
Performance Engineering for Algorithmic Building Blocks

in the GHOST Library

Georg Hager, Moritz Kreutzer, Faisal Shahzad, Gerhard Wellein, Martin Galgon,

Lukas Krämer, Bruno Lang, Jonas Thies, Melven Röhrig-Zöllner, Achim

Basermann, Andreas Pieper, Andreas Alvermann, Holger Fehske

Erlangen Regional Computing Center (RRZE)

University of Erlangen-Nuremberg

Germany

ESSEX-II Minisymposium @ SPPEXA Annual Plenary Meeting

January 25, 2016

Garching, Germany

Performance Engineering (PE)

The GHOST library

Work planned for ESSEX-II

Outline

The whole PE process at a glance

Kernel Polynomial Method

Å Compute spectral properties of quantum system (Hamilton operator)

Å Approximation of full spectrum

Å Naïve implementation: SpMVM + several BLAS-1 kernels

Example: KPM

Sparse matrix vector multiply

Scaled vector addition

Vector scale

Scaled vector addition

Vector norm

Dot Product
Augmented Sparse Matrix

Multiple Vector Multiply

Application: Loop over random initial states Building blocks:

(Sparse) linear

algebra library

Algorithm: Loop over moments

Augmented Sparse

Matrix Vector Multiply

Step 1: naïve Ą augmented (fused) kernel

ÅNaïve kernel is clearly memory bound

ÅBetter resource utilization

ÅBC = 3.39 B/F Ą 2.23 B/F

ÅStill memory bound Ą same pattern

Step 2: augmented Ą blocked

ÅAugmented kernel is memory bound

ÅR = # of random vectors

ÅBC = 2.23 B/F Ą (1.88/R + 0.35) B/F

ÅDecouples from main memory BW

Ą Performance portability

becomes well defined!

What about the decoupled model?

ɋ=

Why does it decrease?

The GHOST library

General Hybrid Optimized Sparse Toolkit

M. Kreutzer et al.: GHOST: Building blocks for high performance

sparse linear algebra on heterogeneous systems.

Preprint arXiv:1507.08101

Å Strictly support the requirements of the project

Å Enable fully heterogeneous operation

Å Limit automation

Å Do not force dynamic tasking

Å Do not force C++ or an entirely new language

Å Stick to the well-known ñMPI+Xò paradigm

Å Support data parallelism via MPI+X

Å Support functional parallelism via tasking

Å Allow for strict thread/process-core affinity

GHOST design guidelines

Task parallelism: Asynchronous checkpointing with GHOST tasks

ghost_task_create (ckpt_task_ptr ,&

CP_func , CP_obj ,é)

ghost_task_enqueue (ckpt_task_ptr);

ghost_task_wait (ckpt_task_ptr);

update_CP (CP_obj);

// async. copy of CP is updated

CP_obj :
Åvoid* to object of ckpt_t type

Åckpt_t class is defined by programmer

Åcheckpoint object contains the

asynchronous copy of the checkpoint

CP_func ()

// This function takes an updated copy of
CP_obj as argument and writes to PFS

Parent task

Checkpoint task

it
e
ra

ti
v
e

Heterogeneous performance?

The need for hand-engineered kernels

Block vector times small matrix performance of GHOST

and existing BLAS libraries (tall skinny ZGEMM)

0.5 Pflop/s

SELL-C-ů

Performance portability for SpMVM

1. Pick chunk sizeὅ(guided by

SIMD/T widths)

2. Pick sorting scope„

3. Sort rows by length within

each sorting scope

4. Pad chunks with zeros to

make them rectangular

5. Store matrix data in ñchunk

column major orderò

6. ñChunk occupancyò: fraction

of ñusefulò matrix entries

Constructing SELL-C-ů

SELL-6-12

ɓ=0.66

‍
ὔ

В ὅẗὰ

Sorting scope„

Chunk size ὅ

Width of chunkὭ: ὰ

‍×ÏÒÓÔ
ὔ ὅ ρ

ὅὔ

ḻ ρ

ὅ

What is performance portability?

ESSEX-II and GHOST

1. Building blocks development

Å Improved support for mixed precision kernels

Å Fast point-to-point sync on many-core

Å High-precision reductions

Å (Row-major storage TSQR)

Å Full support for heterogeneous hardware (CPU, GPGPU, Phi)

2. Optimized sparse matrix data structures

Å Identify promising candidates (ACSR, CSX)

Å Exploiting matrix structure: symmetry, sub-structures

3. Holistic power and performance engineering

Å Comprehensive instrumentation of GHOST library functions

Å ECM performance modeling of SpMMVM and others

Å Energy modeling of building blocks

Å Performance modeling beyond the node

4. Comprehensive documentation

float sum = 0.0, c = 0.0;

for (int i=0; i<N; ++i) {

float prod = a[i]*b[i];

float y = prod - c;

float t = sum+y;

c = (t - sum) - y;

sum = t;

}

Example: performance impact of the Kahan-augmented dot product

J. Hofmann, D. Fey, J. Eitzinger, G. Hager, G. Wellein: Performance analysis of the Kahan-

enhanced scalar product on current multicore processors. Proc. PPAM2015. arXiv:1505.02586

1 ADD, 1 MULT 4 ADD, 1 MULT

float sum = 0.0;

for (int i=0; i<N; i++) {

sum = sum + a[i] * b[i]

}

Å No impact of Kahan if any SIMD

is applied

Å Compilers do not cut the cheese

Å Method adaptable to other

applications (e.g., other high-

precision reductions, data

corruption checks)

IVB

(SP)

