
ERLANGEN REGIONAL
COMPUTING CENTER

Faisal Shahzad and Gerhard Wellein
Dagstuhl Seminar „Resilience in Exascale Computing“
September 29, 2014

Application level asynchronous
check-pointing / restart:
first experiences with GPI

Partially funded by DFG Priority Programme1648

Partially funded by BMBF project FeTol

2

Erlangen Regional Computing Center:
• Tier-2 center in Germany
• Operates compute clusters (200,…,600 nodes)
• Scientist from University of Erlangen and northern Bavaria
• Strong application support group (collaboration with LRZ Munich)

• HPC research focus:

• Node level performance engineering
• Hardware efficiency of sparse linear algebra, lattice Boltzmann

solvers, stencil computations
• Hybrid/new programming parallel models

• Leading PI of ESSEX project from SPPEXA

Background

3

Equipping Sparse Scalable Solvers for Exascale
(ESSEX)

Hardware
Fault tolerance

Energy efficiency
New levels of parallelism

Quantum Physics Applications
Extremely large sparse matrices:
eigenvalues, spectral properties,

time evolution

Exascale Sparse Solver Repository (ESSR)

ESSEX applications:
Graphene,

topological insulators,
…

Quantum
physics / chemistry

Sparse eigensolvers,
preconditioners,
spectral methods

FT concepts,
programming for

extreme parallelism

ESSEX

4

ESSEX: “Co-Design” oriented project

Holistic Performance Engineering

Fault Tolerance
Co

de
/E

ne
rg

y
Ef

fic
ie

nc
y

Problem
 form

ulation,
Q

uantum
 State

Encoding (Q
SE)

Im
pl

em
en

ta
tio

n,
 d

at
a

st
ru

ct
ur

e
,p

ar
al

le
liz

at
io

n
Applications

Computational
Algorithms

Building Blocks

5

ESSEX: Computational challenges / methods

Cover most aspects of large sparse eigenvalue problem

Compute approximation to complete eigenvalue
spectrum of large sparse matrix 𝐴 (with 𝑋 = 𝐼)
 A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, Rev. Mod. Phys. 78, 275 (2006).

The kernel polynomial method

http://theorie2.physik.uni-greifswald.de/downloads/publications/wwaf06.pdf

6

ESSEX: Start with simple but efficient iterative
algorithms (“Kernel Polynomial Method”)

 Application: R random configurations
(R=1,…,102) or iterative loop

Algorithm: Compute
Chebyshev moments

Basic building blocks:
spMVM and sparseBLAS1

KPM approach can be implemented with
only one global communication step

Checkpoint data: 2 vectors
Constant sparse matrix (H) – recompute

7

Our (ESSEX) effort –
get a simple prototype solution first –

application driven –
No silver bullet

8

Fault Tolerance Approaches

1. Algorithm Based Fault Tolerance (ABFT)

2. Message Logging

3. Redundancy

4. Fault Prediction (proactive fault tolerance)

5. Checkpoint/Restart (C/R)

Each of these fault tolerance approaches carries overhead in terms of time and/or resources

J. Hursey. Coordinated Checkpoint/Restart Process Fault Tolerance for MPI Applications on HPC
Systems. PhD thesis, Indiana University, Bloomington, IN, USA, July 2010.

9

Checkpoint/Restart optimizations

1. Application level checkpointing
 Minimal checkpoint data

2. Asynchronous checkpointing

3. Multi-level checkpointing

(PFS/remote node/localFS)

4. Checkpoint compression

5. …

Hide / avoid costs of
computational costs

of checkpoints

ASYNCHRONOUS CHECKPOINTING

11

Synchronous vs. asynchronous checkpointing

 Synchronous checkpointing:
 Computation halts for I/O time
 High execution time overhead

 Asynchronous checkpointing:
 Dedicated threads for performing asynchronous I/O
 Low execution time overhead
 Checkpoint location: flexible

(e.g. using SCR)
 In-memory copy required.

12

Checkpoint overhead estimation model

Synchronous Checkpointing Asynchronous Checkpointing

Computation

F. Shahzad, M. Wittmann, M. Kreutzer, T. Zeiser, G. Hager, and G. Wellein: A survey of
checkpoint/restart techniques on distributed memory systems. Parallel Processing Letters 23(04),
1340011-1340030 (2013).

13

Asynchronous Checkpointing

 Hybrid (MPI-OpenMP) configuration performance comparison

Cluster: LiMa, num. of nodes = 32, PFS = LXFS, Aggregated CP size = 200 GB/CP

Checkpoint-thread

process/thread
Idle SMT core

Total IO time: 436s
Actual Overhead: 32s

14

Basic building blocks library: GHOST
General, Hybrid and Optimized Sparse Toolkit

• Application layer triggered checkpoint / restart
• Asynchronous checkpointing via tasks
• Various checkpoint locations (node, filesystem)

• Supports data & task parallelism (up to application level)
• MPI + OpenMP + tasks for concurrent execution
• Generic and hardware-aware (w/ hwloc) task management

• Basic tailored sparse matrix / vector operations
• CRS or SELL-C-σ* (unified format) storage schemes
• (Block-)SpMVM: SIMD intrinsic (AVX, SSE, MIC) & CUDA kernels
• Dense vector /matrices: row-/column-major storage

*M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop: A unified sparse matrix data format for
efficient general sparse matrix-vector multiplication on modern processors with wide SIMD units. SIAM
Journal on Scientific Computing 36(5), C401–C423 (2014).

15

Asynchronous checkpoints via GHOST-task thread:

ghost_task_create(ckpt_task_ptr, &CP_func, CP_obj,…)

ghost_task_enque (ckpt_task_ptr);

ghost_task_wait (ckpt_task_ptr);

update_CP(CP_obj);
// async. copy of CP is updated

CP_obj:
 object of ckpt_t type
 ckpt_t class is defined by programmer
 checkpoint object contains the

aynchronous copy of the checkpoint

CP_func:
 This function takes an updated copz of

CP_obj as argument and writes to PFS..

Parent task

Checkpoint task

APPLICATION DRIVEN
AUTOMATIC FAULT TOLERANCE
(AFT)

Our (naïve) approach:

• Regular asynchronous Checkpoints (FS or remote node)

• Node failure detected by communication library

(Communication library in valid state after node/process loss)

• Spare nodes are available – application replaces lost node

• Application driven restart from last checkpoint

17

A long time ago it was no problem to
 tolerate the frequent loss of processes/nodes
 register new processes/nodes dynamically on demand

Parallel Virtual Machine (PVM)

Today:
 Several non-standard libraries, e.g. Charm++ or GPI

 Why is FT not part of MPI?
 Complexity of MPI standard / MPI forum?
 Restrict FT feature on small parts of MPI standard?

FT communication libraries

18

AFT: GPI Introduction

 Current version: GPI-2 (see http://www.gpi-site.com/gpi2/)
Developed by Fraunhofer IWTM

 Implements GASPI standard: http://www.gaspi.de/software.html
(Global Address Space Programming Interface)

 PGAS programming model

 Two memory parts
• Local memory:

local to each GPI process
• Global memory: Accessible

for other processes

 Enables fault tolerance
• via providing TIMEOUT for every communication call.

http://www.gpi-site.com/gpi2/
http://www.gaspi.de/software.html

19

AFT: GPI - Application requirements

 Algorithm based on PGAS model

 For effective fault tolerance

• No global synchronization, barriers
• Each GPI-process communicates with certain subset of

GPI-processes (e.g. neighbors)
• In case of failures, rest of the processes detect errors in

results and correct them accordingly.

 Algorithm driven FT based applications

20

Prototype FT implementation

 Idea:
 Running the program with ‚n+m‘ processes, where ‚m‘ is the

number of idle processes.

 Program initially utilizes ‚n‘ processes for work (work-group)

 In case of a failed process in ‚work-group‘, an idle process is
added to the ‚work-group‘.

 Processes in newly established ‚work-group‘ restart the work
from last checkpoint.

21

GPI FT program flow:

P0 signals idle proc.
to join worker comm.

P1 initiates a global
health check. A
consistant view of the
worker communicator
is formed.

Read last checkpoint
(neighbour-level/PFS)

Every process checks
neibours health

P0

P1

P2

P3

P4-idle

Create new worker
comm.

23

GPI fault recovery overhead :

 Timeout returns for communication after failure
 Only the communication to/from the failed process contibutes to this

overhead.

 Global health vector update to have consistant view of the
health vector across all processes

 Rebuilding worker communicator
 Process 0 signals the idle processes, which then joins the creation of

new comm.

 Checkpoint fetching from neighbour (or PFS) and
reinitializing

24

Testing:

 Tested successfully up to 1000+ cores with 1-2 failures.

 Challenges using higher number of cores:
 Seg. fault during deletion of old comm/ recreat new comm.
 Issue using barrier for new comm.
 Both issues are under investigation by Frauenhofer IWTM.

 Bug in GPI library has been detected and will be fixed in next release.

25

Concluding remarks:

If you use checkpointing
 do it asynchronously
 use dedicated threads
 use application specific knowledge

 restarting at runtime is a challenge with current

communication libraries  You feel like a test pilot

GPI is on a reasonable way

Exascale “modus operandi” still unclear:
 Pool of spare nodes?
 Continue wit remaining set

26

Thank you!
 Questions?

 will become public available this year

–
If you are interested in testing, you are very welcome

–
ask us: https://blogs.fau.de/essex/

Partially funded by DFG Priority Programme1648

Partially funded by BMBF project FeTol

https://blogs.fau.de/essex/

27

The seminar topic

Resilience in
Exascale Computing

Which of them need?

Capacity?
10.000 jobs@10 nodes

Capability!
1 job@100,000 nodes

How many users (scientific
communities) need within

a decade?

Where is the sweet spot?

28

The seminar topic

Resilience in
Exascale Computing

Hardware?

Low level automatic SW
solution – silver bullet?

Application with OS/HW
support?

Who ensures/guarantees?

Conservation law of HPC
Flexibility * Performance = constant

FT
algorithms?

Does overhead
pay off?

Do we need resilience beyond 2025?

	Application level asynchronous �check-pointing / restart: �first experiences with GPI
	Background
	Equipping Sparse Scalable Solvers for Exascale�(ESSEX)
	ESSEX: “Co-Design” oriented project
	ESSEX: Computational challenges / methods�
	ESSEX: Start with simple but efficient iterative algorithms (“Kernel Polynomial Method”)
	Foliennummer 7
	Fault Tolerance Approaches
	Checkpoint/Restart optimizations
	Asynchronous checkpointing
	Synchronous vs. asynchronous checkpointing
	Checkpoint overhead estimation model
	Asynchronous Checkpointing
	Basic building blocks library: GHOST�General, Hybrid and Optimized Sparse Toolkit
	Asynchronous checkpoints via GHOST-task thread:
	Application driven �Automatic Fault Tolerance (AFT)
	FT communication libraries
	AFT: GPI Introduction
	AFT: GPI - Application requirements
	Prototype FT implementation
	GPI FT program flow:	
	GPI fault recovery overhead :	
	Testing:	
	Concluding remarks:
	Foliennummer 26
	The seminar topic
	The seminar topic

