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What are we interested in?

» (Predominantly) finite element simulations

» primary application areas in geophysical fluids (ocean and
atmosphere)
» simulations on unstructured and semi-structured meshes

» Providing high-level interfaces for users, with performance
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» the moon, on a stick
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What are the elementary operations?

» Numerics tell us the elementary operation we apply
everywhere in the mesh (a "kernel")

» Mesh topology gives us the "stencil" pattern

» Our job: efficiently apply the kernel over the whole mesh
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Maintaining abstractions
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Express what, not how

» User code should make as few decisions about
implementation as possible
» FE discretisations expressed symbolically using the Unified
Form Language
» developed in the FEniCS project
(http://www.fenicsproject.org)
» symbolic representation compiled to a C kernel
» Data to feed to kernel (and interface to solvers) provided
by Firedrake (http://www.firedrakeproject.org)
» Execution of kernel over entire domain expressed as
parallel loop with access descriptors

» uses PyOP2 unstructured mesh library
(http://github.com/OP2/PyOP2)
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from firedrake import x

F(u;v) = [ Vu- Vv + uvdx
= inner(grad(u), grad(v))*dx + u*v*dx
solve(F == 0, u)

m = UnitSquareMesh(32, 32)

V = FunctionSpace(m, ’Lagrange’, 2)
u = Function(V)

v = TestFunction(V)

#

F

» Kernels produced for residual and jacobian evaluation
» jacobian computed by symbolic differentiation of residual
form
» Kernels executed over mesh using PyOP2
» http://github.com/0P2/PyOP2
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PyOP2 data model

» Data types
Set e.g. cells, degrees of freedom (dofs)
Dat data defined on a Set (one entry per set
element)
Map a mapping between two sets (e.g. cells to
dofs), a "stencil"
Global global data (one entry)
Kernel a piece of code to execute over the mesh (in
Q)
» access descriptors
» READ, RW, WRITE, INC, ...

» iteration construct
par_loop execute a Kernel over every element in a Set
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Example

elements = Set(...)

nodes = Set(...)

elem_node = Map(elements, nodes, 3, ...) # 3 nodes per element

node_data = Dat(nodes, ...)

element_data = Dat(elements, ...)

count = Global(...) # no set (global value)

par_loop(kernel, elements,
element_data(READ), # direct read
node_data(INC, elem_node), # indirect increment
count(INC)) # global increment

» executes kernel for each ele in elements
» runtime knows it has to care about data dependencies for

» increments into node_data
» increment into count
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Synthesis, not analysis

» Low level code is generated at runtime for parallel loops
» Access descriptors on parallel loops mean:
» code generation requires synthesis, not analysis
» determination of when halo exchanges need to occur is
automatic
» colouring for shared memory parallelisation can be
computed automatically
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Exploiting structure
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Semi-structured meshes

» Many application areas have a "short" direction
» ocean and atmosphere
» thin shells
» Numerics dictate we should do something different in
short direction
» Use semi-structured meshes

» unstructured in "long" directions, structured in short
» can we exploit this structure?
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A picture of triangles
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Admits a fast implementation

» Exploit structure in mesh to
amortize indirect lookups

» arrange for iteration over
short direction to be
innermost loop A® | - -
» pay one indirect lookup per

mesh column

» walk up column directly A
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Benchmarking
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A bandwidth bound test

» Walk over mesh, read from vertices and cells, sum into
global

void kernel(double *a, double *x[], double xy[]) {
const double area = fabs(x[@J[0JI*(x[2][11-x[41[11)
+ x[2][0]*(x[41[1]-x[0I[1])
+ x[41[0]*(x[01[1]1-x[21[11));
*a += area * 0.5 * y[0][0];

» Can we sustain an appreciable fraction of memory
bandwidth?
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Measuring throughput

» "Effective" data volume
» assume every piece of data is touched exactly once (in
perfect order)
» don't count data movement for indirection maps
» "Valuable" bandwidth
» effective data volume per second
» Actual memory bandwidth will be higher (reading
indirection maps)

» but this is not "useful"
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Benchmark setup

» 2D unstructured mesh: 806110 cells, 403811 vertices.

» 2D coordinate field located at vertices (implicit 3rd
coordinate)
» scalar field stored at cell centres

» Run with increasing number of extruded cell layers (njayer)

> data volume (806110 * nj,yer) + 403811 * 2 (njayer + 1)
doubles

> 1 layer: 18.4MB

» 200 layers: 2468MB

» Execute kernel over mesh 100 times
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Single node

» Intel Sandybridge 4 cores (2 way hyperthreading)
» 32kB L1 cache (per core)
» 256 kB L2 cache (per core)
» 8 MB L3 cache (shared)
» Measured STREAM bandwidth (8 threads)
> 11341 MB/s
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Effect of good base numbering

» Being completely unstructured hurts a lot
» Compare default (mesh generator) numbering with
renumbered mesh using 2D space filling curve
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Adding layers amortizes indirection cost

» L3 cache bandwidth

» low layer numbers hit the L3 more often (indirection

lookups)
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» What about actual throughput though?
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Valuable bandwidth

» Above 720 layers, indirection cost "hidden"
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More threads

» Hyperthreading gives some further gains (82% STREAM
bandwidth)
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Conclusions

Imperial College

25
London



Possible to be unstructured and fast

» A good numbering gets you a reasonable way there
» If there is structure in your problem, use it!

» High level abstractions need not kill performance
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» All code is open source, and online:

Firedrake http://www.firedrakeproject.org and
http://github.com/firedrakeproject/
firedrake

PyOP2 http://github.com/0P2/Py0OP2
(documentation at
http://op2.github.io/Py0P2)

» Postdoc positions in this area are available

» contact: me (lawrence.mitchell@imperial.ac.uk) or David

Ham (david.ham@imperial.ac.uk)
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