
ERLANGEN REGIONAL

COMPUTING CENTER

Moritz Kreutzer, Prof. Gerhard Wellein, Dr. Georg Hager

Workshop on Programming of Heterogeneous Systems

in Physics (PHSP14)

Jena, 07/15/2014

Building Blocks for Sparse Linear Algebra

on Heterogeneous Hardware

2

We are facing a list of challenges which we have to deal with:

1. Increasingly heterogeneous hardware

 Well-known x86 CPUs are working

together with accelerators/co-

processors

 Inherently different programming

paradigms

 Few transparently heterogeneous

libraries

Selective Challenges

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

3

We are facing a list of challenges which we have to deal with:

2. Increasing level of hardware parallelism

 Higher hardware performance only due to more parallelism

 Application may have limited scalability with standard approaches

(e.g., data parallelism)

 Novel levels of parallelism (e.g., task parallelism) may be

cumbersome to implement by application developers in an efficient

way

Selective Challenges

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

4

We are facing a list of challenges which we have to deal with:

3. Vulnerability for hardware faults

 Mean time between failures is predicted to decrease to a critical level

on exascale systems

 No stressable numbers on this topic (naturally...) but it is good to be

prepared

Selective Challenges

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

5

We are facing a list of challenges which we have to deal with:

4. Library performance is often limited due to generality

 Application knowledge is a key to high library performance

› E.g., we can fuse kernels instead of calling them sequentially

 Established libraries may not perform well in specific cases

› Prominent example: Calling GEMM with tall skinny matrices may deliver

poor performance even for highly-optimized BLAS libs

Selective Challenges

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

6

 Heterogeneity in hardware architectures

 Concurrent use of CPUs and accelerators for efficient execution

 Limited scalability with standard approaches

 Reveal new levels of parallelism beyond data parallelism

 Future large scale systems may be prone to hardware faults

 Utilize low-overhead fault tolerance mechanisms

 Asynchronous checkpointing comes within “new levels of parallelism”

 Limited library performance due to generality

 Tailor performance-sensitive parts towards the application

Ideas

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

7

A library which delivers highly efficient building blocks for sparse

linear algebra (“General, Hybrid and Optimized Sparse Toolkit”)

 Several levels of parallelism: MPI, OpenMP, CUDA, SIMD

 Transparent use of heterogeneous hardware

 Generic interface for hardware-affine task-level parallelism

 Highly-optimized low-level kernels (partly generated at compilation)

 Liberal open source release (beta) planned for Q4/2014

Work supported by DFG through Priority Programme 1648

“Software for Exascale Computing” (SPPEXA) under project

ESSEX (“Equipping Sparse Solvers for Exascale”)

Contribution

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

8

 Heterogeneity in hardware architectures

 Concurrent use of CPUs and accelerators for efficient execution

 Limited scalability with standard approaches

 Reveal new levels of parallelism beyond work-sharing

 Future large scale systems may be prone to hardware faults

 Utilize low-overhead fault tolerance mechanisms

 Limited library performance due to generality

 Tailor performance-sensitive parts towards the application

Ideas

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

HETEROGENEOUS SPARSE

MATRIX-VECTOR MULTIPLICATION

Gaining performance and interface simplicity

with a unified storage format

10

 Key ingredient in many matrix diagonalization algorithms and

iterative solvers

 Lanczos, Davidson, Jacobi-Davidson, CG, ...

 Inevitably memory-bound for large problems

 Easily parallelizable in shared and distributed memory

 Data storage format is crucial for performance properties

 Default general format on CPUs: Compressed Row Storage (CRS)

 Depending on compute architecture

Sparse Matrix-Vector Multiplication (SpMVM)

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

11

Sparse Matrix Format Jungle

?
07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

12

 Compute clusters are getting more and more heterogeneous

 A special format per compute architecture

1. hampers runtime exchange of matrix data

2. complicates library interfaces

 CRS (CPU standard format) may be problematic (cf. next slides)

 Vectorization along matrix rows

 Bad utilization for short rows and wide SIMD units (Intel MIC: 512 bit)

 We want to have a unified, SIMD-friendly, and high-performance

sparse matrix storage format.

SpMVM in the Heterogeneous Era

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

13

 Standard format for CPUs

 Entries and column indices stored row-wise

Compressed Row Storage (CRS)

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

14

unsigned int i, j;

double tmp;

#pragma omp parallel for schedule(runtime) private (tmp, j)

for (i=0; i<nrows; i++){

 tmp = 0.0;

 for (j=rpt[i]; j<rpt[i+1]; j++){

 tmp += val[j] * rhs[col[j]];

 }

 lhs[i] += tmp;

}

unsigned int i, j;

double tmp;

#pragma omp parallel for schedule(runtime) private (tmp1, tmp2, j)

for (i=0; i<nrows; i++){

 tmp1 = 0.0;

 tmp2 = 0.0;

 for (j=rpt[i]; j<rpt[i+1]; j=j+2){

 tmp1 += val[j] * rhs[col[j]];

 tmp2 += val[j+1] * rhs[col[j+1]];

 }

 lhs[i] += tmp1+tmp2;}

CRS Vectorization

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

SSE vectorization

 Potential problem: 512 bit vector registers on Xeon Phi

 8 doubles or 16 integers in a single vector

 j-loop:16-way unrolling problem for short rows

 horizontal add (reduction) gets more costly

15

 Well-known sparse matrix format for GPUs

 Entries and column indices stored column-wise in chunks

 One parameter:

1. C: Chunk height

Sliced ELLPACK

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

16

 Sort rows within a range σ to minimize the overhead

 σ should not be too large in order to not worsen the RHS vector

access pattern

 Two parameters:

1. C: Chunk height

2. σ: Sorting scope

Minimizing the storage overhead SELL-C-σ

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

17

 The larger the sorting scope, the lower the storage overhead

 But what happens if the sorting scope gets too large?

Choosing the Sorting Scope σ

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

β... Chunk occupancy

(large beta - low overhead)

α... RHS vector multiple load

overhead

18

Using a unified storage format comes with little performance

penalty in the worst case and up to a 3x performance gain in the

best case for a wide range of test matrices.

SELL-C-σ Performance

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

19

 Heterogeneity in hardware architectures

 Concurrent use of CPUs and accelerators for efficient execution

 Limited scalability with standard approaches

 Reveal new levels of parallelism beyond work-sharing

 Future large scale systems may be prone to hardware faults

 Utilize low-overhead fault tolerance mechanisms

 Limited library performance due to generality

 Tailor performance-sensitive parts towards the application

Ideas

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

TRANSPARENT USE OF

HETEROGENEOUS COMPUTE

NODES

Ideas and implementation

21

Heterogeneous Architectures in a Single Node

 Different programming

paradigms

 CPU: only native mode

 GPU: only accelerator mode

 Xeon Phi: accelerator or native

mode

 Different performance

 Sensible work distribution

 Different architectures (obviously...)

PU = processing unit

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

22

 Distinction between architectures via MPI processes:

 exactly one process per GPU

 at least one process per Xeon Phi

 at least one process per (multi-core) CPU

 Each process gets assigned a weight deciding the share of work

which depends on their relative performance

 Resource management:

 Each process running inside an exclusive CPU set (no shared cores)

 CPU sets may span several NUMA nodes

Node Partitioning

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

23

Example Node Partitioning

 Minimal amount of MPI

processes on this node: 3

 GPU is managed by a full

core on the nearest socket

 CPU process spans two

NUMA nodes

 Xeon Phi operated in native

mode

 one MPI process running on

the coprocessor

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

24

$./spmv_bench

$ GHOST_TYPE=CUDA ./spmv_bench

if (type == GHOST_TYPE_CUDA) {weight = 2.6;} else {weight = 1.0;}

$ mpirun –np 2 ./spmv_bench

s/GHOST_SPARSEMAT_TRAITS_DEFAULT/GHOST_SPARSEMAT_TRAITS_SCOTCHIFY

$ mpirun –np 2 ./spmv_bench

Performance of heterogeneous SpMV

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

8.13 Gflop/s

21.8 Gflop/s

27.5 Gflop/s

28.8 Gflop/s

Nvidia

Tesla K20m

Intel Xeon

E5-2660 2.2 GHz

”Ivy Bridge“

25

 Heterogeneity in hardware architectures

 Concurrent use of CPUs and accelerators for efficient execution

 Limited scalability with standard approaches

 Reveal new levels of parallelism beyond work-sharing

 Future large scale systems may be prone to hardware faults

 Utilize low-overhead fault tolerance mechanisms

 Limited library performance due to generality

 Tailor performance-sensitive parts towards the application

Ideas

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

APPLYING THE KERNEL

POLYNOMIAL METHOD ON A

MULTICORE CPU

A small case study

27

1. Baseline implementation

Stages of Optimization

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

28

1. Baseline implementation

2. Augmented SpMVM

 The scaling, shift and computation of dot products can be integrated

into the SpMVM kernel

Stages of Optimization

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

29

1. Baseline implementation

2. Augmented SpMVM

 The scaling, shift and computation of dot products can be integrated

into the SpMVM kernel

Stages of Optimization

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

5,5

8,3

Stage 1 Stage 2

Gflop/s on one socket of Intel Ivy Bridge,
SELL-C-σ storage format

30

1. Baseline implementation

2. Augmented SpMVM

3. Using interleaved vector blocks

 The matrix has to be loaded for each outer loop iteration

 Apply the augmented SpMVM to a block of random vectors at once

Stages of Optimization

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

5,5

8,3

21,6

Stage 1 Stage 2 Stage 3

Gflop/s on one socket of Intel Ivy Bridge,
SELL-C-σ storage format

31

 Heterogeneity in hardware architectures

 Concurrent use of CPUs and accelerators for efficient execution

 Limited scalability with standard approaches

 Reveal new levels of parallelism beyond work-sharing

 Future large scale systems may be prone to hardware faults

 Utilize low-overhead fault tolerance mechanisms

 Limited library performance due to generality

 Tailor performance-sensitive parts towards the application

Ideas

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

A SIMPLE INTERFACE FOR

TASK PARALLELISM

Allowing easy access to new levels of

parallelism

33

 A task is defined by the user as

1. A function callback along with parameters (required)

2. The number of PUs to process the task (required)

3. The preferred NUMA node to process the task (optional)

4. A list of tasks on whose completion this task depends (optional)

5. A combination of flags (optional)

› PRIO_HIGH: Put task to beginning of queue.

› NODE_STRICT: Execute task only on the given NUMA node.

› NOT_ALLOW_CHILD: Do not allow a child task to use the task‘s resources.

› NOT_PIN: Do not register the task in the PU map.

 All tasks line up in a single queue

Implementation Details: Task Processing

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

34

 OpenMP can be used straight-forwardly in a task

 The library cares for hardware affinity and the prevention of

resource conflicts

 Task control functions (selection):

1. ghost_task_enqueue()

2. ghost_task_wait()

3. ghost_task_waitany()

4. ghost_task_test()

Implementation Details: Task Processing

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

35

 Each process stores idle/busy states and locality information of

each of it‘s PUs (e.g. for initial state of CPU process)

 One shepherd thread will be created per PU:

 The shepherd threads wait for tasks to be put in the task queue

 More shepherd threads will be spawned on necessity

Implementation Details: Resource Management

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

36

 After a suitable task has been found by the shepherd thread:

omp_set_num_threads(task->npu);

#pragma omp parallel

{

 ghost_thread_pin(...);

 ghost_pumap_setbusy(...);

}

task->ret = task->func(task->arg); // execute task

// OpenMP parallel regions are pinned correctly in the task

ghost_pumap_setidle(task->cpuset);

pthread_cond_wait(); // wait for new tasks

 Physical OpenMP threads (and pinning) are persistent between

successive parallel regions in the shepherd thread (luckily)

Task Lifetime

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

