
ERLANGEN REGIONAL

COMPUTING CENTER

Faisal Shahzad

16.05.2014

A feasibility study of checkpoint/restart

as a fault tolerance technique

2

Challenge

 Nowadays, the increasing computational capacity is mainly due

to extreme level of hardware parallelism.

 The reliability of hardware components does not increase with

the similar rate.

 With future machines, the Mean time to failure is expected to be

in minutes and hours.

 Absence of fault tolerant environment will put precious data at

risk.

3

Fault Tolerance

 Faults:

• Hardware failures (processor, memory, power supply or network etc.)

Normal programs abort

 Fault Tolerance:

• A property that guarantees the normal program execution either by

resisting or recovering from faults

 Support required on application and/or operating system level

4

Fault Tolerance Approaches

1. Algorithm Based Fault Tolerance (ABFT)

2. Message Logging

3. Redundancy

4. Fault Prediction (proactive fault tolerance)

5. Checkpoint/Restart (C/R)

Each of these fault tolerance approaches carries overhead in terms of time and/or resources

5

Checkpoint/Restart optimizations

1. Application level checkpointing

 Minimal checkpoint data

2. Asynchronous checkpointing

3. Multi-level checkpointing

4. Checkpoint compression

5. …

ASYNCHRONOUS CHECKPOINTING

7

Synchronous vs. asynchronous checkpointing

 Synchronous checkpointing:

 Computation halts for I/O time

 High execution time overhead

 Asynchronous checkpointing:

 Using dedicated threads for performing asynchronous I/O

 Low execution time overhead

 An in-memory copy of

checkpoint is required.

9

Asynchronous checkpointing by dedicated

threads (I)

 Hybrid approach (with nested openmp parallelism)

 Flexible

 1 Checkpoint thread per core

 1 Checkpoint thread per socket

 1 Checkpoint thread per node

10

Experimental Framework

 Application:

• A prototype CFD solver based on Lattice Boltzmann Method (LBM).

 Cluster:

 LiMa (Erlangen) : QDR Infiniband cluster, 500 nodes (Dual socket

Intel Xeon 5650 “Westmere”), Lustre based PFS Bandwidth ~

3GB/s

 Approaches:

 Synchronous CP

 Asynchronous CP

13

Asynchronous Checkpointing

 Hybrid (MPI-OpenMP) configuration performance comparison

Cluster: LiMa, num. of nodes = 32, PFS = LXFS, Aggregated CP size = 200 GB/CP

Checkpoint-thread

process/thread

Idle SMT core

Total IO time: 436s

Actual Overhead: 32s

14

Asynchronous vs. Synchronous Checkpointing

 LiMa

% overhead

1 Sync. CP = 20 %

1 Async. CP = 0.4 %

Num. of nodes = 128, np = 1536, PFS = LXFS, Aggregated CP size = 800GB/CP

15

Asynchronous checkpointing

 Critical parameter  checkpoint frequency

 System parameters, checkpoint latency, restart time ,…

 Upper limit on the number of checkpoints

 Limitations

 In-memory copy of the checkpoint data costs

i. Extra memory space (in worst case, can be up to 50%)

ii. Time (can be avoided)

MULTI-LEVEL CHECKPOINTING

Using Scalable Checkpoint Restart (SCR)

library

17

Scalable Checkpoint/Restart (SCR) Library

 Scalable Checkpoint/Restart is a library developed by

LLNL(Adam Moody)

 Key idea

 To store checkpoint data redundantly on compute nodes and

making occasional checkpoints on the parallel file system (PFS).

 Advantages

 Scalable checkpointing: Every additional node adds to more storage

space and bandwidth

 Scalable restart: Restart data on cluster nodes -> less restart time.

 Reduced load on PFS for making checkpoint.

18

SCR: Checkpointing Features (I)

 LOCAL

 PARTNER

 PARTNER XOR: (similar to RAID5)

 Makes XOR checkpoints for sets of nodes

0 1 2 3

0 1 2 3

MPI Processes

Local node

memory/SSD/HDD

Node 1 Node 2 Node 3 Node 4

0 1 2 3

0 1 2 3

MPI Processes

Local node

memory/SSD/HDD

Node 1 Node 2 Node 3 Node 4

3 0 1 2

19

SCR: Checkpointing Features (II)

 Parallel File System (PFS) level checkpoints

 In order to deal with catastrophic failures, PFS-level checkpoints

can be taken.

0 1 2 3

0 1 2 3

MPI Processes

Local node

memory/SSD/HDD

Node 1 Node 2 Node 3 Node 4

3 0 1 2

File System

20

SCR: Checkpointing Features (III)

 Non-blocking PFS-level checkpoints

 PFS-level checkpoints are taken in a non-blocking way with the

help of dedicated staging-nodes.

0 1 2 3

0 1 2 3

MPI Processes

Local node

memory/SSD/HDD

Node 1 Node 2 Node 3 Node 4

3 0 1 2

File System

3

Staging

Node

2

Staging

server

1

0

21

SCR: Restart Mechanism

 Scalable Restart

 Restart from node, neighbor level checkpoints (if consistent

checkpoint state is available)

 If node-level consistent copy is not available for all the processes,

restart is done by reading PFS level checkpoints.

22

Application Requirements

 MPI based

 Checkpoint mechanism

 SCR redirects and manages every checkpoint on node-level and

PFS-level

 Globally-coordinated checkpoint

 Restart mechanism

 SCR finds the consistent copy of checkpoint that is least

 expansive to restart from

 Enough memory/SSD/HDD space on nodes to store node-

level checkpoints

 USAGE:

 via API calls around C/R routines

 Limitation:

 Every checkpoint is treated as a complete checkpoint identity

23

Async. vs. Sync. vs. SCR Checkpointing

 LBM Benchmark (LiMa)

% overhead:

1 Sync. CP = 13 %

1 Async. CP = 1.3 %

Num. of nodes = 128, PFS = LXFS, Aggregated CP size = 510 GB /CP

1 Partner. CP = 1 %

AUTOMATIC FAULT TOLERANCE

APPLICATION (AFT)

25

Automatic Fault Tolerance Application (AFT)

 Automatic fault tolerance application (AFT)

 In the absence of failed processes, the algorithm itself is able to

detect and correct the incorrectly produced results

Message Passing Interface

• „Traditionally“ single sided

communication not possible

• Read/write requires both processes to

acknowledge communication

• Single node crash  All nodes crash

PGAS (Partitioned Global Address Space)

• Read and write global data single sidedly

• Motivation -> simplicity (with scalability)

• User needs to be careful about synchronization.

• e.g. GPI (Global address space Programming

Interface), GA (Global Arrays), UPC (Unified

Parallel C) …

 FT - MPI ?

 GPI (Global address space Programming Interface)

 Fault tolerance  In case of single node failure, rest of the nodes

stay up and running

26

AFT: GPI Introduction

 Developed by Fraunhofer IWTM

 Based on PGAS programming model

 Two memory parts

• Local: only local to the GPI process (and its threads)

• Global: Available to other processes for reading and writing.

 Enables fault tolerance

• via providing TIMEOUT for every communication call.

27

AFT: GPI - Application requirements

 Algorithm based on PGAS model

 For effective fault tolerance

• No global synchronization, barriers

• Each GPI-process communicates with certain subset of

GPI-processes (e.g. neighbors)

• In case of failures, rest of the processes detect errors in

results and correct them accordingly.

 ABFT based application

28

Toy FT implementation with LBM

 Idea:

 Running the program with ‚n+m‘ processes, where ‚m‘ is the

number of idle processes.

 Program initially utilizes ‚n‘ processes for work (work-group)

 In case of a failed process in ‚work-group‘, an idle process is

added to the ‚work-group‘.

 Processes in newly established ‚work-group‘ restart the work

from last checkpoint.

29

Toy FT implementation with LBM

 Program flow:

31

Neighbor level checkpointing for GPI (I)

 Devepment of Multi-level checkpointing infrastructure.

 Based on library calls

 Library thread responsible for transfering data in-between nodes and

PFS.

 Independent of communication library (MPI/GPI)

 Multi-level checkpointing with various layers of the application.

 Different checkpoint frequency on various layers.

32

Neighbor level checkpointing for GPI (II)

33

Concluding remarks:

 Effective implementation of C/R and effective resource

utilization can reduce overhead to minimum level.

 The overhead due to I/O bottlenecks can be reduced

with asynchronous checkpointing approach.

 Node and neighbor-level checkpoints with occasional

PFS-level checkpoints are highly scalable.

34

Thank you!
 Questions?

