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Equipping Sparse Scalable Solvers for Exascale 

(ESSEX) 

Hardware 
Fault tolerance 

Energy efficiency  
New levels of parallelism 

Quantum Physics Applications 
Extremely large sparse matrices: 
eigenvalues, spectral properties, 

time evolution 

Exascale  Sparse Solver Repository (ESSR) 

ESSEX applications: 
Graphene, 

topological insulators, 
… 

Quantum  
physics / chemistry 

Sparse eigensolvers,  
preconditioners, 
spectral methods 

FT concepts, 
programming for 

extreme parallelism 

ESSEX 
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ESSEX: “Co-Design” oriented project  

Holistic Performance Engineering 
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Basic building blocks library: GHOST 
General, Hybrid and Optimized Sparse Toolkit 

 

• Application layer triggered checkpoint / restart 
• Asynchronous checkpointing via tasks 
• Various checkpoint locations (node, filesystem) 

• Supports data & task parallelism (up to application level) 
• MPI + OpenMP + tasks for concurrent execution  
• Generic and hardware-aware task management  

• Basic tailored sparse matrix / vector operations  
• CRS or SELL-C-σ* (unified format) storage schemes 
• (Block-)SpMVM: SIMD intrinsic (AVX, SSE, MIC) & CUDA kernels  
• Dense vector /matrices: row-/column-major storage 

*M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop: A unified sparse matrix data format for 

efficient general sparse matrix-vector multiplication on modern processors with wide SIMD units. SIAM 

Journal on Scientific Computing 36(5), C401–C423 (2014). 
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Our (ESSEX) effort –  

get a simple solution first –  

application driven –  

No silver bullet 
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1. Iterative Solvers 

Kernel Polynomial Method (KPM) 

Jacobi Davidson (JADA) 

 

2. Asynchronicity 

Handling node-level parallelism  

 

3. Fault Tolerance and Checkpointing/Restart 
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ESSEX: Computational challenges / methods 

 
Cover most aspects of large sparse eigenvalue problem 

Compute approximation to complete eigenvalue 

spectrum of large sparse matrix 𝐴 (with 𝑋 = 𝐼) 

 
A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, Rev. Mod. Phys. 78, 275 (2006). 

The kernel polynomial method 

http://theorie2.physik.uni-greifswald.de/downloads/publications/wwaf06.pdf
http://theorie2.physik.uni-greifswald.de/downloads/publications/wwaf06.pdf
http://theorie2.physik.uni-greifswald.de/downloads/publications/wwaf06.pdf
http://theorie2.physik.uni-greifswald.de/downloads/publications/wwaf06.pdf
http://theorie2.physik.uni-greifswald.de/downloads/publications/wwaf06.pdf
http://theorie2.physik.uni-greifswald.de/downloads/publications/wwaf06.pdf
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ESSEX: Start with simple but efficient iterative 

algorithms (“Kernel Polynomial Method” ) 

 Application: R random configurations 
(R=1,…,102) or iterative loop 

Algorithm: Compute 
Chebyshev moments 

Basic building blocks: 
spMVM and sparseBLAS1 

KPM approach can be implemented with 
only one  global communication step 

Checkpoint data: 2 vectors 
Constant sparse matrix (H) – recompute 
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ESSEX: Iterative Eigensolvers – BJDQR 

 
 Blocked Jacobi-Davidson QR Method 

 

1: Setup initial subspace 

2: while not converged do 

3:  Project the problem to a small subspace 

4:  Solve the small eigenvalue problem 

5:  Calculate an nb approximations and their residual 

6:  Lock converged eigenvalues 

7:  Shrink subspace if required (RESTART) 

8:  Approximately solve the nb correction equations 

9:  Block-Orthogonalize the new directions 

10:  Enlarge the subspace 

11: end while 
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ESSEX: Iterative Eigensolvers – BJDQR  

 

Converged eigenvectors (LOCK): incr. async. Backup in DP  

Expanding subspace, full async. backup in SP after RESTART 

RESTART: shrink subspace to jmin vectors 

jmin jmin 



GHOST*:  

NODE-LEVEL ASYNCHRONICITY  

Basic parallelization approach: MPI + X 

 

Motivation – Use X for many tasks at the same time 

• Asynchronous Communication  

• Asynchronous Checkpointing 

• Concurrent worker teams (CPUs) 

• Accelerators  

 

Easy to use, low overhead, hardware-aware 

*General, Hybrid and Optimized Sparse Toolkit 

Developed by: Moritz Kreutzer, RRZE 
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Modern compute nodes 

 Heterogeneous architectures 

on a single node 

 

 Differ in programming 

paradigm 

 CPU: only native mode 

 GPU: only accelerator mode 

 Xeon Phi: accelerator or native 

mode 

 

 Differ in performance 

 

PU = processing unit 
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 Distinction between architectures via MPI processes: 

 exactly one process per GPU 

 at least one process per Xeon Phi 

 at least one process for all CPUs 

 

 Each process gets assigned a weight deciding the share of work 

which depends on their relative performance 

 

 Resource management: 

 Each process running inside an exclusive CPU set (no shared cores) 

 CPU sets may span several NUMA nodes 

 

Work distribution 
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Example work distribution 

 Amount of processes is the 

minumum: 3 

 

 GPU is managed by a full 

core on the nearest socket 

 CPU process spans two 

NUMA nodes 

 Xeon Phi operated in native 

mode 

 one MPI process running on 

the coprocessor  



16 

 More than one CPU processes 

 maybe favorable in order to avoid NUMA problems: one per NUMA 

node 

 one process per core/PU also possible (in case OpenMP is not 

present/desired) 

 

 Number of PUs for GPU management 

 at least one, but the other PU on the same core may have problems in 

this case 

 

 

 More than one process on the Xeon Phi 

 

 

 

Degrees of freedom in work distribution 
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 Each process stores idle/busy states and locality information of 

each of it‘s PUs (e.g. for initial state of CPU process) 

 

 

 

 

 One shepherd thread will be created per PU: 

 

 

 

 

 The shepherd threads wait for tasks to be put in the task queue 

 

Resource management 
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 A task is defined by  

1. A function callback along with parameters 

2. The number of PUs to process the task 

3. The preferred NUMA node to process the task 

4. Additional flags 

 Available flags (can be combined): 

 PRIO_HIGH: Put task to beginning of queue. 

 NODE_STRICT: Execute task only on the given NUMA node. 

 NOT_ALLOW_CHILD: Do not allow a child task to use the task‘s PUs. 

 NOT_PIN: Do not register the task in the PU map. 

 

 All tasks line up in a single queue 

 

 

 

Task processing 
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Simple tasking example 
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Asynchronous checkpoints via GHOST-task thread: 

ghost_task_create( ckpt_task_ptr, &CP_func, CP_obj,…) 

ghost_task_enque (ckpt_task_ptr); 

ghost_task_wait (ckpt_task_ptr); 

update_CP(CP_obj); 
// async. copy of CP is updated 

CP_obj: 
 object of ckpt_t type 

 ckpt_t class is defined by programmer 

 checkpoint object contains the 

aynchronous copy of the checkpoint 

 

CP_func: 
 This function takes an updated copz of 

CP_obj as argument and writes to PFS.. 

Parent task 

Checkpoint task 



FAULT TOLERANCE AND 

ASYNCHRONOUS CHECKPOINTING 

Pragmatic approach: 

• Hide costs for checkpointing  

• Asynchronous 

• Remote Node checkpoints / hierarchical  

• Restart from node local data if possible  

 

•  Prototype experiences with GPI – Application 

based FT with CR 
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Checkpoint/Restart optimizations 

1. Application level checkpointing 

 Minimal checkpoint data 

 

2. Asynchronous checkpointing  

 

3. Multi-level checkpointing 

(PFS/remote node/localFS) 

 

4. Checkpoint compression 

 

5. …  

Hide / avoid costs of 

computational costs 

of checkpoints 
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Synchronous vs. asynchronous checkpointing 

 Synchronous checkpointing: 

 Computation halts for I/O time 

 High execution time overhead 

 

 
 
 

 Asynchronous checkpointing: 

 Dedicated threads for performing asynchronous I/O 

 Low execution time overhead 

 Checkpoint location: flexible 

(e.g. using SCR) 

 In-memory copy required. 
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Asynchronous Checkpointing 

 Hybrid (MPI-OpenMP) configuration performance comparison   

 

 

 

 

 

Cluster: LiMa, num. of nodes = 32, PFS = LXFS, Aggregated CP size = 200 GB/CP 

Checkpoint-thread 

process/thread 

Idle SMT core 

Total IO time:         436s 

Actual Overhead:  32s 
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Asynchronous checkpoints – Remote node  

 Memory mapped – local filesystem 

 

 Checkpoint data by 

 Exchanging MPI messages  

› Portable 

› May interfere with regular communication 

 Low priority checkpoint message scheduling? 

 rsync /remotenode/localFS   

› Generality?  efficient via IB? 

› May use (slow) alternative data path (e.g. GBit – if available) 

 

 Failed node detection?! 

 Restart MPI within same batch job and ignore FT in communication 

layer?! 



APPLICATION DRIVEN  

AUTOMATIC FAULT TOLERANCE 

(AFT)  

Our (naïve) approach:  

 

• Regular asynchronous Checkpoints (FS or remote node) 

 

• Node failure detected by communication library 

(Communication library in valid state after node/process loss) 

 

• Spare nodes are available – application replaces lost node 

 

• Application driven restart from last checkpoint 
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AFT: GPI Introduction 

 Current version: GPI-2 (see http://www.gpi-site.com/gpi2/) 

Developed by Fraunhofer IWTM 

 Implements GASPI standard: http://www.gaspi.de/software.html 

(Global Address Space Programming Interface) 

 PGAS programming model 

 

 Two memory parts 

• Local memory:  

local to each GPI process  

• Global memory: Accessible  

for other processes 

 

 Enables fault tolerance 

• via providing TIMEOUT for every communication call. 

 

  

 

 

 

http://www.gpi-site.com/gpi2/
http://www.gpi-site.com/gpi2/
http://www.gpi-site.com/gpi2/
http://www.gpi-site.com/gpi2/
http://www.gaspi.de/software.html
http://www.gaspi.de/software.html
http://www.gaspi.de/software.html
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AFT: GPI - Application requirements 

 Algorithm based on PGAS model 

 

 For effective fault tolerance 

• No global synchronization, barriers 

• Each GPI-process communicates with certain subset of 

GPI-processes (e.g. neighbors) 

• In case of failures, rest of the processes detect errors in 

results and correct them accordingly. 

 

 Algorithm driven FT based applications 
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Prototype FT implementation 

 Idea: 

 Running the program with ‚n+m‘ processes, where ‚m‘ is the 

number of idle processes. 

 

 Program initially utilizes ‚n‘ processes  for work (work-group) 

 

 In case of a failed process in ‚work-group‘, an idle process is 

added to the ‚work-group‘. 

 

 Processes in newly established ‚work-group‘ restart the work 

from last checkpoint. 
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Prototype FT implementation: LBM 

 Program flow: 
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Toy FT implementation: Health Check 

 What GASPI provides: 

 A process local copy of ‚health check vector‘. 

 After each read/write from a process, the health check vector 

entry of that particular process is locally updated. 

 The entires of health vector are either 0 or 1. 

 

 User side: 

 User can copy this ‚health vector‘ via gaspi_state_vec_get() 

routine. 

 Deletion of old comm., creation of new comm., new 

communication structure, (checkpoint/restart) -> user 

responsibility  
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Prototype FT implementation: LBM 

 Health check routine 
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Toy FT implementation: local health check 

P0 signals idle proc. 

to join worker comm. 

P1 initiates a global 

health check. A 

consistant view of the 

worker communicator 

is formed. 

Read last checkpoint 

(neighbour-level/PFS) 
Every process checks 

neibours health 

P0 

P1 

P2 

P3 

P4-idle 

Create new worker 

comm. 
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Toy FT implementation: LBM Benchmarks (I) 

 Global health check, 16 nodes 1 failure 
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Toy FT implementation: LBM Benchmarks (II) 

 Recovery time scaling, LOCAL Health check 
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Toy FT implementation: LBM Benchmarks (III) 

 Recovery time scaling, GLOBAL Health check 
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GPI fault recovery overhead:  

 Timeout returns for communication after failure 

 Only the communication to/from the failed process contibutes to this 

overhead. 

 

 Global health vector update to have consistant view of the 

health vector across all processes 

 

 Rebuilding worker communicator 

 Process 0 signals the idle processes, which then joins the creation of 

new comm. 

 

 Checkpoint fetching from neighbour ( or PFS ) and 

reinitializing 
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Prototype FT implementation: SPMVM 

 Each process has point-to-point communication with many 

other processes. 

 This communication pattern of a matrix is checkpointed at 

the start once.  

 Restart:  

 ‚Recovery-process‘ reads the matrix data & communication 

pattern of the dead-process. 

 Remaining processes redirect all communication from dead-

process to recovery-process. 

 

 

 



39 

Neighbor level checkpointing for GPI (I) 

 Development of Multi-level checkpointing infrastructure. 

 Based on library calls 

 Library thread responsible for transfering data in-between nodes and 

PFS.  

 Independent of communication library (MPI/GPI) 

 

 Multi-level checkpointing with various layers of the application. 

 Different checkpoint frequency on various layers.  
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Neighbor level checkpointing for GPI (II) 
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Testing:  

 Tested successfully up to 1000+ cores  with 1-2 failures. 

 

 Challenges using higher number of cores: 

 Seg. fault during deletion of old comm/ recreat new comm. 

 Issue using barrier for new comm.  

 Both issues are under investigation by Frauenhofer IWTM. 

 

 Bug in GPI library has been detected and will be fixed in next release. 

 

 Future optimizations: 

 Reduction in health check time. 
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Concluding remarks: 

Asynchronicity: User controlled node-level resource management 

still lacks simple and efficient support from OS. 

 

FT: If you use checkpointing  

 do it asynchronously (dedicated threads) – keep data in memory? – 

reduce interference with regular communication? 

 use application specific knowledge 

 restarting at runtime is a challenge with current communication 

libraries  You feel like a test pilot 

 GPI is on a reasonable way – MPI-ULFM? 

  

FT: Exascale “modus operandi” still unclear: 

 Pool of spare nodes? 

 Continue wit remaining set 
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Thank you!  
                           Questions? 

 

              will become public available this year  

– 

If you are interested in testing, you are very welcome  

–  

ask us: https://blogs.fau.de/essex/ 

 

 

Partially funded by DFG Priority Programme1648 

Partially funded by BMBF project FeTol 

https://blogs.fau.de/essex/

