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We are facing a list of challenges which we have to deal with: 

 

1. Increasingly heterogeneous hardware 

 

 Well-known x86 CPUs are working 

together with accelerators/co- 

processors 

 

 Inherently different programming 

paradigms 

 

 Few transparently heterogeneous 

libraries 

 

 

 

Selective Challenges 
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We are facing a list of challenges which we have to deal with: 

 

2. Increasing level of hardware parallelism 

 

 Higher hardware performance only due to more parallelism 

 

 Application may have limited scalability with standard approaches 

(e.g., data parallelism)  

 

 Novel levels of parallelism (e.g., task parallelism) may be 

cumbersome to implement by application developers in an efficient 

way 

 

 

 

Selective Challenges 
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We are facing a list of challenges which we have to deal with: 

 

3. Vulnerability for hardware faults 

 

 Mean time between failures is predicted to decrease to a critical level 

on exascale systems 

 

 No stressable numbers on this topic (naturally...) but it is good to be 

prepared 

 

 

 

Selective Challenges 
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We are facing a list of challenges which we have to deal with: 

 

4. Library performance is often limited due to generality 

 

 Application knowledge is a key to high library performance 

› E.g., we can fuse kernels instead of calling them sequentially 

 

 Established libraries may not perform well in specific cases 

› Prominent example: Calling GEMM with tall skinny matrices may deliver 

poor performance even for highly-optimized BLAS libs 

 

 

 

 

Selective Challenges 

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14 



6 

 Heterogeneity in hardware architectures 

 Concurrent use of CPUs and accelerators for efficient execution 

 

 Limited scalability with standard approaches 

 Reveal new levels of parallelism beyond data parallelism 

 

 Future large scale systems may be prone to hardware faults 

 Utilize low-overhead fault tolerance mechanisms 

 Asynchronous checkpointing comes within “new levels of parallelism” 

 

 Limited library performance due to generality 

 Tailor performance-sensitive parts towards the application 

 

 

 

Ideas 
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A library which delivers highly efficient building blocks for sparse 

linear algebra (“General, Hybrid and Optimized Sparse Toolkit”) 

 

 Several levels of parallelism: MPI, OpenMP, CUDA, SIMD 

 Transparent use of heterogeneous hardware 

 Generic interface for hardware-affine task-level parallelism 

 Highly-optimized low-level kernels (partly generated at compilation) 

 Liberal open source release (beta) planned for Q4/2014 

 
Work supported by DFG through Priority Programme 1648  

“Software for Exascale Computing” (SPPEXA) under project  

ESSEX (“Equipping Sparse Solvers for Exascale”) 

 

Contribution 
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 Heterogeneity in hardware architectures 

 Concurrent use of CPUs and accelerators for efficient execution 

 

 Limited scalability with standard approaches 

 Reveal new levels of parallelism beyond work-sharing 

 

 Future large scale systems may be prone to hardware faults 

 Utilize low-overhead fault tolerance mechanisms  

 

 Limited library performance due to generality 

 Tailor performance-sensitive parts towards the application 

 

 

 

Ideas 
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HETEROGENEOUS SPARSE 

MATRIX-VECTOR MULTIPLICATION 

Gaining performance and interface simplicity 

with a unified storage format 
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 Key ingredient in many matrix diagonalization algorithms and 

iterative solvers 

 Lanczos, Davidson, Jacobi-Davidson, CG, ... 

 

 Inevitably memory-bound for large problems 

 

 Easily parallelizable in shared and distributed memory 

 

 Data storage format is crucial for performance properties 

 Default general format on CPUs:  Compressed Row Storage (CRS) 

 Depending on compute architecture 

 

Sparse Matrix-Vector Multiplication (SpMVM) 
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Sparse Matrix Format Jungle 

? 
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 Compute clusters are getting more and more heterogeneous 

 

 A special format per compute architecture 

1. hampers runtime exchange of matrix data 

2. complicates library interfaces 

 

 CRS (CPU standard format) may be problematic (cf. next slides) 

 Vectorization along matrix rows 

 Bad utilization for short rows and wide SIMD units (Intel MIC: 512 bit) 

 

 We want to have a unified, SIMD-friendly, and high-performance 

sparse matrix storage format. 

 

 

SpMVM in the Heterogeneous Era 
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 Standard format for CPUs 

 

 

 

 

 

 

 

 Entries and column indices stored row-wise 

 

 

 

 

 

 

 

 

 

Compressed Row Storage (CRS) 
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unsigned int i, j; 

double tmp; 

 

#pragma omp parallel for schedule(runtime) private (tmp, j) 

for (i=0; i<nrows; i++){ 

    tmp = 0.0; 

    for (j=rpt[i]; j<rpt[i+1]; j++){ 

        tmp  += val[j] * rhs[col[j]]; 

         

    } 

    lhs[i] += tmp; 

} 

unsigned int i, j; 

double tmp; 

 

#pragma omp parallel for schedule(runtime) private (tmp1, tmp2, j) 

for (i=0; i<nrows; i++){ 

    tmp1 = 0.0; 

    tmp2 = 0.0; 

    for (j=rpt[i]; j<rpt[i+1]; j=j+2){ 

        tmp1 += val[j] *   rhs[col[j]]; 

        tmp2 += val[j+1] * rhs[col[j+1]];  

    } 

    lhs[i] += tmp1+tmp2;} 

CRS Vectorization 
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SSE vectorization 

 Potential problem:  512 bit vector registers on Xeon Phi  

 8 doubles or 16 integers in a single vector  

 j-loop:16-way unrolling  problem for short rows 

 horizontal add (reduction) gets more costly 
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 Well-known sparse matrix format for GPUs 

 

 

 

 

 

 

 

 

 Entries and column indices stored column-wise in chunks 

 One parameter: 

1. C: Chunk height 

 

 

Sliced ELLPACK 
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 Sort rows within a range σ to minimize the overhead  

 σ should not be too large in order to not worsen the RHS vector 

access pattern 

 

 

 

 

 

 

 

 Two parameters: 

1. C: Chunk height 

2. σ: Sorting scope 

 

Minimizing the storage overhead  SELL-C-σ 
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 The larger the sorting scope, the lower the storage overhead 

 But what happens if the sorting scope gets too large? 

 

 

Choosing the Sorting Scope σ  
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β... Chunk occupancy  

(large beta - low overhead) 

 

α... RHS vector multiple load 

overhead 
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Using a unified storage format comes with little performance 

penalty in the worst case and up to a 3x performance gain in the 

best case for a wide range of test matrices. 

SELL-C-σ Performance 
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 Heterogeneity in hardware architectures 

 Concurrent use of CPUs and accelerators for efficient execution 

 

 Limited scalability with standard approaches 

 Reveal new levels of parallelism beyond work-sharing 

 

 Future large scale systems may be prone to hardware faults 

 Utilize low-overhead fault tolerance mechanisms  

 

 Limited library performance due to generality 

 Tailor performance-sensitive parts towards the application 

 

 

 

Ideas 
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TRANSPARENT USE OF 

HETEROGENEOUS COMPUTE 

NODES 

Ideas and implementation 
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Heterogeneous Architectures in a Single Node 

 Different programming 

paradigms 

 CPU: only native mode 

 GPU: only accelerator mode 

 Xeon Phi: accelerator or native 

mode 

 

 Different performance 

 Sensible work distribution 

 

 Different architectures (obviously...) 

 

PU = processing unit 
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 Distinction between architectures via MPI processes: 

 exactly one process per GPU 

 at least one process per Xeon Phi 

 at least one process per (multi-core) CPU 

 

 Each process gets assigned a weight deciding the share of work 

which depends on their relative performance 

 

 Resource management: 

 Each process running inside an exclusive CPU set (no shared cores) 

 CPU sets may span several NUMA nodes 

 

Node Partitioning 

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14 



23 

Example Node Partitioning 

 Minimal amount of MPI 

processes on this node: 3 

 

 GPU is managed by a full 

core on the nearest socket 

 CPU process spans two 

NUMA nodes 

 Xeon Phi operated in native 

mode 

 one MPI process running on 

the coprocessor  
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$ ./spmv_bench 

 

 

 

$ GHOST_TYPE=CUDA ./spmv_bench 

 

 

 

if (type == GHOST_TYPE_CUDA) {weight = 2.6;} else {weight = 1.0;} 

$ mpirun –np 2 ./spmv_bench 

 

 

 

s/GHOST_SPARSEMAT_TRAITS_DEFAULT/GHOST_SPARSEMAT_TRAITS_SCOTCHIFY 

$ mpirun –np 2 ./spmv_bench 

 

 

 

 

 

 

 

 

 

Performance of heterogeneous SpMV 
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8.13 Gflop/s 

21.8 Gflop/s 

27.5 Gflop/s 

28.8 Gflop/s 

Nvidia  

Tesla K20m 

Intel Xeon 

E5-2660 2.2 GHz 

”Ivy Bridge“  
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 Heterogeneity in hardware architectures 

 Concurrent use of CPUs and accelerators for efficient execution 

 

 Limited scalability with standard approaches 

 Reveal new levels of parallelism beyond work-sharing 

 

 Future large scale systems may be prone to hardware faults 

 Utilize low-overhead fault tolerance mechanisms  

 

 Limited library performance due to generality 

 Tailor performance-sensitive parts towards the application 

 

 

 

Ideas 

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14 



APPLYING THE KERNEL 

POLYNOMIAL METHOD ON A 

MULTICORE CPU 

A small case study 
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1. Baseline implementation 

 

Stages of Optimization 
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1. Baseline implementation 

2. Augmented SpMVM 

 The scaling, shift and computation of dot products can be integrated 

into the SpMVM kernel  

 

Stages of Optimization 
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1. Baseline implementation 

2. Augmented SpMVM 

 The scaling, shift and computation of dot products can be integrated 

into the SpMVM kernel  

 

Stages of Optimization 
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5,5 

8,3 

Stage 1 Stage 2

Gflop/s on one socket of Intel Ivy Bridge,  
SELL-C-σ storage format 
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1. Baseline implementation 

2. Augmented SpMVM 

3. Using interleaved vector blocks 

 The matrix has to be loaded for each outer loop iteration 

 Apply the augmented SpMVM to a block of random vectors at once 

Stages of Optimization 
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5,5 

8,3 

21,6 

Stage 1 Stage 2 Stage 3

Gflop/s on one socket of Intel Ivy Bridge,  
SELL-C-σ storage format 
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 Heterogeneity in hardware architectures 

 Concurrent use of CPUs and accelerators for efficient execution 

 

 Limited scalability with standard approaches 

 Reveal new levels of parallelism beyond work-sharing 

 

 Future large scale systems may be prone to hardware faults 

 Utilize low-overhead fault tolerance mechanisms  

 

 Limited library performance due to generality 

 Tailor performance-sensitive parts towards the application 

 

 

 

Ideas 
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A SIMPLE INTERFACE FOR 

TASK PARALLELISM 

Allowing easy access to new levels of 

parallelism 
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 A task is defined by the user as 

1. A function callback along with parameters (required) 

2. The number of PUs to process the task (required) 

3. The preferred NUMA node to process the task (optional) 

4. A list of tasks on whose completion this task depends (optional) 

5. A combination of flags (optional) 

› PRIO_HIGH:  Put task to beginning of queue. 

› NODE_STRICT: Execute task only on the given NUMA node. 

› NOT_ALLOW_CHILD: Do not allow a child task to use the task‘s resources. 

› NOT_PIN:   Do not register the task in the PU map. 

 

 All tasks line up in a single queue 

 

 

Implementation Details: Task Processing 
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 OpenMP can be used straight-forwardly in a task 

 

 The library cares for hardware affinity and the prevention of 

resource conflicts 

 

 Task control functions (selection): 

1. ghost_task_enqueue() 

2. ghost_task_wait() 

3. ghost_task_waitany() 

4. ghost_task_test() 

 

 

Implementation Details: Task Processing 
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 Each process stores idle/busy states and locality information of 

each of it‘s PUs (e.g. for initial state of CPU process) 

 

 

 

 

 One shepherd thread will be created per PU: 

 

 

 

 

 The shepherd threads wait for tasks to be put in the task queue 

 More shepherd threads will be spawned on necessity 

 

Implementation Details: Resource Management 

07/15/2014 | Sparse Linear Algebra on Heterogeneous Hardware | M. Kreutzer | PHSP14 



36 

 After a suitable task has been found by the shepherd thread: 

 

omp_set_num_threads(task->npu); 

#pragma omp parallel 

{ 

 ghost_thread_pin(...); 

 ghost_pumap_setbusy(...); 

} 

task->ret = task->func(task->arg); // execute task 

// OpenMP parallel regions are pinned correctly in the task 

ghost_pumap_setidle(task->cpuset); 

pthread_cond_wait(); // wait for new tasks 

 

 Physical OpenMP threads (and pinning) are persistent between 

successive parallel regions in the shepherd thread (luckily) 

 

 

 

 

 

 

 

Task Lifetime 
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