Firedrake: a multilevel domain specific

language approach to unstructured mesh

stencil computations

Lawrence Mitchell, Gheorghe-Teodor Bercea, David
Ham, Paul Kelly, Nicolas Loriant, Fabio Luporini, Florian
Rathgeber

Departments of Mathematics and Computing, Imperial College London

21 February 2014

Imperial College
London

Introduction

Imperial College
London

What are we interested in?

» (Predominantly) finite element simulations

» primary application areas in geophysical fluids (ocean and
atmosphere)
» simulations on unstructured and semi-structured meshes

» Providing high-level interfaces for users, with performance

Imperial College
London

What are we interested in?

» (Predominantly) finite element simulations

» primary application areas in geophysical fluids (ocean and
atmosphere)
» simulations on unstructured and semi-structured meshes

» Providing high-level interfaces for users, with performance

» the moon, on a stick

Imperial College
London

What are the elementary operations?

» Numerics tell us the elementary operation we apply
everywhere in the mesh (a "kernel")

» Mesh topology gives us the "stencil" pattern

» Our job: efficiently apply the kernel over the whole mesh

Imperial College
London

Maintaining abstractions

Imperial College
London

Express what, not how

» User code should make as few decisions about
implementation as possible
» FE discretisations expressed symbolically using the Unified
Form Language
» developed in the FEniCS project
(http://www.fenicsproject.org)
» symbolic representation compiled to a C kernel
» Data to feed to kernel (and interface to solvers) provided
by Firedrake (http://www.firedrakeproject.org)
» Execution of kernel over entire domain expressed as
parallel loop with access descriptors

» uses PyOP2 unstructured mesh library
(http://github.com/OP2/PyOP2)

Imperial College .
London

http://www.fenicsproject.org
http://www.firedrakeproject.org
http://github.com/OP2/PyOP2

Unified Form
Language (UFL)

Problem definition
in FEM weak form

FFC Form

Firedrake
A performance-portable
Finite-element computation

framework

Geometry, .
fields and Compiler
meshes Local assembly

kernels, data
dependencies

PyOP2 Interface

Parallel loops over

PyOP2

Parallel unstructured mesh| kernels with access
computation framework descriptors

Parallel scheduling, code generation
Explicitly
parallel

CPU

Sl BT herdwere
specific
OpenMP/ l§ (CUDA / implemen-

OpenCL) f§ OpenCL) tation

from firedrake import x

F(u;v) = [Vu- Vv + uvdx
= inner(grad(u), grad(v))*dx + u*v*dx
solve(F == 0, u)

m = UnitSquareMesh(32, 32)

V = FunctionSpace(m, ’Lagrange’, 2)
u = Function(V)

v = TestFunction(V)

#

F

» Kernels produced for residual and jacobian evaluation
» jacobian computed by symbolic differentiation of residual
form
» Kernels executed over mesh using PyOP2
» http://github.com/0P2/PyOP2

Imperial College .
London

http://github.com/OP2/PyOP2

PyOP2 data model

» Data types
Set e.g. cells, degrees of freedom (dofs)
Dat data defined on a Set (one entry per set
element)
Map a mapping between two sets (e.g. cells to
dofs), a "stencil"
Global global data (one entry)
Kernel a piece of code to execute over the mesh (in
Q)
» access descriptors
» READ, RW, WRITE, INC, ...

» iteration construct
par_loop execute a Kernel over every element in a Set

Imperial College
London

Example

elements = Set(...)

nodes = Set(...)

elem_node = Map(elements, nodes, 3, ...) # 3 nodes per element

node_data = Dat(nodes, ...)

element_data = Dat(elements, ...)

count = Global(...) # no set (global value)

par_loop(kernel, elements,
element_data(READ), # direct read
node_data(INC, elem_node), # indirect increment
count(INC)) # global increment

» executes kernel for each ele in elements
» runtime knows it has to care about data dependencies for

» increments into node_data
» increment into count

Imperial College 1
London

Synthesis, not analysis

» Low level code is generated at runtime for parallel loops
» Access descriptors on parallel loops mean:
» code generation requires synthesis, not analysis
» determination of when halo exchanges need to occur is
automatic
» colouring for shared memory parallelisation can be
computed automatically

Imperial College

11
London

Synthesis, not analysis

» Low level code is generated at runtime for parallel loops
» Access descriptors on parallel loops mean:
» code generation requires synthesis, not analysis
» determination of when halo exchanges need to occur is
automatic
» colouring for shared memory parallelisation can be
computed automatically

Imperial College
London

Exploiting structure

Imperial College

12
London

Semi-structured meshes

» Many application areas have a "short" direction
» ocean and atmosphere
» thin shells
» Numerics dictate we should do something different in
short direction
» Use semi-structured meshes

» unstructured in "long" directions, structured in short
» can we exploit this structure?

Imperial College

13
London

A picture of triangles

>
=
PO

Imperial College

14
London

Admits a fast implementation

» Exploit structure in mesh to
amortize indirect lookups

» arrange for iteration over
short direction to be
innermost loop A® | - -
» pay one indirect lookup per

mesh column

» walk up column directly A

Imperial College s
London

Benchmarking

Imperial College

16
London

A bandwidth bound test

» Walk over mesh, read from vertices and cells, sum into
global

void kernel(double *a, double *x[], double xy[]) {
const double area = fabs(x[@J[0JI*(x[2][11-x[41[11)
+ x[2][0]*(x[41[1]-x[0I[1])
+ x[41[0]*(x[01[1]1-x[21[11));
*a += area * 0.5 * y[0][0];

» Can we sustain an appreciable fraction of memory
bandwidth?

Imperial College

17
London

Measuring throughput

» "Effective" data volume
» assume every piece of data is touched exactly once (in
perfect order)
» don't count data movement for indirection maps
» "Valuable" bandwidth
» effective data volume per second
» Actual memory bandwidth will be higher (reading
indirection maps)

» but this is not "useful"

Imperial College 18
London

Benchmark setup

» 2D unstructured mesh: 806110 cells, 403811 vertices.

» 2D coordinate field located at vertices (implicit 3rd
coordinate)
» scalar field stored at cell centres

» Run with increasing number of extruded cell layers (njayer)

> data volume (806110 * nj,yer) + 403811 * 2 (njayer + 1)
doubles

> 1 layer: 18.4MB

» 200 layers: 2468MB

» Execute kernel over mesh 100 times

Imperial College

19
London

Single node

» Intel Sandybridge 4 cores (2 way hyperthreading)
» 32kB L1 cache (per core)
» 256 kB L2 cache (per core)
» 8 MB L3 cache (shared)
» Measured STREAM bandwidth (8 threads)
> 11341 MB/s

Imperial College

20
London

Effect of good base numbering

» Being completely unstructured hurts a lot
» Compare default (mesh generator) numbering with
renumbered mesh using 2D space filling curve

5015 7 o Original numbering (1 laye) =77 =
= Good numbering (1 layer) _m--"
2 4000 -
@ - Phe
=S "
E 4
é 4 i’
< 3000 + .
Qo rd
@ g
8 e ¢—
=] ’
(] |]
>
2000 ./

1306

Number of threads

Imperial College

21
London

Adding layers amortizes indirection cost

» L3 cache bandwidth

» low layer numbers hit the L3 more often (indirection

lookups)
R —e— 1 Thread
- —&— 2 Threads
» 15000 : —— 3 Threads
a -r —A— 4 Threads
= A
5 10000 -| 1 N a
2 T LA A Bmim e Am e m s
% ” - At A - A
S U P I
g . OA‘ AAAAAAA @ o - * *
(s} ~
— 5000 \.L.___.- ------- [P [P .
®e ° .
2129 - i O e—
[I I I 1
0 50 100 150 200

Number of cell layers

» What about actual throughput though?

Imperial College

22
London

Valuable bandwidth

» Above 720 layers, indirection cost "hidden"

1341 9 —o— 1 Thread
—a— 2 Threads
10000 — —o— 3 Threads
@ —A— 4 Threads
< 8000 — _A—=mm —A - - - A - - -
£ -
k] A A~
% ! * P I *
2 1 T S L SERRREETEREEEE
% 6000 - A o .
8 »
= -l —-—- - - B - [[]
S 4000 | w m-m-- "
./
® o—gq—*—— /.—.
1736 4 o7 .
[T T T |
0 50 100 150 200

Number of cell layers

Imperial College

23
London

More threads

» Hyperthreading gives some further gains (82% STREAM
bandwidth)

1341 a4 Layer (bad base numbering)
—— 1 Layer

3 Layers
10 Layers

10000 —

——
. — O
£ 20 Layers N
= gooo ——® 50 Layers W —
£ 100 Layers —_—
.‘g —A— 150 Layers / °
200 Layers
2 6000 | Y / u o
o /
% / - .
= 4000 H
s /
A A
2000 :4 __—*
1306 — 4
T T T T T T 1
1 2 3 4 5 6 7 8

Number of threads

Imperial College

24
London

Conclusions

Imperial College

25
London

Possible to be unstructured and fast

» A good numbering gets you a reasonable way there
» If there is structure in your problem, use it!

» High level abstractions need not kill performance

Imperial College

26
London

» All code is open source, and online:

Firedrake http://www.firedrakeproject.org and
http://github.com/firedrakeproject/
firedrake

PyOP2 http://github.com/0P2/Py0OP2
(documentation at
http://op2.github.io/Py0P2)

» Postdoc positions in this area are available

» contact: me (lawrence.mitchell@imperial.ac.uk) or David

Ham (david.ham@imperial.ac.uk)

Imperial College

27
London

http://www.firedrakeproject.org
http://github.com/firedrakeproject/firedrake
http://github.com/firedrakeproject/firedrake
http://github.com/OP2/PyOP2
http://op2.github.io/PyOP2

» |Institutions

» Imperial College London
» Grantham Institute for climate change

» Funding

» NERC (NE/K008951/1, NE/K006789/1,
NE/G523512/1)

» EPSRC (EP/L000407/1, EP/K008730/1,
EP/100677X/1)

Imperial College

28
London

	Introduction
	Maintaining abstractions
	Exploiting structure
	Benchmarking
	Conclusions

