
ERLANGEN REGIONAL

COMPUTING CENTER

Faisal Shahzad, Moritz Kreutzer and Gerhard Wellein

FFMK workshop „Application Interfaces for an Exascale OS”

December 8, 2014

ESSEX: Sparse iterative solvers,

asynchronicity and fault tolerance

Partially funded by DFG Priority Programme1648

Gerhard Wellein
University of Erlangen
Dept. of Computer Science

Faisal Shazad

Programming

(Fault
Tolerance)

Resilience, Performance
Engineering, Parallelization,

Optimization

ESSEX - Equipping Sparse Solvers for Exascale

Georg Hager
Erlangen Regional
Computing Center

M. Kreutzer

Programming

(Building
blocks)

Parallelization,
Optimization, Performance

Engineering, Tools

Achim Basermann
DLR, Simulation and SW
Technology

Jonas Thies

Comp.
Algorithms

(JaDa, Pre-
conditioner)

Scalable Preconditioners,
Eigenvalue Solvers, Solvers for

Sparse Linear Systems

Bruno Lang
University of Wuppertal
Applied Computer Science

L. Krämer

Comp.
Algorithms

(FEAST)

Efficient Direct and Iterative
Eigensolvers

Holger Fehske
University of Greifswald
Institute for Physics

A. Alvermann
Comp. Algorithms
/Applications
(KPM, ChebTP)

Complex Quantum
Physics Applications,
Numerical Methods

A. Pieper
Applications
(Graphene, top.
Insulators)

ESSEX

Applications Comp. Algorithms Programming

3

Equipping Sparse Scalable Solvers for Exascale

(ESSEX)

Hardware
Fault tolerance

Energy efficiency
New levels of parallelism

Quantum Physics Applications
Extremely large sparse matrices:
eigenvalues, spectral properties,

time evolution

Exascale Sparse Solver Repository (ESSR)

ESSEX applications:
Graphene,

topological insulators,
…

Quantum
physics / chemistry

Sparse eigensolvers,
preconditioners,
spectral methods

FT concepts,
programming for

extreme parallelism

ESSEX

4

ESSEX: “Co-Design” oriented project

Holistic Performance Engineering

Fau
lt To

leran
ce

C

o
d

e/
En

er
gy

 E
ff

ic
ie

n
cy

P
ro

b
lem

 fo
rm

u
latio

n
,

Q
u

an
tu

m
 State

En
co

d
in

g (Q
SE)

Im
p

le
m

en
ta

ti
o

n
, d

at
a

st
ru

ct
u

re
 ,p

ar
al

le
liz

at
io

n
 Applications

Computational
Algorithms

Building Blocks

5

Basic building blocks library: GHOST
General, Hybrid and Optimized Sparse Toolkit

• Application layer triggered checkpoint / restart
• Asynchronous checkpointing via tasks
• Various checkpoint locations (node, filesystem)

• Supports data & task parallelism (up to application level)
• MPI + OpenMP + tasks for concurrent execution
• Generic and hardware-aware task management

• Basic tailored sparse matrix / vector operations
• CRS or SELL-C-σ* (unified format) storage schemes
• (Block-)SpMVM: SIMD intrinsic (AVX, SSE, MIC) & CUDA kernels
• Dense vector /matrices: row-/column-major storage

*M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop: A unified sparse matrix data format for

efficient general sparse matrix-vector multiplication on modern processors with wide SIMD units. SIAM

Journal on Scientific Computing 36(5), C401–C423 (2014).

6

Our (ESSEX) effort –

get a simple solution first –

application driven –

No silver bullet

7

1. Iterative Solvers

Kernel Polynomial Method (KPM)

Jacobi Davidson (JADA)

2. Asynchronicity

Handling node-level parallelism

3. Fault Tolerance and Checkpointing/Restart

8

ESSEX: Computational challenges / methods

Cover most aspects of large sparse eigenvalue problem

Compute approximation to complete eigenvalue

spectrum of large sparse matrix 𝐴 (with 𝑋 = 𝐼)

A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, Rev. Mod. Phys. 78, 275 (2006).

The kernel polynomial method

http://theorie2.physik.uni-greifswald.de/downloads/publications/wwaf06.pdf
http://theorie2.physik.uni-greifswald.de/downloads/publications/wwaf06.pdf
http://theorie2.physik.uni-greifswald.de/downloads/publications/wwaf06.pdf
http://theorie2.physik.uni-greifswald.de/downloads/publications/wwaf06.pdf
http://theorie2.physik.uni-greifswald.de/downloads/publications/wwaf06.pdf
http://theorie2.physik.uni-greifswald.de/downloads/publications/wwaf06.pdf

9

ESSEX: Start with simple but efficient iterative

algorithms (“Kernel Polynomial Method”)

 Application: R random configurations
(R=1,…,102) or iterative loop

Algorithm: Compute
Chebyshev moments

Basic building blocks:
spMVM and sparseBLAS1

KPM approach can be implemented with
only one global communication step

Checkpoint data: 2 vectors
Constant sparse matrix (H) – recompute

10

ESSEX: Iterative Eigensolvers – BJDQR

 Blocked Jacobi-Davidson QR Method

1: Setup initial subspace

2: while not converged do

3: Project the problem to a small subspace

4: Solve the small eigenvalue problem

5: Calculate an nb approximations and their residual

6: Lock converged eigenvalues

7: Shrink subspace if required (RESTART)

8: Approximately solve the nb correction equations

9: Block-Orthogonalize the new directions

10: Enlarge the subspace

11: end while

11

ESSEX: Iterative Eigensolvers – BJDQR

Converged eigenvectors (LOCK): incr. async. Backup in DP

Expanding subspace, full async. backup in SP after RESTART

RESTART: shrink subspace to jmin vectors

jmin jmin

GHOST*:

NODE-LEVEL ASYNCHRONICITY

Basic parallelization approach: MPI + X

Motivation – Use X for many tasks at the same time

• Asynchronous Communication

• Asynchronous Checkpointing

• Concurrent worker teams (CPUs)

• Accelerators

Easy to use, low overhead, hardware-aware

*General, Hybrid and Optimized Sparse Toolkit

Developed by: Moritz Kreutzer, RRZE

13

Modern compute nodes

 Heterogeneous architectures

on a single node

 Differ in programming

paradigm

 CPU: only native mode

 GPU: only accelerator mode

 Xeon Phi: accelerator or native

mode

 Differ in performance

PU = processing unit

14

 Distinction between architectures via MPI processes:

 exactly one process per GPU

 at least one process per Xeon Phi

 at least one process for all CPUs

 Each process gets assigned a weight deciding the share of work

which depends on their relative performance

 Resource management:

 Each process running inside an exclusive CPU set (no shared cores)

 CPU sets may span several NUMA nodes

Work distribution

15

Example work distribution

 Amount of processes is the

minumum: 3

 GPU is managed by a full

core on the nearest socket

 CPU process spans two

NUMA nodes

 Xeon Phi operated in native

mode

 one MPI process running on

the coprocessor

16

 More than one CPU processes

 maybe favorable in order to avoid NUMA problems: one per NUMA

node

 one process per core/PU also possible (in case OpenMP is not

present/desired)

 Number of PUs for GPU management

 at least one, but the other PU on the same core may have problems in

this case

 More than one process on the Xeon Phi

Degrees of freedom in work distribution

17

 Each process stores idle/busy states and locality information of

each of it‘s PUs (e.g. for initial state of CPU process)

 One shepherd thread will be created per PU:

 The shepherd threads wait for tasks to be put in the task queue

Resource management

18

 A task is defined by

1. A function callback along with parameters

2. The number of PUs to process the task

3. The preferred NUMA node to process the task

4. Additional flags

 Available flags (can be combined):

 PRIO_HIGH: Put task to beginning of queue.

 NODE_STRICT: Execute task only on the given NUMA node.

 NOT_ALLOW_CHILD: Do not allow a child task to use the task‘s PUs.

 NOT_PIN: Do not register the task in the PU map.

 All tasks line up in a single queue

Task processing

19

Simple tasking example

20

Asynchronous checkpoints via GHOST-task thread:

ghost_task_create(ckpt_task_ptr, &CP_func, CP_obj,…)

ghost_task_enque (ckpt_task_ptr);

ghost_task_wait (ckpt_task_ptr);

update_CP(CP_obj);
// async. copy of CP is updated

CP_obj:
 object of ckpt_t type

 ckpt_t class is defined by programmer

 checkpoint object contains the

aynchronous copy of the checkpoint

CP_func:
 This function takes an updated copz of

CP_obj as argument and writes to PFS..

Parent task

Checkpoint task

FAULT TOLERANCE AND

ASYNCHRONOUS CHECKPOINTING

Pragmatic approach:

• Hide costs for checkpointing

• Asynchronous

• Remote Node checkpoints / hierarchical

• Restart from node local data if possible

• Prototype experiences with GPI – Application

based FT with CR

22

Checkpoint/Restart optimizations

1. Application level checkpointing

 Minimal checkpoint data

2. Asynchronous checkpointing

3. Multi-level checkpointing

(PFS/remote node/localFS)

4. Checkpoint compression

5. …

Hide / avoid costs of

computational costs

of checkpoints

23

Synchronous vs. asynchronous checkpointing

 Synchronous checkpointing:

 Computation halts for I/O time

 High execution time overhead

 Asynchronous checkpointing:

 Dedicated threads for performing asynchronous I/O

 Low execution time overhead

 Checkpoint location: flexible

(e.g. using SCR)

 In-memory copy required.

24

Asynchronous Checkpointing

 Hybrid (MPI-OpenMP) configuration performance comparison

Cluster: LiMa, num. of nodes = 32, PFS = LXFS, Aggregated CP size = 200 GB/CP

Checkpoint-thread

process/thread

Idle SMT core

Total IO time: 436s

Actual Overhead: 32s

25

Asynchronous checkpoints – Remote node

 Memory mapped – local filesystem

 Checkpoint data by

 Exchanging MPI messages

› Portable

› May interfere with regular communication

 Low priority checkpoint message scheduling?

 rsync /remotenode/localFS

› Generality?  efficient via IB?

› May use (slow) alternative data path (e.g. GBit – if available)

 Failed node detection?!

 Restart MPI within same batch job and ignore FT in communication

layer?!

APPLICATION DRIVEN

AUTOMATIC FAULT TOLERANCE

(AFT)

Our (naïve) approach:

• Regular asynchronous Checkpoints (FS or remote node)

• Node failure detected by communication library

(Communication library in valid state after node/process loss)

• Spare nodes are available – application replaces lost node

• Application driven restart from last checkpoint

27

AFT: GPI Introduction

 Current version: GPI-2 (see http://www.gpi-site.com/gpi2/)

Developed by Fraunhofer IWTM

 Implements GASPI standard: http://www.gaspi.de/software.html

(Global Address Space Programming Interface)

 PGAS programming model

 Two memory parts

• Local memory:

local to each GPI process

• Global memory: Accessible

for other processes

 Enables fault tolerance

• via providing TIMEOUT for every communication call.

http://www.gpi-site.com/gpi2/
http://www.gpi-site.com/gpi2/
http://www.gpi-site.com/gpi2/
http://www.gpi-site.com/gpi2/
http://www.gaspi.de/software.html
http://www.gaspi.de/software.html
http://www.gaspi.de/software.html

28

AFT: GPI - Application requirements

 Algorithm based on PGAS model

 For effective fault tolerance

• No global synchronization, barriers

• Each GPI-process communicates with certain subset of

GPI-processes (e.g. neighbors)

• In case of failures, rest of the processes detect errors in

results and correct them accordingly.

 Algorithm driven FT based applications

29

Prototype FT implementation

 Idea:

 Running the program with ‚n+m‘ processes, where ‚m‘ is the

number of idle processes.

 Program initially utilizes ‚n‘ processes for work (work-group)

 In case of a failed process in ‚work-group‘, an idle process is

added to the ‚work-group‘.

 Processes in newly established ‚work-group‘ restart the work

from last checkpoint.

30

Prototype FT implementation: LBM

 Program flow:

31

Toy FT implementation: Health Check

 What GASPI provides:

 A process local copy of ‚health check vector‘.

 After each read/write from a process, the health check vector

entry of that particular process is locally updated.

 The entires of health vector are either 0 or 1.

 User side:

 User can copy this ‚health vector‘ via gaspi_state_vec_get()

routine.

 Deletion of old comm., creation of new comm., new

communication structure, (checkpoint/restart) -> user

responsibility

32

Prototype FT implementation: LBM

 Health check routine

33

Toy FT implementation: local health check

P0 signals idle proc.

to join worker comm.

P1 initiates a global

health check. A

consistant view of the

worker communicator

is formed.

Read last checkpoint

(neighbour-level/PFS)
Every process checks

neibours health

P0

P1

P2

P3

P4-idle

Create new worker

comm.

34

Toy FT implementation: LBM Benchmarks (I)

 Global health check, 16 nodes 1 failure

35

Toy FT implementation: LBM Benchmarks (II)

 Recovery time scaling, LOCAL Health check

2
3

3

4
4

4

3
4

8

4
5

5

2
7

0

5
4

3

2
6

7

6
6

3

36

Toy FT implementation: LBM Benchmarks (III)

 Recovery time scaling, GLOBAL Health check

1
2

2
 1
2

9
 1
3

4

1
9

2

37

GPI fault recovery overhead:

 Timeout returns for communication after failure

 Only the communication to/from the failed process contibutes to this

overhead.

 Global health vector update to have consistant view of the

health vector across all processes

 Rebuilding worker communicator

 Process 0 signals the idle processes, which then joins the creation of

new comm.

 Checkpoint fetching from neighbour (or PFS) and

reinitializing

38

Prototype FT implementation: SPMVM

 Each process has point-to-point communication with many

other processes.

 This communication pattern of a matrix is checkpointed at

the start once.

 Restart:

 ‚Recovery-process‘ reads the matrix data & communication

pattern of the dead-process.

 Remaining processes redirect all communication from dead-

process to recovery-process.

39

Neighbor level checkpointing for GPI (I)

 Development of Multi-level checkpointing infrastructure.

 Based on library calls

 Library thread responsible for transfering data in-between nodes and

PFS.

 Independent of communication library (MPI/GPI)

 Multi-level checkpointing with various layers of the application.

 Different checkpoint frequency on various layers.

40

Neighbor level checkpointing for GPI (II)

41

Testing:

 Tested successfully up to 1000+ cores with 1-2 failures.

 Challenges using higher number of cores:

 Seg. fault during deletion of old comm/ recreat new comm.

 Issue using barrier for new comm.

 Both issues are under investigation by Frauenhofer IWTM.

 Bug in GPI library has been detected and will be fixed in next release.

 Future optimizations:

 Reduction in health check time.

42

Concluding remarks:

Asynchronicity: User controlled node-level resource management

still lacks simple and efficient support from OS.

FT: If you use checkpointing

 do it asynchronously (dedicated threads) – keep data in memory? –

reduce interference with regular communication?

 use application specific knowledge

 restarting at runtime is a challenge with current communication

libraries  You feel like a test pilot

 GPI is on a reasonable way – MPI-ULFM?

FT: Exascale “modus operandi” still unclear:

 Pool of spare nodes?

 Continue wit remaining set

43

Thank you!
 Questions?

 will become public available this year

–

If you are interested in testing, you are very welcome

–

ask us: https://blogs.fau.de/essex/

Partially funded by DFG Priority Programme1648

Partially funded by BMBF project FeTol

https://blogs.fau.de/essex/

