
ERLANGEN REGIONAL

COMPUTING CENTER

Faisal Shahzad

16.05.2014

A feasibility study of checkpoint/restart

as a fault tolerance technique

2

Challenge

 Nowadays, the increasing computational capacity is mainly due

to extreme level of hardware parallelism.

 The reliability of hardware components does not increase with

the similar rate.

 With future machines, the Mean time to failure is expected to be

in minutes and hours.

 Absence of fault tolerant environment will put precious data at

risk.

3

Fault Tolerance

 Faults:

• Hardware failures (processor, memory, power supply or network etc.)

Normal programs abort

 Fault Tolerance:

• A property that guarantees the normal program execution either by

resisting or recovering from faults

 Support required on application and/or operating system level

4

Fault Tolerance Approaches

1. Algorithm Based Fault Tolerance (ABFT)

2. Message Logging

3. Redundancy

4. Fault Prediction (proactive fault tolerance)

5. Checkpoint/Restart (C/R)

Each of these fault tolerance approaches carries overhead in terms of time and/or resources

5

Checkpoint/Restart optimizations

1. Application level checkpointing

 Minimal checkpoint data

2. Asynchronous checkpointing

3. Multi-level checkpointing

4. Checkpoint compression

5. …

ASYNCHRONOUS CHECKPOINTING

7

Synchronous vs. asynchronous checkpointing

 Synchronous checkpointing:

 Computation halts for I/O time

 High execution time overhead

 Asynchronous checkpointing:

 Using dedicated threads for performing asynchronous I/O

 Low execution time overhead

 An in-memory copy of

checkpoint is required.

9

Asynchronous checkpointing by dedicated

threads (I)

 Hybrid approach (with nested openmp parallelism)

 Flexible

 1 Checkpoint thread per core

 1 Checkpoint thread per socket

 1 Checkpoint thread per node

10

Experimental Framework

 Application:

• A prototype CFD solver based on Lattice Boltzmann Method (LBM).

 Cluster:

 LiMa (Erlangen) : QDR Infiniband cluster, 500 nodes (Dual socket

Intel Xeon 5650 “Westmere”), Lustre based PFS Bandwidth ~

3GB/s

 Approaches:

 Synchronous CP

 Asynchronous CP

13

Asynchronous Checkpointing

 Hybrid (MPI-OpenMP) configuration performance comparison

Cluster: LiMa, num. of nodes = 32, PFS = LXFS, Aggregated CP size = 200 GB/CP

Checkpoint-thread

process/thread

Idle SMT core

Total IO time: 436s

Actual Overhead: 32s

14

Asynchronous vs. Synchronous Checkpointing

 LiMa

% overhead

1 Sync. CP = 20 %

1 Async. CP = 0.4 %

Num. of nodes = 128, np = 1536, PFS = LXFS, Aggregated CP size = 800GB/CP

15

Asynchronous checkpointing

 Critical parameter checkpoint frequency

 System parameters, checkpoint latency, restart time ,…

 Upper limit on the number of checkpoints

 Limitations

 In-memory copy of the checkpoint data costs

i. Extra memory space (in worst case, can be up to 50%)

ii. Time (can be avoided)

MULTI-LEVEL CHECKPOINTING

Using Scalable Checkpoint Restart (SCR)

library

17

Scalable Checkpoint/Restart (SCR) Library

 Scalable Checkpoint/Restart is a library developed by

LLNL(Adam Moody)

 Key idea

 To store checkpoint data redundantly on compute nodes and

making occasional checkpoints on the parallel file system (PFS).

 Advantages

 Scalable checkpointing: Every additional node adds to more storage

space and bandwidth

 Scalable restart: Restart data on cluster nodes -> less restart time.

 Reduced load on PFS for making checkpoint.

18

SCR: Checkpointing Features (I)

 LOCAL

 PARTNER

 PARTNER XOR: (similar to RAID5)

 Makes XOR checkpoints for sets of nodes

0 1 2 3

0 1 2 3

MPI Processes

Local node

memory/SSD/HDD

Node 1 Node 2 Node 3 Node 4

0 1 2 3

0 1 2 3

MPI Processes

Local node

memory/SSD/HDD

Node 1 Node 2 Node 3 Node 4

3 0 1 2

19

SCR: Checkpointing Features (II)

 Parallel File System (PFS) level checkpoints

 In order to deal with catastrophic failures, PFS-level checkpoints

can be taken.

0 1 2 3

0 1 2 3

MPI Processes

Local node

memory/SSD/HDD

Node 1 Node 2 Node 3 Node 4

3 0 1 2

File System

20

SCR: Checkpointing Features (III)

 Non-blocking PFS-level checkpoints

 PFS-level checkpoints are taken in a non-blocking way with the

help of dedicated staging-nodes.

0 1 2 3

0 1 2 3

MPI Processes

Local node

memory/SSD/HDD

Node 1 Node 2 Node 3 Node 4

3 0 1 2

File System

3

Staging

Node

2

Staging

server

1

0

21

SCR: Restart Mechanism

 Scalable Restart

 Restart from node, neighbor level checkpoints (if consistent

checkpoint state is available)

 If node-level consistent copy is not available for all the processes,

restart is done by reading PFS level checkpoints.

22

Application Requirements

 MPI based

 Checkpoint mechanism

 SCR redirects and manages every checkpoint on node-level and

PFS-level

 Globally-coordinated checkpoint

 Restart mechanism

 SCR finds the consistent copy of checkpoint that is least

 expansive to restart from

 Enough memory/SSD/HDD space on nodes to store node-

level checkpoints

 USAGE:

 via API calls around C/R routines

 Limitation:

 Every checkpoint is treated as a complete checkpoint identity

23

Async. vs. Sync. vs. SCR Checkpointing

 LBM Benchmark (LiMa)

% overhead:

1 Sync. CP = 13 %

1 Async. CP = 1.3 %

Num. of nodes = 128, PFS = LXFS, Aggregated CP size = 510 GB /CP

1 Partner. CP = 1 %

AUTOMATIC FAULT TOLERANCE

APPLICATION (AFT)

25

Automatic Fault Tolerance Application (AFT)

 Automatic fault tolerance application (AFT)

 In the absence of failed processes, the algorithm itself is able to

detect and correct the incorrectly produced results

Message Passing Interface

• „Traditionally“ single sided

communication not possible

• Read/write requires both processes to

acknowledge communication

• Single node crash All nodes crash

PGAS (Partitioned Global Address Space)

• Read and write global data single sidedly

• Motivation -> simplicity (with scalability)

• User needs to be careful about synchronization.

• e.g. GPI (Global address space Programming

Interface), GA (Global Arrays), UPC (Unified

Parallel C) …

 FT - MPI ?

 GPI (Global address space Programming Interface)

 Fault tolerance In case of single node failure, rest of the nodes

stay up and running

26

AFT: GPI Introduction

 Developed by Fraunhofer IWTM

 Based on PGAS programming model

 Two memory parts

• Local: only local to the GPI process (and its threads)

• Global: Available to other processes for reading and writing.

 Enables fault tolerance

• via providing TIMEOUT for every communication call.

27

AFT: GPI - Application requirements

 Algorithm based on PGAS model

 For effective fault tolerance

• No global synchronization, barriers

• Each GPI-process communicates with certain subset of

GPI-processes (e.g. neighbors)

• In case of failures, rest of the processes detect errors in

results and correct them accordingly.

 ABFT based application

28

Toy FT implementation with LBM

 Idea:

 Running the program with ‚n+m‘ processes, where ‚m‘ is the

number of idle processes.

 Program initially utilizes ‚n‘ processes for work (work-group)

 In case of a failed process in ‚work-group‘, an idle process is

added to the ‚work-group‘.

 Processes in newly established ‚work-group‘ restart the work

from last checkpoint.

29

Toy FT implementation with LBM

 Program flow:

31

Neighbor level checkpointing for GPI (I)

 Devepment of Multi-level checkpointing infrastructure.

 Based on library calls

 Library thread responsible for transfering data in-between nodes and

PFS.

 Independent of communication library (MPI/GPI)

 Multi-level checkpointing with various layers of the application.

 Different checkpoint frequency on various layers.

32

Neighbor level checkpointing for GPI (II)

33

Concluding remarks:

 Effective implementation of C/R and effective resource

utilization can reduce overhead to minimum level.

 The overhead due to I/O bottlenecks can be reduced

with asynchronous checkpointing approach.

 Node and neighbor-level checkpoints with occasional

PFS-level checkpoints are highly scalable.

34

Thank you!
 Questions?

