
Department of Computing13.09.2013

Exploiting Performance Benefits of Extruded
Meshes in PyOP2

Department of Computing - Software Performance Optimisation Group
Imperial College London

Gheorghe-Teodor Bercea,
Florian Rathgeber, Fabio Luporini,

David A. Ham, Paul H. J. Kelly

Friday, 13 September 13

Department of Computing13.09.2013

‣ Atmosphere and
ocean modelling

‣ Climate models
and numerical
weather
prediction

‣ Thin-shell object
simulations

Mesh-Based Simulation Applications

2

Friday, 13 September 13

Department of Computing13.09.2013

Types of Meshes
‣ Unstructured & structured meshes

‣ Hybrid: unstructured in the 2D + structured in the 3rd dimension = Extruded Meshes.

3

Friday, 13 September 13

Department of Computing13.09.2013

Advantages of Extruded Meshes of 2D unstructured
base-meshes

Flexibility, Accuracy.

4

Friday, 13 September 13

Department of Computing13.09.2013

What do all these applications have in
common?

The type of operations:

5

The application of the SAME
computational kernel to EVERY member

of a discrete set of mesh elements.

Friday, 13 September 13

Department of Computing13.09.2013

PyOP2

‣ Provides a high level
Domain Specific Language
(DSL) which translates
code to a low level
implementation through
runtime code generation.

‣ Adds a new layer of
abstraction for a flexible,
portable and scalable
implementation.

6

A Python implementation of the OP2 paradigm (Oxford Parallel Language for
Unstructured Mesh Computations).

Friday, 13 September 13

Department of Computing13.09.2013

The PyOP2 DSL
‣ SETS for mesh elements;

‣ Data arrays (DATs) for fields, coordinates;

‣ MAPs for the connectivity of mesh elements;

‣ PARALLEL LOOPS for performing the actual work.

0 0 0 0 011 1 1

Double-
Click To

edge2nodes

Edge 1 Edge 2

Node 1 Node 2 Node 3 Node 4

7

Friday, 13 September 13

Department of Computing13.09.2013

Code generation for indirect PyOP2 parallel loops

8

Set of Mesh Elements

Map

Dat

Kernel Function

Kernel Function Wrapper

Iterate over mesh elements

For each element use the
map to reference data.

Stage-in data to be used by
the kernel.

Friday, 13 September 13

Department of Computing13.09.2013

Code generation for indirect PyOP2 parallel loops

9

Set of Mesh Elements

Map

Dat

Kernel Function

Kernel Function Wrapper

Iterate over mesh elements

For each element use the
map to reference data.

Stage-in data to be used by
the kernel.

For each set of indirect element
references iterate over the

column elements.

Friday, 13 September 13

Department of Computing13.09.2013

A Minimal Test Problem

Effectively we are aiming to perform a very simple experiment: a global reduction
operation.

No favours: The mesh we will be using is big enough to ensure that no cache benefits
will be observed between time steps.

- The 2D unstructured mesh contains: 806,000 cells.

- There are 100 time steps executed in total.
Data movement dominates computation!

(x,y)

Coordinate Field: Location of Degrees of
Freedom

Tracer: Location of Degrees of
Freedom

10

Friday, 13 September 13

Department of Computing13.09.2013

Kernel Application on extruded meshes

11

!
void comp_vol(double A[0], !
! ! ! ! double *x[], !
! ! ! ! double *y[], !
! ! ! ! int j){!
!
int area = x[0][0]*(x[2][1]-x[4][1]) +!
! ! ! x[2][0]*(x[4][1]-x[0][1]) +!
! ! ! x[4][0]*(x[0][1]-x[2][1]);!
!
A[0] += 0.5*abs(area)*0.1*y[0][0];!
!
}

Friday, 13 September 13

Department of Computing13.09.2013

Using Extruded Meshes Efficiently
‣ We start from a 2D unstructured

mesh.

‣ The 3rd dimension is structured.

‣ The innermost iteration occurs over
the cells in the column.

‣ For each field we have just one
indirection per column. Hence the
penalty for the unstructured
horizontal mesh is only paid once per
column.

Goal: Show that the accesses in the structured direction
remove the performance penalty of the unstructured
direction.

12

Friday, 13 September 13

Department of Computing13.09.2013

Column Numbering - Vertical Data Locality

Vertical numbering of the mesh :

‣ Each group of degrees
of freedom in the 2D will
be “extruded” vertically
for each of the layers.

‣ Numbering will be
continuous as we want
all the elements of the
column to occupy a
contiguous area in
memory.

13

Friday, 13 September 13

Department of Computing13.09.2013

Mesh Numbering - Data Locality in the 2D
Using a space filling curve to renumber the 2D mesh
will ensure temporal locality of the indirections.

14

Friday, 13 September 13

Department of Computing13.09.2013

This is how a good numbering looks:

15

Friday, 13 September 13

Department of Computing13.09.2013

Partitioning and Colouring

16

Friday, 13 September 13

Department of Computing13.09.2013

‣ Intel 4-Core
(SandyBridge)
i7-2600 CPU @
3.40GHz

‣ Memory topology
diagram using
Likwid.

The hardware

17

Friday, 13 September 13

Department of Computing13.09.2013

L3 Cache Bandwidth STREAM Comparison
using Likwid

18

Friday, 13 September 13

Department of Computing13.09.2013

Valuable Bandwidth

19

Friday, 13 September 13

Department of Computing13.09.2013

Valuable Bandwidth - a Lower Bound

20

Friday, 13 September 13

Department of Computing13.09.2013

Valuable Bandwidth - Increasing thread count

21

Friday, 13 September 13

Department of Computing13.09.2013

Valuable Bandwidth - STREAM Comparison

22

Friday, 13 September 13

Department of Computing13.09.2013

Conclusions for this experiment

We consider the Valuable Bandwidth achieved
with 8 threads and more than 100 layers and
compare it with the STREAM bandwidth.

The Valuable Bandwidth achievement of this
bandwidth stress test is 82.4% of the STREAM
benchmark bandwidth.

The number of layers needed to offset the
penalty of using an unstructured mesh is about
20.

23

Friday, 13 September 13

Department of Computing13.09.2013

Remarks

‣ We now know what makes a good Extruded Mesh.

‣ Location, location, location!

‣ Comparison with STREAM rather than a Structured
Mesh code.

‣ Different slices through the memory hierarchy
performed with Likwid show similar performance
numbers to the STREAM benchmark.

‣ Limitations: only reading, only one platform, only
single socket.

24

Friday, 13 September 13

Department of Computing13.09.2013

Thank you!

25

Friday, 13 September 13

Department of Computing13.09.2013

Solving Partial Differential Equations

• Means starting from a high level
specification of the problem and
ending up with a low-level optimised
implementation.

• The FEniCS - Dolfin tool chain already
does something similar:

• Uses the Unified Form
Language (UFL) to specify the
problem.

• Uses the FEniCS Form Compiler
(FFC) to automatically
generate the kernel code.

• Uses the Dolfin backend to
provide the code required to
run the kernel function.

26

Friday, 13 September 13

Department of Computing13.09.2013

A PyOP2 parallel loop - direct

27

Set of Mesh Elements

Map

Dat

Kernel Function

Kernel Function Wrapper

Set of Mesh Elements

Direct addressing function

Dat

Kernel Function

Kernel Function Wrapper

Friday, 13 September 13

Department of Computing13.09.2013

Considerations for Exploiting the
Structure of Data

• There is a tight coupling between the structure of the mesh and
the structure of the data.

• Performance is affected as the problem structure has a direct
impact on data movement.

• Moving data efficiently leads to improved scalability - saturating
the bandwidth is not a question of “if” but a question of “when”.

• Exploiting structure requires detailed knowledge of the
particularities of each system architecture - different micro-
optimisations are required for different architectures so this
affects portability.

• Being able to seamlessly switch between implementations
provides flexibility.

28

Friday, 13 September 13

Department of Computing13.09.2013

Valuable Bandwidth - a Lower Bound

29

Friday, 13 September 13

Department of Computing13.09.2013

Valuable Bandwidth - a Lower Bound

30

Friday, 13 September 13

Department of Computing13.09.2013

L2 Cache Bandwidth using Likwid

31

Friday, 13 September 13

Department of Computing13.09.2013

Partition Independence

32

Friday, 13 September 13

Department of Computing13.09.2013

L3 Bandwidth (Likwid) - Layers vs. Threads

33

Friday, 13 September 13

Department of Computing13.09.2013

Iterating over the Mesh

•for each colour C

•for each partition P in C

•for each 2D cell in partition P

•for each cell in the column

•apply Kernel

34

Friday, 13 September 13

