Recent Advancements and Future Plans for Next-Generation Sparse Solvers in Trilinos

SPPEXA Symposium 2016
January 25th, 2016

Heidi K. Thornquist
Sandia National Laboratories
with contributions from the Trilinos Development Team
Optimal Kernels to Optimal Solutions:
- Geometry, Meshing
- Discretizations, Load Balancing.
- Scalable Linear, Nonlinear, Eigen, Transient, Optimization, UQ solvers.
- Scalable I/O, GPU, Manycore

- R&D 100 Winner
- Open Source
- Accessible via GitHub

- 60 Packages.
- Binary distributions:
 - Cray LIBSCI
 - Debian, Ubuntu
 - Intel (in process)

Transforming Computational Analysis To Support High Consequence Decisions

Each stage requires greater performance and error control of prior stages:
Always will need: more accurate and scalable methods, more sophisticated tools.
Unique Features of Trilinos

- **Huge library of algorithms**
 - Linear and nonlinear solvers, preconditioners, …
 - Optimization, transients, sensitivities, uncertainty, …

- **Growing support for multicore & hybrid CPU/GPU**
 - Built into the new Tpetra linear algebra objects
 - Therefore into iterative solvers with zero effort!
 - Unified intranode programming model
 - Spreading into the whole stack:
 - Multigrid, sparse factorizations, element assembly…

- **Growing support for mixed and arbitrary precisions**
 - Don’t have to rebuild Trilinos to use it!

- **Growing support for huge (> 2B unknowns) problems**
Compile-time Polymorphism

Software delivery:
• Essential Activity

How can we:
• Implement mixed precision algorithms?
• Implement generic fine-grain parallelism?
• Support hybrid CPU/GPU computations?
• Support extended precision?
• Explore redundant computations?
• Prepare for both exascale “swim lanes”?

C++ templates only sane way:
• Moving to completely templated Trilinos libraries.
• Other important benefits.
• A usable stack exists now in Trilinos.

Template Benefits:
– Compile time polymorphism.
– True generic programming.
– No runtime performance hit.
– Strong typing for mixed precision.
– Support for extended precision.
– Many more…

Template Drawbacks:
– Huge compile-time performance hit:
 • But good use of multicore :)
 • Eliminated for common data types.
– Complex notation:
 • Esp. for Fortran & C programmers).
 • Can insulate to some extent.
Solver Software Stack

Phase I packages

Optimization
- Unconstrained:
 - Find \(u \in \mathbb{R}^n \) that minimizes \(g(u) \)
- Constrained:
 - Find \(x \in \mathbb{R}^m \) and \(u \in \mathbb{R}^n \) that minimizes \(g(x, u) \) s.t. \(f(x, u) = 0 \)

Bifurcation Analysis
- Given nonlinear operator \(F(x, u) \in \mathbb{R}^{n+m} \)
- For \(F(x, u) = 0 \) find space \(u \in U \) \(\frac{\partial F}{\partial x} \)

Transient Problems
- Solve \(f(\dot{x}(t), x(t), t) = 0 \)
 - \(t \in [0, T], x(0) = x_0, \dot{x}(0) = x_0' \)
 - for \(x(t) \in \mathbb{R}^n, t \in [0, T] \)

Nonlinear Problems
- Given nonlinear operator \(F(x) \in \mathbb{R}^m \rightarrow \mathbb{R}^n \)
- Solve \(F(x) = 0 \) \(x \in \mathbb{R}^n \)

Linear Problems
- Linear Equations:
 - Given Linear Ops (Matrices) \(A, B \in \mathbb{R}^{m \times n} \)
 - Solve \(Ax = b \) for \(x \in \mathbb{R}^n \)
- Eigen Problems:
 - Solve \(Av = \lambda Bv \) for (all) \(\nu \in \mathbb{R}^n, \lambda \in \mathbb{R} \)

Phase II packages

Distributed Linear Algebra
- Matrix/Graph Equations:
 - Compute \(y = Ax; A = A(G); A \in \mathbb{R}^{m \times n}, G \in \mathbb{S}^{m \times n} \)
- Vector Problems:
 - Compute \(y = \alpha x + \beta w; \alpha = \langle x, y \rangle; x, y \in \mathbb{R}^n \)

Phase III packages: Manycore*, templated

Sensitivities
- (Automatic Differentiation: Sacado)

MOOCHO
- **LOCA**
- **T-LOCA**

Rythmos
- **NOX**
- **T-NOX**

Anasazi
- **AztecOO**
- **Belos***
- **Ifpack**, **Ifpack2***, **Muelu***, etc...

Epetra
- **Tpetra***
- **Kokkos***

Teuchos
- **T-NOX**
- **Phase I packages**
- **Phase II packages**
- **Phase III packages: Manycore*, templated**
Parallel Programming Model: Multi-level/Multi-device

- Inter-node/inter-device (distributed) parallelism and resource management
 - Node-local control flow (serial)
 - Intra-node (manycore) parallelism and resource management
 - Stateless *vectorizable* computational kernels run on each core

- Message Passing

- Threading

- Computation

- Network of computational nodes

- Computational node with manycore CPUs and/or GPGPU
Tpetra and Kokkos Packages

- **Tpetra** is a distributed linear algebra library.
 - Similar to Trilinos/Epetra:
 - Provides maps, vectors, sparse matrices and abstract linear operators
 - Heavily exploits templated C++
 - Employs hybrid (distributed + shared) parallelism via Kokkos

- **Kokkos** is an API for shared-memory parallel nodes.
 - Provides parallel_for and parallel_reduce skeletons
 - Provides local, shared-memory parallel linear algebra
 - Currently supports multiple shared-memory APIs:
 - OpenMP
 - Pthreads
 - NVIDIA CUDA-capable GPUs
Belos: Iterative linear solvers

• Provide a generic framework for developing iterative algorithms for solving large-scale linear systems.

• Algorithm implementation is accomplished through the use of traits classes and abstract base classes:
 – Operator-vector products: Belos::MultiVecTraits, Belos::OperatorTraits
 – Orthogonalization: Belos::OrthoManager, Belos::MatOrthoManager
 – Status tests: Belos::StatusTest, Belos::StatusTestResNorm
 – Iteration kernels: Belos::Iteration
 – Solver managers: Belos::SolverManager
 – Linear problem: Belos::LinearProblem

• Currently has solver managers for several linear solvers:
 – GMRES: Single-vector, block, pseudo-block, flexible
 – CG: Single-vector, block, pseudo-block
 – TFQMR, BiCGStab, MINRES
 – Least squares: LSQR
 – Recycling solvers: GCRO-DR, RCG
 – Seed solvers: PCPG, GMRES poly

• Can solve:
 – Hermitian, non-Hermitian linear problems
 – Real, complex-valued, arbitrary linear problems
 • arbitrary precision can be limited by LAPACK
Belos Arbitrary Precision Example

- Using Tpetra for underlying linear algebra just requires different template arguments in Belos
- Tpetra objects are templated on the underlying data types:

 \[
 \text{MultiVector<Scalar, LO, GO, Node>} \ldots \\
 \text{Operator<Scalar, LO, GO, Node>} \ldots \\
 \]

 - LO=GO=int, Node=Serial

<table>
<thead>
<tr>
<th>Scalar</th>
<th>float</th>
<th>double</th>
<th>double-double</th>
<th>quad-double</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve time (s)</td>
<td>2.6</td>
<td>5.3</td>
<td>29.9</td>
<td>76.5</td>
</tr>
<tr>
<td>Accuracy</td>
<td>10^{-6}</td>
<td>10^{-12}</td>
<td>10^{-24}</td>
<td>10^{-48}</td>
</tr>
</tbody>
</table>

Speedup of float over double in Belos linear solver.

<table>
<thead>
<tr>
<th></th>
<th>float</th>
<th>double</th>
<th>speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18 s</td>
<td>26 s</td>
<td>1.42x</td>
</tr>
</tbody>
</table>
Anasazi: Iterative eigensolvers

• Provide a generic framework for developing iterative algorithms for solving large-scale eigenproblems.

• Algorithm implementation is accomplished through the use of traits classes and abstract base classes:
 – Operator-vector products: Anasazi::MultiVecTraits, Anasazi::OperatorTraits
 – Orthogonalization: Anasazi::OrthoManager, Anasazi::MatOrthoManager
 – Status tests: Anasazi::StatusTest, Anasazi::StatusTestResNorm
 – Iteration kernels: Anasazi::Eigensolver
 – Eigensolver managers: Anasazi::SolverManager
 – Eigenproblem: Anasazi::Eigenproblem
 – Sort managers: Anasazi::SortManager

• Currently has solver managers for several eigensolvers:
 – Block Krylov-Schur
 – Block Davidson
 – LOBPCG
 – Generalized Davidson
 – TraceMin

• Can solve:
 – Standard and generalized eigenproblems
 – Hermitian and non-Hermitian eigenproblems
 – Real or complex-valued eigenproblems (arbitrary precision limited by LAPACK)
Anasazi & Denovo Example

- Denovo is a 3D, discrete ordinates multigroup radiation transport code for radiation shielding and reactor physics applications at ORNL.
- Block Krylov-Schur eigensolver used to solve the k-eigenvalue problem.
- Example: Generic Westinghouse PWR-900 nuclear reactor core
 - 2 energy groups and a 578 x 578 x 700 mesh
 - ~234 million cells
 - 78 billion unknowns
 - Computations performed on Jaguar, Cray XT-5 @ ORNL.
Preconditioners

- Convergence of iterative linear solvers and eigensolvers can be accelerated by the use of preconditioners.
- Templated preconditioner packages: Ifpack2, MueLu, ShyLU

Subdomain solvers or smoothers have to adapt to hierarchical architectures.
- One MPI process per core cannot exploit intra-node parallelism.
- One subdomain per MPI process hard to scale. (due to increase in the number of iterations)

- ShyLU (Scalable Hybrid LU) is hybrid
 - In the mathematical sense (direct + iterative) for robustness.
 - In the parallel programming sense (MPI + Threads) for scalability.
- More robust than simple preconditioners and scalable than direct solvers.
- ShyLU is a subdomain solver where a subdomain is not limited to one MPI process.
This solution approach was necessary for efficient simulation of new Sandia-designed ASICs.

\[f(x(t)) + \frac{dq(x(t))}{dt} = b(t) \]

- Ill conditioned, heterogeneous linear system structure
- Example:
 - 1645693 total devices, \(N = 1944792 \)
 - Single KLU solve: \(\sim 40 \) sec.
 - Single SuperLU solve: \(\sim 200 \) sec.
 - ShyLU: 4 MPI procs -> \(\text{rows}(S) = 1854 \)
Node-level Solvers

• Preconditioners require efficient node-level solvers that utilize thread-level parallelism.
 – Coarse-level solve in multigrid
 – Subdomain solve in domain decomposition preconditioner

• Ongoing efforts in developing node-level solvers include:
 – Task-parallel incomplete Cholesky factorizations (**Tacho**, Kyungjoo Kim)
 – Gauss-Seidel with coloring (Mehmet Deveci)
 – Multi-threaded sparse triangular solve (Andrew Bradley)
 – New sparse-direct solver framework that exploits both the multiple levels in matrix structure and memory hierarchy (**Basker**, Joshua Booth)
 • First parallel implementation of Gilbert-Peierls algorithm
 • Enables efficient block solution methods for frequency-domain analysis, PCE, etc.
Complimentary Efforts

• Tpetra / Kokkos “setup time” improvements
 – Interfaces for thread-parallel graph and matrix fill
 – Node-level kernels for matrix-matrix multiply and aggregation

• Fault tolerant iterative methods
 – Bit flips (James Elliott)
 – Process failures (Keita Teranishi)

• Communication-avoiding solvers
 – Integrate communication avoiding solvers into Trilinos
 – Develop communication avoiding preconditioners to accelerate iterative solver convergence (S. Rajamanickam, et al)
Trilinos Availability / Information

• Trilinos and related packages are available via LGPL or BSD.
• Current release (12.4), unlimited availability.

• Trilinos Awards:
 – 2004 R&D 100 Award.
 – SC2004 HPC Software Challenge Award.
 – Sandia Team Employee Recognition Award.
 – Lockheed-Martin Nova Award Nominee.

• More information:
 – http://trilinos.org
 – https://github.com/trilinos/trilinos

• Annual Forums:
 – Annual Trilinos User Group (TUG) Meeting in November @ SNL
 • talks and video available for download
 – Spring Developer Meeting, May @ SNL
 – EuroTUG 2016, April 18-20, LRZ, Garching, Germany