038 58898

90 (c) RRZE 2013 SC13 Tutorial

Thread synchronization overhead on Intel Xeon Phi
Barrier overhead in CPU cycles

SMT1 SMT2 SMT3 SMT4

One core n/a 1597 2825 3557

Full chip 10604 12800 15573 18490

That does not look bad for 240 threads!

Still the pain may be much larger, as more work can be done in

one cycle on Phi compared to a full Sandy Bridge node

3.75 x cores (16 vs 60) on Phi

2 x more operations per cycle on Phi

2.7 x more barrier penalty (cycles) on Phi

 7.5 x more work done on Xeon Phi per cycle

One barrier causes 2.7 x 7.5 = 20x more pain .

2 threads on

distinct cores:

1936

91

Conclusions from the microbenchmarks

 Affinity matters!

 Almost all performance properties depend on the position of

 Data

 Threads/processes

 Consequences

 Know where your threads are running

 Know where your data is

 Bandwidth bottlenecks are ubiquitous

 Synchronization overhead may be an issue

 … and also depends on affinity!

 Many-core poses new challenges in terms of synchronization

(c) RRZE 2013 SC13 Tutorial

Case study:

OpenMP-parallel sparse matrix-vector

multiplication (part 1)

A simple (but sometimes not-so-simple)

example for bandwidth-bound code and

saturation effects in memory

93 (c) RRZE 2013 SC13 Tutorial

Case study: Sparse matrix-vector multiply

 Important kernel in many applications (matrix diagonalization,

solving linear systems)

 Strongly memory-bound for large data sets

 Streaming, with partially indirect access:

 Usually many spMVMs required to solve a problem

 Following slides: Performance data on one 24-core AMD Magny

Cours node

do i = 1,Nr

 do j = row_ptr(i), row_ptr(i+1) - 1

 c(i) = c(i) + val(j) * b(col_idx(j))

 enddo

enddo

!$OMP parallel do

!$OMP end parallel do

95 (c) RRZE 2013 SC13 Tutorial

Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

 Case 1: Large matrix

Intrasocket

bandwidth

bottleneck
Good scaling

across NUMA

domains

96 (c) RRZE 2013 SC13 Tutorial

 Case 2: Medium size

Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

Intrasocket

bandwidth

bottleneck

Working set fits

in aggregate

cache

97 (c) RRZE 2013 SC13 Tutorial

Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

 Case 3: Small size

No bandwidth

bottleneck
Parallelization

overhead

dominates

98

Conclusions from the spMVM benchmarks

 If the problem is “large”, bandwidth saturation on the socket is

a reality

  There are “spare cores”

 Very common performance pattern

 What to do with spare cores?

 Let them idle  saves energy with minor

loss in time to solution

 Use them for other tasks, such as MPI

communication

 Can we predict the saturated performance?

 Bandwidth-based performance modeling!

 What is the significance of the indirect access?

Can it be modeled?

 Can we predict the saturation point?

 … and why is this important?

(c) RRZE 2013 SC13 Tutorial

S
e
e
 l
a
te

r
fo

r

a
n
s
w

e
rs

!

Before lunch

(12:00)

99

Agenda

 Preliminaries

 Introduction to multicore architecture

 Cores, caches, chips, sockets, ccNUMA, SIMD

 LIKWID tools

 Microbenchmarking for architectural exploration

 Streaming benchmarks: throughput mode

 Streaming benchmarks: work sharing

 Roadblocks for scalability: Saturation effects and OpenMP overhead

 Lunch break

 Node-level performance modeling

 The Roofline Model

 Case study: 3D Jacobi solver and model-guided optimization

 Optimal resource utilization

 SIMD parallelism

 ccNUMA

 Simultaneous multi-threading (SMT)

 Optional: The ECM multicore performance model

(c) RRZE 2013 SC13 Tutorial

“Simple” performance modeling:

The Roofline Model

Loop-based performance modeling: Execution vs. data transfer

Example: array summation

Example: A 3D Jacobi solver

Model-guided optimization

After lunch

(13:30)

101

The Roofline Model1,2

1. Pmax = Applicable peak performance of a loop, assuming that

data comes from L1 cache (this is not necessarily Ppeak)

2. I = Computational intensity (“work” per byte transferred) over the

slowest data path utilized (“the bottleneck”)

 Code balance BC = I -1

3. bS = Applicable peak bandwidth of the slowest data path utilized

Expected performance:

(c) RRZE 2013 SC13 Tutorial

𝑃 = min (𝑃max, 𝐼 ∙ 𝑏𝑆)

1 W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. (2000)
2 S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

[B/s] [F/B]

http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

102

“Simple” Roofline: The vector triad

Example: Vector triad A(:)=B(:)+C(:)*D(:)

on a 2.7 GHz 8-core Sandy Bridge chip (AVX vectorized)

 bS = 40 GB/s

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)

  I = 0.4 F/W = 0.05 F/B

  I ∙ bS = 2.0 GF/s (1.2 % of peak performance)

 Ppeak = 173 Gflop/s (8 FP units x (4+4) Flops/cy x 2.7 GHz)

 Pmax?  Observe LD/ST throughput maximum of 1 AVX Load and ½

AVX store per cycle  3 cy / 8 Flops  Pmax = 57.6 Gflop/s (33% peak)

(c) RRZE 2013 SC13 Tutorial

𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 57.6,2.0 GFlop s
= 2.0 GFlop s

103

“Simple” Roofline: The vector triad

Example: Vector triad A(:)=B(:)+C(:)*D(:)

on a 1.05 GHz 60-core Intel Xeon Phi chip (vectorized)

 bS = 160 GB/s

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)

  I = 0.4 F/W = 0.05 F/B

  I ∙ bS = 8.0 GF/s (0.8 % of peak performance)

 Ppeak = 1008 Gflop/s (60 FP units x (8+8) Flops/cy x 1.05 GHz)

 Pmax?  Observe LD/ST throughput maximum of 1 Load or 1 Store

per cycle  4 cy / 16 Flops  Pmax = 252 Gflop/s (25% of peak)

(c) RRZE 2013 SC13 Tutorial

𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 252,8.0 GFlop s
= 8.0 GFlop s

104

A not so simple Roofline example

Example: do i=1,N; s=s+a(i); enddo

in double precision on a 2.7 GHz Sandy Bridge socket @ “large” N

(c) RRZE 2013 SC13 Tutorial

ADD peak

(best possible code)

no SIMD

3-cycle latency per ADD

if not unrolled

P = 5 Gflop/s

𝑃 = min (𝑃max, 𝐼 ∙ 𝑏𝑆)

How do we get

these?

 See next!

I = 1 Flop / 8 byte (in DP)

86.4 GF/s

21.6 GF/s

7.2 GF/s

105

Applicable peak for the summation loop

Plain scalar code, no SIMD

LOAD r1.0  0

i  1

loop:

 LOAD r2.0  a(i)

 ADD r1.0  r1.0+r2.0

 ++i ? loop

result  r1.0

(c) RRZE 2013 SC13 Tutorial

ADD pipes utilization:

 1/12 of ADD peak

S
IM

D
 l

a
n

e
s

106

Applicable peak for the summation loop

Scalar code, 3-way unrolling
LOAD r1.0  0

LOAD r2.0  0

LOAD r3.0  0

i  1

loop:

 LOAD r4.0  a(i)

 LOAD r5.0  a(i+1)

 LOAD r6.0  a(i+2)

 ADD r1.0  r1.0+r4.0

 ADD r2.0  r2.0+r5.0

 ADD r3.0  r3.0+r6.0

 i+=3 ? loop

result  r1.0+r2.0+r3.0

(c) RRZE 2013 SC13 Tutorial

ADD pipes utilization:

 1/4 of ADD peak

107

Applicable peak for the summation loop

SIMD-vectorized, 3-way unrolled
LOAD [r1.0,…,r1.3]  [0,0]

LOAD [r2.0,…,r2.3]  [0,0]

LOAD [r3.0,…,r3.3]  [0,0]

i  1

loop:

 LOAD [r4.0,…,r4.3]  [a(i),…,a(i+3)]

 LOAD [r5.0,…,r5.3]  [a(i+4),…,a(i+7)]

 LOAD [r6.0,…,r6.3]  [a(i+8),…,a(i+11)]

 ADD r1  r1+r4

 ADD r2  r2+r5

 ADD r3  r3+r6

 i+=12 ? loop

result  r1.0+r1.1+...+r3.2+r3.3

(c) RRZE 2013 SC13 Tutorial

ADD pipes utilization:

 ADD peak

108

Input to the roofline model

… on the example of do i=1,N; s=s+a(i); enddo

(c) RRZE 2013 SC13 Tutorial

analysis

Code analysis:

1 ADD + 1 LOAD

architecture Throughput: 1 ADD + 1 LD/cy

Pipeline depth: 3 cy (ADD)

4-way SIMD, 8 cores

measurement

Maximum memory

bandwidth 40 GB/s

Memory-bound @ large N!

Pmax = 5 GF/s

7.2 … 86.4 GF/s

5 GF/s

109

Assumptions for the Roofline Model

 The roofline formalism is based on some (crucial) assumptions:

 There is a clear concept of “work” vs. “traffic”

 “work” = flops, updates, iterations…

 “traffic” = required data to do “work”

 Attainable bandwidth of code = input parameter! Determine effective

bandwidth via simple streaming benchmarks to model more complex

kernels and applications

 Data transfer and core execution overlap perfectly!

 Slowest data path is modeled only; all others are assumed to be infinitely

fast

 If data transfer is the limiting factor, the bandwidth of the slowest data path

can be utilized to 100% (“saturation”)

 Latency effects are ignored, i.e. perfect streaming mode

(c) RRZE 2013 SC13 Tutorial

110

Factors to consider in the roofline model

Bandwidth-bound (simple case)

 Accurate traffic calculation (write-

allocate, strided access, …)

 Practical ≠ theoretical BW limits

 Erratic access patterns

Core-bound (may be complex)

 Multiple bottlenecks: LD/ST,

arithmetic, pipelines, SIMD,

execution ports

 Limit is linear in # of cores

(c) RRZE 2013 SC13 Tutorial

111

Complexities of in-core execution

Multiple bottlenecks:

 L1 Icache (LD/ST) bandwidth

 Decode/retirement

throughput

 Port contention

(direct or indirect)

 Arithmetic pipeline stalls

(dependencies)

 Overall pipeline stalls

(branching)

 L1 Dcache bandwidth

(LD/ST throughput)

 Scalar vs. SIMD execution

 …

 Register pressure

 Alignment issues

 (c) RRZE 2013 SC13 Tutorial

112

Shortcomings of the roofline model

 Saturation effects in multicore chips are not explained

 Reason: “saturation assumption”

 Cache line transfers and core execution do sometimes not overlap

perfectly

 Only increased “pressure” on the memory

interface can saturate the bus

 need more cores!

 ECM model gives more insight (see later)

A(:)=B(:)+C(:)*D(:)

Roofline predicts

full socket BW

(c) RRZE 2013 SC13 Tutorial

Case study:

OpenMP-parallel sparse matrix-vector

multiplication (part 2)

Putting Roofline to use where it should not work

114

Example: SpMVM node performance model

 Sparse MVM in

double precision

w/ CRS data storage:

 DP CRS comp. intensity

  quantifies extra traffic

for loading RHS more than

once

 Expected performance = bS x ICRS

 Determine  by measuring performance and actual memory bandwidth

 Maximum memory BW may not be achieved with spMVM

 (c) RRZE 2013 SC13 Tutorial

115

Roofline analysis for spMVM

 Analysis for HMeP matrix on Nehalem EP socket

 BW used by spMVM kernel b = 18.1 GB/s  should get ≈ 2.66 Gflop/s

spMVM performance if  = 0

 Measured spMVM performance = 2.25 Gflop/s

 Solve 2.25 Gflop/s = b x ICRS for  ≈ 2.5

 37.5 extra bytes per row

 RHS is loaded 6 times from memory

 about 33% of BW goes into RHS

 Conclusion: Even if the roofline model does not work 100%, we

can still learn something from the deviations

(c) RRZE 2013 SC13 Tutorial

116

Input to the roofline model

… on the example of spMVM with HMeP matrix

Code analysis:

1 ADD, 1 MULT,

(2.5+2/Nnzr) LOADs,

1/Nnzr STOREs + 

Throughput: 1 ADD, 1 MULT

+ 1 LD + 1ST/cy

Maximum memory

bandwidth 20 GB/s

Memory-bound!

 = 2.5

Measured memory BW

for spMVM 18.1 GB/s

(c) RRZE 2013 SC13 Tutorial

Measured performance

for spMVM 2.25 GF/s

117

DEMO

(c) RRZE 2013 SC13 Tutorial

Case study:

A 3D Jacobi smoother

The basics in two dimensions

Roofline performance analysis and modeling

119

A Jacobi smoother

 Laplace equation in 2D:

 Solve with Dirichlet boundary conditions using Jacobi iteration

scheme:

Naive balance (incl. write allocate):

phi(:,:,t0): 3 LD +

phi(:,:,t1): 1 ST+ 1LD

 BC = 5 W / 4 FLOPs = 1.25 W / F

Re-use when computing
phi(i+2,k,t1)

WRITE ALLOCATE:
LD + ST phi(i,k,t1)

(c) RRZE 2013 SC13 Tutorial

∆𝚽 = 𝟎

120

Balance metric: 2 D Jacobi

 Modern cache subsystems may further reduce memory traffic

 “layer conditions”

If cache is large enough to hold at least 2 rows
(shaded region): Each phi(:,:,t0) is loaded

once from main memory and re-used 3 times

from cache:

phi(:,:,t0): 1 LD + phi(:,:,t1): 1 ST+ 1LD

BC = 3 W / 4 F = 0.75 W / F

If cache is too small to hold one row:
phi(:,:,t0): 2 LD + phi(:,:,t1): 1 ST+ 1LD

BC = 5 W / 4 F = 1.25 W / F

(c) RRZE 2013 SC13 Tutorial

121

Performance metrics: 2D Jacobi

 Alternative implementation (“Macho FLOP version”)

 MFlops/sec increases by 7/4 but time to solution remains the same

 Better metric (for many iterative stencil schemes):

 Lattice Site Updates per Second (LUPs/sec)

 2D Jacobi example: Compute LUPs/sec metric via

(c) RRZE 2013 SC13 Tutorial

wall

maxmaxmax]/[
T

kiit
sLUPsP




122

2D  3D

 3D sweep:

 Best case balance: 1 LD phi(i,j,k+1,t0)

 1 ST + 1 write allocate phi(i,j,k,t1)

 6 flops

 BC = 0.5 W/F (24 bytes/LUP)

 No 2-layer condition but 2 rows fit: BC = 5/6 W/F (40 bytes/LUP)

 Worst case (2 rows do not fit): BC = 7/6 W/F (56 bytes/LUP)

(c) RRZE 2013 SC13 Tutorial

do k=1,kmax

 do j=1,jmax

 do i=1,imax

 phi(i,j,k,t1) = 1/6. *(phi(i-1,j,k,t0)+phi(i+1,j,k,t0) &

 + phi(i,j-1,k,t0)+phi(i,j+1,k,t0) &

 + phi(i,j,k-1,t0)+phi(i,j,k+1,t0))

 enddo

 enddo

enddo

123

3D Jacobi solver
Performance of vanilla code on one Sandy Bridge chip (8 cores)

(c) RRZE 2013 SC13 Tutorial

cache memory

2 layers of source array

drop out of L3 cache

Problem size: N3

Roofline inappropriate

for unsaturated case

24 B/update model

40 B/update model

124

Conclusions from the Jacobi example

 We have made sense of the memory-bound performance vs.

problem size

 “Layer conditions” lead to predictions of code balance

 Achievable memory bandwidth is input parameter

 The model works only if the bandwidth is “saturated”

 In-cache modeling is more involved

 Optimization == reducing the code balance by code

transformations

 See below

(c) RRZE 2013 SC13 Tutorial

Data access optimizations

Case study: Optimizing the 3D Jacobi solver

126

Remember the 3D Jacobi solver on Sandy Bridge?

(c) RRZE 2013 SC13 Tutorial

2 layers of source array

drop out of L3 cache

 Avoid through spatial

blocking!

Problem size: N3

24 B/update model

40 B/update model

127 (c) RRZE 2013 SC13 Tutorial

Jacobi iteration (2D): No spatial blocking

 Assumptions:

 cache can hold 32 elements (16 for each array)

 Cache line size is 4 elements

 Perfect eviction strategy for source array

This element is needed for three more updates; but 29 updates happen before this element is

used for the last time

i

k

128 (c) RRZE 2013 SC13 Tutorial

Jacobi iteration (2D): No spatial blocking

 Assumptions:

 cache can hold 32 elements (16 for each array)

 Cache line size is 4 elements

 Perfect eviction strategy for source array

This element is needed for

three more updates but has

been evicted

129 (c) RRZE 2013 SC13 Tutorial

Jacobi iteration (2D): Spatial blocking

 Divide system into blocks

 Update block after block

 Same performance as if three complete rows of the systems fit

into cache

 Some excess traffic at boundaries may be unavoidable

130 (c) RRZE 2013 SC13 Tutorial

Jacobi iteration (2D): Spatial blocking

 Spatial blocking reorders traversal of data to account for the data

update rule of the code

Elements stay sufficiently long in cache to be fully reused

Spatial blocking improves temporal locality!
(Continuous access in inner loop ensures spatial locality)

This element remains in cache until it is fully used (only 6 updates happen before

last use of this element)

131 (c) RRZE 2013 SC13 Tutorial

Jacobi iteration (3D): Spatial blocking

 Implementation:

 Guidelines:

 Blocking of inner loop levels (traversing continuously through main memory)

 Blocking sizes large enough to fulfill “layer condition”

 Cache size is a hard limit!

 Blocking loops may have some impact on ccNUMA page placement

 do ioffset=1,imax,iblock

 do joffset=1,jmax,jblock

 do k=1,kmax

 do j=joffset, min(jmax,joffset+jblock-1)

 do i=ioffset, min(imax,ioffset+iblock-1)

 phi(i,j,k,t1) = (phi(i-1,j,k,t0)+phi(i+1,j,k,t0)

 + ... + phi(i,j,k-1,t0)+phi(i,j,k+1,t0))/6.d0

 enddo

 enddo

 enddo

 enddo

 enddo

loop over i-blocks

loop over j-blocks

2 ∙ iblock ∙ jblock ∙ 8 byte ∙ #cores < (cache size)/2

132

3D Jacobi solver (problem size 5003)
Blocking different loop levels (8 cores Sandy Bridge)

(c) RRZE 2013 SC13 Tutorial

OpenMP parallelization?

Optimal block size?

k-loop blocking?

ccNUMA page placement?

24B/update

performance

model

inner (i) loop

blocking

middle (j) loop

blocking

optimum j

block size 40B/update

performance

model

134 (c) RRZE 2013 SC13 Tutorial

Jacobi iteration (3D): Nontemporal stores

 Intel x86: NT stores are packed SIMD stores with 16-byte aligned

address

 Sometimes hard to apply

 AMD x86: Scalar NT stores without alignment restrictions

available

 Options for using NT stores

 Let the compiler decide  unreliable

 Use compiler options

 Intel: -opt-streaming-stores never|always|auto

 Use compiler directives

 Intel: !DEC$ vector [non]temporal

 Cray: !DIR$ LOOP_INFO cache[_nt](...)

 Compiler must be able to “prove” that the use of SIMD and NT

stores is “safe”!

 “line update kernel” concept: Make critical loop its own subroutine

135

Jacobi iteration (3D): Nontemporal stores for Intel

Line update kernel (separate compilation unit or -fno-inline):

Main loop:

(c) RRZE 2013 SC13 Tutorial

do joffset=1,jmax,jblock

 do k=1,kmax

 do j=joffset, min(jmax,joffset+jblock-1)

 call jacobi_line(phi(1,j,k,t1),phi(1,j,k,t0),phi(1,j,k-1,t0), &

 phi(1,j,k+1,t0),phi(1,j-1,k,t0),phi(1,j+1,k,t0)

 ,size)

 enddo

 enddo

enddo

subroutine jacobi_line(d,s,top,bottom,front,back,n)

 integer :: n,i,start

 double precision, dimension(*) :: d,s,top,bottom,front,back

 double precision, parameter :: oos=1.d0/6.d0

!DEC$ VECTOR NONTEMPORAL

 do i=2,n-1

 d(i) = oos*(s(i-1)+s(i+1)+top(i)+bottom(i)+front(i)+back(i))

 enddo

end subroutine

136

3D Jacobi solver
Spatial blocking + nontemporal stores

(c) RRZE 2013 SC13 Tutorial

blocking

16 B/update perf. model

NT stores

137

Conclusions from the Jacobi optimization example

 “What part of the data comes from where” is a crucial question

 Avoiding slow data paths == re-establishing the most favorable

layer condition

 Improved code showed the speedup predicted by the model

 Optimal blocking factor can be estimated

 Be guided by the cache size the layer condition

 No need for exhaustive scan of “optimization space”

(c) RRZE 2013 SC13 Tutorial

138

Agenda

 Preliminaries

 Introduction to multicore architecture

 Cores, caches, chips, sockets, ccNUMA, SIMD

 LIKWID tools

 Microbenchmarking for architectural exploration

 Streaming benchmarks: throughput mode

 Streaming benchmarks: work sharing

 Roadblocks for scalability: Saturation effects and OpenMP overhead

 Lunch break

 Node-level performance modeling

 The Roofline Model

 Case study: 3D Jacobi solver and model-guided optimization

 Optimal resource utilization

 SIMD parallelism

 ccNUMA

 Simultaneous multi-threading (SMT)

 Optional: The ECM multicore performance model

(c) RRZE 2013 SC13 Tutorial

Optimal utilization of parallel resources

Exploiting SIMD parallelism and reading assembly code

Simultaneous multi-threading (SMT): facts & myths

Programming for ccNUMA memory architecture

144

SIMD processing – Basics

 Single Instruction Multiple Data (SIMD) operations allow the

concurrent execution of the same operation on “wide” registers.

 x86 SIMD instruction sets:

 SSE: register width = 128 Bit  2 double precision floating point operands

 AVX: register width = 256 Bit  4 double precision floating point operands

 Adding two registers holding double precision floating point operands

(c) RRZE 2013 SC13 Tutorial
A

[0
]

A
[1

]
A

[2
]

A
[3

]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

A
[0

]

B
[0

]

C
[0

]

64 Bit

256 Bit

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:

R2 ADD [R0,R1]

SIMD execution:

V64ADD [R0,R1] R2

145

SIMD processing – Basics

 Steps (done by the compiler) for “SIMD processing”

(c) RRZE 2013 SC13 Tutorial

for(int i=0; i<n;i++)

 C[i]=A[i]+B[i];

for(int i=0; i<n;i+=4){

 C[i] =A[i] +B[i];

 C[i+1]=A[i+1]+B[i+1];

 C[i+2]=A[i+2]+B[i+2];

 C[i+3]=A[i+3]+B[i+3];}

//remainder loop handling

LABEL1:

 VLOAD R0  A[i]

 VLOAD R1  B[i]

 V64ADD[R0,R1]  R2

 VSTORE R2  C[i]

 ii+4

 i<(n-4)? JMP LABEL1

//remainder loop handling

“Loop unrolling”

Load 256 Bits starting from address of A[i] to

register R0

Add the corresponding 64 Bit entries in R0 and

R1 and store the 4 results to R2

Store R2 (256 Bit) to address

starting at C[i]

146

SIMD processing – Basics

 No SIMD vectorization for loops with data dependencies:

 “Pointer aliasing” may prevent SIMDfication

 C/C++ allows that A  &C[-1] and B  &C[-2]

 C[i] = C[i-1] + C[i-2]: dependency  No SIMD

 If “pointer aliasing” is not used, tell it to the compiler, e.g. use
–fno-alias switch for Intel compiler  SIMD

(c) RRZE 2013 SC13 Tutorial

for(int i=0; i<n;i++)

 A[i]=A[i-1]*s;

void scale_shift(double *A, double *B, double *C, int n) {

 for(int i=0; i<n; ++i)

 C[i] = A[i] + B[i];

}

Vor Kaffee

(15:00)

Reading x86 assembly code and exploting

SIMD parallelism

Understanding SIMD execution by inspecting

 assembly code

SIMD vectorization how-to

Intel compiler options and features for SIMD

Sparse MVM part 3: SIMD-friendly data layouts

Nach Kaffee

(15:30)

148 (c) RRZE 2013 SC13 Tutorial

Why and how?

Why check the assembly code?

 Sometimes the only way to make sure the compiler “did the right

thing”

 Example: “LOOP WAS VECTORIZED” message is printed, but Loads &

Stores may still be scalar!

 Get the assembler code (Intel compiler):

 icc –S –O3 -xHost triad.c -o a.out

 Disassemble Executable:

 objdump –d ./a.out | less

The x86 ISA is documented in:

Intel Software Development Manual (SDM) 2A and 2B

AMD64 Architecture Programmer's Manual Vol. 1-5

150 (c) RRZE 2013 SC13 Tutorial

Basics of the x86-64 ISA

16 general Purpose Registers (64bit):

rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp, r8-r15

alias with eight 32 bit register set:

eax, ebx, ecx, edx, esi, edi, esp, ebp

Floating Point SIMD Registers:

xmm0-xmm15 SSE (128bit) alias with 256-bit registers

ymm0-ymm15 AVX (256bit)

SIMD instructions are distinguished by:

AVX (VEX) prefix: v

Operation: mul, add, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h)

Width: scalar (s), packed (p)

Data type: single (s), double (d)

151

Case Study: Simplest code for the summation of

the elements of a vector (single precision)

float sum = 0.0;

for (int j=0; j<size; j++){

 sum += data[j];

}

Instruction code:

401d08: f3 0f 58 04 82 addss xmm0,[rdx + rax * 4]

401d0d: 48 83 c0 01 add rax,1

401d11: 39 c7 cmp edi,eax

401d13: 77 f3 ja 401d08

(c) RRZE 2013 SC13 Tutorial

Instruction

address
Opcodes Assembly

code

To get object code use
objdump –d on object file or

executable or compile with -S

152

Summation code (single precision): Improvements

1:

addss xmm0, [rsi + rax * 4]

add rax, 1

cmp eax,edi

js 1b

(c) RRZE 2013 SC13 Tutorial

1:

addss xmm0, [rsi + rax * 4]

addss xmm1, [rsi + rax * 4 + 4]

addss xmm2, [rsi + rax * 4 + 8]

addss xmm3, [rsi + rax * 4 + 12]

add rax, 4

cmp eax,edi

js 1b

1:

vaddps ymm0, [rsi + rax * 4]

vaddps ymm1, [rsi + rax * 4 + 32]

vaddps ymm2, [rsi + rax * 4 + 64]

vaddps ymm3, [rsi + rax * 4 + 96]

add rax, 32

cmp eax,edi

js 1b

Unrolling with sub-sums to break up

register dependency

AVX SIMD vectorization

3 cycles add

pipeline

latency

156

How to leverage SIMD

Alternatives:

 The compiler does it for you (but: aliasing, alignment, language)

 Compiler directives (pragmas)

 Alternative programming models for compute kernels (OpenCL, ispc)

 Intrinsics (restricted to C/C++)

 Implement directly in assembler

To use intrinsics the following headers are available:

 xmmintrin.h (SSE)

 pmmintrin.h (SSE2)

 immintrin.h (AVX)

 x86intrin.h (all instruction set extensions)

 See next slide for an example

(c) RRZE 2013 SC13 Tutorial

157

Example: array summation using C intrinsics

(SSE, single precision)

(c) RRZE 2013 SC13 Tutorial

__m128 sum0, sum1, sum2, sum3;

__m128 t0, t1, t2, t3;

float scalar_sum;

sum0 = _mm_setzero_ps();

sum1 = _mm_setzero_ps();

sum2 = _mm_setzero_ps();

sum3 = _mm_setzero_ps();

for (int j=0; j<size; j+=16){

 t0 = _mm_loadu_ps(data+j);

 t1 = _mm_loadu_ps(data+j+4);

 t2 = _mm_loadu_ps(data+j+8);

 t3 = _mm_loadu_ps(data+j+12);

 sum0 = _mm_add_ps(sum0, t0);

 sum1 = _mm_add_ps(sum1, t1);

 sum2 = _mm_add_ps(sum2, t2);

 sum3 = _mm_add_ps(sum3, t3);

}

sum0 = _mm_add_ps(sum0, sum1);

sum0 = _mm_add_ps(sum0, sum2);

sum0 = _mm_add_ps(sum0, sum3);

sum0 = _mm_hadd_ps(sum0, sum0);

sum0 = _mm_hadd_ps(sum0, sum0);

_mm_store_ss(&scalar_sum, sum0);

158

Example: array summation from intrinsics, instruction code

14: 0f 57 c9 xorps %xmm1,%xmm1

17: 31 c0 xor %eax,%eax

19: 0f 28 d1 movaps %xmm1,%xmm2

1c: 0f 28 c1 movaps %xmm1,%xmm0

1f: 0f 28 d9 movaps %xmm1,%xmm3

22: 66 0f 1f 44 00 00 nopw 0x0(%rax,%rax,1)

28: 0f 10 3e movups (%rsi),%xmm7

2b: 0f 10 76 10 movups 0x10(%rsi),%xmm6

2f: 0f 10 6e 20 movups 0x20(%rsi),%xmm5

33: 0f 10 66 30 movups 0x30(%rsi),%xmm4

37: 83 c0 10 add $0x10,%eax

3a: 48 83 c6 40 add $0x40,%rsi

3e: 0f 58 df addps %xmm7,%xmm3

41: 0f 58 c6 addps %xmm6,%xmm0

44: 0f 58 d5 addps %xmm5,%xmm2

47: 0f 58 cc addps %xmm4,%xmm1

4a: 39 c7 cmp %eax,%edi

4c: 77 da ja 28 <compute_sum_SSE+0x18>

4e: 0f 58 c3 addps %xmm3,%xmm0

51: 0f 58 c2 addps %xmm2,%xmm0

54: 0f 58 c1 addps %xmm1,%xmm0

57: f2 0f 7c c0 haddps %xmm0,%xmm0

5b: f2 0f 7c c0 haddps %xmm0,%xmm0

5f: c3 retq

(c) RRZE 2013 SC13 Tutorial

Loop body

159 (c) RRZE 2013 SC13 Tutorial

Vectorization and the Intel compiler

 Intel compiler will try to use SIMD instructions when enabled

to do so

 “Poor man’s vector computing”

 Compiler can emit messages about vectorized loops (not by default):

plain.c(11): (col. 9) remark: LOOP WAS VECTORIZED.

 Use option -vec_report3 to get full compiler output about which

loops were vectorized and which were not and why (data

dependencies!)

 Some obstructions will prevent the compiler from applying

vectorization even if it is possible

 You can use source code directives to provide more

information to the compiler

160 (c) RRZE 2013 SC13 Tutorial

Vectorization compiler options

 The compiler will vectorize starting with –O2.

 To enable specific SIMD extensions use the –x option:

 -xSSE2 vectorize for SSE2 capable machines

Available SIMD extensions:

SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX

 -xAVX on Sandy Bridge processors

Recommended option:

 -xHost will optimize for the architecture you compile on

On AMD Opteron: use plain –O3 as the -x options may involve CPU
type checks.

161 (c) RRZE 2013 SC13 Tutorial

Vectorization compiler options

 Controlling non-temporal stores (part of the SIMD extensions)

 -opt-streaming-stores always|auto|never

always use NT stores, assume application is memory

 bound (use with caution!)

auto compiler decides when to use NT stores

never do not use NT stores unless activated by

 source code directive

162 (c) RRZE 2013 SC13 Tutorial

Rules for vectorizable loops

1. Countable

2. Single entry and single exit

3. Straight line code

4. No function calls (exception intrinsic math functions)

Better performance with:

1. Simple inner loops with unit stride

2. Minimize indirect addressing

3. Align data structures (SSE 16 bytes, AVX 32 bytes)

4. In C use the restrict keyword for pointers to rule out aliasing

Obstacles for vectorization:

 Non-contiguous memory access

 Data dependencies

164 (c) RRZE 2013 SC13 Tutorial

User mandated vectorization

 Since Intel Compiler 12.0 the simd pragma is available

 #pragma simd enforces vectorization where the other pragmas fail

 Prerequesites:

 Countable loop

 Innermost loop

 Must conform to for-loop style of OpenMP worksharing constructs

 There are additional clauses: reduction, vectorlength, private

 Refer to the compiler manual for further details

 NOTE: Using the #pragma simd the compiler may generate incorrect code if

the loop violates the vectorization rules!

#pragma simd reduction(+:x)

 for (int i=0; i<n; i++) {

 x = x + A[i];

 }

165 (c) RRZE 2013 SC13 Tutorial

x86 Architecture:

SIMD and Alignment

 Alignment issues
 Alignment of arrays with SSE (AVX) should be on 16-byte (32-byte)

boundaries to allow packed aligned loads and NT stores (for Intel
processors)
 AMD has a scalar nontemporal store instruction

 Otherwise the compiler will revert to unaligned loads and not use NT
stores – even if you say vector nontemporal

 Modern x86 CPUs have less (not zero) impact for misaligned LD/ST, but
Xeon Phi relies heavily on it!

 How is manual alignment accomplished?

 Dynamic allocation of aligned memory
(align = alignment boundary):

#define _XOPEN_SOURCE 600

#include <stdlib.h>

int posix_memalign(void **ptr,

 size_t align,

 size_t size);

Case study: OpenMP-parallel

sparse matrix-vector multiplication (part 3)

SIMD-friendly data layouts for sparse matrices

M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop: A unified sparse

matrix data format for modern processors with wide SIMD units. Submitted.

Preprint: arXiv:1307.6209

http://arxiv.org/abs/1307.6209

167

Programming for heterogeneous systems:

A unified code for CPU and Accelerators?

GPU #1

GPU #2

#pragma acc for
for(i = 0; i< number_of_unknowns; ++i){

 for(j = row(i); i < row(i+1);++j){

 y[i] =y[i] +entry[j] *x[column[j]];}}

size_t i = get_global_id(0);

if (i < number_of_unknowns) {

 for(int j=row[i]; j<row[i+1]; ++j) {

 y[i] = y[i] + entry[j]*= x[column[j]];}}

(c) RRZE 2013 SC13 Tutorial

168

Programming for heterogeneous systems:

A unified code for CPU and Accelerators?

 All kernels written in

 OpenCL / OpenMP

 Code portability is

not the challenge!

The data format is the key to performance!

Data

format
dlr1 rrze3 RM07R

Rel. BW

to 1 CPU

Intel

Xeon E5-2690
CRS 7.1 GF/s 5.3 GF/s 6.9 GF/s 1

Tesla K20c

(Kepler)
CRS 1.3 GF/s 1.6 GF/s 1.8 GF/s 4

Intel Xeon Phi

5110P
CRS 18.9 GF/s 5.9 GF/s 16.9 GF/s 4

Potential speed up based on

memory bandwidth (BW)

(c) RRZE 2013 SC13 Tutorial

169

A unified data format for spMVM?!

GPGPU-friendly format (Sliced)ELLPACK

GPGPUs:

 Size of slices ~ warp sizes (slice=32 rows)

 Padding of data structures for load coalescing

 Sort within blocks (multiple slices) according to nonzeros per row (JDS

format – vector computers!)  reduce padding overhead

SIMD CPUs:

 Choose size of slices appropriately for x86 processors with SSE or AVX
(slice=4) and Intel Xeon Phi (slice=16)

ELLPACK Sliced ELLPACK SELL-C-σ

GPU warp /

SIMD width

(c) RRZE 2013 SC13 Tutorial

170

A unified data format CPU and Accelerators!

 Vectorizable code +

vectorizable data structures

are (often) beneficial for

modern compute devices!

Data

format
dlr1 rrze3 RM07R

Rel. BW

to 1 CPU

Intel

Xeon E5-2690

CRS 7.1 GF/s 5.3 GF/s 6.9 GF/s
1

SELL-256 7.2 GF/s 5.3 GF/s 6.9 GF/s

NVIDIA Tesla

K20

CRS 1.3 GF/s 1.6 GF/s 1.8 GF/s
4

SELL-256 23.0 GF/s 16.1 GF/s 21.0 GF/s

Intel Xeon Phi

5110P

CRS 18.9 GF/s 5.9 GF/s 16.9 GF/s
4

SELL-256 21.3 GF/s 13.5 GF/s 19.2 GF/s

 Speed-up of K20 or Phi vs. 2-socket CPU compute node ~ 1.5X

1
 s

o
c
k
e
t

(c) RRZE 2013 SC13 Tutorial

171

Accelerators and SIMD CPUs:

 New frameworks / tools may provide code portability,…

 but portable performance will remain the challenge

 Back to the roots: Vectorized codes / data structures

 Memory bound codes: Vectorization  Multicore parallel

but code vectorization provides

optimal energy to solution…

Parallelization “heals” scalar

performance –

(c) RRZE 2013 SC13 Tutorial

Efficient parallel programming

on ccNUMA nodes

Performance characteristics of ccNUMA nodes

First touch placement policy

C++ issues

ccNUMA locality and dynamic scheduling

ccNUMA locality beyond first touch

173 (c) RRZE 2013 SC13 Tutorial

ccNUMA performance problems
“The other affinity” to care about

 ccNUMA:

 Whole memory is transparently accessible by all processors

 but physically distributed

 with varying bandwidth and latency

 and potential contention (shared memory paths)

 How do we make sure that memory access is always as "local"

and "distributed" as possible?

 Page placement is implemented in units of OS pages (often 4kB, possibly

more)

C C C C

M M

C C C C

M M

174

Cray XE6 Interlagos node

4 chips, two sockets, 8 threads per ccNUMA domain

 ccNUMA map: Bandwidth penalties for remote access

 Run 8 threads per ccNUMA domain (1 chip)

 Place memory in different domain  4x4 combinations

 STREAM triad benchmark using nontemporal stores

(c) RRZE 2013 SC13 Tutorial

S
T

R
E

A
M

 t
ri

a
d

 p
e

rf
o

rm
a

n
c

e
 [

M
B

/s
]

Memory node

C
P

U
 n

o
d

e

175

Intel Sandy Bridge 2-socket system

2 chips, 2 sockets, 8 threads per ccNUMA domain

 General rule:

The more ccNUMA domains, the larger the non-local access

penalty

Memory node

C
P

U
 n

o
d

e

(c) RRZE 2013 SC13 Tutorial

176 (c) RRZE 2013 SC13 Tutorial

numactl as a simple ccNUMA locality tool :

How do we enforce some locality of access?

 numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out # map pages only on <nodes>

 --preferred=<node> a.out # map pages on <node>

 # and others if <node> is full

 --interleave=<nodes> a.out # map pages round robin across

 # all <nodes>

 Examples:

for m in `seq 0 3`; do

 for c in `seq 0 3`; do

 env OMP_NUM_THREADS=8 \

 numactl --membind=$m --cpunodebind=$c ./stream

 enddo

enddo

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \

 likwid-pin -c N:0,4,8,12 ./stream

 But what is the default without numactl?

ccNUMA map scan

177 (c) RRZE 2013 SC13 Tutorial

ccNUMA default memory locality

 "Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the

processor that first touches it!

 Except if there is not enough local memory available

 This might be a problem, see later

 Caveat: "touch" means "write", not "allocate"

 Example:

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE

 huge[i] = 0.0;

 It is sufficient to touch a single item to map the entire page

Memory not

mapped here yet

Mapping takes

place here

178 (c) RRZE 2013 SC13 Tutorial

Coding for ccNUMA data locality

integer,parameter :: N=10000000

double precision A(N), B(N)

A=0.d0

!$OMP parallel do

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

 A(i)=0.d0

end do

!$OMP end do

...

!$OMP do schedule(static)

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

 Most simple case: explicit initialization

179 (c) RRZE 2013 SC13 Tutorial

Coding for ccNUMA data locality

integer,parameter :: N=10000000

double precision A(N), B(N)

READ(1000) A

!$OMP parallel do

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

 A(i)=0.d0

end do

!$OMP end do

!$OMP single

READ(1000) A

!$OMP end single

!$OMP do schedule(static)

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

 Sometimes initialization is not so obvious: I/O cannot be easily

parallelized, so “localize” arrays before I/O

180 (c) RRZE 2013 SC13 Tutorial

Coding for Data Locality

 Required condition: OpenMP loop schedule of initialization must

be the same as in all computational loops

 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to

be sure…

 Imposes some constraints on possible optimizations (e.g. load balancing)

 Presupposes that all worksharing loops with the same loop length have the

same thread-chunk mapping

 If dynamic scheduling/tasking is unavoidable, more advanced methods may

be in order

 See below

 How about global objects?

 Better not use them

 If communication vs. computation is favorable, might consider properly

placed copies of global data

 C++: Arrays of objects and std::vector<> are by default

initialized sequentially

 STL allocators provide an elegant solution

184 (c) RRZE 2013 SC13 Tutorial

Diagnosing Bad Locality

 If your code is cache-bound, you might not notice any locality

problems

 Otherwise, bad locality limits scalability at very low CPU numbers

(whenever a node boundary is crossed)

 If the code makes good use of the memory interface

 But there may also be a general problem in your code…

 Running with numactl --interleave might give you a hint

 See later

 Consider using performance counters

 LIKWID-perfctr can be used to measure nonlocal memory accesses

 Example for Intel Westmere dual-socket system (Core i7, hex-core):

env OMP_NUM_THREADS=12 likwid-perfctr -g MEM –C N:0-11 ./a.out

185 (c) RRZE 2013 SC13 Tutorial

Using performance counters for diagnosing bad ccNUMA

access locality

 Intel Westmere EP node (2x6 cores):

Only one memory BW

per socket (“Uncore”)

Half of BW comes from

other socket!

+-----------------------------+----------+----------+ +----------+----------+

| Metric | core 0 | core 1 | | core 6 | core 7 |

+-----------------------------+----------+----------+ +----------+----------+

| Runtime [s] | 0.730168 | 0.733754 | | 0.732808 | 0.732943 |

| CPI | 10.4164 | 10.2654 | | 10.5002 | 10.7641 |

| Memory bandwidth [MBytes/s] | 11880.9 | 0 | ... | 11732.4 | 0 | ...

| Remote Read BW [MBytes/s] | 4219 | 0 | | 4163.45 | 0 |

| Remote Write BW [MBytes/s] | 1706.19 | 0 | | 1705.09 | 0 |

| Remote BW [MBytes/s] | 5925.19 | 0 | | 5868.54 | 0 |

+-----------------------------+----------+----------+ +----------+----------+

186 (c) RRZE 2013 SC13 Tutorial

If all fails…

 Even if all placement rules have been carefully observed, you may

still see nonlocal memory traffic. Reasons?

 Program has erratic access patters  may still achieve some access

parallelism (see later)

 OS has filled memory with buffer cache data:

numactl --hardware # idle node!

available: 2 nodes (0-1)

node 0 size: 2047 MB

node 0 free: 906 MB

node 1 size: 1935 MB

node 1 free: 1798 MB

top - 14:18:25 up 92 days, 6:07, 2 users, load average: 0.00, 0.02, 0.00

Mem: 4065564k total, 1149400k used, 2716164k free, 43388k buffers

Swap: 2104504k total, 2656k used, 2101848k free, 1038412k cached

187 (c) RRZE 2013 SC13 Tutorial

ccNUMA problems beyond first touch:

Buffer cache

 OS uses part of main memory for

disk buffer (FS) cache

 If FS cache fills part of memory,

apps will probably allocate from

foreign domains

  non-local access!

 “sync” is not sufficient to

drop buffer cache blocks

 Remedies

 Drop FS cache pages after user job has run (admin’s job)

 seems to be automatic after aprun has finished on Crays

 User can run “sweeper” code that allocates and touches all physical

memory before starting the real application

 numactl tool or aprun can force local allocation (where applicable)

 Linux: There is no way to limit the buffer cache size in standard kernels

P1
C

P2
C

C C

MI

P3
C

P4
C

C C

MI

BC

data(3)

BC

data(3)

d
a
ta

(1
)

188 (c) RRZE 2013 SC13 Tutorial

ccNUMA problems beyond first touch:

Buffer cache

Real-world example: ccNUMA and the Linux buffer cache

Benchmark:

1. Write a file of some size

from LD0 to disk

2. Perform bandwidth

benchmark using

all cores in LD0 and

maximum memory

installed in LD0

Result: By default,

Buffer cache is given

priority over local

page placement

 restrict to local

 domain if possible!

aprun –ss ...

(Cray only)

189 (c) RRZE 2013 SC13 Tutorial

ccNUMA placement and erratic access patterns

 Sometimes access patterns are

just not nicely grouped into

contiguous chunks:

 In both cases page placement cannot easily be fixed for perfect parallel

access

double precision :: r, a(M)

!$OMP parallel do private(r)

do i=1,N

 call RANDOM_NUMBER(r)

 ind = int(r * M) + 1

 res(i) = res(i) + a(ind)

enddo

!OMP end parallel do

 Or you have to use tasking/dynamic

scheduling:

!$OMP parallel

!$OMP single

do i=1,N

 call RANDOM_NUMBER(r)

 if(r.le.0.5d0) then

!$OMP task

 call do_work_with(p(i))

!$OMP end task

 endif

enddo

!$OMP end single

!$OMP end parallel

190 (c) RRZE 2013 SC13 Tutorial

ccNUMA placement and erratic access patterns

 Worth a try: Interleave memory across ccNUMA domains to get at least

some parallel access

1. Explicit placement:

2. Using global control via numactl:

numactl --interleave=0-3 ./a.out

 Fine-grained program-controlled placement via libnuma (Linux)

using, e.g., numa_alloc_interleaved_subset(),

numa_alloc_interleaved() and others

!$OMP parallel do schedule(static,512)

do i=1,M

 a(i) = …

enddo

!$OMP end parallel do

This is for all memory, not

just the problematic

arrays!

Observe page alignment of

array to get proper

placement!

191

The curse and blessing of interleaved placement:

OpenMP STREAM on a Cray XE6 Interlagos node

 Parallel init: Correct parallel initialization

 LD0: Force data into LD0 via numactl –m 0

 Interleaved: numactl --interleave <LD range>

(c) RRZE 2013 SC13 Tutorial

192

The curse and blessing of interleaved placement:

OpenMP STREAM triad on 4-socket (48 core) Magny Cours node

 Parallel init: Correct parallel initialization

 LD0: Force data into LD0 via numactl –m 0

 Interleaved: numactl --interleave <LD range>

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8

parallel init LD0 interleaved

NUMA domains (6 threads per domain)

B
a
n

d
w

id
th

 [
M

b
y
te

/s
]

(c) RRZE 2013 SC13 Tutorial

193

Summary on ccNUMA issues

 Identify the problem

 Is ccNUMA an issue in your code?

 Simple test: run with numactl --interleave

 Apply first-touch placement

 Look at initialization loops

 Consider loop lengths and static scheduling

 C++ and global/static objects may require special care

 If dynamic scheduling cannot be avoided

 Consider round-robin placement

 Buffer cache may impact proper placement

 Kick your admins

 or apply sweeper code

 If available, use runtime options to force local placement

(c) RRZE 2013 SC13 Tutorial

194

DEMO

(c) RRZE 2013 SC13 Tutorial

Simultaneous multithreading (SMT)

Principles and performance impact

SMT vs. independent instruction streams

Facts and fiction

196 (c) RRZE 2013 SC13 Tutorial

SMT Makes a single physical core appear as two or more

“logical” cores  multiple threads/processes run concurrently

 SMT principle (2-way example):

S
ta

n
d

a
rd

 c
o

re

2
-w

a
y
 S

M
T

197 (c) RRZE 2013 SC13 Tutorial

SMT impact

 SMT is primarily suited for increasing processor throughput

 With multiple threads/processes running concurrently

 Scientific codes tend to utilize chip resources quite well

 Standard optimizations (loop fusion, blocking, …)

 High data and instruction-level parallelism

 Exceptions do exist

 SMT is an important topology issue

 SMT threads share almost all core

resources

 Pipelines, caches, data paths

 Affinity matters!

 If SMT is not needed

 pin threads to physical cores

 or switch it off via BIOS etc.

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

T
h

re
a

d
 0

T
h

re
a

d
 1

T
h

re
a

d
 2

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

T
h

re
a

d
 0

T

h
re

a
d

 1

T
h

re
a

d
 2

198 (c) RRZE 2013 SC13 Tutorial

SMT impact

 SMT adds another layer of topology

(inside the physical core)

 Caveat: SMT threads share all caches!

 Possible benefit: Better pipeline throughput

 Filling otherwise unused pipelines

 Filling pipeline bubbles with other thread’s executing instructions:

 Beware: Executing it all in a single thread

(if possible) may reach the same goal

without SMT:

Thread 0:
do i=1,N

 a(i) = a(i-1)*c

enddo

Dependency  pipeline

stalls until previous MULT

is over

Westmere EP

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

Thread 1:
do i=1,N

 b(i) = s*b(i-2)+d

enddo

Unrelated work in other

thread can fill the pipeline

bubbles

do i=1,N

 a(i) = a(i-1)*c

 b(i) = s*b(i-2)+d

enddo

199

a(2)*c

Thread 0:
do i=1,N

a(i)=a(i-1)*c

enddo

a(2)*c

a(7)*c

Thread 0:
do i=1,N

a(i)=a(i-1)*c

enddo

Thread 1:
do i=1,N

a(i)=a(i-1)*c

enddo

B(7)*d

A(2)*c

A(7)*d

B(2)*c

Thread 0:
do i=1,N

A(i)=A(i-1)*c

B(i)=B(i-1)*d

enddo

Thread 1:
do i=1,N

A(i)=A(i-1)*c

B(i)=B(i-1)*d

enddo

Simultaneous recursive updates with SMT

(c) RRZE 2013 SC13 Tutorial

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT

MULT Pipeline depth: 5 stages  1 F / 5 cycles for recursive update

Fill bubbles via:
 SMT

 Multiple streams

M
U

L
T

 p
ip

e

200

Simultaneous recursive updates with SMT

(c) RRZE 2013 SC13 Tutorial

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT

MULT Pipeline depth: 5 stages  1 F / 5 cycles for recursive update

5 independent updates on a single thread do the same job!

B(2)*s

A(2)*s

E(1)*s

D(1)*s

C(1)*s

Thread 0:
do i=1,N

 A(i)=A(i-1)*s

 B(i)=B(i-1)*s

 C(i)=C(i-1)*s

 D(i)=D(i-1)*s

 E(i)=E(i-1)*s

enddo

M
U

L
T

 p
ip

e

201

Simultaneous recursive updates with SMT

(c) RRZE 2013 SC13 Tutorial

Intel Sandy Bridge (desktop) 4-core; 3.5 GHz; SMT

Pure update benchmark can be vectorized  2 F / cycle (store limited)

Recursive update:

 SMT can fill pipeline

bubles

 A single thread can

do so as well

 Bandwidth does not

increase through

SMT

 SMT can not

replace SIMD!

202

SMT myths: Facts and fiction (1)

 Myth: “If the code is compute-bound, then the functional units

should be saturated and SMT should show no improvement.”

 Truth

1. A compute-bound loop does not

necessarily saturate the pipelines;

dependencies can cause a lot of bubbles,

which may be filled by SMT threads.

2. If a pipeline is already full, SMT will not improve its

utilization

(c) RRZE 2013 SC13 Tutorial

B(7)*d

A(2)*c

A(7)*d

B(2)*c

Thread 0:
do i=1,N

A(i)=A(i-1)*c

B(i)=B(i-1)*d

enddo

Thread 1:
do i=1,N

A(i)=A(i-1)*c

B(i)=B(i-1)*d

enddo

M
U

L
T

 p
ip

e

203

SMT myths: Facts and fiction (2)

 Myth: “If the code is memory-bound, SMT should help because it

can fill the bubbles left by waiting for data from memory.”

 Truth:

1. If the maximum memory bandwidth is already reached, SMT will not

help since the relevant

resource (bandwidth)

is exhausted.

2. If the relevant

bottleneck is not

exhausted, SMT may

help since it can fill

bubbles in the LOAD

pipeline.

This applies also to other

“relevant bottlenecks!”

(c) RRZE 2013 SC13 Tutorial

204

SMT myths: Facts and fiction (3)

 Myth: “SMT can help bridge the latency to

memory (more outstanding references).”

 Truth:
Outstanding references may or may not be

bound to SMT threads; they may be a resource

of the memory interface and shared by all

threads. The benefit of SMT with memory-bound

code is usually due to better utilization of the

pipelines so that less time gets “wasted” in the

cache hierarchy.

See also the “ECM Performance Model”

later on.

(c) RRZE 2013 SC13 Tutorial

205

Things to remember

Goals for optimization:

1. Map your work to an instruction mix with highest throughput

using the most effective instructions.

2. Reduce data volume over slow data paths fully utilizing available

bandwidth.

3. Avoid possible hazards/overhead which prevent reaching goals

one and two.

(c) RRZE 2013 SC13 Tutorial

206

Agenda

 Preliminaries

 Introduction to multicore architecture

 Cores, caches, chips, sockets, ccNUMA, SIMD

 LIKWID tools

 Microbenchmarking for architectural exploration

 Streaming benchmarks: throughput mode

 Streaming benchmarks: work sharing

 Roadblocks for scalability: Saturation effects and OpenMP overhead

 Lunch break

 Node-level performance modeling

 The Roofline Model

 Case study: 3D Jacobi solver and model-guided optimization

 Optimal resource utilization

 SIMD parallelism

 ccNUMA

 Simultaneous multi-threading (SMT)

 Optional: The ECM multicore performance model

(c) RRZE 2013 SC13 Tutorial

Multicore Scaling:

The ECM Model

Improving the Roofline Model

See Poster 

“Pattern-Driven Node-Level Performance Engineering”

(Tomorrow 5:15pm – 7pm)

Assumptions and shortcomings of the roofline model

 Assumes one of two bottlenecks

1. In-core execution

2. Bandwidth of a single hierarchy level

 Latency effects are not modeled  pure data streaming assumed

 In-core execution is sometimes hard to

model

 Saturation effects in multicore

chips are not explained

 ECM model gives more insight

A(:)=B(:)+C(:)*D(:)

Roofline predicts full
socket BW

(c) RRZE 2013 SC13 Tutorial 208

ECM Model

 ECM = “Execution-Cache-Memory”

 Assumptions:

 Single-core execution time is composed of

1. In-core execution

2. Data transfers in the memory hierarchy

 Data transfers may or may not overlap with

each other or with in-core execution

 Scaling is linear until the relevant bottleneck

is reached

 Input:

 Same as for Roofline

 + data transfer times in hierarchy

(c) RRZE 2013 209 SC13 Tutorial

Example: Schönauer Vector Triad in L2 cache

 REPEAT[A(:) = B(:) + C(:) * D(:)] @ double precision

 Analysis for Sandy Bridge core w/ AVX (unit of work: 1 cache line)

(c) RRZE 2013 210 SC13 Tutorial

1 LD/cy + 0.5 ST/cy

Registers

L1

L2

32 B/cy (2 cy/CL)

Machine characteristics:

Arithmetic:
1 ADD/cy+ 1 MULT/cy

Registers

L1

L2

Triad analysis (per CL):

6 cy/CL

10 cy/CL

Arithmetic:
AVX: 2 cy/CL

LD LD
ST/2

LD
ST/2 LD LD

ST/2
LD

ST/2

LD

ADD
MULT

ADD
MULT

LD LD WA ST

Roofline prediction: 16/10 F/cy

Timeline:

16 F/CL (AVX)

Measurement: 16F / ≈17cy

Example: ECM model for Schönauer Vector Triad
A(:)=B(:)+C(:)*D(:) on a Sandy Bridge Core with AVX

(c) RRZE 2013 211 SC13 Tutorial

CL
transfer

Write-
allocate
CL transfer

Full vs. partial vs. no overlap

(c) RRZE 2013 212 SC13 Tutorial

Results
suggest no
overlap!

Multicore scaling in the ECM model

 Identify relevant bandwidth bottlenecks

 L3 cache

 Memory interface

 Scale single-thread performance until first bottleneck is hit:

(c) RRZE 2013 213 SC13 Tutorial

𝑃 𝑡 = min(𝑡𝑃0, 𝑃roof), with 𝑃roof = min (𝑃max, 𝐼 ∙ 𝑏𝑆)

. . . Example:
Scalable L3

on Sandy
Bridge

ECM prediction vs. measurements for A(:)=B(:)+C(:)*D(:)

on a Sandy Bridge socket (no-overlap assumption)

Model: Scales until saturation

sets in

Saturation point (# cores) well

predicted

Measurement: scaling not perfect

Caveat: This is specific for this

architecture and this benchmark!

Check: Use “overlappable” kernel

code

(c) RRZE 2013 214 SC13 Tutorial

ECM prediction vs. measurements for A(:)=B(:)+C(:)/D(:)

on a Sandy Bridge socket (full overlap assumption)

(c) RRZE 2013 215 SC13 Tutorial

In-core execution is dominated by

divide operation

(44 cycles with AVX, 22 scalar)

 Almost perfect agreement with

 ECM model

Parallelism “heals” bad
single-core performance

… just barely!

The impact of in-core optimizations

 Remember the sequential vector triad?

(c) RRZE 2013 216 SC13 Tutorial

L1

L2

L3

M
em

AVX

L1

L2

L3

M
em

scalar

Less SIMD benefit
for far-away data
 “Amdahl’s Law”!

Summary: The ECM Model

 Saturation effects are ubiquitous; understanding them gives us
opportunity to

 Find out about optimization opportunities

 Save energy by letting cores idle  see power model later on

 Putting idle cores to better use  asynchronous communication, functional
parallelism

 ECM correctly describes several effects

 Saturation for memory-bound loops

 Diminishing returns of in-core optimizations for far-away data

 Parallelism heals bad sequential code (sometimes…)

 Simple models work best. Do not try to complicate things unless it is
really necessary!

 Possible extensions to the ECM model

 Accommodate latency effects

 Model simple “architectural hazards”

(c) RRZE 2013 217 SC13 Tutorial

218

Tutorial conclusion

 Multicore architecture == multiple complexities

 Affinity matters  pinning/binding is essential

 Bandwidth bottlenecks  inefficiency is often made on the chip level

 Topology dependence of performance features  know your hardware!

 Put cores to good use

 Bandwidth bottlenecks  surplus cores  functional parallelism!?

 Shared caches  fast communication/synchronization  better

implementations/algorithms?

 Simple modeling techniques help us

 … understand the limits of our code on the given hardware

 … identify optimization opportunities

 … learn more, especially when they do not work!

 Simple tools get you 95% of the way

 e.g., LIKWID tool suite. Best tool:

(c) RRZE 2013 SC13 Tutorial

your brain!

219

THANK YOU.

(c) RRZE 2013 SC13 Tutorial

Moritz Kreutzer

Markus Wittmann

Thomas Zeiser

Michael Meier

OMI4papps

HSMB

hpcADD

FEPA

SKALB

220 (c) RRZE 2013 SC13 Tutorial

Presenter Biographies

Georg Hager holds a PhD in computational physics from the University of Greifswald. He

has been working with high performance systems since 1995, and is now a senior research

scientist in the HPC group at Erlangen Regional Computing Center (RRZE). Recent

research includes architecture-specific optimization for current microprocessors,

performance modeling on processor and system levels, and the efficient use of hybrid

parallel systems. See his blog at http://blogs.fau.de/hager for current activities,

publications, and talks.

Jan Treibig holds a PhD in Computer Science from the University of Erlangen. He is now

a postdoctoral researcher in the HPC Services group at Erlangen Regional Computing

Center (RRZE). His current research revolves around architecture-specific and low-level

optimization for current processor architectures, performance modeling on processor and

system levels, and programming tools. He is the developer of LIKWID, a collection of

lightweight performance tools. In his daily work he is involved in all aspects of user support

in High Performance Computing: training, code parallelization, profiling and optimization,

and the evaluation of novel computer architectures.

Gerhard Wellein holds a PhD in solid state physics from the University of Bayreuth and is

a professor at the Department for Computer Science at the University of Erlangen. He

leads the HPC group at Erlangen Regional Computing Center (RRZE) and has more than

ten years of experience in teaching HPC techniques to students and scientists from

computational science and engineering programs. His research interests include solving

large sparse eigenvalue problems, novel parallelization approaches, performance

modeling, and architecture-specific optimization.

http://blogs.fau.de/hager

221 (c) RRZE 2013 SC13 Tutorial

Abstract

 SC13 tutorial: The Practitioner's Cookbook for Good Parallel Performance
on Multi- and Many-Core Systems

 Presenter(s): Georg Hager, Jan Treibig, Gerhard Wellein

 ABSTRACT:

The advent of multi- and many-core chips has led to a further opening of the gap between
peak and application performance for many scientific codes. This trend is accelerating as
we move from petascale to exascale. Paradoxically, bad node-level performance helps to
"efficiently" scale to massive parallelism, but at the price of increased overall time to
solution. If the user cares about time to solution on any scale, optimal performance on the
node level is often the key factor. Also, the potential of node-level improvements is widely
underestimated, thus it is vital to understand the performance-limiting factors on modern
hardware. We convey the architectural features of current processor chips,
multiprocessor nodes, and accelerators, as well as the performance properties of the
dominant MPI and OpenMP programming models, as far as they are relevant for the
practitioner. Peculiarities like SIMD vectorization, shared vs. separate caches, bandwidth
bottlenecks, and ccNUMA characteristics are introduced, and the influence of system
topology and affinity on the performance of typical parallel programming constructs is
demonstrated. Performance engineering is introduced as a powerful tool that helps the
user assess the impact of possible code optimizations by establishing models for the
interaction of the software with the hardware.

222

References

Books:

 G. Hager and G. Wellein: Introduction to High Performance Computing for Scientists and
Engineers. CRC Computational Science Series, 2010. ISBN 978-1439811924

Papers:

 M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop: A unified sparse matrix
data format for modern processors with wide SIMD units. Submitted.
Preprint: arXiv:1307.6209

 G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring performance and power
properties of modern multicore chips via simple machine models. Accepted for
Computation and Concurrency: Practice and Experience. Preprint: arXiv:1208.2908

 J. Treibig, G. Hager and G. Wellein: Performance patterns and hardware metrics on
modern multicore processors: Best practices for performance engineering. Workshop on
Productivity and Performance (PROPER 2012) at Euro-Par 2012, August 28, 2012,
Rhodes Island, Greece. Preprint: arXiv:1206.3738

 M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann and A. R. Bishop: Sparse
Matrix-vector Multiplication on GPGPU Clusters: A New Storage Format and a Scalable
Implementation. Workshop on Large-Scale Parallel Processing 2012 (LSPP12),
DOI: 10.1109/IPDPSW.2012.211

 J. Treibig, G. Hager, H. Hofmann, J. Hornegger and G. Wellein: Pushing the limits for
medical image reconstruction on recent standard multicore processors. International
Journal of High Performance Computing Applications, (published online before print).
DOI: 10.1177/1094342012442424

(c) RRZE 2013 SC13 Tutorial

http://www.crcpress.com/product/isbn/9781439811924
http://www.crcpress.com/product/isbn/9781439811924
http://arxiv.org/abs/1307.6209
http://arxiv.org/abs/1208.2908
http://arxiv.org/abs/1206.3738
http://dx.doi.org/10.1109/IPDPSW.2012.211
http://dx.doi.org/10.1177/1094342012442424

223

References

Papers continued:

 G. Wellein, G. Hager, T. Zeiser, M. Wittmann and H. Fehske: Efficient temporal blocking

for stencil computations by multicore-aware wavefront parallelization. Proc. COMPSAC

2009.

DOI: 10.1109/COMPSAC.2009.82

 M. Wittmann, G. Hager, J. Treibig and G. Wellein: Leveraging shared caches for parallel

temporal blocking of stencil codes on multicore processors and clusters. Parallel

Processing Letters 20 (4), 359-376 (2010).

DOI: 10.1142/S0129626410000296. Preprint: arXiv:1006.3148

 J. Treibig, G. Hager and G. Wellein: LIKWID: A lightweight performance-oriented tool

suite for x86 multicore environments. Proc. PSTI2010, the First International Workshop

on Parallel Software Tools and Tool Infrastructures, San Diego CA, September 13, 2010.

DOI: 10.1109/ICPPW.2010.38. Preprint: arXiv:1004.4431

 G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector

multiplication with explicit communication overlap on current multicore-based systems.

Parallel Processing Letters 21(3), 339-358 (2011).

DOI: 10.1142/S0129626411000254

 J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization strategies for

iterative stencil computations. Journal of Computational Science 2 (2), 130-137 (2011).

DOI 10.1016/j.jocs.2011.01.010

 (c) RRZE 2013 SC13 Tutorial

http://dx.doi.org/10.1109/COMPSAC.2009.82
http://dx.doi.org/10.1109/COMPSAC.2009.82
http://dx.doi.org/10.1142/S0129626410000296
http://arxiv.org/abs/1006.3148
http://www.psti-workshop.org/
http://doi.ieeecomputersociety.org/10.1109/ICPPW.2010.38
http://arxiv.org/abs/1004.4431
http://dx.doi.org/10.1142/S0129626411000254
http://dx.doi.org/10.1142/S0129626411000254
http://dx.doi.org/10.1016/j.jocs.2011.01.010

224

References

Papers continued:

 J. Habich, T. Zeiser, G. Hager and G. Wellein: Performance analysis and optimization

strategies for a D3Q19 Lattice Boltzmann Kernel on nVIDIA GPUs using CUDA.

Advances in Engineering Software and Computers & Structures 42 (5), 266–272 (2011).

DOI: 10.1016/j.advengsoft.2010.10.007

 J. Treibig, G. Hager and G. Wellein: Multicore architectures: Complexities of performance

prediction for Bandwidth-Limited Loop Kernels on Multi-Core Architectures.

DOI: 10.1007/978-3-642-13872-0_1, Preprint: arXiv:0910.4865.

 G. Hager, G. Jost, and R. Rabenseifner: Communication Characteristics and Hybrid

MPI/OpenMP Parallel Programming on Clusters of Multi-core SMP Nodes. In:

Proceedings of the Cray Users Group Conference 2009 (CUG 2009), Atlanta, GA, USA,

May 4-7, 2009. PDF

 R. Rabenseifner and G. Wellein: Communication and Optimization Aspects of Parallel

Programming Models on Hybrid Architectures. International Journal of High Performance

Computing Applications 17, 49-62, February 2003.

DOI:10.1177/1094342003017001005

(c) RRZE 2013 SC13 Tutorial

http://dx.doi.org/10.1016/j.advengsoft.2010.10.007
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://arxiv.org/abs/0910.4865
http://www.cug.org/5-publications/proceedings_attendee_lists/CUG09CD/S09_Proceedings/pages/authors/06-10Tuesday/9B-Rabenseifner/rabenseifner-paper.pdf
http://www.cug.org/5-publications/proceedings_attendee_lists/CUG09CD/S09_Proceedings/pages/authors/06-10Tuesday/9B-Rabenseifner/rabenseifner-paper.pdf
http://dx.doi.org/10.1177/1094342003017001005

HPC textbook

Georg Hager and Gerhard Wellein:

Introduction to High Performance
Computing for Scientists and Engineers

CRC Press, ISBN 978-1439811924
356 pages
July 2010

"Georg Hager and Gerhard Wellein have developed a
very approachable introduction to high performance
computing for scientists and engineers. Their style and
descriptions are easy to read and follow. … This book
presents a balanced treatment of the theory, technology,
architecture, and software for modern high performance computers and the use of high
performance computing systems. The focus on scientific and engineering problems
makes it both educational and unique. I highly recommend this timely book for
scientists and engineers. I believe it will benefit many readers and provide a fine
reference."
— From the Foreword by Jack Dongarra, University of Tennessee, Knoxville, USA

Georg Hager & Gerhard Wellein:
Introduction to High Performance Computing for Scientists and Engineers

 Covers basic sequential optimization strategies and the dominating
parallelization paradigms, including shared-memory parallelization with
OpenMP and distributed-memory parallel programming with MPI

 Highlights the importance of performance modeling of applications on all
levels of a system’s architecture

 Contains numerous case studies drawn from the authors’ invaluable
experiences in HPC user support, performance optimization, and
benchmarking

 Explores important contemporary concepts, such as
multicore architecture and affinity issues

 Includes code examples in Fortran and, if relevant,
C and C++

 Provides end-of-chapter exercises with solutions in
an appendix

 http://www.hpc.rrze.uni-erlangen.de/HPC4SE/

http://www.hpc.rrze.uni-erlangen.de/HPC4SE/
http://www.hpc.rrze.uni-erlangen.de/HPC4SE/
http://www.hpc.rrze.uni-erlangen.de/HPC4SE/

Introduction to High Performance
Computing for Scientists and
Engineers
Contents

 Modern Processors
Stored-program computer architecture
General-purpose cache-based microprocessor
 architecture
Memory hierarchies
Multicore processors
Multithreaded processors
Vector processors

 Basic Optimization Techniques for Serial Code
Scalar profiling
Common sense optimizations
Simple measures, large impact
The role of compilers
C++ optimizations

 Data Access Optimization
Balance analysis and lightspeed estimates
Storage order
Case study: The Jacobi algorithm
Case study: Dense matrix transpose
Algorithm classification and access
 optimizations
Case study: Sparse matrix-vector multiply

 Parallel Computers
Taxonomy of parallel computing paradigms
Shared-memory computers
Distributed-memory computers
Hierarchical (hybrid) systems
Networks

 Basics of Parallelization
Why parallelize?
Parallelism
Parallel scalability

 Shared-Memory Parallel Programming with
OpenMP
Short introduction to OpenMP
Case study: OpenMP-parallel Jacobi algorithm
Advanced OpenMP: Wavefront parallelization

 Efficient OpenMP Programming
Profiling OpenMP programs
Performance pitfalls
Case study: Parallel sparse matrix-vector
 multiply

 Locality Optimizations on ccNUMA
Architectures
Locality of access on ccNUMA
Case study: ccNUMA optimization of sparse
 MVM
Placement pitfalls
ccNUMA issues with C++

 Distributed-Memory Parallel Programming with
MPI
Message passing
A short introduction to MPI
Example: MPI parallelization of a Jacobi solver

 Efficient MPI Programming
MPI performance tools
Communication parameters
Synchronization, serialization, contention
Reducing communication overhead
Understanding intranode point-to-point
 communication

Introduction to High Performance
Computing for Scientists and
Engineers
Contents continued

 Hybrid Parallelization with MPI and OpenMP
Basic MPI/OpenMP programming models
MPI taxonomy of thread interoperability
Hybrid decomposition and mapping
Potential benefits and drawbacks of hybrid
 programming

 Appendix A: Topology and Affinity in Multicore
Environments

 Appendix B: Solutions to the Problems

 Bibliography

 Index

