
Recent Advancements and Future Plans for
Next-Generation Sparse Solvers in

SPPEXA Symposium 2016
January 25th, 2016

Heidi K. Thornquist
 Sandia National Laboratories

with contributions from the Trilinos Development Team

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's

National Nuclear Security Administration under contract DE-AC04-94AL85000.

Op#mal	
 Kernels	
 to	
 Op#mal	
 Solu#ons:	

w  Geometry,	
 Meshing	
 	

w  Discre#za#ons,	
 Load	
 Balancing.	

w  Scalable	
 Linear,	
 Nonlinear,	
 Eigen,	
 	

Transient,	
 Op#miza#on,	
 UQ	
 solvers.	

w  Scalable	
 I/O,	
 GPU,	
 Manycore	

w  R&D	
 100	
 Winner	

w  Open	
 Source	

w  Accessible	
 via	

GitHub	

w  60	
 Packages.	

w  Binary	
 distribu#ons:	

w  Cray	
 LIBSCI	

w  Debian,	
 Ubuntu	

w  Intel	
 (in	
 process)	

Laptops	
 to	

Leadership	
 systems	

Unique Features of Trilinos

§  Huge library of algorithms
w  Linear and nonlinear solvers, preconditioners, …
w  Optimization, transients, sensitivities, uncertainty, …

§  Growing support for multicore & hybrid CPU/GPU
w  Built into the new Tpetra linear algebra objects

•  Therefore into iterative solvers with zero effort!
w  Unified intranode programming model
w  Spreading into the whole stack:

•  Multigrid, sparse factorizations, element assembly…

§  Growing support for mixed and arbitrary precisions
w  Don’t have to rebuild Trilinos to use it!

§  Growing support for huge (> 2B unknowns) problems

Compile-time Polymorphism
Software delivery:
•  Essential Activity

How can we:
•  Implement mixed precision algorithms?
•  Implement generic fine-grain parallelism?
•  Support hybrid CPU/GPU computations?
•  Support extended precision?
•  Explore redundant computations?
•  Prepare for both exascale “swim lanes”?

C++ templates only sane way:
•  Moving to completely templated Trilinos

libraries.
•  Other important benefits.
•  A usable stack exists now in Trilinos.

Template Benefits:
–  Compile time polymorphism.
–  True generic programming.
–  No runtime performance hit.
–  Strong typing for mixed precision.
–  Support for extended precision.
–  Many more…

Template Drawbacks:
–  Huge compile-time performance hit:

•  But good use of multicore :)
•  Eliminated for common data types.

-  Complex notation:
-  Esp. for Fortran & C programmers).
-  Can insulate to some extent.

Solver Software Stack

Bifurcation Analysis

DAEs/ODEs:
Transient Problems

Rythmos

Eigen Problems:
Linear Equations:

 Linear Problems
AztecOO

Ifpack,
ML, etc...

Anasazi

Vector Problems:
Matrix/Graph Equations:

Distributed Linear Algebra Epetra

Optimization

MOOCHO
Unconstrained:
Constrained:

Nonlinear Problems NOX

Se
ns

iti
vi

tie
s

(A
ut

om
at

ic
 D

iff
er

en
tia

tio
n:

 S
ac

ad
o)

LOCA

Phase I packages Phase II packages

Teuchos

T-LOCA

Belos*

Tpetra*
Kokkos*

Ifpack2*,
Muelu*,etc...

T-NOX

Phase III packages: Manycore*, templated

Parallel Programming Model:
Multi-level/Multi-device

Stateless vectorizable
computational kernels

run on each core

Intra-node (manycore) parallelism
and resource management

Node-local control flow (serial)

Inter-node/inter-device (distributed)
parallelism and resource management

Threading

Message Passing

Computation

computational
node with

manycore CPUs
and / or
GPGPU

network of
computational

nodes

Tpetra and Kokkos Packages

• Tpetra is a distributed linear algebra library.
–  Similar to Trilinos/Epetra:

•  Provides maps, vectors, sparse matrices and abstract linear
operators

– Heavily exploits templated C++
–  Employs hybrid (distributed + shared) parallelism via Kokkos

• Kokkos is an API for shared-memory parallel nodes.
–  Provides parallel_for and parallel_reduce skeletons
–  Provides local, shared-memory parallel linear algebra
– Currently supports multiple shared-memory APIs:

•  OpenMP
•  Pthreads
•  NVIDIA CUDA-capable GPUs

Belos: Iterative linear solvers
•  Provide a generic framework for developing iterative algorithms for solving

large-scale linear systems.
•  Algorithm implementation is accomplished through the use of traits classes

and abstract base classes:
–  Operator-vector products: Belos::MultiVecTraits, Belos::OperatorTraits
–  Orthogonalization: Belos::OrthoManager, Belos::MatOrthoManager
–  Status tests: Belos::StatusTest, Belos::StatusTestResNorm
–  Iteration kernels: Belos::Iteration
–  Solver managers: Belos::SolverManager
–  Linear problem: Belos::LinearProblem

•  Currently has solver managers for several linear solvers:
–  GMRES: Single-vector, block, pseudo-block, flexible
–  CG: Single-vector, block, pseudo-block
–  TFQMR, BiCGStab, MINRES
–  Least squares: LSQR
–  Recycling solvers: GCRO-DR, RCG
–  Seed solvers: PCPG, GMRES poly

•  Can solve:
–  Hermitian, non-Hermitian linear problems
–  Real, complex-valued, arbitrary linear problems

•  arbitrary precision can be limited by LAPACK

• Using Tpetra for underlying linear algebra just requires
different template arguments in Belos

• Tpetra objects are templated on the underlying data types:

 MultiVector<Scalar, LO, GO, Node> …  
 Operator<Scalar, LO, GO, Node> …

–  LO=GO=int, Node=Serial

Belos Arbitrary Precision Example

Scalar float double double-
double

quad-
double

Solve time (s) 2.6 5.3 29.9 76.5

Accuracy 10-6 10-12 10-24 10-48

Speedup of float over double
in Belos linear solver.

float double speedup
18 s 26 s 1.42x

Anasazi: Iterative eigensolvers
•  Provide a generic framework for developing iterative algorithms for solving

large-scale eigenproblems.
•  Algorithm implementation is accomplished through the use of traits classes

and abstract base classes:
–  Operator-vector products: Anasazi::MultiVecTraits, Anasazi::OperatorTraits
–  Orthogonalization: Anasazi::OrthoManager, Anasazi::MatOrthoManager
–  Status tests: Anasazi::StatusTest, Anasazi::StatusTestResNorm
–  Iteration kernels: Anasazi::Eigensolver
–  Eigensolver managers: Anasazi::SolverManager
–  Eigenproblem: Anasazi::Eigenproblem
–  Sort managers: Anasazi::SortManager

•  Currently has solver managers for several eigensolvers:
–  Block Krylov-Schur
–  Block Davidson
–  LOBPCG
–  Generalized Davidson
–  TraceMin

•  Can solve:
–  Standard and generalized eigenproblems
–  Hermitian and non-Hermitian eigenproblems
–  Real or complex-valued eigenproblems {arbitrary precision limited by LAPACK}

Anasazi & Denovo Example
• Denovo is a 3D, discrete ordinates multigroup radiation transport

code for radiation shielding and reactor physics applications at ORNL.

•  Block Krylov-Schur eigensolver used to solve the k-eigenvalue problem.

•  Example: Generic Westinghouse PWR-900 nuclear reactor core
–  2 energy groups and a 578 x 578 x 700 mesh

•  ~234 million cells
•  78 billion unknowns

–  Computations performed on
 Jaguar, Cray XT-5 @ ORNL.

Krylov solver (typically GMRES) to converge the scatter-
ing source3. Upscatter groups may be solved using ei-
ther GS and iterating to convergence, or by using a Krylov
method to solve the groups simulteneously as a block.

Arnoldi’s Method

To implement Arnoldi’s method, we rearrange Eq. (1)
to find

Aφ = kφ , (4)

where A = (I − TMS)−1TMF. This must be solved in
two stages. First, we calculate

z(l+1) = TMFφ(l) , (5a)

and then solve, using a Krylov method,

(I−TMS)φ(l+1) = z(l+1) . (5b)

We use the BlockKrylovSchur solver in Trilinos4, which
requires only that we provide the method to operate on φ(l)

withA, i.e., we must only implement Eqs. (5a) and (5b).
This implementation is very similar to the implemen-

tation given in Ref. [5]. The difference lies in how Eq. (5b)
is solved. Warsa et al. solve Eq. (5b) using a GS multi-
group solver, with each group solved consecutively using a
DSA-preconditioned Krylov method. Overall, this method
requires four levels of iteration: the innermost level is the
iterative solution to the DSA preconditioner for each group.
The next level is the within-group solve, which is calcu-
lated using a Krylov method. The third level is the upscat-
ter iterations, and the fourth level is the Arnoldi iterations
themselves.

Our implementation differs in that we solve all of the
groups within a set simultaneously, rather than converg-
ing each group independently. In other words, we use a
Krylov multigroup method rather than GS. Additionally,
we do not (currently) precondition the Krylov method with
DSA. So Denovo’s current implementation has two levels
of iteration: the inner level being a multigroup solve over
all groups in a set, and the outer level being the Arnoldi
iteration.

Overall, we believe that this method will be more ef-
ficient for problems with a significant number of upscatter
groups. Converging the upscatter block is often the bulk
of the work during an Arnoldi iteration. By converging the
upscatter block with a Krylov method rather than repeated
GS iterations, we can converge more quickly while main-
taining energy parallelism (which is violated with GS). Fu-
ture implementations of the Arnoldi method in Denovo will
have the option to use GS in the downscatter region, since
the scattering matrix is lower-triangular in these groups.
These solves will be replicated across all nodes in a set.

RESULTS AND CONCLUSIONS

To demonstrate these methods, we performed a calcu-
lation on a genericWestinghouse PWR (PWR-900) nuclear
reactor core. This calculation had two energy groups and
a 578×578×700 mesh (∼234 million cells). We used a
level-symmetric S12 quadrature set with P0 scattering and
a step characteristics spatial discretization, which results in
a total of 78 × 109 unknowns. This problem was parti-
tioned into 132×132 domains with 10 z-blocks. For more
information regarding KBA domains and block partition-
ing nomenclature, see Ref. [1]. Our calculations were per-
fomed on Jaguar, a Cray XT-5 machine with 224,256 cores,
and a total speed of 2.3 petaflops.

Figure 1: PWR-900 Power Profile

We consider three cases. The first, the base case, in-
volves solving the k-eigenvalue problem with power itera-
tion and with one energy set, using a GS multigroup solver
and a Krylov method as the within-group solver. The sec-
ond case, PI, uses two energy sets with upscatter partition-
ing. The third case, Arnoldi, uses an Arnoldi solver with
full partitioning.

sets cores sweeps outers time (m)
Base 1 17,424 688 7 11.00
PI 2 20,400 318 7 3.03

Arnoldi 2 20,400 228 6 2.05

Table 1: 2 Group PWR-900 Eigensolver Results

Examining the results in Table 1, we see that we get
very good scaling when moving from one set to two sets
with the power iteration method (base case vs PI case). Not

198,528 cores

110,880 cores

Preconditioners

•  ShyLU (Scalable Hybrid LU) is hybrid
•  In the mathematical sense (direct + iterative) for robustness.

•  In the parallel programming sense (MPI + Threads) for scalability.
•  More robust than simple preconditioners and scalable than direct solvers.
•  ShyLU is a subdomain solver where a subdomain is not limited to one MPI

process.

•  Subdomain solvers or smoothers have
to adapt to hierarchical architectures.

•  One MPI process per core cannot
exploit intra-node parallelism.

•  One subdomain per MPI process
hard to scale. (due to increase in
the number of iterations) Hypergraph/Graph based ordering of the matrix for the ShyLU

•  Convergence of iterative linear solvers and eigensolvers can be accelerated
by the use of preconditioners.

•  Templated preconditioner packages: Ifpack2, MueLu, ShyLU

•  This solution approach was necessary for efficient simulation of new
Sandia-designed ASICs

•  Ill conditioned, heterogeneous
 linear system structure

• Example:
–  1645693 total devices,

 N = 1944792
–  Single KLU solve: ~ 40 sec.
–  Single SuperLU solve: ~ 200 sec.
–  ShyLU: 4 MPI procs ->

 rows(S) = 1854

ShyLU & Xyce Example

Node-level Solvers
• Preconditioners require efficient node-level solvers that utilize

thread-level parallelism.
– Coarse-level solve in multigrid
– Subdomain solve in domain decomposition preconditioner

• Ongoing efforts in developing node-level solvers include:
– Task-parallel incomplete Cholesky factorizations (Tacho, Kyungjoo Kim)
– Gauss-Seidel with coloring (Mehmet Deveci)
– Multi-threaded sparse triangular solve (Andrew Bradley)
– New sparse-direct solver framework that exploits both
 the multiple levels in matrix structure and memory
 hierarchy (Basker, Joshua Booth)

•  First parallel implementation of Gilbert-Peierls algorithm
•  Enables efficient block solution methods for frequency-
 domain analysis, PCE, etc.

Complimentary Efforts
• Tpetra / Kokkos “setup time” improvements

– Interfaces for thread-parallel graph and matrix fill
– Node-level kernels for matrix-matrix multiply and aggregation

• Fault tolerant iterative methods
– Bit flips (James Elliott)
– Process failures (Keita Teranishi)

• Communication-avoiding solvers
– Integrate communication avoiding solvers into Trilinos
– Develop communication avoiding preconditioners to accelerate

iterative solver convergence (S. Rajamanickam, et al)

Trilinos Availability / Information
•  Trilinos and related packages are available via LGPL or BSD.
• Current release (12.4), unlimited availability.

•  Trilinos Awards:
–  2004 R&D 100 Award.
–  SC2004 HPC Software Challenge Award.
–  Sandia Team Employee Recognition Award.
–  Lockheed-Martin Nova Award Nominee.

• More information:
–  http://trilinos.org
–  https://github.com/trilinos/trilinos

• Annual Forums:
–  Annual Trilinos User Group (TUG) Meeting in November @ SNL

•  talks and video available for download
–  Spring Developer Meeting, May @ SNL
–  EuroTUG 2016, April 18-20, LRZ, Garching, Germany

