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Erlangen Regional Computing Center: 
• Tier-2 center in Germany 
• Operates compute clusters (200,…,600 nodes)  
• Scientist from University of Erlangen and northern Bavaria 
• Strong application support group (collaboration with LRZ Munich) 

 
• HPC research focus: 

• Node level performance engineering 
• Hardware efficiency of sparse linear algebra, lattice Boltzmann 

solvers, stencil computations 
• Hybrid/new programming parallel models 
 

• Leading PI of ESSEX project from SPPEXA 

Background 
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Equipping Sparse Scalable Solvers for Exascale 
(ESSEX) 

Hardware 
Fault tolerance 

Energy efficiency  
New levels of parallelism 

Quantum Physics Applications 
Extremely large sparse matrices: 
eigenvalues, spectral properties, 

time evolution 

Exascale  Sparse Solver Repository (ESSR) 

ESSEX applications: 
Graphene, 

topological insulators, 
… 

Quantum  
physics / chemistry 

Sparse eigensolvers,  
preconditioners, 
spectral methods 

FT concepts, 
programming for 

extreme parallelism 

ESSEX 
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ESSEX: “Co-Design” oriented project  

Holistic Performance Engineering 

Fault Tolerance 
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Building Blocks 
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ESSEX: Computational challenges / methods 
 
Cover most aspects of large sparse eigenvalue problem 

Compute approximation to complete eigenvalue 
spectrum of large sparse matrix 𝐴 (with 𝑋 = 𝐼) 
 A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, Rev. Mod. Phys. 78, 275 (2006). 

The kernel polynomial method 

http://theorie2.physik.uni-greifswald.de/downloads/publications/wwaf06.pdf
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ESSEX: Start with simple but efficient iterative 
algorithms (“Kernel Polynomial Method” ) 

 Application: R random configurations 
(R=1,…,102) or iterative loop 

Algorithm: Compute 
Chebyshev moments 

Basic building blocks: 
spMVM and sparseBLAS1 

KPM approach can be implemented with 
only one  global communication step 

Checkpoint data: 2 vectors 
Constant sparse matrix (H) – recompute 
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Our (ESSEX) effort –  
get a simple prototype solution first –  

application driven –  
No silver bullet 
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Fault Tolerance Approaches 

1. Algorithm Based Fault Tolerance (ABFT) 
 

2. Message Logging 
 

3. Redundancy 
 

4. Fault Prediction (proactive fault tolerance) 
 

5. Checkpoint/Restart (C/R) 
 
 

 

Each of these fault tolerance approaches carries overhead in terms of time and/or resources 

J. Hursey. Coordinated Checkpoint/Restart Process Fault Tolerance for MPI Applications on HPC 
Systems. PhD thesis, Indiana University, Bloomington, IN, USA, July 2010. 



9 

Checkpoint/Restart optimizations 

1. Application level checkpointing 
 Minimal checkpoint data 

 
2. Asynchronous checkpointing  

 
3. Multi-level checkpointing 

(PFS/remote node/localFS) 
 

4. Checkpoint compression 
 

5. …  

Hide / avoid costs of 
computational costs 

of checkpoints 



ASYNCHRONOUS CHECKPOINTING 
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Synchronous vs. asynchronous checkpointing 

 Synchronous checkpointing: 
 Computation halts for I/O time 
 High execution time overhead 

 
 
 
 

 Asynchronous checkpointing: 
 Dedicated threads for performing asynchronous I/O 
 Low execution time overhead 
 Checkpoint location: flexible 

(e.g. using SCR) 
 In-memory copy required. 
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Checkpoint overhead estimation model  

            

     

 
 

    

Synchronous Checkpointing Asynchronous Checkpointing 

Computation 

F. Shahzad, M. Wittmann, M. Kreutzer, T. Zeiser, G. Hager, and G. Wellein: A survey of 
checkpoint/restart techniques on distributed memory systems. Parallel Processing Letters 23(04), 
1340011-1340030 (2013).  
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Asynchronous Checkpointing 

 Hybrid (MPI-OpenMP) configuration performance comparison   
 

 
 

 
 

Cluster: LiMa, num. of nodes = 32, PFS = LXFS, Aggregated CP size = 200 GB/CP 

Checkpoint-thread 

process/thread 
Idle SMT core 

Total IO time:         436s 
Actual Overhead:  32s 
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Basic building blocks library: GHOST 
General, Hybrid and Optimized Sparse Toolkit 

 

• Application layer triggered checkpoint / restart 
• Asynchronous checkpointing via tasks 
• Various checkpoint locations (node, filesystem) 

• Supports data & task parallelism (up to application level) 
• MPI + OpenMP + tasks for concurrent execution  
• Generic and hardware-aware (w/ hwloc) task management  

• Basic tailored sparse matrix / vector operations  
• CRS or SELL-C-σ* (unified format) storage schemes 
• (Block-)SpMVM: SIMD intrinsic (AVX, SSE, MIC) & CUDA kernels  
• Dense vector /matrices: row-/column-major storage 

*M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop: A unified sparse matrix data format for 
efficient general sparse matrix-vector multiplication on modern processors with wide SIMD units. SIAM 
Journal on Scientific Computing 36(5), C401–C423 (2014). 
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Asynchronous checkpoints via GHOST-task thread: 

ghost_task_create( ckpt_task_ptr, &CP_func, CP_obj,…) 

ghost_task_enque (ckpt_task_ptr); 

ghost_task_wait (ckpt_task_ptr); 

update_CP(CP_obj); 
// async. copy of CP is updated 

CP_obj: 
 object of ckpt_t type 
 ckpt_t class is defined by programmer 
 checkpoint object contains the 

aynchronous copy of the checkpoint 
 

CP_func: 
 This function takes an updated copz of 

CP_obj as argument and writes to PFS.. 

Parent task 

Checkpoint task 



APPLICATION DRIVEN  
AUTOMATIC FAULT TOLERANCE 
(AFT)  

Our (naïve) approach:  
 
• Regular asynchronous Checkpoints (FS or remote node) 

 
• Node failure detected by communication library 

(Communication library in valid state after node/process loss) 
 

• Spare nodes are available – application replaces lost node 
 

• Application driven restart from last checkpoint 
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A long time ago it was no problem to 
 tolerate the frequent loss of processes/nodes 
 register new processes/nodes dynamically on demand 
 
Parallel Virtual Machine (PVM) 

 
Today: 
 Several non-standard libraries, e.g. Charm++ or GPI 

 
 Why is FT not part of MPI? 
 Complexity of MPI standard / MPI forum?  
 Restrict FT feature on small parts of MPI standard?  

FT communication libraries 
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AFT: GPI Introduction 

 Current version: GPI-2 (see http://www.gpi-site.com/gpi2/) 
Developed by Fraunhofer IWTM 

 Implements GASPI standard: http://www.gaspi.de/software.html 
(Global Address Space Programming Interface) 

 PGAS programming model 
 

 Two memory parts 
• Local memory:  

local to each GPI process  
• Global memory: Accessible  

for other processes 
 

 Enables fault tolerance 
• via providing TIMEOUT for every communication call. 

 
  

 
 
 

http://www.gpi-site.com/gpi2/
http://www.gaspi.de/software.html
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AFT: GPI - Application requirements 

 Algorithm based on PGAS model 
 
 For effective fault tolerance 

• No global synchronization, barriers 
• Each GPI-process communicates with certain subset of 

GPI-processes (e.g. neighbors) 
• In case of failures, rest of the processes detect errors in 

results and correct them accordingly. 
 

 Algorithm driven FT based applications 
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Prototype FT implementation 

 Idea: 
 Running the program with ‚n+m‘ processes, where ‚m‘ is the 

number of idle processes. 
 

 Program initially utilizes ‚n‘ processes  for work (work-group) 
 

 In case of a failed process in ‚work-group‘, an idle process is 
added to the ‚work-group‘. 
 

 Processes in newly established ‚work-group‘ restart the work 
from last checkpoint. 
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GPI FT program flow:  

P0 signals idle proc. 
to join worker comm. 

P1 initiates a global 
health check. A 
consistant view of the 
worker communicator 
is formed. 

Read last checkpoint 
(neighbour-level/PFS) 

Every process checks 
neibours health 

P0 

P1 

P2 

P3 

P4-idle 

Create new worker 
comm. 
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GPI fault recovery overhead :  

 Timeout returns for communication after failure 
 Only the communication to/from the failed process contibutes to this 

overhead. 
 

 Global health vector update to have consistant view of the 
health vector across all processes 
 
 Rebuilding worker communicator 
 Process 0 signals the idle processes, which then joins the creation of 

new comm. 
 

 Checkpoint fetching from neighbour ( or PFS ) and 
reinitializing 
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Testing:  

 Tested successfully up to 1000+ cores  with 1-2 failures. 
 
 Challenges using higher number of cores: 
 Seg. fault during deletion of old comm/ recreat new comm. 
 Issue using barrier for new comm.  
 Both issues are under investigation by Frauenhofer IWTM. 
 
 
 Bug in GPI library has been detected and will be fixed in next release. 
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Concluding remarks: 

If you use checkpointing  
 do it asynchronously 
 use dedicated threads 
 use application specific knowledge 

 
 restarting at runtime is a challenge with current 

communication libraries  You feel like a test pilot 
 
GPI is on a reasonable way 

 
Exascale “modus operandi” still unclear: 
 Pool of spare nodes? 
 Continue wit remaining set 
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Thank you!  
                           Questions? 

 
              will become public available this year  

– 
If you are interested in testing, you are very welcome  

–  
ask us: https://blogs.fau.de/essex/ 

 
 

Partially funded by DFG Priority Programme1648 

Partially funded by BMBF project FeTol 

https://blogs.fau.de/essex/
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The seminar topic 

 

Resilience in  
Exascale Computing 

Which of them need? 

Capacity? 
10.000 jobs@10 nodes 

Capability! 
1 job@100,000 nodes 

How many users (scientific 
communities) need within 

a decade? 

Where is the sweet spot? 
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The seminar topic 

 

Resilience in  
Exascale Computing 

Hardware? 

Low level automatic SW 
solution – silver bullet? 

Application with OS/HW 
support? 

Who ensures/guarantees? 

Conservation law of HPC 
Flexibility * Performance = constant 

FT 
algorithms? 

Does overhead 
pay off? 

Do we need resilience beyond 2025? 
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