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Many related ideas! 
  Environmental modifiers: DVFS, Gremlins

  Code modifiers: autotuning, stochastic (super)optimizers
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Fig. 2. The variation of (?~, hl/2) with f 
for the case of a combined memory I / O  
and arithmetic pipefine, when the I / O  
and arithmetic can be overlapped. Full 
lines: pa ramete r s  when ar i thmet ic  
dominates, equations (14b); dotted lines: 
parameters when I / O  dominates, equa- 
tions (13b). Notation as Fig. 1, and p = 
1.5. 

In order to find out whether I / 0  or arithmetic dominates, one must examine the breakeven 
vector length, hi, at which I / O  and arithmetic take equal times. This occurs when t i l l =  t2, 
whence 

H1 = ( H ~ 7 2 )  - ~'"(a)~''1/2 ) / ( Z - -  1) (15) 

where z = fr~m)/r~ a). 
,,(m)/,(a) = 1.5, and the The variation of n I with z is drawn in Fig. 3 for the case ~ = , , 1 / 2 / , , 1 / 2  

regions of the (z, n])-plane corresponding to I / O  or arithmetic dominance are shown. 
If z > ~,, the arithmetic time dominates for all vector lengths, because n I is negative. 

Equations (14) apply, and the asymptotic performance is constant and equal to the r~ a) of the 
arithmetic pipeline. Since this is the situation when f ~  oo we have, by definition, the peak 
performance 

& = r~ a), (16a) 
the same as for the sequential I / O  case. 

If, however, z < 1, I / O  dominates for all vector lengths (because n~ is again negative) and 
equations (13) apply. The total computation time, ta, for f vector operations is constant, hence 
the asymptotic performance rises hnearly with f ,  reaching the peak performance P~ - -  r~ a) when: 
f =  r~a)/r~ m). The asymptotic performance reaches half the peak performance when f reaches 
half this value, hence by definition 

fl/2 = ½r~a)//r~ m). (16b) 

Thus overlapping halves the value of f]/2 from that obtained for sequential I /O .  
Between 1 < z < u, either I / O  or arithmetic may dominate depending on the vector length 

(because, now, n 1 is positive). Figure 2 shows that if I / O  dominates n < nl) the asymptotic ~ 
performance can exceed the asymptotic performance of the arithmetic pipeline r~ a), and it 
might appear that this is absurd and against physical intuition. However, this is not the case, 
because ~ is a theoretical asymptotic performance (for n ~ ~ )  which in this case can never be 

R.W. Hockney and I.J. Curington (1989). “f½: A parameter to 
characterize memory and communication bottlenecks.”

doi: 10.1016/0167-8191(89)90100-2
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not those systems are parallel. 
One advantage of using these high-

er-level descriptions of programs is 
that we are not tied to code that might 
have been originally written to opti-
mize an old computer to evaluate fu-
ture systems. Another advantage of the 
restricted number is that efficiency-lev-
el programmers can create autotuners 

for each kernel that would search the 
alternatives to produce the best code 
for that multicore computer, includ-
ing extensive cache optimizations.13 

Table 2 lists the four kernels from 
among the Seven Dwarfs we use to dem-
onstrate the Roofline model on the four 
multicore computers listed in Table 1; 
the autotuners discussed in this sec-

tion are from three sources:12, 28, 29  

For these kernels, there is sufficient 
parallelism to utilize all the cores and 
threads and keep them load balanced; 
see online Appendix A.2 for how to han-
dle cases when load is not balanced. 

Roofline models and results. Figure 
3 shows the Roofline models for Xeon, 
X4, and Cell. The pink vertical dashed 
lines indicate the operational inten-
sity and the red X marks performance 
achieved for that particular kernel. 
However, achieving balance is difficult 
for the others. Hence, each computer 
in Figure 3 has two graphs: the left one 
has multiply-add balance as the top 
ceiling and is used for Lattice-Boltz-
mann Magnetohydrodynamics (LB-
MHD), Stencil, and 3D FFT; the right 
one has multiply-add as the bottom 
ceiling and is used for SpMV. Since the 
T2+ lacks a fused multiply-add instruc-
tion nor can it simultaneously issue 
multiplies and adds, Figure 4 shows a 
single roofline for the four kernels on 
the T2+ without the multiply-add bal-
ance ceiling. 

The Intel Xeon has the highest peak 
double-precision performance of the 
four multicores. However, the Roofline 
model in Figure 3a shows this level of 
performance can be achieved only with 
operational intensities of at least 6.7 
Flops/Byte; in other words Clovertown 
requires 55 floating-point operations 
for every double-precision operand 
(8B) going to DRAM to achieve peak 
performance. This high ratio is due in 
part to the limitation of the front-side 
bus, which also carries the coherency 
traffic that can consume up to half the 
bus bandwidth. Intel includes a snoop 
filter to prevent unnecessary coheren-
cy traffic on the bus. If the working set 
is small enough for the hardware to fil-
ter, the snoop filter nearly doubles the 
delivered memory bandwidth. 

The Opteron X4 has a memory 
controller on chip, its own path to 
667MHz DDR2 DRAM, and separate 
paths for coherency. Figure 3 shows 
that the ridge point in the Roofline 
model is to the left of the Xeon, at an 
operational intensity of 4.4 Flops/Byte. 
The Sun T2+ has the highest memory 
bandwidth so the ridge point is an ex-
ceptionally low operational intensity 
of just 0.33 Flops/Byte. It keeps mul-
tiple memory transfers in flight by us-
ing many threads. The IBM Cell ridge 

Figure 3a–3c: Roofline model for Intel Xeon, AMD Opteron X4, and IBM Cell. 
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S. Williams, A. Waterman, D. Patterson (2009). 
“Roofline: An insightful visual performance 

model for multicore architectures.”

doi: 10.1145/1498765.1498785
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not those systems are parallel. 
One advantage of using these high-

er-level descriptions of programs is 
that we are not tied to code that might 
have been originally written to opti-
mize an old computer to evaluate fu-
ture systems. Another advantage of the 
restricted number is that efficiency-lev-
el programmers can create autotuners 

for each kernel that would search the 
alternatives to produce the best code 
for that multicore computer, includ-
ing extensive cache optimizations.13 
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among the Seven Dwarfs we use to dem-
onstrate the Roofline model on the four 
multicore computers listed in Table 1; 
the autotuners discussed in this sec-

tion are from three sources:12, 28, 29  

For these kernels, there is sufficient 
parallelism to utilize all the cores and 
threads and keep them load balanced; 
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dle cases when load is not balanced. 

Roofline models and results. Figure 
3 shows the Roofline models for Xeon, 
X4, and Cell. The pink vertical dashed 
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sity and the red X marks performance 
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However, achieving balance is difficult 
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one has multiply-add as the bottom 
ceiling and is used for SpMV. Since the 
T2+ lacks a fused multiply-add instruc-
tion nor can it simultaneously issue 
multiplies and adds, Figure 4 shows a 
single roofline for the four kernels on 
the T2+ without the multiply-add bal-
ance ceiling. 

The Intel Xeon has the highest peak 
double-precision performance of the 
four multicores. However, the Roofline 
model in Figure 3a shows this level of 
performance can be achieved only with 
operational intensities of at least 6.7 
Flops/Byte; in other words Clovertown 
requires 55 floating-point operations 
for every double-precision operand 
(8B) going to DRAM to achieve peak 
performance. This high ratio is due in 
part to the limitation of the front-side 
bus, which also carries the coherency 
traffic that can consume up to half the 
bus bandwidth. Intel includes a snoop 
filter to prevent unnecessary coheren-
cy traffic on the bus. If the working set 
is small enough for the hardware to fil-
ter, the snoop filter nearly doubles the 
delivered memory bandwidth. 

The Opteron X4 has a memory 
controller on chip, its own path to 
667MHz DDR2 DRAM, and separate 
paths for coherency. Figure 3 shows 
that the ridge point in the Roofline 
model is to the left of the Xeon, at an 
operational intensity of 4.4 Flops/Byte. 
The Sun T2+ has the highest memory 
bandwidth so the ridge point is an ex-
ceptionally low operational intensity 
of just 0.33 Flops/Byte. It keeps mul-
tiple memory transfers in flight by us-
ing many threads. The IBM Cell ridge 

Figure 3a–3c: Roofline model for Intel Xeon, AMD Opteron X4, and IBM Cell. 
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“Usual” route: Fix “x” and try to improve “y.”

What about the other direction?

S. Williams, A. Waterman, D. Patterson (CACM’09)
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Shiloach-Vishkin algorithm to compute 
  connected components (as labels) 

forall v ∈ V do

  label[v] ← int(v)


while … do

   forall v ∈ V do

      forall (u, v) ∈ E do

         if label[u] < label[v] then

            label[u] ← label[v]

O. Green, M. Dukhan, R. Vuduc. “Branch-avoiding graph algorithms.” In SPAA’15.

http://hpcgarage.org/isc15
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A frontier: 

Performance upper bounds 
Iteratively rewrite the input program in a controlled fashion, 
then re-analyze it.


Rewrites need not necessarily be semantics preserving!
V. Elango, F. Rastello, L.-N. Pouchet, J. Ramanujam, P. Sadayappan. “On Characterizing the Data Movement 
Complexity of Computational DAGs for Parallel Execution.” In SPAA’14.

http://hpcgarage.org/isc15
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Goal of algorithm analysis 
is to estimate or (lower) 
bound on Q
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Insight: This representation is computable 
V. Elango, F. Rastello, L.-N. Pouchet, J. Ramanujam, P. Sadayappan. “On 
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Contech: Efficiently Generating Dynamic Task Graphs for Arbitrary
Parallel Programs

BRIAN P. RAILING, ERIC R. HEIN, and THOMAS M. CONTE, Georgia Institute of Technology

Parallel programs can be characterized by task graphs encoding instructions, memory accesses, and the par-
allel work’s dependencies, while representing any threading library and architecture. This article presents
Contech, a high performance framework for generating dynamic task graphs from arbitrary parallel pro-
grams, and a novel representation enabling programmers and compiler optimizations to understand and
exploit program aspects. The Contech framework supports a variety of languages (including C, C++, and
Fortran), parallelization libraries, and ISAs (including ×86 and ARM). Running natively for collection speed
and minimizing program perturbation, the instrumentation shows 4× improvement over a Pin-based imple-
mentation on PARSEC and NAS benchmarks.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming; D.2.5 [Software Engineering]: Testing and Debugging—Tracing; F.1.2 [Compu-
tation by Abstract Devices]: Modes of Computation—Parallelism and concurrency

General Terms: Performance

Additional Key Words and Phrases: Instrumentation, parallel program modeling, task graph

ACM Reference Format:
Brian P. Railing, Eric R. Hein, and Thomas M. Conte. 2015. Contech: Efficiently generating dynamic
task graphs for arbitrary parallel programs. ACM Trans. Architec. Code Optim. 12, 2, Article 25 (July
2015), 24 pages.
DOI: http://dx.doi.org/10.1145/2776893

1. INTRODUCTION
The performance of emerging multicore processors can only be fully utilized by op-
timized, well-designed parallel programs. Achieving this goal has been the focus of
significant research. To analyze and understand the diversity of parallel programs,
a single common representation is needed. The task graph can provide this repre-
sentation and is well established in the study of efficient scheduling of parallel tasks
[Kumar et al. 2007; Sridharan et al. 2014; Vandierendonck et al. 2013; Yoo et al. 2013],
as well as evaluating future architectures [Almeida et al. 1992; Etsion et al. 2010] and
parallelizing applications [Gupta and Sohi 2011].

Current state-of-the-art task graph generation is not sufficient to support this usage.
Most approaches are only collecting a task graph to immediately schedule the program,
and others are targeted at one specific application such as measuring a program’s
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Fig. 4. Simple OpenMP program as a Contech task graph.

item. The constraint’s identifier (e.g., address) is then used to link the dependencies
together in the final task graph.

While the work in this section lays the groundwork for representing arbitrary parallel
programs as Contech task graphs, Contech’s instrumentation (described in Section 4.1)
currently has three constraints on the “arbitrariness” of the parallel program. First, the
program uses a combination of pthreads, OpenMP, or MPI to implement its parallelism.
Second, the program is written in C, C++, or Fortran. And third, the program is compiled
for the ×86 or ARM ISAs. Ongoing work is exploring how to relax these constraints to
successfully instrument and represent other parallel programs.

4. THE ARCHITECTURE OF CONTECH
The Contech framework is composed of two parts: the generation of a dynamic task
graph and the analysis of task graphs. The front end and middle layer work together
to generate a task graph from a benchmark’s source code. Then back ends implement
analyses and transformations that can be executed on this representation. The focus of
this design is to allow easy analysis of the Contech task graph representation without
a need for back end programmers to understand the details of how a task graph is
generated. Each component will be explained in further detail in this section.

4.1. Front end
The first component is the Contech front end, which consists of two parts: a compiler
pass for LLVM [Lattner and Adve 2004] and a runtime library linked to every applica-
tion. The results in this article used LLVM 3.4 with OpenMP support, and Contech has
been tested with LLVM 3.2 through 3.5. Contech relies on Clang (the C / C++ LLVM
front end) or dragonegg (a plugin for gcc to support Fortran and other languages) to
generate the IR for the program. The compiler pass modifies the IR to include the
instrumentation for recording the actions of the parallel program. As Contech covers
a variety of parallel libraries, the instrumentation is applied to the IR rather than

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 25, Publication date: July 2015.

Contech 25:9

Fig. 5. Runtime instrumentation design (gray instructions are original code).

modifying the runtime libraries themselves. The pass operates function by function
and identifies whether the function should be instrumented, or treated as a black box
(e.g., malloc, pthread_create, etc.). Black box functions are from a defined list; and
although the compiler can detect certain operations such as atomic accesses, the pro-
grammer may have user-defined versions that would need to be explicitly identified to
the instrumentation pass. This way each function only has one static representation in
the task graph: either it is a sequence of basic blocks or it is an abstracted functionality
such as allocating memory or creating a thread.

For each basic block, the LLVM pass finds instructions that will access memory and
introduces instrumentation to record the properties of the memory access: address, size,
and load versus store. Given that instrumentation occurs prior to register assignment,
the LLVM-based instrumentation only records the memory operations specified by the
program and not those imposed by a particular architectural model due to register
allocation. Information about every basic block is also copied into a simplified set of
debugging information, such that analysis tools can identify the function name, source
file, etc., even when processing a basic block ID.

The instrumentation records each action of interest (computation graph actions, thus
either IR instructions or function calls) by a call to an instrumentation routine in the
runtime library that creates a corresponding event. The runtime instrumentation is
written in C to be architecture independent, with functions for each type of event.
Inserting multiple function calls per basic block would have a severe performance
impact, so Contech requires programs to be compiled with Clang’s -flto flag. This flag
instructs Clang to perform link-time optimization, which inlines the instrumentation
routines into the binary. The most common instrumentation call, recording a basic
block event, requires four inlined ×86 instructions, after the optimizations discussed
in Section 6.1. Figure 5 shows the steps required for recording a basic block event, as
well as the optimized instrumentation inlined into the assembly code. In this example,
the instrumentation stores the basic block ID, as well as updating the position in the
thread-local buffer. The original code had two load instructions, so the instrumentation
stores each address loaded by the original code. While the instrumentation introduces
additional instructions, the original code has no dependencies on the instrumentation,
thus maintaining the existing critical path.

Syncs are the most common complex event. Whether the sync is an atomic instruc-
tion, condition variable, OpenMP single directive, etc., the sync is identified either by
the IR instruction or the name of the function invoked. However, there are currently
several cases where Contech does not detect a parallel program’s synchronization such
as, if the program implements its synchronization through inline assembly, OS signals,
or classic synchronization algorithms (e.g., Dekker’s algorithm). The synchronization
action is recorded with three elements: the address of the action, the order of the action

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 25, Publication date: July 2015.
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Kent’s idea: 

Pressure point analysis (PPA) 
Iteratively rewrite the input program in a controlled fashion, 
then re-analyze it.


Rewrites need not necessarily be semantics preserving!

Kent Czechowski
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PPA: CONCEPTUAL EXAMPLE

Compute Only

Memory!
Access Only

Perturbations do not need to preserve the semantic meaning

vmovsd    xmm1, [8+rsi+r12]!
vmovsd    xmm2, [16+rsi+r12]!
vsubsd    xmm0, xmm1, xmm0!
vmulsd    xmm3, xmm0, [8+rsi+rbp]!
vmovsd    [8+rsi+r13], xmm3!
vsubsd    xmm4, xmm2, xmm3!
vmulsd    xmm0, xmm4, [16+rsi+rbp]!
vmovsd    [16+rsi+r13], xmm0

Tri-Diagonal Elimination!
for ( i=1 ; i<n ; i++ ) {!
! x[i] = z[i]*( y[i] - x[i-1] );!
}

nop!
nop!
vsubsd    xmm0, xmm1, xmm0!
vmulsd    xmm3, xmm0, xmm10!
nop!
vsubsd    xmm4, xmm2, xmm3!
vmulsd    xmm0, xmm4, xmm12!
nop

vmovsd    xmm1, [8+rsi+r12]!
vmovsd    xmm2, [16+rsi+r12]!
nop!
vmovsd    xmm3, [8+rsi+rbp]!
vmovsd    [8+rsi+r13], xmm3!
nop!
vmovsd    xmm0, [16+rsi+rbp]!
vmovsd    [16+rsi+r13], xmm0
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CONCRETE EXAMPLE: L1D BANK CONFLICTS

Bank 0  
0-7

Bank 1  
8-15

Bank 2!
16-23

Bank 3!
24-31

Bank 4!
32-39

Bank 5!
40-47

Bank 6  
48-55

Bank 7  
56-63

64 Byte Entries

movpd xmm2, [r12 + 112]movpd xmm1, [r12 + 16]
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CONCRETE EXAMPLE: L1D BANK CONFLICTS

Bank 0  
0-7

Bank 1  
8-15

Bank 2!
16-23

Bank 3!
24-31

Bank 4!
32-39

Bank 5!
40-47

Bank 6  
48-55

Bank 7  
56-63

64 Byte Entries

movpd xmm2, [r12 + 88]

movpd xmm1, [r12 + 16]

Bank Conflict
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vmovsd    xmm1, [8+rsi+r12]!
vmovsd    xmm2, [8+rsi+r14]!
vsubsd    xmm0, xmm1, xmm0!
vmulsd    xmm3, xmm0, [8+rsi+rbp]!
vmovsd    [8+rsi+r13], xmm3!
vsubsd    xmm4, xmm2, xmm3!
vmulsd    xmm0, xmm4, [16+rsi+rbp]!
vmovsd    [16+rsi+r13], xmm0

[ 8 +rsi+r12]! ! -> !! ! [X+rsi+r12]!
[ 8 +rsi+r14]! ! -> !! ! [X+rsi+r14]!
[ 8 +rsi+rbp]! ! -> !! ! [X+rsi+rbp]!
[ 8 +rsi+r13]! ! -> !! ! [X+rsi+r13]!
[16+rsi+rbp]! ! -> !! ! [X+rsi+rbp]!
[16+rsi+r13]! ! -> !! ! [X+rsi+r13]

*Assume rsi, r12, r13, r14, and rbp are 64-byte aligned

CONCRETE EXAMPLE: L1D BANK CONFLICTS

Original

vmovsd    xmm1, [8+rsi+r12]!
vmovsd    xmm2, [16+rsi+r14]!
vsubsd    xmm0, xmm1, xmm0!
vmulsd    xmm3, xmm0, [8+rsi+rbp]!
vmovsd    [8+rsi+r13], xmm3!
vsubsd    xmm4, xmm2, xmm3!
vmulsd    xmm0, xmm4, [16+rsi+rbp]!
vmovsd    [16+rsi+r13], xmm0

Bank Conflicts ??

Perturbed Version
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IDENTIFYING OOO-DEFICIENCIES
Original Scrambled
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0  inloop: 
1  movsd     xmm1, [88+r12+r9*8] 
2  movsd     xmm1, [104+r12+r9*8] 
3  movsd     xmm2, [120+r12+r9*8] 
4  movsd     xmm2, [136+r12+r9*8] 
5  movaps    xmm0, [80+r12+r9*8] 
6  movhpd    xmm1, [96+r12+r9*8] 
7  movaps    xmm2, [96+r12+r9*8] 
8  movhpd    xmm3, [112+r12+r9*8] 
9  movaps    xmm1, [112+r12+r9*8] 
10 movhpd    xmm0, [128+r12+r9*8] 
11 movaps    xmm0, [128+r12+r9*8] 
12 movhpd    xmm3, [144+r12+r9*8] 
13 mulpd     xmm1, xmm1 
14 mulpd     xmm0, xmm0 
15 mulpd     xmm1, xmm3 
16 mulpd     xmm3, xmm3 
17 mulpd     xmm2, xmm2 
18 mulpd     xmm3, xmm2 
19 mulpd     xmm1, xmm3 
20 mulpd     xmm3, xmm1 
21 addpd     xmm2, xmm1 
22 addpd     xmm0, xmm3 
23 addpd     xmm3, xmm3 
24 addpd     xmm2, xmm3 
25 mulpd     xmm0, [r15+r9*8] 
26 mulpd     xmm0, [16+r15+r9*8] 
27 mulpd     xmm3, [32+r15+r9*8] 
28 mulpd     xmm1, [48+r15+r9*8] 
29 addpd     xmm0, xmm3 
30 addpd     xmm0, xmm1 
31 addpd     xmm1, xmm0 
32 addpd     xmm1, xmm2 
33 movaps    [r11+r9*8], xmm3 
34 movaps    [16+r11+r9*8], xmm0 
35 movaps    [32+r11+r9*8], xmm1 
36 movaps    [48+r11+r9*8], xmm1 
37 add       r8, 1 
38 cmp       r8, rbx 
39 jb        inloop 

0  inloop: 
1  movsd     xmm2, [88+r12+r9*8] 
2  movsd     xmm0, [104+r12+r9*8] 
3  movsd     xmm0, [120+r12+r9*8] 
4  movsd     xmm3, [136+r12+r9*8] 
5  movaps    xmm0, [80+r12+r9*8] 
6  movhpd    xmm3, [96+r12+r9*8] 
7  movaps    xmm0, [96+r12+r9*8] 
8  movhpd    xmm2, [112+r12+r9*8] 
9  movaps    xmm1, [112+r12+r9*8] 
10 movhpd    xmm0, [128+r12+r9*8] 
11 movaps    xmm1, [128+r12+r9*8] 
12 movhpd    xmm0, [144+r12+r9*8] 
13 mulpd     xmm3, xmm3 
14 mulpd     xmm3, xmm3 
15 mulpd     xmm3, xmm2 
16 mulpd     xmm0, xmm3 
17 mulpd     xmm2, xmm0 
18 mulpd     xmm0, xmm3 
19 mulpd     xmm0, xmm1 
20 mulpd     xmm1, xmm3 
21 addpd     xmm1, xmm2 
22 addpd     xmm1, xmm3 
23 addpd     xmm3, xmm1 
24 addpd     xmm2, xmm3 
25 mulpd     xmm0, [r15+r9*8] 
26 mulpd     xmm2, [16+r15+r9*8] 
27 mulpd     xmm1, [32+r15+r9*8] 
28 mulpd     xmm1, [48+r15+r9*8] 
29 addpd     xmm3, xmm2 
30 addpd     xmm1, xmm2 
31 addpd     xmm2, xmm1 
32 addpd     xmm2, xmm1 
33 movaps    [r11+r9*8], xmm3 
34 movaps    [16+r11+r9*8], xmm2 
35 movaps    [32+r11+r9*8], xmm1 
36 movaps    [48+r11+r9*8], xmm1 
37 add       r8, 1 
39 cmp       r8, rbx 
39 jb        inloop 

Cycles per Iteration: 31.51 cycles Cycles per Iteration: 19.65 cycles
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Automated battery of experiments

•Frontend bottlenecks!
•Scheduling resource conflicts!
•Data bypass delays!
•Cache latency stalls!
•Memory disambiguation conflicts!
•Retirement bandwidth

OUR VISION FOR PERFORMANCE ANALYSIS

Can we account for all lost cycles?

(

(

for ( k=0 ; k<n ; k++ ) {!
! x[k] = u[k] + r*( z[k] + r*y[k] ) +!
! ! t*( u[k+3] + r*( u[k+2] + r*u[k+1] ) +!
! ! t*( u[k+6] + r*( u[k+5] + r*u[k+4] ) ) );!
}
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CONCLUSION / SUMMARY

Major Contribution:  Active Performance Analysis!
Status: Proof of concept!
Gaps:!
! - Comprehensive set of experiments!
! - Scale beyond the core!
! - Generalize to additional microarchitectures!
Cross-Pollination: !
! - Software optimization!
! - Autotuning and super-optimizing compilers!
! - Hardware-software codesign


