
7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 1

Felix Wolf, TU Darmstadt

Mass-producing insightful performance
models of parallel applications

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 2

Acknowledgement

•  Alexandru Calotoiu (TU Darmstadt)
•  Torsten Höfler (ETH Zurich)
•  Sergei Shudler (TU Darmstadt)
•  Alexandre Strube (Jülich Supercomputing Centre)
•  Andreas Vogel (GU Frankfurt)

•  Marius Poke (RWTH Aachen)
•  Paul Wiedeking (RWTH Aachen)

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 3

Latent scalability bugs

System size Execution time

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 4

Scalability model

2

9
2

10
2

11
2

12
2

13
0

3

6

9

12

15

18

21

3
¨ 10

´4 p
2

` c
Processes

T
i
m
e

rs
s

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 5

Analytical scalability modeling

Disadvantages
•  Time consuming
•  Danger of overlooking unscalable code

Identify
kernels

•  Parts of the program that dominate its
performance at larger scales

•  Identified via small-scale tests and intuition

Create
models

•  Laborious process
•  Still confined to a small community of skilled

experts

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 6

Automated empirical modeling (2)

main() {
 foo()
 bar()
 compute()
}

Input

Output

p4 = 1,024

p5 = 2,048

p6 = 4,096

Performance measurements (profiles)

p1 = 128

p2 = 256

p3 = 512

Automated
modeling

1. foo
2. compute
3. main
4. bar
[…]

Ranking:
•  Asymptotic
•  Target scale pt

Instrumentation

•  All functions

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 7

7

Primary focus on scaling trend

Our ranking

1. F1
2. F3
3. F2

Common performance
analysis chart in a paper

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 8

8

Primary focus on scaling trend

Actual measurement in
laboratory conditions

1. F1
2. F3
3. F2

Our ranking

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 9

9

Primary focus on scaling trend

Production Reality
1. F1
2. F3
3. F2

Our ranking

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 10

Model building blocks
C

om
pu

ta
tio

n
C

om
m

unication

Samplesort
 t(p) ~ p2

Naïve N-body
 t(p) ~ p

FFT
 t(p) ~ c

LU
 t(p) ~ c

Samplesort
 t(p) ~ p2 log2

2 (p)

Naïve N-body
 t(p) ~ p

FFT
 t(p) ~ log2(p)

LU
 t(p) ~ c

… …

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 11

Performance model normal form

f (p) = ck ⋅ p
ik ⋅ log2

jk (p)
k=1

n

∑
n ∈
ik ∈ I
jk ∈ J
I, J ⊂

n =1
I = 0,1, 2{ }
J = {0,1}

c1
c1 ⋅ p

c1 ⋅ p2

c1 ⋅ log(p)
c1 ⋅ p ⋅ log(p)
c1 ⋅ p2 ⋅ log(p)

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 12

Performance model normal form

n ∈
ik ∈ I
jk ∈ J
I, J ⊂

f (p) = ck ⋅ p
ik ⋅ log2

jk (p)
k=1

n

∑

n = 2
I = 0,1, 2{ }
J = {0,1}

c1 + c2 ⋅ p

c1 + c2 ⋅ p
2

c1 + c2 ⋅ log(p)
c1 + c2 ⋅ p ⋅ log(p)

c1 + c2 ⋅ p
2 ⋅ log(p)

c1 ⋅ log(p)+ c2 ⋅ p
c1 ⋅ log(p)+ c2 ⋅ p ⋅ log(p)
c1 ⋅ log(p)+ c2 ⋅ p

2

c1 ⋅ log(p)+ c2 ⋅ p
2 ⋅ log(p)

c1 ⋅ p+ c2 ⋅ p ⋅ log(p)
c1 ⋅ p+ c2 ⋅ p

2

c1 ⋅ p+ c2 ⋅ p
2 ⋅ log(p)

c1 ⋅ p ⋅ log(p)+ c2 ⋅ p
2

c1 ⋅ p ⋅ log(p)+ c2 ⋅ p
2 ⋅ log(p)

c1 ⋅ p
2 + c2 ⋅ p

2 ⋅ log(p)

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 13

Modeling operations vs. time

Program

Computation Communication

FLOPS Load Store #Msgs #Bytes …

Time

Disagreement may be indicative of wait states

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 14

Case studies

Sweep3d Lulesh Milc HOMME JUSPIC

XNS NEST UG4 MP2C BLAST

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 15

Sweep3D - Neutron transport simulation

•  LogGP model for communication
developed by Hoisie et al.

Kernel
[2 of 40]

Model [s]
t = f(p)

Predictive error [%]
pt=262k

sweep → MPI_Recv

sweep

5.10
0.01

4.03 p

582.19 #bytes = const.
#msg = const.

pi ≤ 8k

tcomm = [2(px + py − 2)+ 4(nsweep −1)]⋅ tmsg
tcomm = c ⋅ p

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 16

HOMME – Climate

Core of the Community Atmospheric Model (CAM)

§  Spectral element dynamical core on a cubed
sphere grid

Kernel
[3 of 194]

Model [s]
t = f(p)

Predictive error [%]
pt = 130k

box_rearrange →
MPI_Reduce

vlaplace_sphere_vk

compute_and_apply_rhs

0.026+ 2.53⋅10-6p ⋅ p+ 1.24 ⋅10-12p3

49.53
48.68

57.02

99.32
1.65

pi ≤15k

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 17

HOMME – Climate

Core of the Community Atmospheric Model (CAM)

§  Spectral element dynamical core on a cubed
sphere grid

Kernel
[3 of 194]

Model [s]
t = f(p)

Predictive error [%]
pt = 130k

box_rearrange →
MPI_Reduce

vlaplace_sphere_vk

compute_and_apply_rhs

3.63⋅10-6p ⋅ p+ 7.21⋅10-13p3

pi ≤ 43k

30.34

4.28
0.83

24.44+2.26 ⋅10-7p2

49.09

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 18

HOMME – Climate (2)

Table 4: Models of the kernels of HOMME derived from smaller and larger-scale input configurations. The predictive error
refers to the target scale of pt = 130k.

Kernel
P4(pi ⇥ 15, 000) P5(pi ⇥ 43, 350)

Model [s] Predictive Model [s] Predictive
t = f(p) error [%] t = f(p) error [%]

box_rearrange ⇤ MPI_Reduce 0.026 + 2.53 · 10�6 · p⌅p + 1.24 · 10�12 · p3 57.02 3.63 · 10�6 · p⌅p + 7.21 · 10�13 · p3 30.34
vlaplace_sphere_wk 49.53 99.32 24.44 + 2.26 · 10�7 · p2 4.28
laplace_sphere_wk 44.08 99.32 21.84 + 1.96 · 10�7 · p2 2.34
biharmonic_wk 34.40 99.33 17.92 + 1.57 · 10�7 · p2 3.43
divergence_sphere_wk 16.88 99.31 8.02 + 7.56 · 10�8 · p2 4.25
vorticity_sphere 9.74 99.55 6.51 + 7.09 · 10�8 · p2 8.66
divergence_sphere 15.36 99.33 7.74 + 6.91 · 10�8 · p2 0.95
gradient_sphere 14.77 99.33 6.33 + 6.88 · 10�8 · p2 5.17
advance_hypervis 9.76 99.25 5.5 + 3.91 · 10�8 · p2 1.47
compute_and_apply_rhs 48.68 1.65 49.09 0.83
euler_step 28.08 0.51 28.13 0.33

kernels. Obviously, the enlarged set exposes a phenomenon
not visible in the smaller set. With the number of processes
chosen large enough, both the quadratic and the cubic terms
will turn into serious bottlenecks, contradicting our initial
expectation the code would scale well. The table also shows
the predictive error, which characterizes the deviation of the
prediction from measurement at the taget scale pt = 130k,
highlighting the benefits of including the extra data points.

After looking at the number of times any of the quadratic
kernels was visited at runtime, a metric we measure and
model as well, the quadratic growth was found to be the
consequence of an increasing number of iterations inside a
particular subroutine. Interestingly, the formula by which
the number of iterations is computed contained a ceiling
term that limits the number of iterations to one for up to and
including 15k processes. Beyond this threshold, a term de-
pending quadratically on the process count causes the num-
ber of iterations being executed to grow rapidly, causing a
significant drop in performance. It turned out, the devel-
opers were aware of this issue and had already developed a
temporary solution, involving manual adjustments of their
production code configurations. Specifically, they fix the
number of iterations and carefully tune other configuration
parameters to ensure numerical stability. Nevertheless, the
issue was correctly detected by our tool. Given the tuning
necessary to ensure numerical stability, a weak scaling anal-
ysis of the workaround is beyond the scope of this paper.

In contrast to the previous problem, the cubic growth of the
time spent in the reduce function was previously unknown.
The reduce is needed to funnel data to dedicated I/O pro-
cesses. The coe⇤cient of the dominant term at scale is very
small (i.e., in the order of 10�13). While not being visible
at smaller scales, it will have an explosive e�ect on perfor-
mance at larger scales, becoming significant even if executed
just once. The reason why this phenomenon remained un-
noticed until today is that it belongs to the initialization
phase of the code that was not assumed to be performance
relevant in larger production runs. While still not yet crip-
pling in terms of the overall runtime, which is in the order of
days for production runs, the issue costed already more than
one hour in the large-scale experiments we conducted. The
problem was reported back to the developers at NCAR, who
are currently working on a solution. The example demon-

strates the advantage of modeling the entire application vs.
only selected candidate kernels expected to be time inten-
sive. Some problems simply might escape attention because
non-linear relationships make our intuition less reliable at
larger scales.

Figure 4 summarizes our two findings and compares our pre-
dictions with actual measurements. While the growing iter-
ation count seems to be more urgent now, the reduce might
become the more serious issue in the future.

5. RELATED WORK
Analytic performance modeling techniques have been used
to model the performance of numerous important applica-
tions manually [21, 25]. It is well understood that analytic
models have the potential of providing important insights
into complex behaviors [29]. Performance models also o�er
insight into di�erent parts of the system. For example, Boyd
et al. used performance models to assess the quality of a tool
chain, such as a compiler or runtime system [6]. In general,
there is consensus that performance modeling is a powerful

210 212 214 216 218 220 222

0.01

1

102

104

106

108

Processes

T
im

e
(s
)

MPI_Reduce

vlaplace_sphere_wk

compute_and_apply_rhs

T
ra
in
in
g

P
re
d
ic
ti
on

Figure 4: Runtime of selected kernels in HOMME as a func-
tion of the number of processes. The graph compares predic-
tions (dashed or contiguous lines) to measurements (small
triangles, squares, and circles).

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 19

UG4

•  Numerical framework for grid-based solution of partial differential
equations (~500,000 lines of C++ code, 2,000 kernels)
•  Application: drug diffusion through the human skin

•  In general, all kernels scale well
•  Multigrid solver kernel (MGM) scales logarithmically
•  Number of iterations needed by the unpreconditioned conjugate gradient

(CG) method depends on the mesh size
•  Increases by factor of two with each refinement
•  Will therefore suffer from iteration count increase in weak scaling

Kernel Model (time [s])
CG 0.227 + 0.31 * p0.5

MGM 0.219 + 0.0006 * log2(p)

6 Andreas Vogel et al.6 Andreas Vogel et al.

!!""

#$!!""

%#!""

Fig. 3. Computing grids for the skin problem showing corneocytes (green) and lipid
channels (red). Left: geometry ratios. Right: 3d grid for 10 layers of corneocytes.

For each run, the benchmark data is written out in a certain format that
enables the researcher to deduct the desired information. This data can be parsed
by automatic pre- and post-processing scripts that draw information and store
it more densely for manual interpretation.

The steps carried out by JUBE are shown in Fig. 2. Preparation, compilation,
execution, and analysis steps might exist multiple times and JUBE will perform
the aforementioned steps in sequence. It is important to note that JUBE is
able to easily create combinatorial runs of multiple parameters. For example,
in a scaling experiment, one can simply specify multiple numbers of processes,
and/or di�erent solver setups and/or physical parameter, and JUBE will create
one experiment for each possible combination, submit all of them to the resource
manager, collect all results, and display them together.

5 Results

Using the tools from Sec. 3 and Sec. 4 we analyzed the UG4 code in three studies:
In the first two tests we focus on modeling drug di�usion through the human
skin. First, we analyze the code behavior in a weak scaling followed by study
varying the di�usivity of the skin cells over ranges of magnitude. In the third
study we provide a comparison for two di�erent types of solver: the geometric
multigrid solver is compared in a weak scaling study to the unpreconditioned
conjugate gradient (CG) method.

5.1 Drug di�usion though the human skin

We consider a model for the permeability of the human skin. The outermost
part of the epidermis (stratum corneum) consists of flattened, dead cells (cor-
neocytes) that are surrounded by an inter-cellular lipid. The stratum corneum is
the natural barrier to protect underlying tissue but still allows for the through-
put of certain concentrations (e.g., drugs, medicine). The latter process can be
modeled by a di�usion process in which the di�usion coe⇥cient within the cor-
neocytes di�ers to the one in the lipid and di�erent geometric representation of

Fig. 3. Computing grids for the skin problem showing corneocytes (green) and lipid
channels (red). Left: geometry ratios. Right: 3d grid for 10 layers of corneocytes.

5 Results

Using the tools from Sec. 3 and Sec. 4, we analyze the UG4 code in three sub-
studies: In the first two tests, we focus on modeling drug di�usion through the
human skin. First, we analyze the code behavior under weak scaling, then we
vary the di�usivity of the skin cells over several ranges of magnitude. In the third
study, we compare two di�erent types of solvers, again under weak scaling: the
geometric multigrid solver and the unpreconditioned conjugate gradient (CG)
method.

Drug di�usion though the human skin. The outermost part of the epi-
dermis (stratum corneum) consists of flattened, dead cells (corneocytes), that
are surrounded by an inter-cellular lipid. The stratum corneum is the natural
barrier to protect underlying tissue, but still allows for the throughput of certain
concentrations (e.g., drugs, medicine). The latter process can be modeled by a
di�usion process, in which the di�usion coe⇥cient within the corneocytes di�ers
from the one in the lipid. Di�erent geometric representations of the stratum
corneum have been used to compute the di�usional throughput [17].

In the following two studies, we use a brick-and-mortar model (Fig. 3).
Assuming di�usion driven transport in the two subdomains s � {cor, lip} (cor-
neocyte, lipid), the governing equation is given by

�tcs(t, x) = ⇥ · (Ds⇥cs(t, x)).

The di�usion coe⇥cient Ds is assumed to be constant within each subdomain
s � {cor, lip}, but may di�er between subdomains. For the scalability analysis,
we compute the steady state of the concentration distribution.

As solver, we employ a geometric multigrid method, accelerated by an outer
conjugate gradient method. The multigrid uses a damped Jacobi smoother, two
(resp. three) smoothing steps in 2d (resp. 3d), a V-cycle, and an LU base solver.
The iterations are completed once an absolute residuum reduction of 10�10 is
achieved. The main di⇥culty of this problem is the bad aspect ratio of the
computational domain (0.1µm vs. 30µm for the lipid channels). This is resolved
by three (resp. five) steps of anisotropic refinement to enhance those ratios. Base
solvers are applied at a level where ratios are satisfactory.

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 20

Issue with MPI communicator group creation
10,000 performance models per minute – scalability of UG4 3

l=0

l=1

l=2

l=3 l=3

l=2
l=1

P0 P1

Fig. 1. Illustration for a 1d parallel multigrid hierarchy distributed onto two processes.
Parallel copies are identified via horizontal (darker blue) and vertical interfaces (lighter
blue).

graph-based parallelization. A key feature of PCL is that parallel copies of ob-
jects are not identified by global IDs. Instead, containers, called interfaces, are
used to store the parallel copies on each process in a well-defined order such that
identification can be done by these interfaces in an e⇥cient way [28, 21, 20].

A typical simulation run consists of several phases, each with its own char-
acter, especially with respect to parallelization. At first, a computing grid is
required. In this specific work, we proceed as follows: A coarse grid describing
the domain is loaded onto one process. The grid is refined, creating new lev-
els of the multigrid hierarchy and after some refinements the finest grid level
is distributed to empty processes, proceeding with the refinement in parallel.
This process can be iterated, successively creating a tree structure of processes
holding parts of the hierarchical grid. The grid refinement is mainly performed
process-wise and communication is only needed at redistribution stages [20]. An
illustration of the resulting hierarchy for a 1d distribution is shown in Fig. 1.

On the grid, the partial di�erential equations are discretized by assembling
large sparse matrices and corresponding vectors based on the grid element contri-
butions. Using only lower-dimensional parallel overlap (i.e., each full-dimensional
element is present on exactly one process, but the lower-dimensional boundary
has parallel copies on several processes), the assembly process can be performed
by traversing the full-dimensional elements only and therefore it is an inherent
parallel process. Given optimal load balancing, i.e., an equal distribution of the
elements across the processes, perfect scalability is expected for the assembly.

The most di⇥cult part, from a parallelization perspective, is the subsequent
solution of the matrix equation. Since the algebraic structures are distributed,
solvers naturally involve parallel communication. Multigrid methods are of opti-
mal complexity (linear in the degrees of freedom) and thus a good candidate for
weak scaling. They compute corrections iteratively to approximate the solution.
On every level, simple iterative schemes, called smoothers, are applied and the
problem is transferred to coarser grids in order to compute coarse corrections [6,
13]. Our multigrid solver is based on the above-mentioned hierarchically dis-
tributed multigrid. Especially on coarser grid levels, where less computational
work has to be done, fewer processes are involved in the solution algorithm.
In addition, Krylov methods such as CG and BiCGStab are implemented [14].
Their parallelization is mainly based on the parallelization of the matrix-vector
and vector-vector products that appear in their formulation.

•  Create MPI communicator groups
for each level of multigrid hierarchy

•  Exclude processes that do not own
a grid part on that level

•  Before: Membership info communicated using MPI_Allreduce with array of
length p - non-scalable p * O(MPI_Allreduce) complexity

•  Now: MPI_Allreduce replaced by MPI_Comm_split - enhanced algorithms of
which are known to have O(log2p) complexity

(C. Siebert, F. Wolf: Parallel sorting with minimal data. Recent Advances in the Message Passing
Interface, 2011)

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 21

Which problem? Where in the
program?

Which
process?

www.scalasca.org

Tutorials at
EuroMPI’15

& SC15

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 22

Algorithm engineering

Courtesy of Peter Sanders, KIT

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 23

How to validate scalability in practice?

Small
text book
example

Real
application

Verifiable
analytical

expression

Asymptotic
complexity

Program

Expectation

#FLOPS = n2(2n − 1) #FLOPS = O(n2.8074)

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 24

HPC libraries

•  Focus on algorithms rather than applications

•  Theoretical expectations more common

•  Reuse factor makes scalability even more important

Example:
MPI communication library Network	

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 25

Search space
generation

Model
generation Benchmark

Performance
measurements

Scaling model
Expectation

+ optional
deviation limit

Divergence model

Initial validation Comparing
alternatives

Regression
testing

Scalability evaluation framework

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 26

Customized search space

•  Constructed around expectation

•  Supports wider range of model functions than original PMNF

E(x) E 2 (x)1 E(x)*D(x)E(x) D(x)

Search space boundaries

Deviation limits

Approx. match No match Approx. match No match

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 27

Platform Juqueen Juropa Piz Daint

MPI memory [MB] Expectation: O (log p)

Model O (log p) O (p) O (log p)

R2 0.72 1 0.23

Divergence O (1) O (p / log p) O (1)

Match ✔ ✘ ✔

Comm_create [B] Expectation: O (p)

Model O (p) O (p) O (p)

R2 1 1 0.99

Divergence O (1) O (1) O (1)

Match ✔ ✔ ✔

Win_create [B] Expectation: O (p)

Model O (p) O (p) O (p)

R2 1 1 0.99

Divergence O (1) O (1) O (1)

Match ✔ ✔ ✔

MPI

Platform Juqueen Juropa Piz Daint

Barrier [s] Expectation: O (log p)

Model O (log p) O (p0.67 log p) O (p0.33)

R2 0.99 0.99 0.99

Divergence O (1) O (p0.67) O (p0.33/log p)

Match ✔ ✘ ~∼

Bcast [s] Expectation: O (log p)

Model O (log p) O (p0.5) O (p0.5)

R2 0.86 0.98 0.94

Divergence O (1) O (p0.5/log p) O (p0.5/log p)

Match ✔ ~∼ ~∼

Reduce [s] Expectation: O (log p)

Model O (log p) O (p0.5 log p) O (p0.5 log p)

R2 0.93 0.99 0.94

Divergence O (1) O (p0.5) O (p0.5)

Match ✔ ~∼ ~∼

Platform Juqueen Juropa Piz Daint
Allreduce [s] Expectation: O (log p)
Model O (log p) O (p0.5) O (p0.67 log p)

R2 0.87 0.99 0.99
Divergence 0 O (p0.5/log p) O (p0.67)

Match ✔ ~∼ ✘!
Comm_dup [B] Expectation: O (1)
Model 2.2e5 256 3770 + 18p

R2 1 1 0.99
Divergence O (1) O (1) O (p)

Match ✔ ✔ ✘

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 28

MAFIA

Sub-space clustering code used in data-mining

•  Cluster dimensionality k is the model parameter

•  Result: observed behavior matched the expectations

 gen dedup pcount unjoin
Expectation O (k32k) O (k42k) O (k2k) O (k32k)

Model O (k42k) O (k42k) O (k2k) O (k22k)

Divergence O (k) O (1) O (1) O (1/k)
Match ~∼ ✔ ✔ ~∼

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 29

Mass-producing performance models

•  Is feasible

•  Offers insight

•  Requires low effort

•  Improves code coverage

S. Shudler, A. Calotoiu, T. Hoefler, A. Strube, F. Wolf: Exascaling Your Library: Will Your
Implementation Meet Your Expectations?. In Proc. of the International Conference on Supercomputing
(ICS), Newport

A. Calotoiu, T. Hoefler, M. Poke, F. Wolf: Using Automated Performance Modeling to Find Scalability
Bugs in Complex Codes. In Proc. of the ACM/IEEE Conference on Supercomputing (SC13), Denver,
CO, USA, pages 1-12, ACM, November 2013.

2015

A. Vogel, A. Calotoiu, A. Strube, S. Reiter, A. Nägel, F. Wolf, G. Wittum: 10,000 performance models
per minute - scalability of the UG4 simulation framework. In Proc. of the Euro-Par Conference,
Vienna, Austria, August 2015

Euro-Par
2015

7/17/15 | Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf | 30

Thank you!

