Recent Advancements and Future Plans for Next-Generation Sparse Solvers in

SPPEXA Symposium 2016 January 25th, 2016

Heidi K. Thornquist Sandia National Laboratories with contributions from the Trilinos Development Team

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

- R&D 100 Winner
- Open Source
 - Accessible via GitHub

Laptops to Leadership systems

Optimal Kernels to Optimal Solutions:

- Geometry, Meshing
- Discretizations, Load Balancing.
- Scalable Linear, Nonlinear, Eigen, Transient, Optimization, UQ solvers.
- Scalable I/O, GPU, Manycore

- 60 Packages.
- Binary distributions:
 - Cray LIBSCI
 - Debian, Ubuntu
 - Intel (in process)

Transforming Computational Analysis To Support High Consequence Decisions

Each stage requires *greater performance* and *error control* of prior stages: Always will need: more accurate and scalable methods. more sophisticated tools.

Unique Features of Trilinos

- Huge library of algorithms
 - Linear and nonlinear solvers, preconditioners, ...
 - Optimization, transients, sensitivities, uncertainty, …
- Growing support for multicore & hybrid CPU/GPU
 - Built into the new Tpetra linear algebra objects
 - Therefore into iterative solvers with zero effort!
 - Unified intranode programming model
 - Spreading into the whole stack:
 - Multigrid, sparse factorizations, element assembly...
- Growing support for mixed and arbitrary precisions
 - Don't have to rebuild Trilinos to use it!
- Growing support for huge (> 2B unknowns) problems

Compile-time Polymorphism

Software delivery:

Essential Activity

How can we:

- Implement mixed precision algorithms?
- Implement generic fine-grain parallelism?
- Support hybrid CPU/GPU computations?
- Support extended precision?
- Explore redundant computations?
- Prepare for both exascale "swim lanes"?

C++ templates only sane way:

- Moving to completely templated Trilinos libraries.
- Other important benefits.
- A usable stack exists now in Trilinos.

Template Benefits:

- Compile time polymorphism.
- True generic programming.
- No runtime performance hit.
- Strong typing for mixed precision.
- Support for extended precision.
- Many more...

Template Drawbacks:

- Huge compile-time performance hit:
 - But good use of multicore :)
 - Eliminated for common data types.
- Complex notation:
 - Esp. for Fortran & C programmers).
 - Can insulate to some extent.

Solver Software Stack

Phase I packages Ph	Phase III packages: Manycore*, template	d		
Optimization Unconstrained: Constrained:	Find $u \in \Re^n$ that minimizes $g(u)$ Find $x \in \Re^m$ and $u \in \Re^n$ that minimizes $g(x, u)$ s.t. $f(x, u) = 0$	do)	моосно	
Bifurcation Analysis	Given nonlinear operator $F(x, u) \in \Re^{n+m}$. For $F(x, u) = 0$ find space $u \in U \ni \frac{\partial F}{\partial x}$	n: Saca	LOCA	T-LOCA
Transient Problems DAEs/ODEs:	Solve $f(\dot{x}(t), x(t), t) = 0$ $t \in [0, T], x(0) = x_0, \dot{x}(0) = x'_0$ for $x(t) \in \Re^n, t \in [0, T]$	erentiatio	Rythmos	
Nonlinear Problems	Given nonlinear operator $F(x) \in \Re^m \to \Re$ Solve $F(x) = 0$ $x \in \Re^n$	ic Diffe	NOX	T-NOX
Linear Problems Linear Equations: Eigen Problems:	Given Linear Ops (Matrices) $A, B \in \Re^{m \times n}$ Solve $Ax = b$ for $x \in \Re^n$ Solve $A\nu = \lambda B\nu$ for (all) $\nu \in \Re^n$, $\lambda \in$	(Automat	AztecOO Ifpack, ML, etc	Anasazi Belos* Ifpack2*, Muelu*,etc
Distributed Linear Algebra Matrix/Graph Equations: Vector Problems:	Compute $y = Ax; A = A(G); A \in \Re^{m \times n}, G \in \Im^{n}$ Compute $y = \alpha x + \beta w; \alpha = \langle x, y \rangle; x, y \in \Re^{n}$	$n \times n$	Epetra Teuc	Tpetra* Kokkos [•] hos

Parallel Programming Model: Multi-level/Multi-device

Tpetra and Kokkos Packages

- Tpetra is a distributed linear algebra library.
 - Similar to Trilinos/Epetra:
 - Provides maps, vectors, sparse matrices and abstract linear operators
 - Heavily exploits templated C++
 - Employs hybrid (distributed + shared) parallelism via Kokkos
- Kokkos is an API for shared-memory parallel nodes.
 - Provides parallel_for and parallel_reduce skeletons
 - Provides local, shared-memory parallel linear algebra
 - Currently supports multiple shared-memory APIs:
 - OpenMP
 - Pthreads
 - NVIDIA CUDA-capable GPUs

Belos: Iterative linear solvers

- Provide a generic framework for developing iterative algorithms for solving large-scale linear systems.
- Algorithm implementation is accomplished through the use of traits classes and abstract base classes:
 - Operator-vector products: Belos::MultiVecTraits, Belos::OperatorTraits
 - Orthogonalization: Belos::OrthoManager, Belos::MatOrthoManager
 - Status tests: Belos::StatusTest, Belos::StatusTestResNorm
 - Iteration kernels: Belos::Iteration
 - Solver managers: Belos::SolverManager
 - Linear problem: Belos::LinearProblem
- Currently has solver managers for several linear solvers:
 - GMRES: Single-vector, block, pseudo-block, flexible
 - CG: Single-vector, block, pseudo-block
 - TFQMR, BiCGStab, MINRES
 - Least squares: LSQR
 - Recycling solvers: GCRO-DR, RCG
 - Seed solvers: PCPG, GMRES poly
- Can solve:
 - Hermitian, non-Hermitian linear problems
 - Real, complex-valued, arbitrary linear problems
 - arbitrary precision can be limited by LAPACK

Belos Arbitrary Precision Example

- Using Tpetra for underlying linear algebra just requires different template arguments in Belos
- Tpetra objects are templated on the underlying data types:

```
MultiVector<Scalar, LO, GO, Node> ...
Operator<Scalar, LO, GO, Node> ...
```

```
- LO=GO=int, Node=Serial
```

Scalar	float	double	double- double	quad- double
Solve time (s)	2.6	5.3	29.9	76.5
Accuracy	10-6	10 ⁻¹²	10 ⁻²⁴	10 ⁻⁴⁸

Anasazi: Iterative eigensolvers

- Provide a generic framework for developing iterative algorithms for solving large-scale eigenproblems.
- Algorithm implementation is accomplished through the use of traits classes and abstract base classes:
 - Operator-vector products: Anasazi::MultiVecTraits, Anasazi::OperatorTraits
 - Orthogonalization: Anasazi::OrthoManager, Anasazi::MatOrthoManager
 - Status tests: Anasazi::StatusTest, Anasazi::StatusTestResNorm
 - Iteration kernels: Anasazi::Eigensolver
 - Eigensolver managers: Anasazi::SolverManager
 - Eigenproblem: Anasazi::Eigenproblem
 - Sort managers: Anasazi::SortManager
- Currently has solver managers for several eigensolvers:
 - Block Krylov-Schur
 - Block Davidson
 - LOBPCG
 - Generalized Davidson
 - TraceMin
- Can solve:
 - Standard and generalized eigenproblems
 - Hermitian and non-Hermitian eigenproblems
 - Real or complex-valued eigenproblems {arbitrary precision limited by LAPACK

horatories

Anasazi & Denovo Example

- Denovo is a 3D, discrete ordinates multigroup radiation transport code for radiation shielding and reactor physics applications at ORNL.
- Block Krylov-Schur eigensolver used to solve the k-eigenvalue problem.
- Example: Generic Westinghouse PWR-900 nuclear reactor core
 - 2 energy groups and a 578 x 578 x 700 mesh
 - ~234 million cells
 - 78 billion unknowns
 - Computations performed on Jaguar, Cray XT-5 @ ORNL.

Preconditioners

- Convergence of iterative linear solvers and eigensolvers can be accelerated by the use of preconditioners.
- Templated preconditioner packages: Ifpack2, MueLu, ShyLU

Hypergraph/Graph based ordering of the matrix for the ShyLU

• ShyLU (Scalable Hybrid LU) is hybrid

- Subdomain solvers or smoothers have to adapt to hierarchical architectures.
 - One MPI process per core cannot exploit intra-node parallelism.
 - One subdomain per MPI process hard to scale. (due to increase in the number of iterations)
- In the mathematical sense (direct + iterative) for robustness.
- In the parallel programming sense (MPI + Threads) for scalability.
- More robust than simple preconditioners and scalable than direct solvers.
- ShyLU is a subdomain solver where a subdomain is not limited to one MPL process.

ShyLU & Xyce Example

This solution approach was necessary for efficient simulation of new Sandia-designed ASICs

$$f(x(t)) + \frac{dq(x(t))}{dt} = b(t)$$

- Ill conditioned, heterogeneous linear system structure
- Example:
 - 1645693 total devices,
 - N = 1944792
 - Single KLU solve: ~ 40 sec.
 - Single SuperLU solve: ~ 200 sec.
 - ShyLU: 4 MPI procs ->

rows(S) = 1854

Node-level Solvers

- Preconditioners require efficient **node-level** solvers that utilize thread-level parallelism.
 - Coarse-level solve in multigrid
 - Subdomain solve in domain decomposition preconditioner
- Ongoing efforts in developing node-level solvers include:
 - Task-parallel incomplete Cholesky factorizations (Tacho, Kyungjoo Kim)
 - Gauss-Seidel with coloring (Mehmet Deveci)
 - Multi-threaded sparse triangular solve (Andrew Bradley)
 - New sparse-direct solver framework that exploits both the multiple levels in matrix structure and memory hierarchy (**Basker**, Joshua Booth)
 - First parallel implementation of Gilbert-Peierls algorithm
 - Enables efficient block solution methods for frequencydomain analysis, PCE, etc.

Complimentary Efforts

- Tpetra / Kokkos "setup time" improvements
 - -Interfaces for thread-parallel graph and matrix fill
 - -Node-level kernels for matrix-matrix multiply and aggregation
- Fault tolerant iterative methods
 - -Bit flips (James Elliott)
 - -Process failures (Keita Teranishi)
- Communication-avoiding solvers
 - -Integrate communication avoiding solvers into Trilinos
 - Develop communication avoiding preconditioners to accelerate iterative solver convergence (S. Rajamanickam, et al)

Trilinos Availability / Information

- Trilinos and related packages are available via LGPL or BSD.
- Current release (12.4), unlimited availability.
- Trilinos Awards:
 - 2004 R&D 100 Award.
 - SC2004 HPC Software Challenge Award.
 - Sandia Team Employee Recognition Award.
 - Lockheed-Martin Nova Award Nominee.
- More information:
 - http://trilinos.org
 - https://github.com/trilinos/trilinos
- Annual Forums:
 - Annual Trilinos User Group (TUG) Meeting in November @ SNL
 - talks and video available for download
 - Spring Developer Meeting, May @ SNL
 - EuroTUG 2016, April 18-20, LRZ, Garching, Germany

