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Prologue (II) 

What is the Kernel Polynomial Method and why heterogeneous computing? 



The Kernel Polynomial Method (KPM) 
 

Approximate the complete eigenvalue spectrum 
of a large sparse matrix.  
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𝑯 𝒙 =  𝝀 𝒙  

Good approximation to full spectrum 
(e.g. Density of States)  

Large,  
Sparse 

𝝀𝟏,𝝀𝟐, … ,𝝀𝒌, … ,𝝀𝒏−𝟏,𝝀𝒏  

A. Weiße, G. Wellein, A. Alvermann, H. Fehske: “The kernel polynomial method”, Rev. Mod. Phys., vol. 78, p. 275, 2006. 
E. di Napoli, E. Polizzi, Y. Saad: “Efficient estimation of eigenvalue counts in an interval”, Preprint. http://arxiv.org/abs/1308.4275 
O. Bhardwaj, Y. Ineichen, C. Bekas and A. Curioni.: “Highly scalable linear time estimation of spectrograms 
- a tool for very large scale data analysis”, SC13 Poster. 

http://arxiv.org/abs/1308.4275


Why optimize for heterogeneous systems? 
 
One third of TOP500 perfor- 
mance stems from accelerators. 
 

But:  Few truly heterogeneous  
 software. 
 (Using both CPUs and accelerators.) 
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The Kernel Polynomial Method 

Algorithmic Analysis 



Sparse matrix vector multiply 
Scaled vector addition 
Vector scale 
Scaled vector addition 
Vector norm 
Dot Product Augmented Sparse Matrix 

Multiple Vector Multiply 

The Kernel Polynomial Method 
Compute Chebyshev polynomials  
and moments. 

 
Holistic view: Optimize across all software layers! 
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Application: Loop over random initial states Building blocks: 
(Sparse) linear  
algebra library 

Algorithm: Loop over moments 

Augmented Sparse 
Matrix Vector Multiply 



Analysis of the Algorithmic Optimization 
 

• Minimum code balance of vanilla algorithm: 
complex double precision values, 32-bit indices, 13 non-zeros per row, application: topological insulators 

 
𝑩𝒗𝒗𝒏𝒗𝒗𝒗𝒗 = 𝟑.𝟑𝟑 𝑩𝑩𝑩𝑩𝑩/𝑭𝒗𝑭𝑭   (B = inverse computational intensity) 

 
• Identified bottleneck: Memory bandwidth 
 Decrease memory transfers to alleviate bottleneck 
 

• Algorithmic optimizations reduce code balance: 
𝑩𝒗𝒂𝒂_𝑩𝑭𝒔𝒗           = 𝟐.𝟐𝟑  𝑩/𝑭       kernel fusion 
𝑩𝒗𝒂𝒂_𝑩𝑭𝒔𝒔𝒗 𝑹 = 𝟏.𝟖𝟖/𝑹 + 𝟎.𝟑𝟑  𝑩/𝑭     put R vectors in block 
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See also: W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith, “Towards realistic performance bounds for implicit 
CFD codes,” in Proceedings of Parallel CFD99. Elsevier, 1999, p. 233. 



Consequences of Algorithmic Optimization 
 
• Mitigation of the relevant bottleneck  
 Expected speedup  
 

• Other bottlenecks become relevant 
 Achieved speedup may not be 𝑩𝒗𝒗𝒏𝒗𝒗𝒗𝒗/𝑩𝒗𝒂𝒂_𝑩𝑭𝒔𝒔𝒗 
 

• Block vectors are best stored interleaved 
 May impose larger changes to the codebase 
 

• aug_spmmv() no part of standard libraries 
 Implementation by hand is necessary 
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CPU roofline performance model 
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S. Williams, A. Waterman, D. Patterson: “Roofline: An insightful visual performance model for multicore architectures”, 
Commun. ACM, vol. 52, p. 65, 2009. 

𝑷 = 𝒃
𝑩

  Gflop/s  
 
 Performance limit for  
bandwidth-bound code  
 
 
b = max. bandwidth = 50 GB/s  
B = code balance 
 
 
Ω = 𝑨𝑨𝑩𝒂𝒗𝒗 𝒅𝒗𝑩𝒗 𝑩𝒕𝒗𝒏𝑩𝒕𝑩𝒕𝑩

𝑴𝒗𝒏𝒗𝒔𝒂𝒔 𝒅𝒗𝑩𝒗 𝑩𝒕𝒗𝒏𝑩𝒕𝑩𝒕𝑩
 



Implementation 

How to harness a heterogeneous machine in an efficient way? 



Implementation 
 
Algorithmic optimizations lead to a potential speedup. 
 
 We “merely” need an efficient implementation! 
 
Data or task parallelism? 
• MAGMA: task parallelism between devices 
http://icl.cs.utk.edu/magma/ 

• Kernel fusion        Task parallelism 
 

 Data-parallel approach suits our needs 
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Implementation 
 
Data-parallel heterogeneous work distribution 
• Static work-distribution by matrix rows/entries 
• Device workload  device performance 

 
SELL-C-σ sparse matrix storage format 
• Unified format for all relevant devices  

(CPU, GPU, Xeon Phi) 
• Allows for runtime-exchange of matrix data  

(dynamic load balancing, future work) 
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M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. R. Bishop, “A unified sparse matrix data format for efficient general sparse 
matrix-vector multiplication on modern processors with wide SIMD units”, SIAM J. Sci. Comput., vol. 36, p. C401, 2014 



Performance results 

Does all this really pay off? 



Single-node Heterogeneous Performance 
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SNB: Intel Xeon Sandy Bridge, K20X: Nvidia Tesla K20X, Complex double precision matrix/vectors (topological insulator) 

Heterogeneous efficiency 



Large-scale Heterogeneous Performance 
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CRAY XC30 – Piz Daint* 

• 5272 nodes, each w/ 
• 1 Intel Sandy Bridge 
• 1 NVIDIA K20x 

 
• Peak:        7.8 PF/s 
• LINPACK: 6.3 PF/s 

 
• Largest system in Europe 

0.53 PF/s 
(11% of LINPACK) 

 
O(1010) matrix rows 

 

*Thanks to CSCS/O. Schenk/T. Schulthess for granting access and compute time 

Only a single  
ALLREDUCE at the end! 



Epilogue 

Try it out! (If you want...) 



Download our building block library & KPM application: 
http://tiny.cc/ghost 

 
• MPI + OpenMP + SIMD + CUDA 
• Transparent data-parallel heterogeneous execution 
• Affinity-aware task parallelism (checkpointing, comm. hiding, etc.) 
• Support for block vectors 

• Automatic code generation for common block vector sizes 
• Hand-tuned tall skinny dense matrix kernels 

• Fused kernels (arbitrarily “augmented SpMMV”) 
• SELL-C-σ heterogeneous sparse matrix format 
• Various sparse eigensolvers implemented and downloadable 

· · · 
ESSEX project webpage: http://blogs.fau.de/essex/ 
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General, Hybrid, and Optimized Sparse Toolkit 
 

http://blogs.fau.de/essex/
http://blogs.fau.de/essex/


Backup Slides 

Only in the unlikely case I was too fast... 



Conclusions 
 
• Model-guided performance engineering of KPM on 

CPU and GPU 
 

• Decoupling from main memory bandwidth 
 

• Optimized node-level performance 
 

• Embedding into massively-parallel application code 
 

• Fully heterogeneous peta-scale performance for a 
sparse solver 
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Outlook 
 
• Applications besides KPM 

 
• Automatic (& dynamic) load balancing 

 
• Optimized GPU-CPU-MPI communication 

 
• Further optimization techniques (cache blocking, ...) 

 
• Performance engineering for Xeon Phi (already 

supported 
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