
ERLANGEN REGIONAL

COMPUTING CENTER

Faisal Shahzad

02.03.2015

Application driven fault tolerance

and asynchronous checkpointing

Partially funded by DFG Priority Programme1648

Partially funded by BMBF project FeTol

2

Challenge

 Nowadays, the increasing computational capacity is mainly due

to extreme level of hardware parallelism.

 The reliability of hardware components does not increase with

the similar rate.

 With future machines, the Mean time to failure is expected to be

in minutes and hours.

 Absence of fault tolerant environment will put precious data at

risk.

3

Checkpoint/Restart optimizations

1. Application level checkpointing

• Minimal checkpoint data

2. Asynchronous checkpointing

3. Multi-level checkpointing

(PFS/remote node/localFS)

4. Checkpoint compression

5. …

Hide / avoid costs of

computational costs

of checkpoints

ASYNCHRONOUS CHECKPOINTING

5

Synchronous vs. asynchronous checkpointing

 Synchronous checkpointing:

 Computation halts for I/O time

 High execution time overhead

 Asynchronous checkpointing:

 Using dedicated threads for performing asynchronous I/O

 Low execution time overhead

 An in-memory copy of

checkpoint is required.

6

Asynchronous vs. Synchronous Checkpointing

% overhead

1 Sync. CP = 20 %

1 Async. CP = 0.4 %

Num. of nodes = 128, np = 1536, PFS = LXFS, Aggregated CP size = 800GB/CP

 Benchmark (LiMa)

7

Async. vs. Sync. vs. SCR Checkpointing

 Benchmark (LiMa)

% overhead:

1 Sync. CP = 13 %

1 Async. CP = 1.3 %

Num. of nodes = 128,

PFS = LXFS,

CP size = 510 GB /CP

1 Partner. CP = 1 %

SCR: A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski, “Design, Modeling, and Evaluation of a Scalable Multilevel Checkpointing

System,” in Proceedings of the 2010 ACM/IEEE International Conference for HPC, Networking, Storage and Analysis, Washington,DC, USA

8

Remarks: Asynchronous checkpointing

 Effective implementation of C/R and effective resource utilization can

reduce overhead to minimum level.

 The overhead due to I/O bottlenecks can be reduced with asynchronous

checkpointing approach.

 Critical parameter  checkpoint frequency

• System parameters, checkpoint latency, restart time ,…

• Upper limit on the number of checkpoints

 Limitations

• In-memory copy of the checkpoint data costs

i. Extra memory space (in worst case, can be up to 50%)

ii. Time (can be avoided)

AUTOMATIC FAULT TOLERANCE

APPLICATION (AFT) WITH GPI

10

Automatic Fault Tolerance Application (AFT)

 Automatic fault tolerance application (AFT)

• In the absence of failed processes, the algorithm itself is able to

detect and correct the incorrectly produced results

 Fault Tolerant - MPI ?

 GPI (Global address space Programming Interface)

• Fault tolerance  In case of single node failure, rest of the nodes

stay up and running

11

AFT: GPI Introduction

 Developed by Fraunhofer IWTM

 Based on PGAS programming model

 Two memory parts

• Local: only local to the GPI process (and its threads)

• Global: Available to other processes for reading and writing.

 Enables fault tolerance

• Provides TIMEOUT for every communication call.

• Each process maintains a health vector with the communicating

partners.

12

Failure detector:

0

1 2 3

4 5 6 7 8 9

Worker communicator

Idle processes

gaspi_write()

return_val = gaspi_wait()

 return_val:

 1) GASPI_SUCCESS

 2) GASPI_TIMEOUT

 3) GASPI_ERROR

gaspi_write()

return_val = gaspi_wait()

Fault detector process

13

Failure detector:

0

3

4 5 6 7 8 9

Worker communicator

Idle processes

gaspi_write()

return_val = gaspi_wait()

GASPI_ERROR Failed

Proc(s) IDs

Rescue

Proc(s) IDs

6, 7 1, 2

Failure detector process

 Detector processes informs

every process about failure

details via gaspi_write().

1 2 return_val:

 1) GASPI_SUCCESS

 2) GASPI_TIMEOUT

 3) GASPI_ERROR

14

Automatic Fault Tolerance Application

 Program flow:

F
a
u

lt
 d

e
te

c
to

r
p

ro
c

e
s

s

15

Benchmarks: Test bed

 Lanczos algorithm:

 Checkpoint data structure:

 After startup: Every process once stores matrix

communication data structure.

 Two recent Lanczos vectors are stored at each checkpoint

iteration.

 Recently calculated eigenvalues.

 Test cluster:

 LiMa – RRZE, Erlangen

16

Benchmark:

101s

97s

114s

95s

F
a

il
u

re
 d

e
te

c
ti

o
n

R
e
c
o

v
e
r

+
 r

e
d

o
-w

o
rk

C
o

m
p

u
ta

ti
o

n

C
o

m
p

u
ta

ti
o

n

Num. of nodes = 64, threads-per-process = 12
A

p
p

li
c

a
ti

o
n

 r
u

n
ti

m
e

 (
s

e
c

.)

17

Benchmark:

 Avg. fault detection time (by gaspi_wait): 67 sec.

 Avg. re-initialize time: 16 sec.

 Avg. failure recovery time (without redo-work): 83 sec.

 Redo work: dependent on instant of failure between 2 checkpoints

18

Remarks:

 Worker processes remain undisturbed in failure-free

application run.

 Overhead only in case of worker failure(s).

 Scalable.

 Redo-Work after failure recovery  Checkpoint

Frequency.

 MPI-ULFM:

 On going work by MPI Forum’s fault tolerance working group to

incorporate FT features in MPI-4.

 Prototype implementation in form of User Level Failure Mitigation

(ULFM).

19

Thank you!
 Questions?

Partially funded by DFG Priority Programme1648

Partially funded by BMBF project FeTol

ASYNCHRONOUS CHECKPOINTING

IN GHOST (ESSEX)

21

Equipping Sparse Scalable Solvers for Exascale

(ESSEX)

Hardware
Fault tolerance

Energy efficiency
New levels of parallelism

Quantum Physics Applications
Extremely large sparse matrices:
eigenvalues, spectral properties,

time evolution

Exascale Sparse Solver Repository (ESSR)

ESSEX applications:
Graphene,

topological insulators,
…

Quantum
physics / chemistry

Sparse eigensolvers,
preconditioners,
spectral methods

FT concepts,
programming for

extreme parallelism

ESSEX

22

Basic building blocks library: GHOST
General, Hybrid and Optimized Sparse Toolkit

• Application layer triggered checkpoint / restart
• Asynchronous checkpointing via tasks
• Various checkpoint locations (node, filesystem)

• Supports data & task parallelism (up to application level)
• MPI + OpenMP + tasks for concurrent execution
• Generic and hardware-aware task management

• Basic tailored sparse matrix / vector operations
• CRS or SELL-C-σ* (unified format) storage schemes
• (Block-)SpMVM: SIMD intrinsic (AVX, SSE, MIC) & CUDA kernels
• Dense vector /matrices: row-/column-major storage

*M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop: A unified sparse matrix data format for

efficient general sparse matrix-vector multiplication on modern processors with wide SIMD units. SIAM

Journal on Scientific Computing 36(5), C401–C423 (2014).

23

Asynchronous checkpoints via GHOST-task thread:

ghost_task_create(ckpt_task_ptr, &CP_func, CP_obj,…)

ghost_task_enque (ckpt_task_ptr);

ghost_task_wait (ckpt_task_ptr);

update_CP(CP_obj);
// async. copy of CP is updated

CP_obj:
 object of ckpt_t type

 ckpt_t class is defined by programmer

 checkpoint object contains the

aynchronous copy of the checkpoint

CP_func:
 This function takes an updated copz of

CP_obj as argument and writes to PFS..

Parent task

Checkpoint task

