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We are facing a list of challenges which we have to deal with: 

 

1. Increasingly heterogeneous hardware 

 

 Well-known x86 CPUs are working 

together with accelerators/co- 

processors 

 

 Inherently different programming 

paradigms 

 

 Few transparently heterogeneous 

libraries 

 

 

 

Selective Challenges 
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We are facing a list of challenges which we have to deal with: 

 

2. Increasing level of hardware parallelism 

 

 Higher hardware performance only due to more parallelism 

 

 Application may have limited scalability with standard approaches 

(e.g., data parallelism)  

 

 Novel levels of parallelism (e.g., task parallelism) may be 

cumbersome to implement by application developers in an efficient 

way 

 

 

 

Selective Challenges 
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We are facing a list of challenges which we have to deal with: 

 

3. Vulnerability for hardware faults 

 

 Mean time between failures is predicted to decrease to a critical level 

on exascale systems 

 

 No stressable numbers on this topic (naturally...) but it is good to be 

prepared 

 

 

 

Selective Challenges 
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We are facing a list of challenges which we have to deal with: 

 

4. Library performance is often limited due to generality 

 

 Application knowledge is a key to high library performance 

› E.g., we can fuse kernels instead of calling them sequentially 

 

 Established libraries may not perform well in specific cases 

› Prominent example: Calling GEMM with tall skinny matrices may deliver 

poor performance even for highly-optimized BLAS libs 

 

 

 

 

Selective Challenges 
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 Heterogeneity in hardware architectures 

 Concurrent use of CPUs and accelerators for efficient execution 

 

 Limited scalability with standard approaches 

 Reveal new levels of parallelism beyond data parallelism 

 

 Future large scale systems may be prone to hardware faults 

 Utilize low-overhead fault tolerance mechanisms 

 Asynchronous checkpointing comes within “new levels of parallelism” 

 

 Limited library performance due to generality 

 Tailor performance-sensitive parts towards the application 

 

 

 

Ideas 
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A library which delivers highly efficient building blocks for sparse 

linear algebra (“General, Hybrid and Optimized Sparse Toolkit”) 

 

 Several levels of parallelism: MPI, OpenMP, CUDA, SIMD 

 Transparent use of heterogeneous hardware 

 Generic interface for hardware-affine task-level parallelism 

 Highly-optimized low-level kernels (partly generated at compilation) 

 Liberal open source release (beta) planned for Q4/2014 

 
Work supported by DFG through Priority Programme 1648  

“Software for Exascale Computing” (SPPEXA) under project  

ESSEX (“Equipping Sparse Solvers for Exascale”) 

 

Contribution 
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 Heterogeneity in hardware architectures 

 Concurrent use of CPUs and accelerators for efficient execution 

 

 Limited scalability with standard approaches 

 Reveal new levels of parallelism beyond work-sharing 

 

 Future large scale systems may be prone to hardware faults 

 Utilize low-overhead fault tolerance mechanisms  

 

 Limited library performance due to generality 

 Tailor performance-sensitive parts towards the application 

 

 

 

Ideas 
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HETEROGENEOUS SPARSE 

MATRIX-VECTOR MULTIPLICATION 

Gaining performance and interface simplicity 

with a unified storage format 
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 Key ingredient in many matrix diagonalization algorithms and 

iterative solvers 

 Lanczos, Davidson, Jacobi-Davidson, CG, ... 

 

 Inevitably memory-bound for large problems 

 

 Easily parallelizable in shared and distributed memory 

 

 Data storage format is crucial for performance properties 

 Default general format on CPUs:  Compressed Row Storage (CRS) 

 Depending on compute architecture 

 

Sparse Matrix-Vector Multiplication (SpMVM) 

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14 



11 

Sparse Matrix Format Jungle 

? 
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 Compute clusters are getting more and more heterogeneous 

 

 A special format per compute architecture 

1. hampers runtime exchange of matrix data 

2. complicates library interfaces 

 

 CRS (CPU standard format) may be problematic (cf. next slides) 

 Vectorization along matrix rows 

 Bad utilization for short rows and wide SIMD units (Intel MIC: 512 bit) 

 

 We want to have a unified, SIMD-friendly, and high-performance 

sparse matrix storage format. 

 

 

SpMVM in the Heterogeneous Era 
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 Standard format for CPUs 

 

 

 

 

 

 

 

 Entries and column indices stored row-wise 

 

 

 

 

 

 

 

 

 

Compressed Row Storage (CRS) 
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unsigned int i, j; 

double tmp; 

 

#pragma omp parallel for schedule(runtime) private (tmp, j) 

for (i=0; i<nrows; i++){ 

    tmp = 0.0; 

    for (j=rpt[i]; j<rpt[i+1]; j++){ 

        tmp  += val[j] * rhs[col[j]]; 

         

    } 

    lhs[i] += tmp; 

} 

unsigned int i, j; 

double tmp; 

 

#pragma omp parallel for schedule(runtime) private (tmp1, tmp2, j) 

for (i=0; i<nrows; i++){ 

    tmp1 = 0.0; 

    tmp2 = 0.0; 

    for (j=rpt[i]; j<rpt[i+1]; j=j+2){ 

        tmp1 += val[j] *   rhs[col[j]]; 

        tmp2 += val[j+1] * rhs[col[j+1]];  

    } 

    lhs[i] += tmp1+tmp2;} 

CRS Vectorization 
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SSE vectorization 

 Potential problem:  512 bit vector registers on Xeon Phi  

 8 doubles or 16 integers in a single vector  

 j-loop:16-way unrolling  problem for short rows 

 horizontal add (reduction) gets more costly 
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 Well-known sparse matrix format for GPUs 

 

 

 

 

 

 

 

 

 Entries and column indices stored column-wise in chunks 

 One parameter: 

1. C: Chunk height 

 

 

Sliced ELLPACK 
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 Sort rows within a range σ to minimize the overhead  

 σ should not be too large in order to not worsen the RHS vector 

access pattern 

 

 

 

 

 

 

 

 Two parameters: 

1. C: Chunk height 

2. σ: Sorting scope 

 

Minimizing the storage overhead  SELL-C-σ 
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 The larger the sorting scope, the lower the storage overhead 

 But what happens if the sorting scope gets too large? 

 

 

Choosing the Sorting Scope σ  

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14 

β... Chunk occupancy  

(large beta - low overhead) 

 

α... RHS vector multiple load 

overhead 
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Using a unified storage format comes with little performance 

penalty in the worst case and up to a 3x performance gain in the 

best case for a wide range of test matrices. 

SELL-C-σ Performance 
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 Heterogeneity in hardware architectures 

 Concurrent use of CPUs and accelerators for efficient execution 

 

 Limited scalability with standard approaches 

 Reveal new levels of parallelism beyond work-sharing 

 

 Future large scale systems may be prone to hardware faults 

 Utilize low-overhead fault tolerance mechanisms  

 

 Limited library performance due to generality 

 Tailor performance-sensitive parts towards the application 

 

 

 

Ideas 
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TRANSPARENT USE OF 

HETEROGENEOUS COMPUTE 

NODES 

Ideas and implementation 
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Heterogeneous Architectures in a Single Node 

 Different programming 

paradigms 

 CPU: only native mode 

 GPU: only accelerator mode 

 Xeon Phi: accelerator or native 

mode 

 

 Different performance 

 Sensible work distribution 

 

 Different architectures (obviously...) 

 

PU = processing unit 
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 Distinction between architectures via MPI processes: 

 exactly one process per GPU 

 at least one process per Xeon Phi 

 at least one process per (multi-core) CPU 

 

 Each process gets assigned a weight deciding the share of work 

which depends on their relative performance 

 

 Resource management: 

 Each process running inside an exclusive CPU set (no shared cores) 

 CPU sets may span several NUMA nodes 

 

Node Partitioning 
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Example Node Partitioning 

 Minimal amount of MPI 

processes on this node: 3 

 

 GPU is managed by a full 

core on the nearest socket 

 CPU process spans two 

NUMA nodes 

 Xeon Phi operated in native 

mode 

 one MPI process running on 

the coprocessor  
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$ ./spmv_bench 

 

 

 

$ GHOST_TYPE=CUDA ./spmv_bench 

 

 

 

if (type == GHOST_TYPE_CUDA) {weight = 2.6;} else {weight = 1.0;} 

$ mpirun –np 2 ./spmv_bench 

 

 

 

s/GHOST_SPARSEMAT_TRAITS_DEFAULT/GHOST_SPARSEMAT_TRAITS_SCOTCHIFY 

$ mpirun –np 2 ./spmv_bench 

 

 

 

 

 

 

 

 

 

Performance of heterogeneous SpMV 
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8.13 Gflop/s 

21.8 Gflop/s 

27.5 Gflop/s 

28.8 Gflop/s 

Nvidia  

Tesla K20m 

Intel Xeon 

E5-2660 2.2 GHz 

”Ivy Bridge“  
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 Heterogeneity in hardware architectures 

 Concurrent use of CPUs and accelerators for efficient execution 

 

 Limited scalability with standard approaches 

 Reveal new levels of parallelism beyond work-sharing 

 

 Future large scale systems may be prone to hardware faults 

 Utilize low-overhead fault tolerance mechanisms  

 

 Limited library performance due to generality 

 Tailor performance-sensitive parts towards the application 

 

 

 

Ideas 
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APPLYING THE KERNEL 

POLYNOMIAL METHOD ON A 

MULTICORE CPU 

A small case study 
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1. Baseline implementation 

 

Stages of Optimization 
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1. Baseline implementation 

2. Augmented SpMVM 

 The scaling, shift and computation of dot products can be integrated 

into the SpMVM kernel  

 

Stages of Optimization 
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1. Baseline implementation 

2. Augmented SpMVM 

 The scaling, shift and computation of dot products can be integrated 

into the SpMVM kernel  

 

Stages of Optimization 
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5,5 

8,3 

Stage 1 Stage 2

Gflop/s on one socket of Intel Ivy Bridge,  
SELL-C-σ storage format 
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1. Baseline implementation 

2. Augmented SpMVM 

3. Using interleaved vector blocks 

 The matrix has to be loaded for each outer loop iteration 

 Apply the augmented SpMVM to a block of random vectors at once 

Stages of Optimization 
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5,5 

8,3 

21,6 

Stage 1 Stage 2 Stage 3

Gflop/s on one socket of Intel Ivy Bridge,  
SELL-C-σ storage format 
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 Heterogeneity in hardware architectures 

 Concurrent use of CPUs and accelerators for efficient execution 

 

 Limited scalability with standard approaches 

 Reveal new levels of parallelism beyond work-sharing 

 

 Future large scale systems may be prone to hardware faults 

 Utilize low-overhead fault tolerance mechanisms  

 

 Limited library performance due to generality 

 Tailor performance-sensitive parts towards the application 

 

 

 

Ideas 
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A SIMPLE INTERFACE FOR 

TASK PARALLELISM 

Allowing easy access to new levels of 

parallelism 
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 A task is defined by the user as 

1. A function callback along with parameters (required) 

2. The number of PUs to process the task (required) 

3. The preferred NUMA node to process the task (optional) 

4. A list of tasks on whose completion this task depends (optional) 

5. A combination of flags (optional) 

› PRIO_HIGH:  Put task to beginning of queue. 

› NODE_STRICT: Execute task only on the given NUMA node. 

› NOT_ALLOW_CHILD: Do not allow a child task to use the task‘s resources. 

› NOT_PIN:   Do not register the task in the PU map. 

 

 All tasks line up in a single queue 

 

 

Implementation Details: Task Processing 
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 OpenMP can be used straight-forwardly in a task 

 

 The library cares for hardware affinity and the prevention of 

resource conflicts 

 

 Task control functions (selection): 

1. ghost_task_enqueue() 

2. ghost_task_wait() 

3. ghost_task_waitany() 

4. ghost_task_test() 

 

 

Implementation Details: Task Processing 

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14 



35 

 Each process stores idle/busy states and locality information of 

each of it‘s PUs (e.g. for initial state of CPU process) 

 

 

 

 

 One shepherd thread will be created per PU: 

 

 

 

 

 The shepherd threads wait for tasks to be put in the task queue 

 More shepherd threads will be spawned on necessity 

 

Implementation Details: Resource Management 
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 After a suitable task has been found by the shepherd thread: 

 

omp_set_num_threads(task->npu); 

#pragma omp parallel 

{ 

 ghost_thread_pin(...); 

 ghost_pumap_setbusy(...); 

} 

task->ret = task->func(task->arg); // execute task 

// OpenMP parallel regions are pinned correctly in the task 

ghost_pumap_setidle(task->cpuset); 

pthread_cond_wait(); // wait for new tasks 

 

 Physical OpenMP threads (and pinning) are persistent between 

successive parallel regions in the shepherd thread (luckily) 

 

 

 

 

 

 

 

Task Lifetime 

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14 


