
ERLANGEN REGIONAL

COMPUTING CENTER

Moritz Kreutzer, Prof. Gerhard Wellein, Dr. Georg Hager

Workshop on Programming of Heterogeneous Systems

in Physics (PHSP14)

Jena, 07/15/2014

Building Blocks for Sparse Linear Algebra

on Heterogeneous Hardware

2

We are facing a list of challenges which we have to deal with:

1. Increasingly heterogeneous hardware

 Well-known x86 CPUs are working

together with accelerators/co-

processors

 Inherently different programming

paradigms

 Few transparently heterogeneous

libraries

Selective Challenges

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

3

We are facing a list of challenges which we have to deal with:

2. Increasing level of hardware parallelism

 Higher hardware performance only due to more parallelism

 Application may have limited scalability with standard approaches

(e.g., data parallelism)

 Novel levels of parallelism (e.g., task parallelism) may be

cumbersome to implement by application developers in an efficient

way

Selective Challenges

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

4

We are facing a list of challenges which we have to deal with:

3. Vulnerability for hardware faults

 Mean time between failures is predicted to decrease to a critical level

on exascale systems

 No stressable numbers on this topic (naturally...) but it is good to be

prepared

Selective Challenges

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

5

We are facing a list of challenges which we have to deal with:

4. Library performance is often limited due to generality

 Application knowledge is a key to high library performance

› E.g., we can fuse kernels instead of calling them sequentially

 Established libraries may not perform well in specific cases

› Prominent example: Calling GEMM with tall skinny matrices may deliver

poor performance even for highly-optimized BLAS libs

Selective Challenges

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

6

 Heterogeneity in hardware architectures

 Concurrent use of CPUs and accelerators for efficient execution

 Limited scalability with standard approaches

 Reveal new levels of parallelism beyond data parallelism

 Future large scale systems may be prone to hardware faults

 Utilize low-overhead fault tolerance mechanisms

 Asynchronous checkpointing comes within “new levels of parallelism”

 Limited library performance due to generality

 Tailor performance-sensitive parts towards the application

Ideas

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

7

A library which delivers highly efficient building blocks for sparse

linear algebra (“General, Hybrid and Optimized Sparse Toolkit”)

 Several levels of parallelism: MPI, OpenMP, CUDA, SIMD

 Transparent use of heterogeneous hardware

 Generic interface for hardware-affine task-level parallelism

 Highly-optimized low-level kernels (partly generated at compilation)

 Liberal open source release (beta) planned for Q4/2014

Work supported by DFG through Priority Programme 1648

“Software for Exascale Computing” (SPPEXA) under project

ESSEX (“Equipping Sparse Solvers for Exascale”)

Contribution

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

8

 Heterogeneity in hardware architectures

 Concurrent use of CPUs and accelerators for efficient execution

 Limited scalability with standard approaches

 Reveal new levels of parallelism beyond work-sharing

 Future large scale systems may be prone to hardware faults

 Utilize low-overhead fault tolerance mechanisms

 Limited library performance due to generality

 Tailor performance-sensitive parts towards the application

Ideas

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

HETEROGENEOUS SPARSE

MATRIX-VECTOR MULTIPLICATION

Gaining performance and interface simplicity

with a unified storage format

10

 Key ingredient in many matrix diagonalization algorithms and

iterative solvers

 Lanczos, Davidson, Jacobi-Davidson, CG, ...

 Inevitably memory-bound for large problems

 Easily parallelizable in shared and distributed memory

 Data storage format is crucial for performance properties

 Default general format on CPUs: Compressed Row Storage (CRS)

 Depending on compute architecture

Sparse Matrix-Vector Multiplication (SpMVM)

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

11

Sparse Matrix Format Jungle

?
07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

12

 Compute clusters are getting more and more heterogeneous

 A special format per compute architecture

1. hampers runtime exchange of matrix data

2. complicates library interfaces

 CRS (CPU standard format) may be problematic (cf. next slides)

 Vectorization along matrix rows

 Bad utilization for short rows and wide SIMD units (Intel MIC: 512 bit)

 We want to have a unified, SIMD-friendly, and high-performance

sparse matrix storage format.

SpMVM in the Heterogeneous Era

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

13

 Standard format for CPUs

 Entries and column indices stored row-wise

Compressed Row Storage (CRS)

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

14

unsigned int i, j;

double tmp;

#pragma omp parallel for schedule(runtime) private (tmp, j)

for (i=0; i<nrows; i++){

 tmp = 0.0;

 for (j=rpt[i]; j<rpt[i+1]; j++){

 tmp += val[j] * rhs[col[j]];

 }

 lhs[i] += tmp;

}

unsigned int i, j;

double tmp;

#pragma omp parallel for schedule(runtime) private (tmp1, tmp2, j)

for (i=0; i<nrows; i++){

 tmp1 = 0.0;

 tmp2 = 0.0;

 for (j=rpt[i]; j<rpt[i+1]; j=j+2){

 tmp1 += val[j] * rhs[col[j]];

 tmp2 += val[j+1] * rhs[col[j+1]];

 }

 lhs[i] += tmp1+tmp2;}

CRS Vectorization

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

SSE vectorization

 Potential problem: 512 bit vector registers on Xeon Phi

 8 doubles or 16 integers in a single vector

 j-loop:16-way unrolling  problem for short rows

 horizontal add (reduction) gets more costly

15

 Well-known sparse matrix format for GPUs

 Entries and column indices stored column-wise in chunks

 One parameter:

1. C: Chunk height

Sliced ELLPACK

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

16

 Sort rows within a range σ to minimize the overhead

 σ should not be too large in order to not worsen the RHS vector

access pattern

 Two parameters:

1. C: Chunk height

2. σ: Sorting scope

Minimizing the storage overhead  SELL-C-σ

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

17

 The larger the sorting scope, the lower the storage overhead

 But what happens if the sorting scope gets too large?

Choosing the Sorting Scope σ

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

β... Chunk occupancy

(large beta - low overhead)

α... RHS vector multiple load

overhead

18

Using a unified storage format comes with little performance

penalty in the worst case and up to a 3x performance gain in the

best case for a wide range of test matrices.

SELL-C-σ Performance

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

19

 Heterogeneity in hardware architectures

 Concurrent use of CPUs and accelerators for efficient execution

 Limited scalability with standard approaches

 Reveal new levels of parallelism beyond work-sharing

 Future large scale systems may be prone to hardware faults

 Utilize low-overhead fault tolerance mechanisms

 Limited library performance due to generality

 Tailor performance-sensitive parts towards the application

Ideas

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

TRANSPARENT USE OF

HETEROGENEOUS COMPUTE

NODES

Ideas and implementation

21

Heterogeneous Architectures in a Single Node

 Different programming

paradigms

 CPU: only native mode

 GPU: only accelerator mode

 Xeon Phi: accelerator or native

mode

 Different performance

 Sensible work distribution

 Different architectures (obviously...)

PU = processing unit

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

22

 Distinction between architectures via MPI processes:

 exactly one process per GPU

 at least one process per Xeon Phi

 at least one process per (multi-core) CPU

 Each process gets assigned a weight deciding the share of work

which depends on their relative performance

 Resource management:

 Each process running inside an exclusive CPU set (no shared cores)

 CPU sets may span several NUMA nodes

Node Partitioning

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

23

Example Node Partitioning

 Minimal amount of MPI

processes on this node: 3

 GPU is managed by a full

core on the nearest socket

 CPU process spans two

NUMA nodes

 Xeon Phi operated in native

mode

 one MPI process running on

the coprocessor

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

24

$./spmv_bench

$ GHOST_TYPE=CUDA ./spmv_bench

if (type == GHOST_TYPE_CUDA) {weight = 2.6;} else {weight = 1.0;}

$ mpirun –np 2 ./spmv_bench

s/GHOST_SPARSEMAT_TRAITS_DEFAULT/GHOST_SPARSEMAT_TRAITS_SCOTCHIFY

$ mpirun –np 2 ./spmv_bench

Performance of heterogeneous SpMV

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

8.13 Gflop/s

21.8 Gflop/s

27.5 Gflop/s

28.8 Gflop/s

Nvidia

Tesla K20m

Intel Xeon

E5-2660 2.2 GHz

”Ivy Bridge“

25

 Heterogeneity in hardware architectures

 Concurrent use of CPUs and accelerators for efficient execution

 Limited scalability with standard approaches

 Reveal new levels of parallelism beyond work-sharing

 Future large scale systems may be prone to hardware faults

 Utilize low-overhead fault tolerance mechanisms

 Limited library performance due to generality

 Tailor performance-sensitive parts towards the application

Ideas

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

APPLYING THE KERNEL

POLYNOMIAL METHOD ON A

MULTICORE CPU

A small case study

27

1. Baseline implementation

Stages of Optimization

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

28

1. Baseline implementation

2. Augmented SpMVM

 The scaling, shift and computation of dot products can be integrated

into the SpMVM kernel

Stages of Optimization

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

29

1. Baseline implementation

2. Augmented SpMVM

 The scaling, shift and computation of dot products can be integrated

into the SpMVM kernel

Stages of Optimization

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

5,5

8,3

Stage 1 Stage 2

Gflop/s on one socket of Intel Ivy Bridge,
SELL-C-σ storage format

30

1. Baseline implementation

2. Augmented SpMVM

3. Using interleaved vector blocks

 The matrix has to be loaded for each outer loop iteration

 Apply the augmented SpMVM to a block of random vectors at once

Stages of Optimization

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

5,5

8,3

21,6

Stage 1 Stage 2 Stage 3

Gflop/s on one socket of Intel Ivy Bridge,
SELL-C-σ storage format

31

 Heterogeneity in hardware architectures

 Concurrent use of CPUs and accelerators for efficient execution

 Limited scalability with standard approaches

 Reveal new levels of parallelism beyond work-sharing

 Future large scale systems may be prone to hardware faults

 Utilize low-overhead fault tolerance mechanisms

 Limited library performance due to generality

 Tailor performance-sensitive parts towards the application

Ideas

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

A SIMPLE INTERFACE FOR

TASK PARALLELISM

Allowing easy access to new levels of

parallelism

33

 A task is defined by the user as

1. A function callback along with parameters (required)

2. The number of PUs to process the task (required)

3. The preferred NUMA node to process the task (optional)

4. A list of tasks on whose completion this task depends (optional)

5. A combination of flags (optional)

› PRIO_HIGH: Put task to beginning of queue.

› NODE_STRICT: Execute task only on the given NUMA node.

› NOT_ALLOW_CHILD: Do not allow a child task to use the task‘s resources.

› NOT_PIN: Do not register the task in the PU map.

 All tasks line up in a single queue

Implementation Details: Task Processing

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

34

 OpenMP can be used straight-forwardly in a task

 The library cares for hardware affinity and the prevention of

resource conflicts

 Task control functions (selection):

1. ghost_task_enqueue()

2. ghost_task_wait()

3. ghost_task_waitany()

4. ghost_task_test()

Implementation Details: Task Processing

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

35

 Each process stores idle/busy states and locality information of

each of it‘s PUs (e.g. for initial state of CPU process)

 One shepherd thread will be created per PU:

 The shepherd threads wait for tasks to be put in the task queue

 More shepherd threads will be spawned on necessity

Implementation Details: Resource Management

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

36

 After a suitable task has been found by the shepherd thread:

omp_set_num_threads(task->npu);

#pragma omp parallel

{

 ghost_thread_pin(...);

 ghost_pumap_setbusy(...);

}

task->ret = task->func(task->arg); // execute task

// OpenMP parallel regions are pinned correctly in the task

ghost_pumap_setidle(task->cpuset);

pthread_cond_wait(); // wait for new tasks

 Physical OpenMP threads (and pinning) are persistent between

successive parallel regions in the shepherd thread (luckily)

Task Lifetime

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14

