
ERLANGEN REGIONAL
COMPUTING CENTER

Faisal Shahzad and Gerhard Wellein
Dagstuhl Seminar „Resilience in Exascale Computing“
September 29, 2014

Application level asynchronous
check-pointing / restart:
first experiences with GPI

Partially funded by DFG Priority Programme1648

Partially funded by BMBF project FeTol

2

Erlangen Regional Computing Center:
• Tier-2 center in Germany
• Operates compute clusters (200,…,600 nodes)
• Scientist from University of Erlangen and northern Bavaria
• Strong application support group (collaboration with LRZ Munich)

• HPC research focus:

• Node level performance engineering
• Hardware efficiency of sparse linear algebra, lattice Boltzmann

solvers, stencil computations
• Hybrid/new programming parallel models

• Leading PI of ESSEX project from SPPEXA

Background

3

Equipping Sparse Scalable Solvers for Exascale
(ESSEX)

Hardware
Fault tolerance

Energy efficiency
New levels of parallelism

Quantum Physics Applications
Extremely large sparse matrices:
eigenvalues, spectral properties,

time evolution

Exascale Sparse Solver Repository (ESSR)

ESSEX applications:
Graphene,

topological insulators,
…

Quantum
physics / chemistry

Sparse eigensolvers,
preconditioners,
spectral methods

FT concepts,
programming for

extreme parallelism

ESSEX

4

ESSEX: “Co-Design” oriented project

Holistic Performance Engineering

Fault Tolerance
Co

de
/E

ne
rg

y
Ef

fic
ie

nc
y

Problem
 form

ulation,
Q

uantum
 State

Encoding (Q
SE)

Im
pl

em
en

ta
tio

n,
 d

at
a

st
ru

ct
ur

e
,p

ar
al

le
liz

at
io

n
Applications

Computational
Algorithms

Building Blocks

5

ESSEX: Computational challenges / methods

Cover most aspects of large sparse eigenvalue problem

Compute approximation to complete eigenvalue
spectrum of large sparse matrix 𝐴 (with 𝑋 = 𝐼)
 A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, Rev. Mod. Phys. 78, 275 (2006).

The kernel polynomial method

http://theorie2.physik.uni-greifswald.de/downloads/publications/wwaf06.pdf

6

ESSEX: Start with simple but efficient iterative
algorithms (“Kernel Polynomial Method”)

 Application: R random configurations
(R=1,…,102) or iterative loop

Algorithm: Compute
Chebyshev moments

Basic building blocks:
spMVM and sparseBLAS1

KPM approach can be implemented with
only one global communication step

Checkpoint data: 2 vectors
Constant sparse matrix (H) – recompute

7

Our (ESSEX) effort –
get a simple prototype solution first –

application driven –
No silver bullet

8

Fault Tolerance Approaches

1. Algorithm Based Fault Tolerance (ABFT)

2. Message Logging

3. Redundancy

4. Fault Prediction (proactive fault tolerance)

5. Checkpoint/Restart (C/R)

Each of these fault tolerance approaches carries overhead in terms of time and/or resources

J. Hursey. Coordinated Checkpoint/Restart Process Fault Tolerance for MPI Applications on HPC
Systems. PhD thesis, Indiana University, Bloomington, IN, USA, July 2010.

9

Checkpoint/Restart optimizations

1. Application level checkpointing
 Minimal checkpoint data

2. Asynchronous checkpointing

3. Multi-level checkpointing

(PFS/remote node/localFS)

4. Checkpoint compression

5. …

Hide / avoid costs of
computational costs

of checkpoints

ASYNCHRONOUS CHECKPOINTING

11

Synchronous vs. asynchronous checkpointing

 Synchronous checkpointing:
 Computation halts for I/O time
 High execution time overhead

 Asynchronous checkpointing:
 Dedicated threads for performing asynchronous I/O
 Low execution time overhead
 Checkpoint location: flexible

(e.g. using SCR)
 In-memory copy required.

12

Checkpoint overhead estimation model

Synchronous Checkpointing Asynchronous Checkpointing

Computation

F. Shahzad, M. Wittmann, M. Kreutzer, T. Zeiser, G. Hager, and G. Wellein: A survey of
checkpoint/restart techniques on distributed memory systems. Parallel Processing Letters 23(04),
1340011-1340030 (2013).

13

Asynchronous Checkpointing

 Hybrid (MPI-OpenMP) configuration performance comparison

Cluster: LiMa, num. of nodes = 32, PFS = LXFS, Aggregated CP size = 200 GB/CP

Checkpoint-thread

process/thread
Idle SMT core

Total IO time: 436s
Actual Overhead: 32s

14

Basic building blocks library: GHOST
General, Hybrid and Optimized Sparse Toolkit

• Application layer triggered checkpoint / restart
• Asynchronous checkpointing via tasks
• Various checkpoint locations (node, filesystem)

• Supports data & task parallelism (up to application level)
• MPI + OpenMP + tasks for concurrent execution
• Generic and hardware-aware (w/ hwloc) task management

• Basic tailored sparse matrix / vector operations
• CRS or SELL-C-σ* (unified format) storage schemes
• (Block-)SpMVM: SIMD intrinsic (AVX, SSE, MIC) & CUDA kernels
• Dense vector /matrices: row-/column-major storage

*M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop: A unified sparse matrix data format for
efficient general sparse matrix-vector multiplication on modern processors with wide SIMD units. SIAM
Journal on Scientific Computing 36(5), C401–C423 (2014).

15

Asynchronous checkpoints via GHOST-task thread:

ghost_task_create(ckpt_task_ptr, &CP_func, CP_obj,…)

ghost_task_enque (ckpt_task_ptr);

ghost_task_wait (ckpt_task_ptr);

update_CP(CP_obj);
// async. copy of CP is updated

CP_obj:
 object of ckpt_t type
 ckpt_t class is defined by programmer
 checkpoint object contains the

aynchronous copy of the checkpoint

CP_func:
 This function takes an updated copz of

CP_obj as argument and writes to PFS..

Parent task

Checkpoint task

APPLICATION DRIVEN
AUTOMATIC FAULT TOLERANCE
(AFT)

Our (naïve) approach:

• Regular asynchronous Checkpoints (FS or remote node)

• Node failure detected by communication library

(Communication library in valid state after node/process loss)

• Spare nodes are available – application replaces lost node

• Application driven restart from last checkpoint

17

A long time ago it was no problem to
 tolerate the frequent loss of processes/nodes
 register new processes/nodes dynamically on demand

Parallel Virtual Machine (PVM)

Today:
 Several non-standard libraries, e.g. Charm++ or GPI

 Why is FT not part of MPI?
 Complexity of MPI standard / MPI forum?
 Restrict FT feature on small parts of MPI standard?

FT communication libraries

18

AFT: GPI Introduction

 Current version: GPI-2 (see http://www.gpi-site.com/gpi2/)
Developed by Fraunhofer IWTM

 Implements GASPI standard: http://www.gaspi.de/software.html
(Global Address Space Programming Interface)

 PGAS programming model

 Two memory parts
• Local memory:

local to each GPI process
• Global memory: Accessible

for other processes

 Enables fault tolerance
• via providing TIMEOUT for every communication call.

http://www.gpi-site.com/gpi2/
http://www.gaspi.de/software.html

19

AFT: GPI - Application requirements

 Algorithm based on PGAS model

 For effective fault tolerance

• No global synchronization, barriers
• Each GPI-process communicates with certain subset of

GPI-processes (e.g. neighbors)
• In case of failures, rest of the processes detect errors in

results and correct them accordingly.

 Algorithm driven FT based applications

20

Prototype FT implementation

 Idea:
 Running the program with ‚n+m‘ processes, where ‚m‘ is the

number of idle processes.

 Program initially utilizes ‚n‘ processes for work (work-group)

 In case of a failed process in ‚work-group‘, an idle process is
added to the ‚work-group‘.

 Processes in newly established ‚work-group‘ restart the work
from last checkpoint.

21

GPI FT program flow:

P0 signals idle proc.
to join worker comm.

P1 initiates a global
health check. A
consistant view of the
worker communicator
is formed.

Read last checkpoint
(neighbour-level/PFS)

Every process checks
neibours health

P0

P1

P2

P3

P4-idle

Create new worker
comm.

23

GPI fault recovery overhead :

 Timeout returns for communication after failure
 Only the communication to/from the failed process contibutes to this

overhead.

 Global health vector update to have consistant view of the
health vector across all processes

 Rebuilding worker communicator
 Process 0 signals the idle processes, which then joins the creation of

new comm.

 Checkpoint fetching from neighbour (or PFS) and
reinitializing

24

Testing:

 Tested successfully up to 1000+ cores with 1-2 failures.

 Challenges using higher number of cores:
 Seg. fault during deletion of old comm/ recreat new comm.
 Issue using barrier for new comm.
 Both issues are under investigation by Frauenhofer IWTM.

 Bug in GPI library has been detected and will be fixed in next release.

25

Concluding remarks:

If you use checkpointing
 do it asynchronously
 use dedicated threads
 use application specific knowledge

 restarting at runtime is a challenge with current

communication libraries You feel like a test pilot

GPI is on a reasonable way

Exascale “modus operandi” still unclear:
 Pool of spare nodes?
 Continue wit remaining set

26

Thank you!
 Questions?

 will become public available this year

–
If you are interested in testing, you are very welcome

–
ask us: https://blogs.fau.de/essex/

Partially funded by DFG Priority Programme1648

Partially funded by BMBF project FeTol

https://blogs.fau.de/essex/

27

The seminar topic

Resilience in
Exascale Computing

Which of them need?

Capacity?
10.000 jobs@10 nodes

Capability!
1 job@100,000 nodes

How many users (scientific
communities) need within

a decade?

Where is the sweet spot?

28

The seminar topic

Resilience in
Exascale Computing

Hardware?

Low level automatic SW
solution – silver bullet?

Application with OS/HW
support?

Who ensures/guarantees?

Conservation law of HPC
Flexibility * Performance = constant

FT
algorithms?

Does overhead
pay off?

Do we need resilience beyond 2025?

	Application level asynchronous �check-pointing / restart: �first experiences with GPI
	Background
	Equipping Sparse Scalable Solvers for Exascale�(ESSEX)
	ESSEX: “Co-Design” oriented project
	ESSEX: Computational challenges / methods�
	ESSEX: Start with simple but efficient iterative algorithms (“Kernel Polynomial Method”)
	Foliennummer 7
	Fault Tolerance Approaches
	Checkpoint/Restart optimizations
	Asynchronous checkpointing
	Synchronous vs. asynchronous checkpointing
	Checkpoint overhead estimation model
	Asynchronous Checkpointing
	Basic building blocks library: GHOST�General, Hybrid and Optimized Sparse Toolkit
	Asynchronous checkpoints via GHOST-task thread:
	Application driven �Automatic Fault Tolerance (AFT)
	FT communication libraries
	AFT: GPI Introduction
	AFT: GPI - Application requirements
	Prototype FT implementation
	GPI FT program flow:	
	GPI fault recovery overhead :	
	Testing:	
	Concluding remarks:
	Foliennummer 26
	The seminar topic
	The seminar topic

