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‣ Atmosphere and 
ocean modelling

‣ Climate models 
and numerical 
weather 
prediction

‣ Thin-shell object 
simulations

Mesh-Based Simulation Applications
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Types of Meshes
‣ Unstructured & structured meshes

‣ Hybrid: unstructured in the 2D + structured in the 3rd dimension = Extruded Meshes.
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Advantages of Extruded Meshes of 2D unstructured 
base-meshes 

Flexibility, Accuracy.
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What do all these applications have in 
common?

The type of operations:
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The application of the SAME 
computational kernel to EVERY member 

of a discrete set of mesh elements.
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PyOP2

‣ Provides a high level 
Domain Specific Language 
(DSL) which translates 
code to a low level 
implementation through 
runtime code generation.

‣ Adds a new layer of 
abstraction for a flexible, 
portable and scalable 
implementation.
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A Python implementation of the OP2 paradigm (Oxford Parallel Language for 
Unstructured Mesh Computations).
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The PyOP2 DSL
‣ SETS for mesh elements;

‣ Data arrays (DATs) for fields, coordinates;

‣ MAPs for the connectivity  of mesh elements;

‣ PARALLEL LOOPS for performing the actual work.
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Code generation for indirect PyOP2 parallel loops
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Set of Mesh Elements

Map

Dat

Kernel Function

Kernel Function Wrapper

Iterate over mesh elements

For each element use the 
map to reference data.

Stage-in data to be used by 
the kernel.
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Code generation for indirect PyOP2 parallel loops
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Set of Mesh Elements

Map

Dat

Kernel Function

Kernel Function Wrapper

Iterate over mesh elements

For each element use the 
map to reference data.

Stage-in data to be used by 
the kernel.

For each set of indirect element 
references iterate over the 

column elements.
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A Minimal Test Problem

Effectively we are aiming to perform a very simple experiment: a global reduction 
operation.

No favours: The mesh we will be using is big enough to ensure that no cache benefits 
will be observed between time steps.

- The 2D unstructured mesh contains: 806,000 cells.

- There are 100 time steps executed in total.
Data movement dominates computation!

(x,y)

Coordinate Field: Location of Degrees of 
Freedom

Tracer: Location of Degrees of 
Freedom
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Kernel Application on extruded meshes
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!
void comp_vol(double A[0], !
! ! ! ! double *x[], !
! ! ! ! double *y[], !
! ! ! ! int j){!
!
int area = x[0][0]*(x[2][1]-x[4][1]) +!
! ! !  x[2][0]*(x[4][1]-x[0][1]) +!
! ! !  x[4][0]*(x[0][1]-x[2][1]);!
!
A[0] += 0.5*abs(area)*0.1*y[0][0];!
!
}
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Using Extruded Meshes Efficiently
‣ We start from a 2D unstructured 

mesh.

‣ The 3rd dimension is structured. 

‣ The innermost iteration occurs over 
the cells in the column.

‣ For each field we have just one 
indirection per column. Hence the 
penalty for the unstructured 
horizontal mesh is only paid once per 
column.

Goal: Show that the accesses in the structured direction 
remove the performance penalty of the unstructured 
direction.
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Column Numbering - Vertical Data Locality

Vertical numbering of the mesh :

‣ Each group of degrees 
of freedom in the 2D will 
be “extruded” vertically 
for each of the layers. 

‣ Numbering will be 
continuous as we want 
all the elements of the 
column to occupy a 
contiguous area in 
memory.

13

Friday, 13 September 13



Department of Computing13.09.2013

Mesh Numbering - Data Locality in the 2D
Using a space filling curve to renumber the 2D mesh 
will ensure temporal locality of the indirections.
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This is how a good numbering looks:
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Partitioning and Colouring
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‣ Intel 4-Core 
(SandyBridge) 
i7-2600 CPU @ 
3.40GHz

‣ Memory topology 
diagram using 
Likwid.

The hardware
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L3 Cache Bandwidth STREAM Comparison 
using Likwid
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Valuable Bandwidth
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Valuable Bandwidth - a Lower Bound
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Valuable Bandwidth - Increasing thread count
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Valuable Bandwidth - STREAM Comparison
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Conclusions for this experiment

We consider the Valuable Bandwidth achieved 
with 8 threads and more than 100 layers and 
compare it with the STREAM bandwidth.

The Valuable Bandwidth achievement of this 
bandwidth stress test is 82.4% of the STREAM 
benchmark bandwidth. 

The number of layers needed to offset the 
penalty of using an unstructured mesh is about 
20.
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Remarks

‣ We now know what makes a good Extruded Mesh.

‣ Location, location, location! 

‣ Comparison with STREAM rather than a Structured 
Mesh code.

‣ Different slices through the memory hierarchy 
performed with Likwid show similar performance 
numbers to the STREAM benchmark.

‣ Limitations: only reading, only one platform, only 
single socket. 
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Thank you!
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Solving Partial Differential Equations

• Means starting from a high level 
specification of the problem and 
ending up with a low-level optimised 
implementation.

• The FEniCS - Dolfin tool chain already 
does something similar: 

• Uses the Unified Form 
Language (UFL) to specify the 
problem.

• Uses the FEniCS Form Compiler 
(FFC) to automatically 
generate the kernel code.

• Uses the Dolfin backend to 
provide the code required to 
run the kernel function.
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A PyOP2 parallel loop - direct
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Set of Mesh Elements

Map

Dat

Kernel Function

Kernel Function Wrapper

Set of Mesh Elements

Direct addressing function

Dat

Kernel Function

Kernel Function Wrapper
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Considerations for Exploiting the 
Structure of Data

• There is a tight coupling between the structure of the mesh and 
the structure of the data.

• Performance is affected as the problem structure has a direct 
impact on data movement. 

• Moving data efficiently leads to improved scalability - saturating 
the bandwidth is not a question of “if” but a question of “when”.

• Exploiting structure requires detailed knowledge of the 
particularities of each system architecture - different micro-
optimisations are required for different architectures so this 
affects portability.

• Being able to seamlessly switch between implementations 
provides flexibility.
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Valuable Bandwidth - a Lower Bound
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Valuable Bandwidth - a Lower Bound

30

Friday, 13 September 13



Department of Computing13.09.2013

L2 Cache Bandwidth using Likwid
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Partition Independence
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L3 Bandwidth (Likwid) - Layers vs. Threads
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Iterating over the Mesh

•for each colour C

•for each partition P in C

•for each 2D cell in partition P

•for each cell in the column

•apply Kernel
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