
Node-Level Architecture and

Performance Engineering

Georg Hager, Gerhard Wellein

Erlangen Regional Computing Center

University of Erlangen-Nuremberg

Guest Lecture

University of Wuppertal

February 3, 2014

Prelude:

Scalability 4 the win!

Scalability Myth: Code scalability is the key issue

(c) RRZE 2014 3 Basic Performance Modeling

Prepared for
the highly
parallel era!

!$OMP PARALLEL DO

do k = 1 , Nk

 do j = 1 , Nj; do i = 1 , Ni

 y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
 x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

 enddo; enddo

enddo

!$OMP END PARALLEL DO

Changing only a compile
option makes this code
scalable on an 8-core chip

–O3 -xAVX

Scalability Myth: Code scalability is the key issue

(c) RRZE 2014 4 Basic Performance Modeling

!$OMP PARALLEL DO

do k = 1 , Nk

 do j = 1 , Nj; do i = 1 , Ni

 y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
 x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

 enddo; enddo

enddo

!$OMP END PARALLEL DO

Single core/socket efficiency
is key issue!

Upper limit from simple
performance model:
35 GB/s & 24 Byte/update

Questions to ask in high performance computing

 Do I understand the performance behavior of my code?

 Does the performance match a model I have made?

 What is the optimal performance for my code on a given machine?

 High Performance Computing == Computing at the bottleneck

 Can I change my code so that the “optimal performance” gets

higher?

 Circumventing/ameliorating the impact of the bottleneck

 My model does not work – what’s wrong?

 This is the good case, because you learn something

 Performance monitoring / microbenchmarking may help clear up the

situation

(c) RRZE 2014 5 Basic Performance Modeling

A little information on

modern computer architecture

Core architecture

SIMD

Data transfers and caches

Memory organization

Performance composition

Topology

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAA

General-purpose cache based microprocessor core

 (Almost) the same basic design in all modern systems

(c) RRZE 2014 Basic Performance Modeling

Not shown: most of the control unit, e.g. instruction fetch/decode, branch prediction,…

7

Core details: SIMD processing

 Single Instruction Multiple Data (SIMD) operations allow the concurrent

execution of the same operation on “wide” registers

 x86 SIMD instruction sets:

 SSE: register width = 128 Bit  2 double precision floating point operands

 AVX: register width = 256 Bit  4 double precision floating point operands

 Adding two registers holding double precision floating point operands

(c) RRZE 2014 Basic Performance Modeling
A

[0
]

A
[1

]
A

[2
]

A
[3

]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

A
[0

]

B
[0

]

C
[0

]

64 Bit

256 Bit

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:

R2 ADD [R0,R1]

SIMD execution:

V64ADD [R0,R1] R2

8

There is no single driving force for chip performance!

Floating Point (FP) Performance:

P = ncore * F * S * n

ncore number of cores: 8

F FP instructions per cycle: 2

 (1 MULT and 1 ADD)

S FP ops / instruction: 4 (dp) / 8 (sp)

 (256 Bit SIMD registers – “AVX”)

n Clock speed : ∽2.7 GHz

P = 173 GF/s (dp) / 346 GF/s (sp)

(c) RRZE 2014 9 Basic Performance Modeling

Intel Xeon

“Sandy Bridge EP” socket

4,6,8 core variants available

But: P=5.4 GF/s for serial, non-SIMD code

TOP500 rank 1 (mid-90s)

Registers and caches: Data transfers in a memory hierarchy

 How does data travel from memory to the CPU and back?

 Remember: Caches are organized

in cache lines (e.g., 64 bytes)

 Only complete cache lines are

transferred between memory

hierarchy levels (except registers)

 MISS: Load or store instruction does

not find the data in a cache level

 CL transfer required

 Example: Array copy A(:)=C(:)

(c) RRZE 2014 Basic Performance Modeling

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1) MISS

write
allocate

evict
(delayed)

3 CL

transfers

LD C(2..Ncl)
ST A(2..Ncl)

HIT

C(:) A(:)

10

Latency and bandwidth in modern computer environments

ns

ms

ms

1 GB/s

HPC plays here

Avoiding slow data paths
is the key to most
performance
optimizations!

(c) RRZE 2014 Basic Performance Modeling 11

Today: Dual-socket Intel node: (Nehalem and later)

Yesterday (2006): Dual-socket Intel node: (Core2)

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

But: system “anisotropy”

Cache-coherent Non-Uniform Memory

Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at the

price of ccNUMA architectures: Where

does my data finally end up?

On AMD it is even more complicated  ccNUMA within a socket!

From UMA to ccNUMA
Basic architecture of commodity compute cluster nodes

(c) RRZE 2014 12 Basic Performance Modeling

Parallelism in a modern compute node

 Parallel and shared resources within a shared-memory node

GPU #1

GPU #2
PCIe link

 Parallel resources:

 Execution/SIMD units

 Cores

 Inner cache levels

 Sockets / ccNUMA domains

 Multiple accelerators

 Shared resources:

 Outer cache level per socket

 Memory bus per socket

 Intersocket link

 PCIe bus(es)

 Other I/O resources

Other I/O

1

2

3

4 5

1

2

3

4

5

6

6

7

7

8

8

9

9

10

10

How does your application react to all of those details?

(c) RRZE 2014 Basic Performance Modeling 13

Case study:

OpenMP-parallel sparse matrix-vector

multiplication (part 1)

A simple (but sometimes not-so-simple) example for

bandwidth-bound code and saturation effects in memory

Sparse matrix-vector multiply (spMVM)

 Key ingredient in some matrix diagonalization algorithms

 Lanczos, Davidson, Jacobi-Davidson

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors

with Nr (number of matrix rows) entries

 “Sparse”: Nnz ~ Nr

= + • Nr

General case:

some indirect

addressing

required!

(c) RRZE 2014 Basic Performance Modeling 15

…

Popular sparse matrix storage scheme: CRS

column index

ro
w

 i
n
d
e
x

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 7 2 1 4 6 3 2 3 4 2 1 5 8 1 5 … col_idx[]

1 5 15 19 8 12 … row_ptr[]

 val[] stores all the nonzeros

(length Nnz)

 col_idx[] stores the column index

of each nonzero (length Nnz)

 row_ptr[] stores the starting index

of each new row in val[] (length:

Nr)

(c) RRZE 2014 Basic Performance Modeling 16

Case study: Sparse matrix-vector multiply

 Strongly memory-bound for large data sets

 Streaming, with partially indirect access:

 Usually many spMVMs required to solve a problem

 Following slides: Performance data on one 24-core AMD “Magny

Cours” node

!$OMP parallel do

!$OMP end parallel do

(c) RRZE 2014 Basic Performance Modeling 17

do i = 1,Nr

 do j = row_ptr(i), row_ptr(i+1) - 1

 c(i) = c(i) + val(j) * b(col_idx(j))

 enddo

enddo

Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

 Case 1: Large matrix

Intrasocket
bandwidth
bottleneck

Good scaling
across NUMA

domains

(c) RRZE 2014 Basic Performance Modeling 19

 Case 2: Medium size

Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

Intrasocket
bandwidth
bottleneck

Working set fits
in aggregate

cache

(c) RRZE 2014 Basic Performance Modeling 20

Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

 Case 3: Small size

No bandwidth
bottleneck

Parallelization
overhead

dominates

(c) RRZE 2014 Basic Performance Modeling 21

Conclusions from the spMVM benchmarks

 If the problem is “large”, bandwidth saturation on the socket is

a reality

  There are “spare cores”

 Very common performance pattern

 What to do with spare cores?

 Let them idle  saves energy with minor

loss in time to solution

 Use them for other tasks, such as MPI

communication

 Can we predict the saturated performance?

 Bandwidth-based performance modeling!

 What is the significance of the indirect access?

Can it be modeled?

 Can we predict the saturation point?

 … and why is this important?

Se
e

 la
te

r
fo

r
an

sw
er

s!

(c) RRZE 2014 Basic Performance Modeling 22

“Simple” performance modeling:

The Roofline Model

Loop-based performance modeling: Execution vs. data transfer

Example: array summation

The Roofline Model1,2

1. Pmax = Applicable peak performance of a loop, assuming that data

comes from L1 cache (this is not necessarily Ppeak)

2. I = Computational intensity (“work” per byte transferred) over the

slowest data path utilized (“the bottleneck”)

 Code balance BC = I -1

3. bS = Applicable peak bandwidth of the slowest data path utilized

Expected performance:

(c) RRZE 2014

𝑃 = min⁡(𝑃max, 𝐼 ∙ 𝑏𝑆)

1 W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. (2000)
2 S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

[B/s] [F/B]

Basic Performance Modeling 24

http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

“Simple” Roofline: The vector triad

Example: Vector triad A(:)=B(:)+C(:)*D(:)

on a 2.7 GHz 8-core Sandy Bridge chip (AVX vectorized)

 bS = 40 GB/s

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)

  I = 0.4 F/W = 0.05 F/B

  I ∙ bS = 2.0 GF/s (1.2 % of peak performance)

 Ppeak = 173 Gflop/s (8 FP units x (4+4) Flops/cy x 2.7 GHz)

 Pmax?  Observe LD/ST throughput maximum of 1 AVX Load and

½ AVX store per cycle  3 cy / 8 Flops  Pmax = 57.6 Gflop/s (33%

peak)

(c) RRZE 2014 Basic Performance Modeling

𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 57.6,2.0 GFlop s
= 2.0 GFlop s

25

“Simple” Roofline: The vector triad

Example: Vector triad A(:)=B(:)+C(:)*D(:)

on a 1.05 GHz 60-core Intel Xeon Phi chip (vectorized)

 bS = 160 GB/s

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)

  I = 0.4 F/W = 0.05 F/B

  I ∙ bS = 8.0 GF/s (0.8 % of peak performance)

 Ppeak = 1008 Gflop/s (60 FP units x (8+8) Flops/cy x 1.05 GHz)

 Pmax?  Observe LD/ST throughput maximum of 1 Load or 1 Store

per cycle  4 cy / 16 Flops  Pmax = 252 Gflop/s (25% of peak)

(c) RRZE 2014 Basic Performance Modeling

𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 252,8.0 GFlop s
= 8.0 GFlop s

26

A not so simple Roofline example

Example: do i=1,N; s=s+a(i); enddo

in double precision on a 2.7 GHz Sandy Bridge socket @ “large” N

(c) RRZE 2014 Basic Performance Modeling

ADD peak

(best possible code)

no SIMD

3-cycle latency per ADD

if not unrolled

P = 5 Gflop/s

𝑃 = min⁡(𝑃max, 𝐼 ∙ 𝑏𝑆)

How do we get
these?
 See next!

I = 1 Flop / 8 byte (in DP)

86.4 GF/s

21.6 GF/s

7.2 GF/s

27

Applicable peak for the summation loop

Plain scalar code, no SIMD

LOAD r1.0  0

i  1

loop:

 LOAD r2.0  a(i)

 ADD r1.0  r1.0+r2.0

 ++i ? loop

result  r1.0

(c) RRZE 2014 Basic Performance Modeling

ADD pipes utilization:

 1/12 of ADD peak

SI
M

D
 la

n
e

s

28

Applicable peak for the summation loop

Scalar code, 3-way unrolling
LOAD r1.0  0

LOAD r2.0  0

LOAD r3.0  0

i  1

loop:

 LOAD r4.0  a(i)

 LOAD r5.0  a(i+1)

 LOAD r6.0  a(i+2)

 ADD r1.0  r1.0+r4.0

 ADD r2.0  r2.0+r5.0

 ADD r3.0  r3.0+r6.0

 i+=3 ? loop

result  r1.0+r2.0+r3.0

(c) RRZE 2014 Basic Performance Modeling

ADD pipes utilization:

 1/4 of ADD peak

29

Applicable peak for the summation loop

SIMD-vectorized, 3-way unrolled
LOAD [r1.0,…,r1.3]  [0,0]

LOAD [r2.0,…,r2.3]  [0,0]

LOAD [r3.0,…,r3.3]  [0,0]

i  1

loop:

 LOAD [r4.0,…,r4.3]  [a(i),…,a(i+3)]

 LOAD [r5.0,…,r5.3]  [a(i+4),…,a(i+7)]

 LOAD [r6.0,…,r6.3]  [a(i+8),…,a(i+11)]

 ADD r1  r1+r4

 ADD r2  r2+r5

 ADD r3  r3+r6

 i+=12 ? loop

result  r1.0+r1.1+...+r3.2+r3.3

(c) RRZE 2014 Basic Performance Modeling

ADD pipes utilization:

 ADD peak

30

Assumptions for the Roofline Model

 The roofline formalism is based on some (crucial) assumptions:

 There is a clear concept of “work” vs. “traffic”

 “work” = flops, updates, iterations…

 “traffic” = required data to do “work”

 Attainable bandwidth of code = input parameter! Determine effective

bandwidth via simple streaming benchmarks to model more complex

kernels and applications

 Data transfer and core execution overlap perfectly!

 Slowest data path is modeled only; all others are assumed to be infinitely

fast

 If data transfer is the limiting factor, the bandwidth of the slowest data path

can be utilized to 100% (“saturation”)

 Latency effects are ignored, i.e. perfect streaming mode

(c) RRZE 2014 Basic Performance Modeling 31

Factors to consider in the roofline model

Bandwidth-bound (simple case)

 Accurate traffic calculation (write-

allocate, strided access, …)

 Practical ≠ theoretical BW limits

 Erratic access patterns

(c) RRZE 2014 Basic Performance Modeling

Core-bound (may be complex)

 Multiple bottlenecks: LD/ST,

arithmetic, pipelines, SIMD,

execution ports

 Limit is linear in # of cores

32

Complexities of in-core execution

(c) RRZE 2014 Basic Performance Modeling

Multiple bottlenecks:

 L1 Icache (LD/ST) bandwidth

 Decode/retirement

throughput

 Port contention

(direct or indirect)

 Arithmetic pipeline stalls

(dependencies)

 Overall pipeline stalls

(branching)

 L1 Dcache bandwidth

(LD/ST throughput)

 Scalar vs. SIMD execution

 …

 Register pressure

 Alignment issues

 33

Typical code optimizations in the Roofline Model

1. Hit the BW bottleneck by good
serial code

2. Increase intensity to make better
use of BW bottleneck

3. Increase intensity and go from
memory-bound to core-bound

4. Hit the core bottleneck by good
serial code

5. Shift Pmax by accessing
additional hardware features or
using a different
algorithm/implementation

(c) RRZE 2014 Basic Performance Modeling 34

Shortcomings of the roofline model

 Saturation effects in multicore chips are not explained

 Reason: “saturation assumption”

 Cache line transfers and core execution do sometimes not overlap

perfectly

 Only increased “pressure” on the memory

interface can saturate the bus

 need more cores!

 ECM model gives more insight

(c) RRZE 2014 Basic Performance Modeling

A(:)=B(:)+C(:)*D(:)

Roofline predicts full
socket BW

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance
and power properties of modern multicore chips via simple machine
models. Concurrency and Computation: Practice and Experience.
DOI: 10.1002/cpe.3180 Preprint: arXiv:1208.2908

35

http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908

Putting Roofline to use where it should

not work

Sparse matrix-vector multiplication, part 2

Example: SpMVM node performance model

 Sparse MVM in

double precision

w/ CRS data storage:

 DP CRS comp. intensity

 α quantifies traffic

for loading RHS

 α = 0  RHS is in cache

 α = 1/Nnzr  RHS loaded once

 α = 1  no cache

 α > 1  Houston, we have a problem!

 “Expected” performance = bS x ICRS

 Determine α by measuring the actual memory traffic

 Maximum memory BW may not be achieved with spMVM

 (c) RRZE 2014 Basic Performance Modeling

𝐼𝐶𝑅𝑆
𝐷𝑃 =

2

8 + 4 + 8𝛼 + 16/𝑁𝑛𝑧𝑟

flops

byte

37

Determine RHS traffic

 𝑽𝒎𝒆𝒂𝒔 is the measured overall memory data traffic (using, e.g.,

likwid-perfctr)

 Solve for 𝜶:

 Example: kkt_power matrix from the UoF collection

on one Intel SNB socket

 𝑁𝑛𝑧 = 14.6 ∙ 106,⁡𝑁𝑛𝑧𝑟 = 7.1

 𝑉𝑚𝑒𝑎𝑠 ≈ 258⁡MB

  𝛼 = 0.43, 𝛼𝑁𝑛𝑧𝑟 = 3.1

  RHS is loaded 3.1 times from memory

 and:

(c) RRZE 2014 Basic Performance Modeling

𝐼𝐶𝑅𝑆
𝐷𝑃 =

2

8 + 4 + 8𝛼 + 16/𝑁𝑛𝑧𝑟

flops

byte
=
𝑁𝑛𝑧 ∙ 2⁡flops

𝑉𝑚𝑒𝑎𝑠

𝛼 =
1

4

𝑉𝑚𝑒𝑎𝑠

𝑁𝑛𝑧 ∙ 2⁡bytes
− 6 −

8

𝑁𝑛𝑧𝑟

𝐼𝐶𝑅𝑆
𝐷𝑃 (1/𝑁𝑛𝑧𝑟)

𝐼𝐶𝑅𝑆
𝐷𝑃 (𝛼)

= 1.15 15% extra traffic 

optimization potential!

38

Roofline analysis for spMVM

 Conclusion from Roofline analysis

 The roofline model does not work 100% for spMVM due to the RHS

traffic uncertainties

We have “turned the model around” and measured the actual

memory traffic to determine the RHS overhead

 Result indicates:

1. how much actual traffic the RHS generates

2. how efficient the RHS access is (compare BW with max. BW)

3. how much optimization potential we have with matrix reordering

 Consequence: If the model does not work, we learn

something!

(c) RRZE 2014 Basic Performance Modeling 39

