

Using Automated Performance Modeling to Find
Scalability Bugs in Complex Codes

 A. Calotoiu1, T. Hoefler2, M. Poke1, F. Wolf1

1) German Research School for Simulation Sciences

2) ETH Zurich

September 13, 2013

Felix Wolf 2

Analytical performance modeling

Disadvantages

• Time consuming

• Danger of overlooking unscalable code

3

Identify
kernels

• Parts of the program that dominate its
performance at larger scales

• Identified via small-scale tests and intuition

Create
models

• Laborious process

• Still confined to a small community of skilled
experts

Our approach

Generate an empirical model for each part of the program automatically

• Run a manageable number of small-scale performance experiments

• Launch our tool

• Compare extrapolated performance to expectations

Key ideas

• Exploit that space of function classes underlying such model is small

enough to be searched by a computer program

• Abandon model accuracy as the primary success metric and rather

focus on the binary notion of scalability bugs

• Create requirements models alongside execution models

4

SPPEXA project Catwalk

• German Research School for Simulation Sciences, Laboratory

for Parallel Programming (Prof. Dr. Felix Wolf) 
• Technische Universität Darmstadt, Institute for Scientific

Computing (Prof. Dr. Christian Bischof)

• Swiss Federal Institute of Technology Zurich, Institute of

Computer Systems, (Prof. Dr. Torsten Hoefler)

• Forschungszentrum Jülich, Jülich Supercomputing Centre

(Dr.-Ing. Bernd Mohr)

• Goethe University Frankfurt, Goethe Center for Scientific

Computing (Prof. Dr. Gabriel Wittum)

5

Outline

Overview

Detailed approach

Evaluation

Conclusion

6

Scalability bug detector

Input

• Set of performance

measurements (profiles) on

different processor counts

{p1, …, pmax} w/ weak scaling

• Individual measurement

broken down by program

region (call path)

Output

• List of program regions

(kernels) ranked by their

predicted execution time at

target scale pt > pmax

• Or ranked by growth function

(pt ∞)

7

• Not 100% accurate but good enough to draw attention to right kernels

• False negatives when phenomenon at scale is not captured in data

• False positives possible but unlikely

• Can also model parameters other than p

Workflow

8

Performance

 measurements

Performance

profiles

Model

generation

Scaling

models

Performance

 extrapolation

Ranking of

kernels

Statistical

 quality control

Model

generation

Accuracy

 saturated?

Model

refinement
Scaling

models

Yes

No
Kernel

refinement

Model generation

Performance Model Normal Form (PMNF)

• Not exhaustive but works in most practical scenarios

• An assignment of n, ik and jk is called model hypothesis

• ik and jk are chosen from sets I,J Q

• n, |I|, |J| don’t have to be arbitrarily large to achieve good fit

Instead of deriving model through reasoning, make reasonable choices

for n, I, J and try all assignment options one by one

• Select winner through cross-validation

9

f (p) = ck × pik × log2

jk (p)
k=1

n

å

Model refinement

• Start with coarse approximation

• Refine to the point of statistical

shrinkage

 Protection against over-fitting

10

Hypothesis generation;

 hypothesis size n

Scaling model

Input data

Hypothesis evaluation

via cross-validation

Computation of

for best hypothesis

No

Yes

n=1;R0

2

= -¥

Rn

2

n++
Rn-1

2

> Rn

2

Ú

n = nmax

Requirements modeling

11

Program

Computation Communication

FLOPS Load Store P2P Collective …

Time

Disagreement may be indicative of wait states

Evaluation

We demonstrate that our tool

• identifies a scalability issue in a code that is known to have one

• does not identify a scalability issue in a code that is known to have

none

• identifies two scalability issues in a code that was thought to have only

one

12

I = {0
2
, 1

2
, 2

2
, 3

2
, 4

2
, 5

2
, 6

2
}

J = {0,1,2}

n = 5

Test platform:

IBM Blue Gene/Q

Juqueen in Jülich

Sweep3D

Solves neutron transport problem

• 3D domain mapped onto 2D

process grid

• Parallelism achieved through

pipelined wave-front process

LogGP model for communication

developed by Hoisie et al.

13

tcomm = [2(px + py - 2)+ 4(nsweep -1)]× tmsg

tcomm = c× p

Sweep3D (2)

14

Kernel
Runtime[%]

pt=262k

Increase

t(p=262k)

t(p=64)

Model [s]

t = f(p)

Predictive

error [%]

pt=262k

sweep->MPI_Recv 65.35 16.54 4.03√p 5.10

sweep 20.87 0.23 582.19 0.01

global_int_sum->

MPI_Allreduce

12.89 18.68 1.06√p+

0.03√p*log(p)

13.60

sweep->MPI_Send 0.40 0.23 11.49+0.09√p*log(p) 15.40

source 0.25 0.04 6.86+9.13*10-5log(p) 0.01

pi ≤ 8k

Sweep3D (3)

15

MILC

MILC/su3_rmd – code from MILC suite of QCD codes with performance

model manually created by Hoefler et al.

• Time per process should remain constant except for a rather small

logarithmic term caused by global convergence checks

16

Kernel
Model [s]

t=f(p)

Predictive

Error [%]

pt=64k

compute_gen_staple_field 2.40*10-2 0.43

g_vecdoublesum>MPI_Allreduce

6.30*10-6*log2p 0.01

mult_adj_su3_fieldlink_lathwec

3.80*10-3 0.04

pi ≤ 16k

MILC – Varying grid points per process

Test platform: Juropa in Jülich (Intel Nehalem cluster)

p = 32= constant

17

Kernel Flops

Model[s] R2

flops=f(V) [*10-3]

Visits

Model R2

visits=f(V) [*10-3]

Flops/Visit

Model R2

 [*10-3]

load_lnglinks 5.64*104*V 0.030 2.31*103 0.000 24.42*V 0.030

load_fatlinks_cpu 1.95*106*V 0.210 7.14*104 0.000 27.36*V 0.210

ks_congrad 1.16*108+

3.24*105*V5/4

0.292 5.11*104+

1.38*104*V1/4

4.000 15.94*V 0.143

imp_gauge_force_cpu

1.65*106*V 0.015 7.40*104 0.000 22.28*V

0.015

eo_fermion_force_two_terms_site 4.02*106*V 0.002 1.27*105 0.000 31.61*V 0.002

HOMME

Core of the Community Atmospheric Model (CAM)

• Spectral element dynamical core

on a cubed sphere grid

18

pi≤15k pi≤43k

Kernel

Model [s]

t = f(p)

Predictive

error [%]

pt = 130k

Model [s]

t = f(p)

Predictive

error [%]

pt = 130k

Box_rearrange->MPI_Reduce 0.03+2.53*10-

6p*√p+1.24*10-12p3

57.02 3.63*10-6p*√p+

7.21*10-13p3

30.34

Vlaplace_sphere_vk 49.53 99.32 24.44+2.26*10-7p2 4.28

…

Compute_and_apply_rhs 48.68 1.65 49.09 0.83

HOMME (2)

Two issues

Number of iterations inside a subroutine grows with p2

• Ceiling for up to and including 15k

• Developers were aware of this issue and had developed work-around

Growth of time spent in reduce function grows with p3

• Previously unknown

• Function invoked during initialization to funnel data to dedicated I/O

processes

• Execution time at 183k ~ 2h, predictive error ~40%

19

The G8 Research Councils Initiative on Multilateral Research Funding

Interdisciplinary Program on Application Software towards Exascale Computing for Global Scale Issues

HOMME (3)

20

Conclusion

Automated performance modeling is feasible

Generated models accurate enough to identify scalability bugs and in

good agreement with hand-crafted models

Advantages of mass production also performance models

• Approximate models are acceptable as long as the effort to create them

is low and they do not mislead the user

• Code coverage is as important as model accuracy

Future work

• Study influence of further hardware parameters

• More efficient traversal of search space (allows increase of modeling

parameters)

• Integration into Scalasca

21

