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Analytical performance modeling 

Disadvantages 

• Time consuming 

• Danger of overlooking unscalable code 
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Identify 
kernels 

• Parts of the program that dominate its 
performance at larger scales 

• Identified via small-scale tests and intuition 

Create 
models 

• Laborious process  

• Still confined to a small community of skilled 
experts 



Our approach 

Generate an empirical model for each part of the program automatically 

• Run a manageable number of small-scale performance experiments 

• Launch our tool 

• Compare extrapolated performance to expectations 

 

 

 

Key ideas 

• Exploit that space of function classes underlying such model is small 

enough to be searched by a computer program 

• Abandon model accuracy as the primary success metric and rather 

focus on the binary notion of scalability bugs 

• Create requirements models alongside execution models 

 

 

 

 

4 



SPPEXA project Catwalk  

• German Research School for Simulation Sciences, Laboratory 

for Parallel Programming (Prof. Dr. Felix Wolf)  
• Technische Universität Darmstadt, Institute for Scientific 

Computing (Prof. Dr. Christian Bischof) 

 

• Swiss Federal Institute of Technology Zurich, Institute of 

Computer Systems, (Prof. Dr. Torsten Hoefler) 

 

• Forschungszentrum Jülich, Jülich Supercomputing Centre 

(Dr.-Ing. Bernd Mohr) 

 

• Goethe University Frankfurt, Goethe Center for Scientific 

Computing (Prof. Dr. Gabriel Wittum) 

5 



Outline 

Overview 

Detailed approach 

Evaluation 

Conclusion 

6 



Scalability bug detector 

Input 

• Set of performance 

measurements (profiles) on 

different processor counts  

{p1, …, pmax} w/ weak scaling  

• Individual measurement 

broken down by program 

region (call path) 

 

Output 

• List of program regions 

(kernels) ranked by their 

predicted execution time at 

target scale pt > pmax  

• Or ranked by growth function  

(pt  ∞) 
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• Not 100% accurate but good enough to draw attention to right kernels 

• False negatives when phenomenon at scale is not captured in data 

• False positives possible but unlikely 

 

• Can also model parameters other than p 

 

 



Workflow 
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Model generation 

Performance Model Normal Form (PMNF) 

 

 

 

 

 

 

• Not exhaustive but works in most practical scenarios 

• An assignment of n,  ik and jk is called model hypothesis 

• ik and jk  are chosen from sets I,J  Q 

• n, |I|, |J| don’t have to be arbitrarily large to achieve good fit 

 

 

Instead of deriving model through reasoning, make reasonable choices  

for n, I, J and try all assignment options one by one 

• Select winner through cross-validation 
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f (p) = ck × pik × log2

jk (p)
k=1

n

å



Model refinement 

• Start with coarse approximation 

• Refine to the point of statistical 

shrinkage 

 Protection against over-fitting 
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Hypothesis generation; 

 hypothesis size n  

Scaling model 

Input  data 
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Requirements modeling 
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Program 

Computation Communication 

FLOPS Load Store P2P Collective … 

Time 

Disagreement may be indicative of wait states 



Evaluation 

We demonstrate that our tool 

 

• identifies a scalability issue in a code that is known to have one 

 

• does not identify a scalability issue in a code that is known to have 

none 

 

• identifies two scalability issues in a code that was thought to have only 

one  
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Test platform: 

IBM Blue Gene/Q 

Juqueen in Jülich 



Sweep3D 

Solves neutron transport problem 

• 3D domain mapped onto 2D 

process grid 

• Parallelism achieved through 

pipelined wave-front process 

 

 

 

 

LogGP model for communication 

developed by Hoisie et al. 
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tcomm = [2(px + py - 2)+ 4(nsweep -1)]× tmsg

tcomm = c× p



Sweep3D (2) 
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Kernel 
Runtime[%] 

pt=262k 

Increase 

t(p=262k) 

t(p=64) 

Model [s] 

t = f(p) 

Predictive 

error [%] 

pt=262k 

sweep->MPI_Recv 65.35 16.54 4.03√p 5.10 

sweep 20.87 0.23 582.19 0.01 

global_int_sum-> 

MPI_Allreduce 

12.89 18.68 1.06√p+ 

0.03√p*log(p) 

13.60 

sweep->MPI_Send 0.40 0.23 11.49+0.09√p*log(p) 15.40 

source 0.25 0.04 6.86+9.13*10-5log(p) 0.01 

pi ≤ 8k 



Sweep3D (3) 
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MILC 

MILC/su3_rmd – code from MILC suite of QCD codes with performance 

model manually created by Hoefler et al.  

 

• Time per process should remain constant except for a rather small 

logarithmic term caused by global convergence checks 
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Kernel 
Model [s] 

t=f(p) 

Predictive 

Error [%] 

pt=64k 

compute_gen_staple_field 2.40*10-2 0.43 

g_vecdoublesum>MPI_Allreduce 

 

6.30*10-6*log2p 0.01 

mult_adj_su3_fieldlink_lathwec 

 

3.80*10-3 0.04 

pi ≤ 16k 



MILC – Varying grid points per process 

Test platform: Juropa in Jülich (Intel Nehalem cluster) 

p = 32= constant 
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Kernel Flops 

Model[s]                       R2  

flops=f(V)               [*10-3] 

Visits 

Model                       R2 

visits=f(V)          [*10-3] 

Flops/Visit 

Model              R2 

          [*10-3] 

                             

load_lnglinks 5.64*104*V 0.030 2.31*103 0.000 24.42*V 0.030 

load_fatlinks_cpu 1.95*106*V 0.210 7.14*104 0.000 27.36*V 0.210 

ks_congrad 1.16*108+ 

3.24*105*V5/4 

0.292 5.11*104+ 

1.38*104*V1/4 

4.000 15.94*V 0.143 

imp_gauge_force_cpu 

 
1.65*106*V 0.015 7.40*104 0.000 22.28*V 

 

0.015 

eo_fermion_force_two_terms_site 4.02*106*V 0.002 1.27*105 0.000 31.61*V 0.002 



HOMME 

Core of the Community Atmospheric Model (CAM) 

• Spectral element dynamical core  

on a cubed sphere grid 
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pi≤15k pi≤43k 

Kernel 

Model [s] 

t = f(p) 
 

Predictive 

error [%] 

pt = 130k 

Model [s] 

t = f(p) 
 

Predictive 

error [%] 

pt = 130k 

Box_rearrange->MPI_Reduce 0.03+2.53*10-

6p*√p+1.24*10-12p3 

57.02 3.63*10-6p*√p+ 

7.21*10-13p3 

30.34 

Vlaplace_sphere_vk 49.53 99.32 24.44+2.26*10-7p2 4.28 

… 

Compute_and_apply_rhs 48.68 1.65 49.09 0.83 



HOMME (2) 

Two issues 

 

Number of iterations inside a subroutine grows with p2 

• Ceiling for up to and including 15k 

• Developers were aware of this issue and had developed work-around 

 

Growth of time spent in reduce function grows with p3 

• Previously unknown 

• Function invoked during initialization to funnel data to dedicated I/O 

processes 

• Execution time at 183k ~ 2h, predictive error ~40% 
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HOMME (3) 
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Conclusion 

Automated performance modeling is feasible 

 

Generated models accurate enough to identify scalability bugs and in 

good agreement with hand-crafted models 

 

Advantages of mass production also performance models 

• Approximate models are acceptable as long as the effort to create them 

is low and they do not mislead the user 

• Code coverage is as important as model accuracy 

 

Future work 

• Study influence of further hardware parameters 

• More efficient traversal of search space (allows increase of modeling 

parameters) 

• Integration into Scalasca 
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