
Performance Engineering for Algorithmic Building Blocks

in the GHOST Library

Georg Hager, Moritz Kreutzer, Faisal Shahzad, Gerhard Wellein, Martin Galgon,

Lukas Krämer, Bruno Lang, Jonas Thies, Melven Röhrig-Zöllner, Achim

Basermann, Andreas Pieper, Andreas Alvermann, Holger Fehske

Erlangen Regional Computing Center (RRZE)

University of Erlangen-Nuremberg

Germany

ESSEX-II Minisymposium @ SPPEXA Annual Plenary Meeting

January 25, 2016

Garching, Germany

Performance Engineering (PE)

The GHOST library

Work planned for ESSEX-II

Outline

The whole PE process at a glance

Kernel Polynomial Method

• Compute spectral properties of quantum system (Hamilton operator)

• Approximation of full spectrum

• Naïve implementation: SpMVM + several BLAS-1 kernels

Example: KPM

Sparse matrix vector multiply

Scaled vector addition

Vector scale

Scaled vector addition

Vector norm

Dot Product
Augmented Sparse Matrix

Multiple Vector Multiply

Application: Loop over random initial states Building blocks:

(Sparse) linear

algebra library

Algorithm: Loop over moments

Augmented Sparse

Matrix Vector Multiply

Step 1: naïve  augmented (fused) kernel

• Naïve kernel is clearly memory bound

• Better resource utilization

• BC = 3.39 B/F  2.23 B/F

• Still memory bound  same pattern

Step 2: augmented  blocked

• Augmented kernel is memory bound

• R = # of random vectors

• BC = 2.23 B/F  (1.88/R + 0.35) B/F

• Decouples from main memory BW

 Performance portability

becomes well defined!

What about the decoupled model?

Ω =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠

Why does it decrease?

The GHOST library

General Hybrid Optimized Sparse Toolkit

M. Kreutzer et al.: GHOST: Building blocks for high performance

sparse linear algebra on heterogeneous systems.

Preprint arXiv:1507.08101

• Strictly support the requirements of the project

• Enable fully heterogeneous operation

• Limit automation

• Do not force dynamic tasking

• Do not force C++ or an entirely new language

• Stick to the well-known “MPI+X” paradigm

• Support data parallelism via MPI+X

• Support functional parallelism via tasking

• Allow for strict thread/process-core affinity

GHOST design guidelines

Task parallelism: Asynchronous checkpointing with GHOST tasks

ghost_task_create(ckpt_task_ptr,&

CP_func, CP_obj,…)

ghost_task_enqueue(ckpt_task_ptr);

ghost_task_wait(ckpt_task_ptr);

update_CP(CP_obj);

// async. copy of CP is updated

CP_obj:
• void* to object of ckpt_t type

• ckpt_t class is defined by programmer

• checkpoint object contains the

asynchronous copy of the checkpoint

CP_func()

// This function takes an updated copy of
CP_obj as argument and writes to PFS

Parent task

Checkpoint task

it
e
ra

ti
v
e

Heterogeneous performance?

The need for hand-engineered kernels

Block vector times small matrix performance of GHOST

and existing BLAS libraries (tall skinny ZGEMM)

0.5 Pflop/s

SELL-C-σ

Performance portability for SpMVM

1. Pick chunk size 𝐶 (guided by

SIMD/T widths)

2. Pick sorting scope 𝜎

3. Sort rows by length within

each sorting scope

4. Pad chunks with zeros to

make them rectangular

5. Store matrix data in “chunk

column major order”

6. “Chunk occupancy”: fraction

of “useful” matrix entries

Constructing SELL-C-σ

SELL-6-12

β=0.66

𝛽 =
𝑁𝑛𝑧

𝑖=0
𝑁𝑐 𝐶 ⋅ 𝑙𝑖

Sorting scope 𝜎

Chunk size 𝐶

Width of chunk 𝑖: 𝑙𝑖

𝛽worst =
𝑁 + 𝐶 − 1

𝐶𝑁

𝑁≫𝐶 1

𝐶

What is performance portability?

ESSEX-II and GHOST

1. Building blocks development

• Improved support for mixed precision kernels

• Fast point-to-point sync on many-core

• High-precision reductions

• (Row-major storage TSQR)

• Full support for heterogeneous hardware (CPU, GPGPU, Phi)

2. Optimized sparse matrix data structures

• Identify promising candidates (ACSR, CSX)

• Exploiting matrix structure: symmetry, sub-structures

3. Holistic power and performance engineering

• Comprehensive instrumentation of GHOST library functions

• ECM performance modeling of SpMMVM and others

• Energy modeling of building blocks

• Performance modeling beyond the node

4. Comprehensive documentation

float sum = 0.0, c = 0.0;

for (int i=0; i<N; ++i) {

float prod = a[i]*b[i];

float y = prod-c;

float t = sum+y;

c = (t-sum)-y;

sum = t;

}

Example: performance impact of the Kahan-augmented dot product

J. Hofmann, D. Fey, J. Eitzinger, G. Hager, G. Wellein: Performance analysis of the Kahan-

enhanced scalar product on current multicore processors. Proc. PPAM2015. arXiv:1505.02586

1 ADD, 1 MULT 4 ADD, 1 MULT

float sum = 0.0;

for (int i=0; i<N; i++) {

sum = sum + a[i] * b[i]

}

• No impact of Kahan if any SIMD

is applied

• Compilers do not cut the cheese

• Method adaptable to other

applications (e.g., other high-

precision reductions, data

corruption checks)

IVB

(SP)

http://arxiv.org/abs/1505.02586

Example: Energy analysis of KPM

𝐸(𝑛) = 𝐹 ∙
𝑊00 + 𝑛 𝑊01 +𝑊1𝑓 +𝑊2𝑓

2

min(𝑛𝑃0 𝑓 , 𝑃max)

Energy-performance model

• Time to solution has

lowest-order impact on

energy

• Tailored kernels are

key to performance

(4.5x in runtime &

energy)

• Energy-performance

models yield correct

qualitative insight

• Future: Large-scale

energy analysis &

modeling

IVB

2.2 GHz

Download our building block library and applications:
http://tiny.cc/ghost

General, Hybrid, and Optimized Sparse Toolkit

Thank you.

