" ERLANGEN REGIONAL

- COMPUTING CENTER

A feasibility study of checkpoint/restart
as a fault tolerance technique

Faisal Shahzad

16.05.2014

Challenge

= Nowadays, the increasing computational capacity is mainly due
to extreme level of hardware parallelism.

= The reliability of hardware components does not increase with
the similar rate.

= With future machines, the Mean time to failure is expected to be
In minutes and hours.

= Absence of fault tolerant environment will put precious data at
risk.

Fault Tolerance

= Faults:
- Hardware failures (processor, memory, power supply or network etc.)
—>Normal programs abort

= Fault Tolerance:

- A property that guarantees the normal program execution either by
resisting or recovering from faults

—> Support required on application and/or operating system level

Fault Tolerance Approaches

1. Algorithm Based Fault Tolerance (ABFT)
2. Message Logging

3. Redundancy

4. Fault Prediction (proactive fault tolerance)

5. Checkpoint/Restart (C/R)

Each of these fault tolerance approaches carries overhead in terms of time and/or resources

Checkpoint/Restart optimizations

1. Application level checkpointing
= Minimal checkpoint data

2. Asynchronous checkpointing

3. Multi-level checkpointing

4. Checkpoint compression

Synchronous vs. asynchronous checkpointing

= Synchronous checkpointing:
= Computation halts for I/O time
= High execution time overhead

Resourse
utilization

= Asynchronous checkpointing:
= Using dedicated threads for performing asynchronous I/O
= Low execution time overhead

= An in-memory copy of

M, CP

Resourse
utilization

checkpoint is required.

Computation

 §

time §

Asynchronous checkpointing by dedicated
threads (1)

= Hybrid approach (with nested openmp parallelism)

...idle ... I Write CP-grid to PFS I ...idle ...
Process 1 CP-thread T
Worker thread copy CP-Grid
to Memory
th 2 th 2 th 2
Process 2 th 'm' Make CP th 'm' th 'm’
Process 'n'

= Flexible
= 1 Checkpoint thread per core
= 1 Checkpoint thread per socket
= 1 Checkpoint thread per node

Experimental Framework

= Application:
- A prototype CFD solver based on Lattice Boltzmann Method (LBM).

= Cluster:

= LiMa (Erlangen) : QDR Infiniband cluster, 500 nodes (Dual socket
Intel Xeon 5650 “Westmere”), Lustre based PFS Bandwidth ~
3GB/s

= Approaches:
= Synchronous CP

= Asynchronous CP

Asynchronous Checkpointing

= Hybrid (MPI-OpenMP) configuration performance comparison

Cluster: LiMa, num. of nodes = 32, PFS = LXFS, Aggregated CP size = 200 GB/CP
2000

no-CPs
Async. CPs - computation time

1750 Async. CPs - 10 time —

z 0 [Coooom) O [moooon| - prlocess/thread
2 ol (DEDDDm [CSE[aLaaa] [Dnooom)| | ldle SMT_00fe
g Checkpoint-thread
% [_

= 1000 .

k=

8 |

= 750 —

o

g-' —

<

) =Total 10 time: 436s
— sActual Overhead: 32s

I MPI-process/core I MPI-process/socket 1 MPl-pmcms.i'nodc

Checkpoint thread configuration

Asynchronous vs. Synchronous Checkpointing

= | IMa

Num. of nodes = 128, np = 1536, PFS = LXFS, Aggregated CP size = 800GB/CP

[1000

Sync. checkpeinting - computation time 1
10000 | M Sync. checkpointing - 10 time

9000 | B Async. chcckpo!nr!ng - c?m.put;mon time
2 Async. checkpointing - IO time

3000
7000
6000
5000

4000
% overhead

1 "1Sync.CP =20%
<1 "1 Async. CP=0.4%

Application timeline [s]

3000
2000
1000

-
A
Number of checkpoints

FRIEDRICH-ALEXANDER
UNIVERSITA’

T
ERLANGEN-NURNBERG

Asynchronous checkpointing

= Critical parameter = checkpoint frequency
= System parameters, checkpoint latency, restart time ,...
= Upper limit on the number of checkpoints

= Limitations
= In-memory copy of the checkpoint data costs
I. Extra memory space (in worst case, can be up to 50%)

ii. Time (can be avoided)

MULTI-LEVEL CHECKPOINTING

Using Scalable Checkpoint Restart (SCR)
library

Scalable Checkpoint/Restart (SCR) Library

= Scalable Checkpoint/Restart is a library developed by
LLNL(Adam Moody)

= Key idea

= To store checkpoint data redundantly on compute nodes and
making occasional checkpoints on the parallel file system (PFS).

= Advantages

= Scalable checkpointing: Every additional node adds to more storage
space and bandwidth

= Scalable restart: Restart data on cluster nodes -> |less restart time.

= Reduced load on PFS for making checkpoint.

SCR: Checkpointing Features (l)

= L OCAL Node 1 Node 2 Node 3 Node 4

wireesses @) @@ @
Local node
memory/SSD/HDD >

Node 1 Node 2 Node 3 Node 4

e— 1 Y I

Local node
memory/SSD/HDD

= PARTNER

= PARTNER XOR: (similar to RAID5)
= Makes XOR checkpoints for sets of nodes

SCR: Checkpointing Features (ll)

= Parallel File System (PFS) level checkpoints

= In order to deal with catastrophic failures, PFS-level checkpoints
can be taken.

Node 1 Node 2 Node 3 Node 4

MPI Processes . . ' @

File System

Local node 1
memory/SSD/HDD 3

SCR: Checkpointing Features (llI)

= Non-blocking PFS-level checkpoints

= PFS-level checkpoints are taken in a non-blocking way with the
help of dedicated staging-nodes.

Staging
Node 1 Node 2 Node 3 Node 4 Node

server

File System

Local node 1 g
memory/SSD/HDD 3

SCR: Restart Mechanism

= Scalable Restart

= Restart from node, neighbor level checkpoints (if consistent
checkpoint state is available)

» |f node-level consistent copy is not available for all the processes,
restart is done by reading PFS level checkpoints.

Application Requirements

= MPI based

= Checkpoint mechanism

» SCR redirects and manages every checkpoint on node-level and
PFS-level

= Globally-coordinated checkpoint
= Restart mechanism

» SCR finds the consistent copy of checkpoint that is least
expansive to restart from

* Enough memory/SSD/HDD space on nodes to store node-
level checkpoints
= USAGE:
= via API calls around C/R routines
= Limitation:
= Every checkpoint is treated as a complete checkpoint identity

Async. vs. Sync. vs. SCR Checkpointing

= LBM Benchmark (LiMa)

Num. of nodes = 128, PFS = LXFS, Aggregated CP size = 510 GB /CP

6000
R Sync-PES-level-CP

B Async-PFS-level-CP
5000 |E SCR-PFS-level-CP
4 SCR-Partner-level-CP

;4000

ne |s|

3000

I

000

Application timeli

% overhead:

1Sync.CP =13%
1 Async. CP=1.3%
1 Partner. CP =1 %

1000

B RN NN

%
7
7
7
7
7
7
7
7
7
7
7
7
7
7

Number of checkpoints

0

AUTOMATIC FAULT TOLERANCE
APPLICATION (AFT)

Automatic Fault Tolerance Application (AFT)

= Automatic fault tolerance application (AFT)

» In the absence of failed processes, the algorithm itself is able to
detect and correct the incorrectly produced results

= FT-MPI?

» GPI (Global address space Programming Interface)

» Fault tolerance - In case of single node failure, rest of the nodes
stay up and running

Message Passing Interface PGAS (Partitioned Global Address Space)
* »Traditionally” single sided « Read and write global data single sidedly
communication not possible « Motivation -> simplicity (with scalability)

* Read/write requires bo.th processes o] . yser needs to be careful about synchronization.
acknowledge communication * e.g. GPI (Global address space Programming

* Single node crash > All nodes crash Interface), GA (Global Arrays), UPC (Unified
Parallel C) ...

AFT: GPI Introduction

Developed by Fraunhofer INTM

Based on PGAS programming model

= Two memory parts
- Local: only local to the GPI process (and its threads)
- Global: Available to other processes for reading and writing.

Enables fault tolerance
« via providing TIMEOUT for every communication call.

AFT: GPI - Application requirements

= Algorithm based on PGAS model

= For effective fault tolerance
* No global synchronization, barriers

« Each GPI-process communicates with certain subset of
GPI-processes (e.g. neighbors)

* |In case of failures, rest of the processes detect errors in
results and correct them accordingly.

= ABFT based application

Toy FT implementation with LBM

= |dea:

= Running the program with ,n+m‘ processes, where ,m‘ is the
number of idle processes.

= Program initially utilizes ,n° processes for work (work-group)

= |n case of a failed process in ,work-group’, an idle process is
added to the ,work-group’.

= Processes in newly established ,work-group’ restart the work
from last checkpoint.

Toy FT implementation with LBM

= Program flow: Cstart

no (idle-proc.) ami yes
L
create work-
group
L J
> k
! y Wor
» sleep(idle) read Y
checkpoint
-~
signal
received? reconstruct
work-group

L

yes

signal idle-
proc.

Neighbor level checkpointing for GPI (1)

= Devepment of Multi-level checkpointing infrastructure.
= Based on library calls

= Library thread responsible for transfering data in-between nodes and
PFS.

= |Independent of communication library (MPI/GPI)

= Multi-level checkpointing with various layers of the application.
= Different checkpoint frequency on various layers.

Neighbor level checkpointing for GPI (ll)

Y .
cr_thread-> : pthread_create(... ,
cr_thread_init() : &cp_monitoring th, ...)

k

cr thread

work finished flag chk.
transfer

CP

write in-memory
checkpoint

f
sleepl(idle)

¥
signal library th.
to transfer CP

Transfer CP to partner
node or PFS

Concluding remarks:

= Effective implementation of C/R and effective resource
utilization can reduce overhead to minimum level.

= The overhead due to I/O bottlenecks can be reduced
with asynchronous checkpointing approach.

= Node and neighbor-level checkpoints with occasional
PFS-level checkpoints are highly scalable.

Thank you!

Questions?

