ERLANGEN REGIONAL

COMPUTING CENTER

2 { -
W T

Application level asynchronous
check-pointing / restart:
first experiences with GPI

Faisal Shahzad and Gerhard Wellein
Dagstuhl Seminar ,Resilience in Exascale Computing*®
September 29, 2014

PEXA

Partially funded by DFG Priority Programme1648

Background

Erlangen Regional Computing Center:

Tier-2 center in Germany

Operates compute clusters (200,...,600 nodes)

Scientist from University of Erlangen and northern Bavaria
Strong application support group (collaboration with LRZ Munich)

HPC research focus:
- Node level performance engineering

- Hardware efficiency of sparse linear algebra, lattice Boltzmann
solvers, stencil computations

- Hybrid/new programming parallel models

Leading Pl of ESSEX project from SPPEXA

Equipping Sparse Scalable Solvers for Exascale
(ESSEX)

Hardware Quantum Physics Applications
Fault tolerance Extremely large sparse matrices:
Energy efficiency eigenvalues, spectral properties,
New levels of parallelism time evolution

ESSEX: “Co-Design” oriented project

vy

Applications

Computational
Algorithms

—

Holistic Performance Engineering

91e1S wniuenp

‘uolle|nwJo} wa|qoid

m
>
o
@)
o
S
oQ
O
»
=

Implementation, data

structure ,parallelization

Code/Energy Efficiency
9JUelJ9|0] ljhe4

ESSEX: Computational challenges / methods

Cover most aspects of large sparse eigenvalue problem

'9 m 06_ I I I T I I I]
£ .2 il _
o = 0.5 -
S 0 | -
5 8_ @0.4_—] T

— 0.3t ﬂ -

o _]

—_ 0.2t L i
== - | | | | | |
0 g R R 0 T 3

preconditioning 'g_ | N

Ja
£

I
few many all = yrlo(e—H)X| == Y (0 —Ep)(wn. X y)
n=1

eigenvalues Compute approximation to complete eigenvalue
spectrum of large sparse matrix A (with X = 1)

A. Weil3e, G. Wellein, A. Alvermann, and H. Fehske, Rev. Mod. Phys. 78, 275 (2006).
The kernel polynomial method

http://theorie2.physik.uni-greifswald.de/downloads/publications/wwaf06.pdf

ESSEX: Start with simple but efficient iterative
algorithms (“Kernel Polynomial Method”)

forr=0toR1do—__

v = [rand());
Initialization &
computation of p,, 1,

Application: R random configurations
(R=1,...,10%) or iterative loop

Algorithm: Compute

for m=1to M/2do

swap(|w), |V);
uy = H|w ;

w) = |w) + 2d|u) ;
MNom = <VIV> 5
MNome1 = <\/V|V> 5

end _

Chebyshev moments

Basic building blocks:

uy = [uy - blv); / spMVM and sparseBLAS1
w) = —|w) ; |

Checkpoint data: 2 vectors
Constant sparse matrix (H) — recompute

KPM approach can be implemented with
only one global communication step

Our (ESSEX) effort —
get a simple prototype solution first —
application driven —
No silver bullet

Fault Tolerance Approaches

1. Algorithm Based Fault Tolerance (ABFT)
2. Message Logging

3. Redundancy

4. Fault Prediction (proactive fault tolerance)

5. Checkpoint/Restart (C/R)

Each of these fault tolerance approaches carries overhead in terms of time and/or resources

J. Hursey. Coordinated Checkpoint/Restart Process Fault Tolerance for MPI Applications on HPC
Systems. PhD thesis, Indiana University, Bloomington, IN, USA, July 2010.

Checkpoint/Restart optimizations

1. Application level checkpointing
= Minimal checkpoint data

2. Asynchronous checkpointing —

Hide / avoid costs of
3. Multi-level checkpointing — computational costs
(PFS/remote node/localFS) of checkpoints

4. Checkpoint compression

Synchronous vs. asynchronous checkpointing

= Synchronous checkpointing:
= Computation halts for I/O time
= High execution time overhead

= Asynchronous checkpointing:

Resourse

utilization

= Dedicated threads for performing asynchronous I/O

= Low execution time overhead

= Checkpoint location: flexible
(e.g. using SCR)
= |n-memory copy required.

Resourse

utilization

-
* tcp, & tCF.a
- - -
Y
> E M, CP
l Computation
A }_

time t,

Checkpoint overhead estimation model

Synchronous Checkpointing Asynchronous Checkpointing
A tcp,a tCP.a
-— - >
BM.CP
Computation
. < >
time tos time t,.
ta,e = overhead for synchronous checkpoints to.. = overhead for asynchronous checkpoints
teps = duration of a synchronous checkpoint tep. = duration of an asynchronous checkpoint
Sep = size of a single checkpoint in bytes Scpnede = checkpoint size per node in bytes
. = memory bandwidth used for checkpoint-
By = memory bandwidth of a node in bytes/s /O in bvtes/s
Lish
in = number of checkpoints ’

By -to,a =n-Bucop-topa

fD,S = T f’(_‘)P,‘S - ‘SI(_?P.nade

) Buy.cp = "
b’CP CFP.a

" Bro

t =n o
O.s m - ‘SC‘P,dee .

By

J-I_-f.r.-r = /O bandwidth 1o the file system in byies/s E Buscp

E fO.a -
F. Shahzad, M. Wittmann, M. Kreutzer, T. Zeiser, G. Hager, and G. Wellein: A survey of
checkpoint/restart techniques on distributed memory systems. Parallel Processing Letters 23(04),
1340011-1340030 (2013).

= FRIEDRICH-ALEXANDER

Asynchronous Checkpointing

= Hybrid (MPI-OpenMP) configuration performance comparison

Cluster: LiMa, num. of nodes = 32, PFS = LXFS, Aggregated CP size = 200 GB/CP
2000

no-CPs
Async. CPs - computation time T
1750 Asyne. CPs - 10 time -
. DODDDD) Toooon] | BB Process/thread
2. | |[meonDm DODDDD [mooooo)| ldle SMT core
£ 1250 Checkpoint-thread
E i |
= 1000 |-
=
% |
= 750
oL
= n
<
500 -
i =Total IO time: 436s
250 =Actual Overhead: 32s

1 MPI-processicore I MPI-process/socket 1 MPI-process/mode

Checkpoint thread configuration

Basic building blocks library: GHOST >
General, Hybrid and Optimized Sparse Toolkit GHOST

Basic tailored sparse matrix / vector operations

CRS or SELL-C-o* (unified format) storage schemes
(Block-)SpMVM: SIMD intrinsic (AVX, SSE, MIC) & CUDA kernels
Dense vector /matrices: row-/column-major storage

Supports data & task parallelism (up to application level)
MPI + OpenMP + tasks for concurrent execution
Generic and hardware-aware (w/ hwloc) task management

Application layer triggered checkpoint / restart
Asynchronous checkpointing via tasks
Various checkpoint locations (node, filesystem)

*M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop: A unified sparse matrix data format for
efficient general sparse matrix-vector multiplication on modern processors with wide SIMD units. SIAM
Journal on Scientific Computing 36(5), C401-C423 (2014).

Asynchronous checkpoints via GHOST-task thread:

Parent task

Checkpoint task ghost_task_create(ckpt_task ptr, &CP_func, CP_obj,...)

update CP(CP_obj); <>
Il async. copy of CP is updated

CP_obj:
object of ckpt_t type
ckpt_t class is defined by programmer

checkpoint object contains the
aynchronous copy of the checkpoint

ghost_task wait (ckpt_task ptr);

<

ghost_task _enque (ckpt_task_ptr),

CP_func:

This function takes an updated copz of
CP_obj as argument and writes to PFS..

APPLICATION DRIVEN
AUTOMATIC FAULT TOLERANCE

(AFT)

Our (na'l've) approac'h:
* Regular asynchronous Checkpoints (FS or remote node)

* Node failure detected by communication library
(Communication library in valid state after node/process loss)

e Spare nodes are available — application replaces lost node

* Application driven restart from last checkpoint

FT communication libraries

A long time ago it was no problem to
= tolerate the frequent loss of processes/nodes
* register new processes/nodes dynamically on demand

—>Parallel Virtual Machine (PVM)

Today:
= Several non-standard libraries, e.g. Charm++ or GPI

= Why is FT not part of MPI?
= Complexity of MPI standard / MPI forum?
= Restrict FT feature on small parts of MPI standard?

AFT: GPI Introduction

= Current version: GPI-2 (see http://www.qgpi-site.com/gpi2/)
Developed by Fraunhofer IWTM

= Implements GASPI standard: http://www.gaspi.de/software.html
(Global Address Space Programming Interface)

= PGAS programming model

Glebal address space Programming Interface (GPI-2)

= TwOo memory parts

 rocal memory. _m-ﬂ
ADDRESS
local to each GPI process

ROMA interconnack

- Global memory: Accessible

[]]
for other processes . . =..= . - =..=
Threads Threads Threads

WUMA System Co-Processor MUMA System Co-Processor

Enables fault tolerance
 via providing TIMEOUT for every communication call.

http://www.gpi-site.com/gpi2/
http://www.gaspi.de/software.html

AFT: GPI - Application requirements

= Algorithm based on PGAS model

» For effective fault tolerance
* No global synchronization, barriers

« Each GPI-process communicates with certain subset of
GPI-processes (e.g. neighbors)

* In case of failures, rest of the processes detect errors in
results and correct them accordingly.

= Algorithm driven FT based applications

Prototype FT implementation

= |dea;

= Running the program with ,n+m°‘ processes, where ,m‘ is the
number of idle processes.

= Program initially utilizes ,n* processes for work (work-group)

= |n case of a failed process in ,work-group‘, an idle process is
added to the ,work-group".

= Processes in newly established ,work-group’ restart the work
from last checkpoint.

GPI FT program flow:

P1 initiates a global
health check. A
consistant view of the
worker communicator
is formed.

PO signals idle proc.
to join worker comm.

PO

P1 y \

P2

P3
P4-idle

Read last checkpoint

Create new worker
(neighbour-level/PFS)

comm.

Every process checks
neibours health

FRIEDRICH-ALEXANDER
T

GPI fault recovery overhead :

= Timeout returns for communication after failure

= Only the communication to/from the failed process contibutes to this
overhead.

= Global health vector update to have consistant view of the
health vector across all processes

= Rebuilding worker communicator

= Process 0 signals the idle processes, which then joins the creation of
new comm.

= Checkpoint fetching from neighbour (or PFS) and
reinitializing

Testing:

» Tested successfully up to 1000+ cores with 1-2 failures.

= Challenges using higher number of cores:

= Seg. fault during deletion of old comm/ recreat new comm.
= |ssue using barrier for new comm.
= Both issues are under investigation by Frauenhofer IWTM.

- Bug in GPI library has been detected and will be fixed in next release.

Concluding remarks:

If you use checkpointing
= do it asynchronously
= use dedicated threads
= use application specific knowledge

= restarting at runtime is a challenge with current
communication libraries = You feel like a test pilot

GPIl is on a reasonable way

Exascale “modus operandi” still unclear:
= Pool of spare nodes?
= Continue wit remaining set

mGHOST will become public available this year

If you are interested in testing, you are very welcome

ask us: https://blogs.fau.de/essex/

r_r. I L.

= = =

SPPEXA Thank you!

Partially funded by DFG Priority Programme1648 Questions?

mmmmmmmmm

$ Bundesministerium
o i flir Bildung

und Forschung

Partially funded by BMBF project FeTol

https://blogs.fau.de/essex/

The seminar topic

How many users (scientific
communities) need within Which of them need?
a decade?

k Resi iencein/

Exascale Computing

\ty? Capability!
10 nodes 1 job@100,000 nodes

Where is the sweetspM

The seminar topic

Do we need resilience beyond 20257

Who ensures/guarantees?

\\ Res{'

FU / ascale

aleorithms? /

Hardware?
/__—
lence Iin __| Does overhead
Computing pay off?

\

Low level automatic SW
solution — silver bullet?

Application with OS/HW
support?

wvation IawM
Flexibility * Performance = constant

	Application level asynchronous �check-pointing / restart: �first experiences with GPI
	Background
	Equipping Sparse Scalable Solvers for Exascale�(ESSEX)
	ESSEX: “Co-Design” oriented project
	ESSEX: Computational challenges / methods�
	ESSEX: Start with simple but efficient iterative algorithms (“Kernel Polynomial Method”)
	Foliennummer 7
	Fault Tolerance Approaches
	Checkpoint/Restart optimizations
	Asynchronous checkpointing
	Synchronous vs. asynchronous checkpointing
	Checkpoint overhead estimation model
	Asynchronous Checkpointing
	Basic building blocks library: GHOST�General, Hybrid and Optimized Sparse Toolkit
	Asynchronous checkpoints via GHOST-task thread:
	Application driven �Automatic Fault Tolerance (AFT)
	FT communication libraries
	AFT: GPI Introduction
	AFT: GPI - Application requirements
	Prototype FT implementation
	GPI FT program flow:	
	GPI fault recovery overhead :	
	Testing:	
	Concluding remarks:
	Foliennummer 26
	The seminar topic
	The seminar topic

