
hpcgarage.org/isc15

Actively analyzing performance
to find microarchitectural bottlenecks and to estimate performance bounds

Kenneth (Kent) Czechowski · Jee Whan Choi (IBM) · Jeff Young · Richard (Rich) Vuduc

July 16, 2015
Workshop on Performance Modeling: Methods and Applications
at International Supercomputing Conference (ISC)

http://hpcgarage.org/pp14
http://blogs.fau.de/hager/bofs/isc15-workshop-on-performance-modeling
http://www.isc-hpc.com/

hpcgarage.org/isc15

vs.Passive
(observational)

Active
(experimental)

Kent Czechowski

Many related ideas!
 Environmental modifiers: DVFS, Gremlins

 Code modifiers: autotuning, stochastic (super)optimizers

http://hpcgarage.org/isc15

RESULTS

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

PNY NHM WSM SNB IVB HSW

E
ffi

ci
en

cy
 R

el
at

iv
e

to
 P

N
Y

Improvement in Energy Efficiency
Livermore Loops

SIMD Ext
Frontend
Backend
22nm-Process
32nm-Process
Base

1.5x

K. Czechowski et al. “Improving the energy-efficiency of big cores.” In ISCA’14.
(’07) (’13)

hpcgarage.org/isc15
2 8 2 R.W. Hockney, l.J. Curington /fl/2." A parameter to characterize bottlenecks

/

i i

~(o) / /
/

/ / /
i

J
/ /

/
/ /

J I I
1 2 3

1

(ml
. r']1/2

1 I I , I
4 5 6 X 8
2 3 Z 4.

I I I I I , I
1 1; 2 3 Z

Fig. 2. The variation of (?~, hl/2) with f
for the case of a combined memory I / O
and arithmetic pipefine, when the I / O
and arithmetic can be overlapped. Full
lines: pa ramete r s when ar i thmet ic
dominates, equations (14b); dotted lines:
parameters when I / O dominates, equa-
tions (13b). Notation as Fig. 1, and p =
1.5.

In order to find out whether I / 0 or arithmetic dominates, one must examine the breakeven
vector length, hi, at which I / O and arithmetic take equal times. This occurs when t i l l = t2,
whence

H1 = (H ~ 7 2) - ~'"(a)~''1/2) / (Z - - 1) (15)

where z = fr~m)/r~ a).
,,(m)/,(a) = 1.5, and the The variation of n I with z is drawn in Fig. 3 for the case ~ = , , 1 / 2 / , , 1 / 2

regions of the (z, n])-plane corresponding to I / O or arithmetic dominance are shown.
If z > ~,, the arithmetic time dominates for all vector lengths, because n I is negative.

Equations (14) apply, and the asymptotic performance is constant and equal to the r~ a) of the
arithmetic pipeline. Since this is the situation when f ~ oo we have, by definition, the peak
performance

& = r~ a), (16a)
the same as for the sequential I / O case.

If, however, z < 1, I / O dominates for all vector lengths (because n~ is again negative) and
equations (13) apply. The total computation time, ta, for f vector operations is constant, hence
the asymptotic performance rises hnearly with f , reaching the peak performance P~ - - r~ a) when:
f = r~a)/r~ m). The asymptotic performance reaches half the peak performance when f reaches
half this value, hence by definition

fl/2 = ½r~a)//r~ m). (16b)

Thus overlapping halves the value of f]/2 from that obtained for sequential I /O .
Between 1 < z < u, either I / O or arithmetic may dominate depending on the vector length

(because, now, n 1 is positive). Figure 2 shows that if I / O dominates n < nl) the asymptotic ~
performance can exceed the asymptotic performance of the arithmetic pipeline r~ a), and it
might appear that this is absurd and against physical intuition. However, this is not the case,
because ~ is a theoretical asymptotic performance (for n ~ ~) which in this case can never be

R.W. Hockney and I.J. Curington (1989). “f½: A parameter to
characterize memory and communication bottlenecks.”

doi: 10.1016/0167-8191(89)90100-2

contributed articles

APRIL 2009 | VOL. 52 | NO. 4 | COMMUNICATIONS OF THE ACM 71

not those systems are parallel.
One advantage of using these high-

er-level descriptions of programs is
that we are not tied to code that might
have been originally written to opti-
mize an old computer to evaluate fu-
ture systems. Another advantage of the
restricted number is that efficiency-lev-
el programmers can create autotuners

for each kernel that would search the
alternatives to produce the best code
for that multicore computer, includ-
ing extensive cache optimizations.13

Table 2 lists the four kernels from
among the Seven Dwarfs we use to dem-
onstrate the Roofline model on the four
multicore computers listed in Table 1;
the autotuners discussed in this sec-

tion are from three sources:12, 28, 29

For these kernels, there is sufficient
parallelism to utilize all the cores and
threads and keep them load balanced;
see online Appendix A.2 for how to han-
dle cases when load is not balanced.

Roofline models and results. Figure
3 shows the Roofline models for Xeon,
X4, and Cell. The pink vertical dashed
lines indicate the operational inten-
sity and the red X marks performance
achieved for that particular kernel.
However, achieving balance is difficult
for the others. Hence, each computer
in Figure 3 has two graphs: the left one
has multiply-add balance as the top
ceiling and is used for Lattice-Boltz-
mann Magnetohydrodynamics (LB-
MHD), Stencil, and 3D FFT; the right
one has multiply-add as the bottom
ceiling and is used for SpMV. Since the
T2+ lacks a fused multiply-add instruc-
tion nor can it simultaneously issue
multiplies and adds, Figure 4 shows a
single roofline for the four kernels on
the T2+ without the multiply-add bal-
ance ceiling.

The Intel Xeon has the highest peak
double-precision performance of the
four multicores. However, the Roofline
model in Figure 3a shows this level of
performance can be achieved only with
operational intensities of at least 6.7
Flops/Byte; in other words Clovertown
requires 55 floating-point operations
for every double-precision operand
(8B) going to DRAM to achieve peak
performance. This high ratio is due in
part to the limitation of the front-side
bus, which also carries the coherency
traffic that can consume up to half the
bus bandwidth. Intel includes a snoop
filter to prevent unnecessary coheren-
cy traffic on the bus. If the working set
is small enough for the hardware to fil-
ter, the snoop filter nearly doubles the
delivered memory bandwidth.

The Opteron X4 has a memory
controller on chip, its own path to
667MHz DDR2 DRAM, and separate
paths for coherency. Figure 3 shows
that the ridge point in the Roofline
model is to the left of the Xeon, at an
operational intensity of 4.4 Flops/Byte.
The Sun T2+ has the highest memory
bandwidth so the ridge point is an ex-
ceptionally low operational intensity
of just 0.33 Flops/Byte. It keeps mul-
tiple memory transfers in flight by us-
ing many threads. The IBM Cell ridge

Figure 3a–3c: Roofline model for Intel Xeon, AMD Opteron X4, and IBM Cell.

Operational Intensity (Flops/Byte)

(a) Intel Xeon (Clovertown)

peak DP

+balanced
mul/add

+SIMD

+ILP

TLP only

peak stream bandwidth

+snoop filter effective

LB
M

H
D

FF
T

(5
12

3)

FF
T

(1
28

3)

snoop filter in
effective

St
en

ci
l

G
Fl

op
s/

s

128

64

32

16

8

4

2

1

1/16 1/8 1/4 1/2 1 2 4 8 16

Operational Intensity (Flops/Byte)

(c) AMD Opteron X4 (Barcelona)

peak DP

+balanced
mul/add

+SIMD

+ILP

TLP only

peak stream bandwidth

peak copy bandwidth

without m
emory affinity

St
en

ci
l

LB
M

H
D

FF
T

(5
12

3)

FF
T

(1
28

3)

G
Fl

op
s/

s

128

64

32

16

8

4

2

1

1/16 1/8 1/4 1/2 1 2 4 8 16

Operational Intensity (Flops/Byte)

(b) Intel Xeon (Clovertown)

peak DP

+SIMD

+ILP

TLP only

peak stream bandwidth

snoop filter in
effective

SpMV+snoop filter effective

+balanced
mul/add

G
Fl

op
s/

s

128

64

32

16

8

4

2

1

1/16 1/8 1/4 1/2 1 2 4 8 16

S. Williams, A. Waterman, D. Patterson (2009).
“Roofline: An insightful visual performance

model for multicore architectures.”

doi: 10.1145/1498765.1498785

http://hpcgarage.org/isc15

4.0 Tflop/s [16 Gflop/J]
240 GB/s [1.3 GB/J]

290 W [const=120 W]

Time

Energy

33 Gflop/s [8.1 Gflop/J]
8.4 GB/s [1.5 GB/J]

6.1 W [const=1.3 W]

Time

Energy

GTX Titan Arndale GPU

1/256

1/128

1/64

1/32

1/16

1/8

1/4

1/2

1

2

1/4 1/2 1 2 4 8 16 32 64 128 1/4 1/2 1 2 4 8 16 32 64 128
Intensity (single−precision flop:Byte)

Ef
fic

ie
nc

y
(h

ig
he

r i
s

be
tte

r)
“Desktop GPU” (NVIDIA) “Mobile GPU” (Samsung/ARM)

J. Choi et al. (IPDPS’14)

hpcgarage.org/isc15

contributed articles

APRIL 2009 | VOL. 52 | NO. 4 | COMMUNICATIONS OF THE ACM 71

not those systems are parallel.
One advantage of using these high-

er-level descriptions of programs is
that we are not tied to code that might
have been originally written to opti-
mize an old computer to evaluate fu-
ture systems. Another advantage of the
restricted number is that efficiency-lev-
el programmers can create autotuners

for each kernel that would search the
alternatives to produce the best code
for that multicore computer, includ-
ing extensive cache optimizations.13

Table 2 lists the four kernels from
among the Seven Dwarfs we use to dem-
onstrate the Roofline model on the four
multicore computers listed in Table 1;
the autotuners discussed in this sec-

tion are from three sources:12, 28, 29

For these kernels, there is sufficient
parallelism to utilize all the cores and
threads and keep them load balanced;
see online Appendix A.2 for how to han-
dle cases when load is not balanced.

Roofline models and results. Figure
3 shows the Roofline models for Xeon,
X4, and Cell. The pink vertical dashed
lines indicate the operational inten-
sity and the red X marks performance
achieved for that particular kernel.
However, achieving balance is difficult
for the others. Hence, each computer
in Figure 3 has two graphs: the left one
has multiply-add balance as the top
ceiling and is used for Lattice-Boltz-
mann Magnetohydrodynamics (LB-
MHD), Stencil, and 3D FFT; the right
one has multiply-add as the bottom
ceiling and is used for SpMV. Since the
T2+ lacks a fused multiply-add instruc-
tion nor can it simultaneously issue
multiplies and adds, Figure 4 shows a
single roofline for the four kernels on
the T2+ without the multiply-add bal-
ance ceiling.

The Intel Xeon has the highest peak
double-precision performance of the
four multicores. However, the Roofline
model in Figure 3a shows this level of
performance can be achieved only with
operational intensities of at least 6.7
Flops/Byte; in other words Clovertown
requires 55 floating-point operations
for every double-precision operand
(8B) going to DRAM to achieve peak
performance. This high ratio is due in
part to the limitation of the front-side
bus, which also carries the coherency
traffic that can consume up to half the
bus bandwidth. Intel includes a snoop
filter to prevent unnecessary coheren-
cy traffic on the bus. If the working set
is small enough for the hardware to fil-
ter, the snoop filter nearly doubles the
delivered memory bandwidth.

The Opteron X4 has a memory
controller on chip, its own path to
667MHz DDR2 DRAM, and separate
paths for coherency. Figure 3 shows
that the ridge point in the Roofline
model is to the left of the Xeon, at an
operational intensity of 4.4 Flops/Byte.
The Sun T2+ has the highest memory
bandwidth so the ridge point is an ex-
ceptionally low operational intensity
of just 0.33 Flops/Byte. It keeps mul-
tiple memory transfers in flight by us-
ing many threads. The IBM Cell ridge

Figure 3a–3c: Roofline model for Intel Xeon, AMD Opteron X4, and IBM Cell.

Operational Intensity (Flops/Byte)

(a) Intel Xeon (Clovertown)

peak DP

+balanced
mul/add

+SIMD

+ILP

TLP only

peak stream bandwidth

+snoop filter effective

LB
M

H
D

FF
T

(5
12

3)

FF
T

(1
28

3)

snoop filter in
effective

St
en

ci
l

G
Fl

op
s/

s

128

64

32

16

8

4

2

1

1/16 1/8 1/4 1/2 1 2 4 8 16

Operational Intensity (Flops/Byte)

(c) AMD Opteron X4 (Barcelona)

peak DP

+balanced
mul/add

+SIMD

+ILP

TLP only

peak stream bandwidth

peak copy bandwidth

without m
emory affinity

St
en

ci
l

LB
M

H
D

FF
T

(5
12

3)

FF
T

(1
28

3)

G
Fl

op
s/

s

128

64

32

16

8

4

2

1

1/16 1/8 1/4 1/2 1 2 4 8 16

Operational Intensity (Flops/Byte)

(b) Intel Xeon (Clovertown)

peak DP

+SIMD

+ILP

TLP only

peak stream bandwidth

snoop filter in
effective

SpMV+snoop filter effective

+balanced
mul/add

G
Fl

op
s/

s

128

64

32

16

8

4

2

1

1/16 1/8 1/4 1/2 1 2 4 8 16

“Usual” route: Fix “x” and try to improve “y.”

What about the other direction?

S. Williams, A. Waterman, D. Patterson (CACM’09)

http://hpcgarage.org/isc15

●

●
●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

32

64

128

256

512

8 16 32 64 128 256 512 1024
Intensity (flop:byte)

G
flo

p/
s

hpcgarage.org/isc15
Shiloach-Vishkin algorithm to compute
 connected components (as labels)

forall v ∈ V do

 label[v] ← int(v)

while … do

 forall v ∈ V do

 forall (u, v) ∈ E do

 if label[u] < label[v] then

 label[u] ← label[v]

O. Green, M. Dukhan, R. Vuduc. “Branch-avoiding graph algorithms.” In SPAA’15.

http://hpcgarage.org/isc15

astro−ph audikw1 auto coAuthorsDBLP cond−mat−2003 cond−mat−2005 coPapersDBLP ecology1 ldoor power preferentialAttachment

0.0

0.3

0.6

0.9

1.2

SV

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Branch−
based

Predicted values: Cache.references Cache.misses Branches Mispredictions

Predicted Cycles per instruction [Ivy Bridge]

Measured

Modeled

(counters + lasso regression)

ldoor
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
● ●

1.12x

1.0

1.1

Ivy Bridge

0 20 40 60
Iteration

Implementation ●a aBranch−based Branch−avoiding

Shiloach−Vishkin Connected Components: Cycles
[Normalized to branch−based minimum]

Branch-avoiding

Branch-based

O. Green, M. Dukhan, R. Vuduc. “Branch-avoiding graph algorithms.” In SPAA’15.

hpcgarage.org/isc15

A frontier:

Performance upper bounds
Iteratively rewrite the input program in a controlled fashion,
then re-analyze it.

Rewrites need not necessarily be semantics preserving!
V. Elango, F. Rastello, L.-N. Pouchet, J. Ramanujam, P. Sadayappan. “On Characterizing the Data Movement
Complexity of Computational DAGs for Parallel Execution.” In SPAA’14.

http://hpcgarage.org/isc15

xPU

Slow Memory

Fast Memory
(Z words)

Q(n;Z) = # transfers

Goal of algorithm analysis
is to estimate or (lower)
bound on Q

Inputs Outputs

Lower-bounds on Q: Red-blue pebble games Slow

Fast

Z
1

Z
1

Inputs
(initial)

Rule 1: Input (“load”)

Rule 2: Output (“store”)

Rule 3: Compute

Minimum I/Os (rules 1 & 2)
needed to place blue pebbles
on outputs?

Outputs

Lower-bounds on Q: Red-blue pebble games Slow

Fast

Z
1

Inputs
(initial)

Minimum I/Os (rules 1 & 2)
needed to place blue pebbles
on outputs?

Outputs

Lower-bounds on Q: Red-blue pebble games Slow

Fast

Z
1

Inputs
(initial)

Minimum I/Os (rules 1 & 2)
needed to place blue pebbles
on outputs?

Outputs

Lower-bounds on Q: Red-blue pebble games Slow

Fast

Z
1

Inputs
(initial)

Minimum I/Os (rules 1 & 2)
needed to place blue pebbles
on outputs?

Outputs

Lower-bounds on Q: Red-blue pebble games Slow

Fast

Z
1

Inputs
(initial)

Minimum I/Os (rules 1 & 2)
needed to place blue pebbles
on outputs?

Outputs

Lower-bounds on Q: Red-blue pebble games Slow

Fast

Z
1

Inputs
(initial)

Minimum I/Os (rules 1 & 2)
needed to place blue pebbles
on outputs?

Outputs

Lower-bounds on Q: Red-blue pebble games Slow

Fast

Q(n;Z) = ⌦

✓
n log n

logZ

◆
Z

1

Inputs

(Hong & Kung ’81)

Outputs
(final)

Lower-bounds on Q: Red-blue pebble games Slow

Fast

Z
1

Inputs Outputs
(final)

Lower-bounds on Q: Red-blue pebble games

Insight: This representation is computable
V. Elango, F. Rastello, L.-N. Pouchet, J. Ramanujam, P. Sadayappan. “On
Characterizing the Data Movement Complexity of Computational DAGs for
Parallel Execution.” In SPAA’14.

Slow

Fast

25

Contech: Efficiently Generating Dynamic Task Graphs for Arbitrary
Parallel Programs

BRIAN P. RAILING, ERIC R. HEIN, and THOMAS M. CONTE, Georgia Institute of Technology

Parallel programs can be characterized by task graphs encoding instructions, memory accesses, and the par-
allel work’s dependencies, while representing any threading library and architecture. This article presents
Contech, a high performance framework for generating dynamic task graphs from arbitrary parallel pro-
grams, and a novel representation enabling programmers and compiler optimizations to understand and
exploit program aspects. The Contech framework supports a variety of languages (including C, C++, and
Fortran), parallelization libraries, and ISAs (including ×86 and ARM). Running natively for collection speed
and minimizing program perturbation, the instrumentation shows 4× improvement over a Pin-based imple-
mentation on PARSEC and NAS benchmarks.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming; D.2.5 [Software Engineering]: Testing and Debugging—Tracing; F.1.2 [Compu-
tation by Abstract Devices]: Modes of Computation—Parallelism and concurrency

General Terms: Performance

Additional Key Words and Phrases: Instrumentation, parallel program modeling, task graph

ACM Reference Format:
Brian P. Railing, Eric R. Hein, and Thomas M. Conte. 2015. Contech: Efficiently generating dynamic
task graphs for arbitrary parallel programs. ACM Trans. Architec. Code Optim. 12, 2, Article 25 (July
2015), 24 pages.
DOI: http://dx.doi.org/10.1145/2776893

1. INTRODUCTION
The performance of emerging multicore processors can only be fully utilized by op-
timized, well-designed parallel programs. Achieving this goal has been the focus of
significant research. To analyze and understand the diversity of parallel programs,
a single common representation is needed. The task graph can provide this repre-
sentation and is well established in the study of efficient scheduling of parallel tasks
[Kumar et al. 2007; Sridharan et al. 2014; Vandierendonck et al. 2013; Yoo et al. 2013],
as well as evaluating future architectures [Almeida et al. 1992; Etsion et al. 2010] and
parallelizing applications [Gupta and Sohi 2011].

Current state-of-the-art task graph generation is not sufficient to support this usage.
Most approaches are only collecting a task graph to immediately schedule the program,
and others are targeted at one specific application such as measuring a program’s

This work was supported in part by NSF Grant #1217434.
Authors’ addresses: B. P. Railing, School of Computer Science; email: brian.railing@gatech.edu; E. R. Hein,
School of Electrical and Computer Engineering; email: ehein6@gatech.edu; T. M. Conte, School of Computer
Science Joint with School of Electrical and Computer Engineering; Georgia Institute of Technology 266 Ferst
Dr. Atlanta, GA 30332; email: conte@cc.gatech.edu.
Contact author: B. P. Railing, email: brian.railing@gatech.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ 2015 ACM 1544-3566/2015/07-ART25 $15.00

DOI: http://dx.doi.org/10.1145/2776893

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 25, Publication date: July 2015.

25:8 B. P. Railing et al.

Fig. 4. Simple OpenMP program as a Contech task graph.

item. The constraint’s identifier (e.g., address) is then used to link the dependencies
together in the final task graph.

While the work in this section lays the groundwork for representing arbitrary parallel
programs as Contech task graphs, Contech’s instrumentation (described in Section 4.1)
currently has three constraints on the “arbitrariness” of the parallel program. First, the
program uses a combination of pthreads, OpenMP, or MPI to implement its parallelism.
Second, the program is written in C, C++, or Fortran. And third, the program is compiled
for the ×86 or ARM ISAs. Ongoing work is exploring how to relax these constraints to
successfully instrument and represent other parallel programs.

4. THE ARCHITECTURE OF CONTECH
The Contech framework is composed of two parts: the generation of a dynamic task
graph and the analysis of task graphs. The front end and middle layer work together
to generate a task graph from a benchmark’s source code. Then back ends implement
analyses and transformations that can be executed on this representation. The focus of
this design is to allow easy analysis of the Contech task graph representation without
a need for back end programmers to understand the details of how a task graph is
generated. Each component will be explained in further detail in this section.

4.1. Front end
The first component is the Contech front end, which consists of two parts: a compiler
pass for LLVM [Lattner and Adve 2004] and a runtime library linked to every applica-
tion. The results in this article used LLVM 3.4 with OpenMP support, and Contech has
been tested with LLVM 3.2 through 3.5. Contech relies on Clang (the C / C++ LLVM
front end) or dragonegg (a plugin for gcc to support Fortran and other languages) to
generate the IR for the program. The compiler pass modifies the IR to include the
instrumentation for recording the actions of the parallel program. As Contech covers
a variety of parallel libraries, the instrumentation is applied to the IR rather than

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 25, Publication date: July 2015.

Contech 25:9

Fig. 5. Runtime instrumentation design (gray instructions are original code).

modifying the runtime libraries themselves. The pass operates function by function
and identifies whether the function should be instrumented, or treated as a black box
(e.g., malloc, pthread_create, etc.). Black box functions are from a defined list; and
although the compiler can detect certain operations such as atomic accesses, the pro-
grammer may have user-defined versions that would need to be explicitly identified to
the instrumentation pass. This way each function only has one static representation in
the task graph: either it is a sequence of basic blocks or it is an abstracted functionality
such as allocating memory or creating a thread.

For each basic block, the LLVM pass finds instructions that will access memory and
introduces instrumentation to record the properties of the memory access: address, size,
and load versus store. Given that instrumentation occurs prior to register assignment,
the LLVM-based instrumentation only records the memory operations specified by the
program and not those imposed by a particular architectural model due to register
allocation. Information about every basic block is also copied into a simplified set of
debugging information, such that analysis tools can identify the function name, source
file, etc., even when processing a basic block ID.

The instrumentation records each action of interest (computation graph actions, thus
either IR instructions or function calls) by a call to an instrumentation routine in the
runtime library that creates a corresponding event. The runtime instrumentation is
written in C to be architecture independent, with functions for each type of event.
Inserting multiple function calls per basic block would have a severe performance
impact, so Contech requires programs to be compiled with Clang’s -flto flag. This flag
instructs Clang to perform link-time optimization, which inlines the instrumentation
routines into the binary. The most common instrumentation call, recording a basic
block event, requires four inlined ×86 instructions, after the optimizations discussed
in Section 6.1. Figure 5 shows the steps required for recording a basic block event, as
well as the optimized instrumentation inlined into the assembly code. In this example,
the instrumentation stores the basic block ID, as well as updating the position in the
thread-local buffer. The original code had two load instructions, so the instrumentation
stores each address loaded by the original code. While the instrumentation introduces
additional instructions, the original code has no dependencies on the instrumentation,
thus maintaining the existing critical path.

Syncs are the most common complex event. Whether the sync is an atomic instruc-
tion, condition variable, OpenMP single directive, etc., the sync is identified either by
the IR instruction or the name of the function invoked. However, there are currently
several cases where Contech does not detect a parallel program’s synchronization such
as, if the program implements its synchronization through inline assembly, OS signals,
or classic synchronization algorithms (e.g., Dekker’s algorithm). The synchronization
action is recorded with three elements: the address of the action, the order of the action

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 25, Publication date: July 2015.

hpcgarage.org/isc15

Kent’s idea:

Pressure point analysis (PPA)
Iteratively rewrite the input program in a controlled fashion,
then re-analyze it.

Rewrites need not necessarily be semantics preserving!

Kent Czechowski

http://hpcgarage.org/isc15

hpcgarage.org/isc15

PPA: CONCEPTUAL EXAMPLE

Compute Only

Memory!
Access Only

Perturbations do not need to preserve the semantic meaning

vmovsd xmm1, [8+rsi+r12]!
vmovsd xmm2, [16+rsi+r12]!
vsubsd xmm0, xmm1, xmm0!
vmulsd xmm3, xmm0, [8+rsi+rbp]!
vmovsd [8+rsi+r13], xmm3!
vsubsd xmm4, xmm2, xmm3!
vmulsd xmm0, xmm4, [16+rsi+rbp]!
vmovsd [16+rsi+r13], xmm0

Tri-Diagonal Elimination!
for (i=1 ; i<n ; i++) {!
! x[i] = z[i]*(y[i] - x[i-1]);!
}

nop!
nop!
vsubsd xmm0, xmm1, xmm0!
vmulsd xmm3, xmm0, xmm10!
nop!
vsubsd xmm4, xmm2, xmm3!
vmulsd xmm0, xmm4, xmm12!
nop

vmovsd xmm1, [8+rsi+r12]!
vmovsd xmm2, [16+rsi+r12]!
nop!
vmovsd xmm3, [8+rsi+rbp]!
vmovsd [8+rsi+r13], xmm3!
nop!
vmovsd xmm0, [16+rsi+rbp]!
vmovsd [16+rsi+r13], xmm0

http://hpcgarage.org/isc15

hpcgarage.org/isc15

CONCRETE EXAMPLE: L1D BANK CONFLICTS

Bank 0  
0-7

Bank 1  
8-15

Bank 2!
16-23

Bank 3!
24-31

Bank 4!
32-39

Bank 5!
40-47

Bank 6  
48-55

Bank 7  
56-63

64 Byte Entries

movpd xmm2, [r12 + 112]movpd xmm1, [r12 + 16]

http://hpcgarage.org/isc15

hpcgarage.org/isc15

CONCRETE EXAMPLE: L1D BANK CONFLICTS

Bank 0  
0-7

Bank 1  
8-15

Bank 2!
16-23

Bank 3!
24-31

Bank 4!
32-39

Bank 5!
40-47

Bank 6  
48-55

Bank 7  
56-63

64 Byte Entries

movpd xmm2, [r12 + 88]

movpd xmm1, [r12 + 16]

Bank Conflict

http://hpcgarage.org/isc15

hpcgarage.org/isc15

vmovsd xmm1, [8+rsi+r12]!
vmovsd xmm2, [8+rsi+r14]!
vsubsd xmm0, xmm1, xmm0!
vmulsd xmm3, xmm0, [8+rsi+rbp]!
vmovsd [8+rsi+r13], xmm3!
vsubsd xmm4, xmm2, xmm3!
vmulsd xmm0, xmm4, [16+rsi+rbp]!
vmovsd [16+rsi+r13], xmm0

[8 +rsi+r12]! ! -> !! ! [X+rsi+r12]!
[8 +rsi+r14]! ! -> !! ! [X+rsi+r14]!
[8 +rsi+rbp]! ! -> !! ! [X+rsi+rbp]!
[8 +rsi+r13]! ! -> !! ! [X+rsi+r13]!
[16+rsi+rbp]! ! -> !! ! [X+rsi+rbp]!
[16+rsi+r13]! ! -> !! ! [X+rsi+r13]

*Assume rsi, r12, r13, r14, and rbp are 64-byte aligned

CONCRETE EXAMPLE: L1D BANK CONFLICTS

Original

vmovsd xmm1, [8+rsi+r12]!
vmovsd xmm2, [16+rsi+r14]!
vsubsd xmm0, xmm1, xmm0!
vmulsd xmm3, xmm0, [8+rsi+rbp]!
vmovsd [8+rsi+r13], xmm3!
vsubsd xmm4, xmm2, xmm3!
vmulsd xmm0, xmm4, [16+rsi+rbp]!
vmovsd [16+rsi+r13], xmm0

Bank Conflicts ??

Perturbed Version

http://hpcgarage.org/isc15

hpcgarage.org/isc15

IDENTIFYING OOO-DEFICIENCIES
Original Scrambled

�

��

�

��

��

��

��

�	

��

��

�

��

��

��

��

�

��

��

��

��

�	

��

��

��

��

�� ��

�

�

��

�

��

��

��

��

��

��

��

��

�	

���

�	

��

���� ��

��

��

��

��

�

�� ��

�� ��

0 inloop:
1 movsd xmm1, [88+r12+r9*8]
2 movsd xmm1, [104+r12+r9*8]
3 movsd xmm2, [120+r12+r9*8]
4 movsd xmm2, [136+r12+r9*8]
5 movaps xmm0, [80+r12+r9*8]
6 movhpd xmm1, [96+r12+r9*8]
7 movaps xmm2, [96+r12+r9*8]
8 movhpd xmm3, [112+r12+r9*8]
9 movaps xmm1, [112+r12+r9*8]
10 movhpd xmm0, [128+r12+r9*8]
11 movaps xmm0, [128+r12+r9*8]
12 movhpd xmm3, [144+r12+r9*8]
13 mulpd xmm1, xmm1
14 mulpd xmm0, xmm0
15 mulpd xmm1, xmm3
16 mulpd xmm3, xmm3
17 mulpd xmm2, xmm2
18 mulpd xmm3, xmm2
19 mulpd xmm1, xmm3
20 mulpd xmm3, xmm1
21 addpd xmm2, xmm1
22 addpd xmm0, xmm3
23 addpd xmm3, xmm3
24 addpd xmm2, xmm3
25 mulpd xmm0, [r15+r9*8]
26 mulpd xmm0, [16+r15+r9*8]
27 mulpd xmm3, [32+r15+r9*8]
28 mulpd xmm1, [48+r15+r9*8]
29 addpd xmm0, xmm3
30 addpd xmm0, xmm1
31 addpd xmm1, xmm0
32 addpd xmm1, xmm2
33 movaps [r11+r9*8], xmm3
34 movaps [16+r11+r9*8], xmm0
35 movaps [32+r11+r9*8], xmm1
36 movaps [48+r11+r9*8], xmm1
37 add r8, 1
38 cmp r8, rbx
39 jb inloop

0 inloop:
1 movsd xmm2, [88+r12+r9*8]
2 movsd xmm0, [104+r12+r9*8]
3 movsd xmm0, [120+r12+r9*8]
4 movsd xmm3, [136+r12+r9*8]
5 movaps xmm0, [80+r12+r9*8]
6 movhpd xmm3, [96+r12+r9*8]
7 movaps xmm0, [96+r12+r9*8]
8 movhpd xmm2, [112+r12+r9*8]
9 movaps xmm1, [112+r12+r9*8]
10 movhpd xmm0, [128+r12+r9*8]
11 movaps xmm1, [128+r12+r9*8]
12 movhpd xmm0, [144+r12+r9*8]
13 mulpd xmm3, xmm3
14 mulpd xmm3, xmm3
15 mulpd xmm3, xmm2
16 mulpd xmm0, xmm3
17 mulpd xmm2, xmm0
18 mulpd xmm0, xmm3
19 mulpd xmm0, xmm1
20 mulpd xmm1, xmm3
21 addpd xmm1, xmm2
22 addpd xmm1, xmm3
23 addpd xmm3, xmm1
24 addpd xmm2, xmm3
25 mulpd xmm0, [r15+r9*8]
26 mulpd xmm2, [16+r15+r9*8]
27 mulpd xmm1, [32+r15+r9*8]
28 mulpd xmm1, [48+r15+r9*8]
29 addpd xmm3, xmm2
30 addpd xmm1, xmm2
31 addpd xmm2, xmm1
32 addpd xmm2, xmm1
33 movaps [r11+r9*8], xmm3
34 movaps [16+r11+r9*8], xmm2
35 movaps [32+r11+r9*8], xmm1
36 movaps [48+r11+r9*8], xmm1
37 add r8, 1
39 cmp r8, rbx
39 jb inloop

Cycles per Iteration: 31.51 cycles Cycles per Iteration: 19.65 cycles

http://hpcgarage.org/isc15

hpcgarage.org/isc15

Automated battery of experiments

•Frontend bottlenecks!
•Scheduling resource conflicts!
•Data bypass delays!
•Cache latency stalls!
•Memory disambiguation conflicts!
•Retirement bandwidth

OUR VISION FOR PERFORMANCE ANALYSIS

Can we account for all lost cycles?

(

(

for (k=0 ; k<n ; k++) {!
! x[k] = u[k] + r*(z[k] + r*y[k]) +!
! ! t*(u[k+3] + r*(u[k+2] + r*u[k+1]) +!
! ! t*(u[k+6] + r*(u[k+5] + r*u[k+4])));!
}

http://hpcgarage.org/isc15

CONCLUSION / SUMMARY

Major Contribution: Active Performance Analysis!
Status: Proof of concept!
Gaps:!
! - Comprehensive set of experiments!
! - Scale beyond the core!
! - Generalize to additional microarchitectures!
Cross-Pollination: !
! - Software optimization!
! - Autotuning and super-optimizing compilers!
! - Hardware-software codesign

