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Analytical performance modeling 

Disadvantages 

• Time consuming 

• Danger of overlooking unscalable code 
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Identify 
kernels 

• Parts of the program that dominate its 
performance at larger scales 

• Identified via small-scale tests and intuition 

Create 
models 

• Laborious process  

• Still confined to a small community of skilled 
experts 



Our approach 

Generate an empirical model for each part of the program automatically 

• Run a manageable number of small-scale performance experiments 

• Launch our tool 

• Compare extrapolated performance to expectations 

 

 

 

Key ideas 

• Exploit that space of function classes underlying such model is small 

enough to be searched by a computer program 

• Abandon model accuracy as the primary success metric and rather 

focus on the binary notion of scalability bugs 

• Create requirements models alongside execution models 

 

 

 

 

4 



SPPEXA project Catwalk  

• German Research School for Simulation Sciences, Laboratory 

for Parallel Programming (Prof. Dr. Felix Wolf)  
• Technische Universität Darmstadt, Institute for Scientific 

Computing (Prof. Dr. Christian Bischof) 

 

• Swiss Federal Institute of Technology Zurich, Institute of 

Computer Systems, (Prof. Dr. Torsten Hoefler) 

 

• Forschungszentrum Jülich, Jülich Supercomputing Centre 

(Dr.-Ing. Bernd Mohr) 

 

• Goethe University Frankfurt, Goethe Center for Scientific 

Computing (Prof. Dr. Gabriel Wittum) 

5 



Outline 

Overview 

Detailed approach 

Evaluation 

Conclusion 

6 



Scalability bug detector 

Input 

• Set of performance 

measurements (profiles) on 

different processor counts  

{p1, …, pmax} w/ weak scaling  

• Individual measurement 

broken down by program 

region (call path) 

 

Output 

• List of program regions 

(kernels) ranked by their 

predicted execution time at 

target scale pt > pmax  

• Or ranked by growth function  

(pt  ∞) 

 

7 

• Not 100% accurate but good enough to draw attention to right kernels 

• False negatives when phenomenon at scale is not captured in data 

• False positives possible but unlikely 

 

• Can also model parameters other than p 

 

 



Workflow 

8 

Performance 

 measurements 

Performance 

profiles 

Model  

generation 

Scaling 

models 

Performance 

 extrapolation 

Ranking of 

kernels 

Statistical 

 quality control 

Model  

generation 

Accuracy 

 saturated? 

Model  

refinement 
Scaling 

models 

Yes 

No 
Kernel 

refinement 



Model generation 

Performance Model Normal Form (PMNF) 

 

 

 

 

 

 

• Not exhaustive but works in most practical scenarios 

• An assignment of n,  ik and jk is called model hypothesis 

• ik and jk  are chosen from sets I,J  Q 

• n, |I|, |J| don’t have to be arbitrarily large to achieve good fit 

 

 

Instead of deriving model through reasoning, make reasonable choices  

for n, I, J and try all assignment options one by one 

• Select winner through cross-validation 
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f (p) = ck × pik × log2

jk (p)
k=1

n

å



Model refinement 

• Start with coarse approximation 

• Refine to the point of statistical 

shrinkage 

 Protection against over-fitting 
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Hypothesis generation; 

 hypothesis size n  

Scaling model 

Input  data 

Hypothesis evaluation  
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Requirements modeling 
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Program 

Computation Communication 

FLOPS Load Store P2P Collective … 

Time 

Disagreement may be indicative of wait states 



Evaluation 

We demonstrate that our tool 

 

• identifies a scalability issue in a code that is known to have one 

 

• does not identify a scalability issue in a code that is known to have 

none 

 

• identifies two scalability issues in a code that was thought to have only 

one  
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Test platform: 

IBM Blue Gene/Q 

Juqueen in Jülich 



Sweep3D 

Solves neutron transport problem 

• 3D domain mapped onto 2D 

process grid 

• Parallelism achieved through 

pipelined wave-front process 

 

 

 

 

LogGP model for communication 

developed by Hoisie et al. 
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tcomm = [2(px + py - 2)+ 4(nsweep -1)]× tmsg

tcomm = c× p



Sweep3D (2) 
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Kernel 
Runtime[%] 

pt=262k 

Increase 

t(p=262k) 

t(p=64) 

Model [s] 

t = f(p) 

Predictive 

error [%] 

pt=262k 

sweep->MPI_Recv 65.35 16.54 4.03√p 5.10 

sweep 20.87 0.23 582.19 0.01 

global_int_sum-> 

MPI_Allreduce 

12.89 18.68 1.06√p+ 

0.03√p*log(p) 

13.60 

sweep->MPI_Send 0.40 0.23 11.49+0.09√p*log(p) 15.40 

source 0.25 0.04 6.86+9.13*10-5log(p) 0.01 

pi ≤ 8k 



Sweep3D (3) 
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MILC 

MILC/su3_rmd – code from MILC suite of QCD codes with performance 

model manually created by Hoefler et al.  

 

• Time per process should remain constant except for a rather small 

logarithmic term caused by global convergence checks 
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Kernel 
Model [s] 

t=f(p) 

Predictive 

Error [%] 

pt=64k 

compute_gen_staple_field 2.40*10-2 0.43 

g_vecdoublesum>MPI_Allreduce 

 

6.30*10-6*log2p 0.01 

mult_adj_su3_fieldlink_lathwec 

 

3.80*10-3 0.04 

pi ≤ 16k 



MILC – Varying grid points per process 

Test platform: Juropa in Jülich (Intel Nehalem cluster) 

p = 32= constant 
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Kernel Flops 

Model[s]                       R2  

flops=f(V)               [*10-3] 

Visits 

Model                       R2 

visits=f(V)          [*10-3] 

Flops/Visit 

Model              R2 

          [*10-3] 

                             

load_lnglinks 5.64*104*V 0.030 2.31*103 0.000 24.42*V 0.030 

load_fatlinks_cpu 1.95*106*V 0.210 7.14*104 0.000 27.36*V 0.210 

ks_congrad 1.16*108+ 

3.24*105*V5/4 

0.292 5.11*104+ 

1.38*104*V1/4 

4.000 15.94*V 0.143 

imp_gauge_force_cpu 

 
1.65*106*V 0.015 7.40*104 0.000 22.28*V 

 

0.015 

eo_fermion_force_two_terms_site 4.02*106*V 0.002 1.27*105 0.000 31.61*V 0.002 



HOMME 

Core of the Community Atmospheric Model (CAM) 

• Spectral element dynamical core  

on a cubed sphere grid 
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pi≤15k pi≤43k 

Kernel 

Model [s] 

t = f(p) 
 

Predictive 

error [%] 

pt = 130k 

Model [s] 

t = f(p) 
 

Predictive 

error [%] 

pt = 130k 

Box_rearrange->MPI_Reduce 0.03+2.53*10-

6p*√p+1.24*10-12p3 

57.02 3.63*10-6p*√p+ 

7.21*10-13p3 

30.34 

Vlaplace_sphere_vk 49.53 99.32 24.44+2.26*10-7p2 4.28 

… 

Compute_and_apply_rhs 48.68 1.65 49.09 0.83 



HOMME (2) 

Two issues 

 

Number of iterations inside a subroutine grows with p2 

• Ceiling for up to and including 15k 

• Developers were aware of this issue and had developed work-around 

 

Growth of time spent in reduce function grows with p3 

• Previously unknown 

• Function invoked during initialization to funnel data to dedicated I/O 

processes 

• Execution time at 183k ~ 2h, predictive error ~40% 
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HOMME (3) 
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Conclusion 

Automated performance modeling is feasible 

 

Generated models accurate enough to identify scalability bugs and in 

good agreement with hand-crafted models 

 

Advantages of mass production also performance models 

• Approximate models are acceptable as long as the effort to create them 

is low and they do not mislead the user 

• Code coverage is as important as model accuracy 

 

Future work 

• Study influence of further hardware parameters 

• More efficient traversal of search space (allows increase of modeling 

parameters) 

• Integration into Scalasca 
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