
Feeding of the Thousands
–

Leveraging the GPU's Computing
Power for Sparse Linear Algebra

SPPEXA Annual Meeting 2016,
January 25th, 2016, Garching, Germany

Hartwig Anzt

2

• Inherently parallel operations
• axpy, copy, gemv...
• usually memory bound
• Kernel fusion

• Sparse matrix vector product
• often computationally most expensive part
• variety of storage formats, kernels…
• component-thread mapping can result in imbalance
• malicious memory access

• Bottlenecks
• sequential operations, unstructured, random memory access
• incomplete factorizations (ILU/IC)
• sparse triangular solves

Sparse Linear Algebra on GPUs

3

• Sliced Ellpack (SELL) format as
trade-off between CSR and Ellpack

• Sorting can improve load-balancing

Sparse Matrix Vector Product (SpMV)

Kreutzer et al.: A Unified Sparse Matrix Data Format for Efficient General Sparse Matrix-Vector Multiplication on
Modern Processors with Wide SIMD Units, SISC 36(5), 2014.

5 2 4 2 5
3 7 2 0 0
7 5 0 0 0
0 0 0 0 0
0 0 0 0 0
8 0 0 0 0
3 0 0 0 0

0 1 2 5 7
0 1 2 X X
2 7 X X X
X X X X X
X X X X X
0 X X X X
6 X X X X

5 2 4 2 5 0 0 0
3 7 2 0 0 0 0 0
7 5 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0

5 2 4 0 0 2 0 5
3 7 2 0 0 0 0 0
0 0 7 0 0 0 0 5
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
0 0 0 0 0 0 3 0

5 2 4 2 5 0 0 0
3 7 2 0 0 0 0 0
7 5 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0

CSR format

5 2 4 2 5 3 7 2 7 5 8 3

0 1 2 5 7 0 1 2 2 7 0 6

0 5 8 10 10 10 11

values

colind

rowptr

points to first element in row

0

1

2

 3

4

5

6

7

7

col-index

r
o
w
-
i
n
d
e
x

654321

0

values colindvalues colind

ELL format

rowptr

Sparse
storage formats

values colind

0 10 14 16 18
points to first element in block

5 2 4 2 5 0 0 0
3 7 2 0 0 0 0 0
7 5 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

5 2 4 2 5
3 7 2 0 0
7 5
0 0
0
8
3

 0

0 1 2 5 7
0 1 2 X X
2 7
X X
X
0
6
X

SELLP format

4

• Assign multiple threads to each row
• 2-dimensional thread blocks

Sparse Matrix Vector Product (SpMV)

+

+

+

+TB 0

TB 1

shared memory

reduction

2D TBs

Kreutzer et al.: A Unified Sparse Matrix Data Format for Efficient General Sparse Matrix-Vector Multiplication on
Modern Processors with Wide SIMD Units, SISC 36(5), 2014.

5

Sparse Matrix Vector Product with multiple Vectors (SpMM)

• 3-dimensional thread blocks for processing multiple vectors simultaneously

Anzt et al.: Energy efficiency and performance frontiers for sparse computations on GPU supercomputers,
PMAM 2015.
.

+

+

+

+TB 0

TB 1

shared memory

reduction

2D TBs
+

+

+

+TB 0

TB 1

shared memory

reduction

2D TBs
+

+

+

+TB 0

TB 1

shared memory

reduction

2D TBs
+

+

+

+TB 0

TB 1

shared memory

reduction

2D TBs
+

+

+

+TB 0

TB 1

shared memory

reduction

2D TBs

multiple vectors

+

+

+

+TB 0

TB 1

shared memory

reduction

2D TBs

=

6

Sparse Matrix Vector Product with multiple Vectors (SpMM)

• 3-dimensional thread blocks for processing multiple vectors simultaneously
• Performance on NVIDIA K40, 64 vectors, DP:

Anzt et al.: Energy efficiency and performance frontiers for sparse computations on GPU supercomputers,
PMAM 2015.
.

 20

 40

 60

 80

 100

 120

audikw_1
bm

w3_2
bm

wcra_1
bone_010
bone_S10
cant

crankseg_2
F1 Fault_639
Hook_1498
inline_1
ldoor

pwtk

Stoc_1465
stom

ach
xenon_2

GF
LO

P/
s

cuSPARSE CSRSpMM
cuSPARSE CSRSpMM v2

MAGMA SELL-P SpMM

7

• Memory bandwidth in many cases the performance bottleneck.
• Sequence of consecutive vector updates (BLAS 1)

benefits from enhanced data locality.
• Design of algorithm-specific kernels.

Kernel Fusion in Sparse Iterative Algorithms

T
h

re
a
d
 b

lo
ck

r+w

r+w

r+w

r+w

r+w

r+w
T
h

re
a
d
 b

lo
ck

r+w

r+w

r+w

r+w

r+w

r+w

T
h

re
a
d
 b

lo
ck

r+w

r+w

r+w

r+w

r+w

r+w

kernel1 kernel2

8

• Memory bandwidth in many cases the performance bottleneck
• Sequence of consecutive vector updates (BLAS 1) benefits from enhanced

data locality

Kernel Fusion in Sparse Iterative Algorithms

 while((k < maxiter) && (res > epsilon)){
 scalar_fusion_1 <<<Gs, Bs, Ms>>> (n, rowA, colA, valA,
 d, z, beta, rho, gamma, vtmp);
 fusion_2 (Gs, Bs, Ms, n, beta, rho, vtmp);

 fusion_3 <<<Gs, Bs, Ms>>> (n, rho, d, x, z, r, vtmp);
 fusion_4 (Gs, Bs, Ms, n, vtmp, vtmp2);

 fusion_5 <<<Gs, Bs>>> (n, beta, gamma, alpha,
 d, r, vtmp);
 cudaMemcopy(&res, beta, sizeof(float),
 cudaMemcpyDeviceToHost);
 res = sqrt(beta);
 k ++;
 } // end-while

while((k < maxiter) && (res > epsilon)){
 Scalar_SpMV <<<Gs,Bs>>> (n, rowA, colA, valA, d, z);
 tmp = cublasSdot (n, d, 1, z, 1);
 rho = beta / tmp;
 gamma = beta;
 cublasSaxpy (n, rho, d, 1, x, 1);
 cublasSaxpy (n, -rho, z, 1, r, 1);
 tmp = cublasSdot (n, r, 1, r, 1);
 beta = tmp;
 alpha = beta / gamma;
 cublasSscal (n, alpha, d, 1);
 cublasSaxpy (n, one, r, 1, d, 1);
 res = sqrt(beta);
 k++;
} // end-while

Aliaga et al.: Reformulated Conjugate Gradient for the Energy-Aware Solution of Linear Systems on GPUs, Parallel
Processing (ICPP), 2013.

9

• Which operations can be merged into a single kernel?
• kernels compatible in terms of component-thread mapping
• example classification for Jacobi-CG:

Kernel Fusion in Sparse Iterative Algorithms

Aliaga et al.: Systematic Fusion of CUDA Kernels for Iterative Sparse Linear System Solvers, Euro-Par 2015,
LLNCS 9233, 2015.

Operation Input vector(s) Output

/ /

AXPY mapped mapped mapped

COPY mapped mapped mapped

DOT mapped mapped unmapped

Jacobi-Prec mapped mapped mapped

SpMV CSR unmapped - mapped

SpMV ELL unmapped - mapped

SpMV SELL-P unmapped - unmapped

y = ↵x+ y

y = x

↵ = hx, yi
y = M

�1
x

y = Ax

y = Ax

y = Ax

x y ↵yM�1

10

• Which operations can be merged into a single kernel?
• Which kernels do we want to merge?

• performance vs. flexibility…

Kernel Fusion in Sparse Iterative Algorithms

Operation Input vector(s) Output

/ /

AXPY mapped mapped mapped

COPY mapped mapped mapped

DOT mapped mapped unmapped

Jacobi-Prec mapped mapped mapped

SpMV CSR unmapped - mapped

SpMV ELL unmapped - mapped

SpMV SELL-P unmapped - unmapped

y = ↵x+ y

y = x

↵ = hx, yi
y = M

�1
x

y = Ax

y = Ax

y = Ax

x y ↵yM�1

Code Jacobi-preconditioned J-CG, J-BiCGSTAB, J-IDR, J-GMRES…? How about ILU/IC?

11

• Which operations can be merged into a single kernel?
• Which kernels do we want to merge?

• performance vs. flexibility…

Kernel Fusion in Sparse Iterative Algorithms

Operation Input vector(s) Output

/ /

AXPY mapped mapped mapped

COPY mapped mapped mapped

DOT mapped mapped unmapped

Jacobi-Prec mapped mapped mapped

SpMV CSR unmapped - mapped

SpMV ELL unmapped - mapped

SpMV SELL-P unmapped - unmapped

y = ↵x+ y

y = x

↵ = hx, yi
y = M

�1
x

y = Ax

y = Ax

y = Ax

x y ↵yM�1

One stand-alone code for each SpMV kernel?

12

• Which operations can be merged into a single kernel?
• Which kernels do we want to merge?

• performance vs. flexibility…

Kernel Fusion in Sparse Iterative Algorithms

AUD G3 INL LDO

Ru
nt

im
e

[s
]

0

1

2

3

4

5

6

7

8

9

10
basic JCG
fusion JCG
Jacobi-fusion

Matrix Size Nonzeros
AUD 943,695 77,651,847
G3 1,585,478 7,660,826
INL 503,712 36,816,342
LDO 952,203 46,522,475

• Benefits from fusion Jacobi-preconditioner for very large and sparse matrices.
• Smaller benefits for more complex algorithms (BiCGSTAB, CGS, QMR, IDR…)

13

• How close can kernel fusion bring us to the
theoretical performance bound induced by memory bandwidth?

• Cooperation with Moritz Kreutzer, Eduardo Ponce.

• NVIDIA K40, theoretical bandwidth: 288 GB/s…

Kernel Fusion in Sparse Iterative Algorithms

10
3

10
4

10
5

10
6

10
7

Vector length

0

40

80

120

160

200

B
an

d
w

id
th

 b
 i

n
 G

B
/s

SCR
TDK

WEB

b = 193 GB/s

...

Matrix Size
SCR 170,998
TDK 204,316
WEB 1,000,005
DIE 1,157,456

14

• Efficiency compared to roofline performance model:
P theoretical compute peak, I intensity, b bandwidth

Kernel Fusion in Sparse Iterative Algorithms

SCR TDK WEB NLP DIE THM AFS MLG G3 TRA

Ef
fic

ie
nc

y
[%

]

0

10

20

30

40

50

60

70

80

90

100
IDR(1)
IDR(2)
IDR(4)
IDR(8)

Matrix Size Nonzeros

SCR 170,998 958,936
TDK 204,316 2,846,228
WEB 1,000,005 3,105,536
NLP 1,062,400 28,704,672
DIE 1,157,456 48,538,952
THM 1,228,045 8,580,313
AFS 1,508,065 52,672,325
MLG 1,504,002 110,879,972
G3 1,585,478 7,660,826
TRA 1,602,111 23,500,731

P = min(P peak
; Ib) Gflop/s

IDR(s) general Krylov solver
Moritz Kreutzer, Eduardo Ponce

15

• Concurrent kernel execution to exploit unused GPU compute resources.
• Rare in sparse linear algebra (most algorithms compose of memory-bound

operations).
• Small benefits if datasets too small to saturate memory bandwidth.

Kernel Overlap in Sparse Iterative Algorithms

SCR TDK WEB DIE

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t [
%

]

0

1

2

3

4

5

6

7

8

9

10
IDR(1)
IDR(2)
IDR(4)
IDR(8)

Matrix Size
SCR 170,998
TDK 204,316
WEB 1,000,005
DIE 1,157,456

16

• Operations not parallelizable to GPU thread concurrency:
• sequential operations
• unstructured, random memory access
• incomplete factorizations (ILU/IC)
• sparse triangular solves

Bottlenecks

17

• Operations not parallelizable to GPU thread concurrency:
• sequential operations
• unstructured, random memory access
• incomplete factorizations (ILU/IC)
• sparse triangular solves

• Don’t even try – rethink the problem!

• A different algorithm may take you to the same goal.
• Choose algorithms with fine-grained parallelism,

avoid synchronizations.
• Sparse iterative solvers provide approximations --

relax the bit-wise reproducibility criterion.

Most popular Example: Iterative ILU (Chow et al.)

Bottlenecks

Chow et al., Fine-grained Parallel Incomplete LU Factorization, SIAM Journal on Scientific Computing, 37, pp.
C169-C193 (2015).

18

• Example: sparse triangular solves in ILU preconditioning:
• inherently sequential
• parallelism from level-scheduling/multi-color ordering
• unable to exploit fine-grained parallelism of GPUs

Bottlenecks

19

• Example: sparse triangular solves in ILU preconditioning:
• inherently sequential
• parallelism from level-scheduling/multi-color ordering
• unable to exploit fine-grained parallelism of GPUs

• Take an unconventional approach:
Approximate sparse triangular solves

• Replace forward/backward substitutions with iterative method.
• Low solution accuracy required as LU ≈ A typically only 

a rough approximation.
• Better scalability of iterative methods.
• Jacobi converges as spectral radius of iteration matrix smaller 1:

• Performance depends on SpMV.

Bottlenecks

x

k+1 = D

�1
b+Mx

k

20

Bottlenecks

Matrix Exact IC 10 Jacobi sweeps

Top-level PCG: Iterations Runtime Iterations Runtime

Laplace 3D 27pt 58 1.83 63 1.14

parabolic_fem 645 37.24 721 7.29

thermal2 1771 305.58 2457 67.41

G3_circuit 1625 45.60 1647 35.43

• Example: sparse triangular solves in ILU preconditioning:
• inherently sequential
• parallelism from level-scheduling/multi-color ordering
• unable to exploit fine-grained parallelism of GPUs

• Take an unconventional approach:
Approximate sparse triangular solves

Anzt et al., Iterative Sparse Triangular Solves for Preconditioning, Euro-Par 2015.

21

Summary

• SpMV optimization central challenge
in iterative sparse linear algebra.

• Algorithms memory bound,
often benefit from kernel fusion.

• Trade-off between performance and flexibility:
• SpMV /Jacobi as building block enhances modularity.

• Kernel fusion can bring performance close to theoretical bound.
• Concurrent kernel execution only beneficial for small problems.

• We need unconventional approaches for bottleneck-operations.
• Iterative ILU generation (Chow et al.)
• Iterative sparse triangular solves for ILU/IC.

This research is based on a cooperation with Enrique Quintana-Ortí from the University Jaume I,
Edmond Chow from Georgia Tech, and Moritz Kreutzer from the University of Erlangen.

