Can Block Iterative Eigensolvers Fulfill their Performance Promise?

Jonas Thies Melven Röhrig-Zöllner Achim Basermann

DLR Simulation and Software Technology Distributed Systems and Component Software High Performance Computing Group

Motivation

Mathematical problem

• Find $\mathcal{O}(10)$ eigenpairs

 $Ax_i = \lambda_i x_i$

of a large, sparse matrix A.

- Interior or extreme λ_i ,
- symmetric or general A.

Memory gap

- Small memory bandwidth vs. high Peak Flop rate
- \rightarrow Increase the compute intensity

Roofline performance model

(2x 12 core Haswell EP)

Regular vs. block JDQR

1: start from initial spaces

$$V^{H}V = I, V^{A} := AV, H = V^{H}AV$$

2: while ... do
3: (sorted) Schur decomp.,
 $H = STS^{H}, S^{H}S = I$
4: select shift $\theta = T_{1,1}$
5: $u = Vs_{1}, u^{A} = V^{A}s_{1}$
6: $r = u^{A} - \theta u$
7: (lock converged eigenpairs in Q)
8: (shrink subspaces if necessary)
9: $\tilde{Q} = [Q u]$
solve approximately for $t \perp \tilde{Q}$:
10: $(I - \tilde{Q}\tilde{Q}^{H})(A - \theta I)(I - \tilde{Q}\tilde{Q}^{H})t = -\mu$
11: orthogonalize t against V
12: extend $V = [V\tilde{t}], V^{A}, H = V^{H}V^{A}$
13: end while

Regular vs. block JDQR

1: start from initial spaces

$$V^H V = I, V^A := AV, H = V^H AV$$

2: while ... do
3: (sorted) Schur decomp.,
 $H = STS^H, S^H S = I$
4: select shift $\theta = T_{1,1}$
5: $u = Vs_1, u^A = V^A s_1$
6: $r = u^A - \theta u$
7: (lock converged eigenpairs in Q)
8: (shrink subspaces if necessary)
9: $\tilde{Q} = [Q \ u]$
solve approximately for $t \perp \tilde{Q}$:
10: $(I - \tilde{Q}\tilde{Q}^H)(A - \theta I)(I - \tilde{Q}\tilde{Q}^H)t = -t$
11: orthogonalize t against V
12: extend $V = [V\tilde{t}], V^A, H = V^H V^A$
13: end while

(...) (...) while ... do (...) (...) select shifts $\theta_i = T_{i,i}, i = 1 \dots n_b$ $u = VS_{..1:n_b}, u^A = V^A S_{..1:n_b}$ $r_{:,i} = u_{\cdot,i}^A - \theta_i u_{:,i}$ (...) $\tilde{Q} = [Q \ u]$ solve n_b independent systems $(I - \tilde{Q}\tilde{Q}^{H})(A - \theta_{i}I)(I - \tilde{Q}\tilde{Q}^{H})t_{i,i} = -r_{i,i}$ block-orthogonalize t against V, extend subspaces (by n_b vecs) end while

Numerical behavior

Block size 2

Block size 4

Kernels needed for BJDQR

- spMMVM: sparse Matrix times Multiple Vector Multiplication
- block projection, $y \leftarrow (I VV^H)x$
- block vector orthogonalization given V, W: V^HV = I, find Q, R: W = QR, Q^HQ = I, V^HQ = 0.
- subspace transformation for 'thick restart' $V_{:,1:k} \leftarrow V_{:,1:m} \cdot S, S \in \mathbb{C}^{m \times k}, k < m$
- preconditioning operation approximating $(A \tau I)^{-1}x$ (so far unpreconditioned blocked Krylov \rightarrow ESSEX-II)

Row major vs. column major storage

 $\mathsf{Tpetra}/\mathsf{TBB}\mathsf{, \ col \ major}$

Row major vs. column major storage

block size n_b GHOST, col major

GHOST, row major

Row major vs. column major storage

- · consequences for overall implementation (avoid strides!)
- SELL-C- σ most helpful if SIMD/SIMT width $> n_b$

Overall block speedup (strong scaling)

Setup

- Non-symmetric matrix from 7-point 3D PDE discretization $(n \approx 1.3 \cdot 10^8, n_{nz} \approx 9.4 \cdot 10^8)$
- Seeking 20 eigenvalues
- Ivy Bridge Cluster

Results

- $n_b = 2$: significantly faster
- $n_b = 4$: no further improvement

See Röhrig-Zöllner et al SISC 37(6), 2015

(const. bar heigth \equiv linear strong scaling)

Block orthogonalization schemes

- Given orthogonal vectors $(v_1, \ldots, v_k) = V$
- For $X \in \mathbb{R}^{n imes n_b}$ find orthogonal $Y \in \mathbb{R}^{n imes ilde{n}_b}$ with

$$YR_1 = X - VR_2$$
, and $V^T Y = 0$

Two phase algorithms

Phase 1 Project: $\tilde{X} \leftarrow (I - VV^T)X$ Phase 2 Orthogonalize: $Y \leftarrow f(\tilde{X})$

- ase 2 Orthogonalize: $f \leftarrow I(X)$
 - communication optimal *f* :
 - CholQR or SVQB (Stathopoulos and Wu, SISC 2002)
 - TSQR (Demmel et al., SISC 2012)
 - Each phase messes with the accuracy of the other. \rightarrow iterate

Raising the computational intensity

Kernel fusion

$$\begin{array}{ll} \mbox{Phase 2} & \tilde{X} \leftarrow XB, & C \leftarrow V^{T}\tilde{X} \\ \mbox{Phase 1} & \tilde{X} \leftarrow X - VC, & \tilde{B} \leftarrow \tilde{X}^{T}\tilde{X} \\ \mbox{Phase 3} & \tilde{X} \leftarrow XB, & \tilde{B} \leftarrow \tilde{X}^{T}\tilde{X} \end{array}$$

 $\Rightarrow \mathsf{use}\;\mathsf{SVQB}$

Increased precision

Idea Calculate value and error of each arithmetic operation

- Store intermediate results as double-double (DD) numbers
- Based on arithmetic building blocks (2Sum, 2Mult) Muller et al.: Handbook of Floating-Point Arithmetic, Springer 2010
- Exploit FMA operations (AVX2)

Results: accuracy after one iteration

Error in $V^T Y$

Error in $Y^T Y$

Results: runtime to orthogonality

Block orthogonalization aleviates memory gap

Faster through

- block algorithms
- kernel fusion
- increased precision arithmetic (not data)

Summary

Lessons learned

- · don't use BLAS-3 for 'tall, skinny matrices'
- row-major storage
- implement algorithms accordingly (avoid strides)
- use 'free' operations to increase accuracy/reduce iterations

Outlook: Peta and beyond

- reduction of synchronization kicks in
- increasing memory gap favors block methods
- crucial for ESSEX-II: matrix reordering and preconditioning

