Node-Level Architecture and
Performance Engineering

Georg Hager, Gerhard Wellein
Erlangen Regional Computing Center
University of Erlangen-Nuremberg

Guest Lecture
University of Wuppertal
February 3, 2014

Prelude:
Scalability 4 the win!

Scalability Myth: Code scalability is the key issue rr?:

1SOMP PARALLEL DO
do k =1 Nk
do j = , Nj;, do i =1 , Ni
y(i,j, k)= b*(=x(i-1,3j,k)+ x(i+l,3j k)+ x(i,3-1,k)+
x(i,j+1,k)+ x(i,),k-1)+ x(i,]J,k+1))
enddo; enddo | | | | | | |
enddo L i}

1SOMP END PARALLEL DO . 3D Stencil Update
7+ ("Jacobi")

Il_l = ~

Changing only a compile

option makes this code AN B Version 1 N
scalable on an 8-core chip % 5_— &8 Version 2 ~ Prepared for]
4 the highly —
............................... - | -
ﬂﬂg i parallel era!)

i i |
5 | -03 -xAVX

[— B N
[Memory] l_]

#cores

(c) RRZE 2014 Basic Performance Modeling 3

Scalability Myth: Code scalability is the key issue rr?:

1 SOMP PARALLEL DO
do k =1, Nk
do j=1, Nj; doi=1, Ni
y(i,j, k)= b*(x(i-1,3,k)+ x(i+l,j, k)+ x(i,j-1,k)+
x(i,3+1,k)+ x(i,3,k-1)+ x(i,3,k+1))

enddo; enddo 1500 L A A S A
enddo -
L

Upper limit from simple
performance model:
35 GB/s & 24 Byte/update

n?2

=
=

3D Stencil Update
("Jacobi")

|

[e o] [I]] [
! I
PP |FPIFP PP IR P
1| Lo L1D Lo |}
: L2 L2 L2 L2 L2 L2 L2 [TH
- |
1

a ||

Single core/socket efficiency —
is key issue!

500

@nauce [M@

L3
' s
i Memory Interface

Hcores

(c) RRZE 2014 Basic Performance Modeling 4

Questions to ask in high performance computing rr?:

Do | understand the performance behavior of my code?
= Does the performance match a model | have made®?

What is the optimal performance for my code on a given machine?
= High Performance Computing == Computing at the bottleneck

= Can | change my code so that the “optimal performance” gets
higher?

= Circumventing/ameliorating the impact of the bottleneck

= My model does not work — what’s wrong?
= This is the good case, because you learn something

= Performance monitoring / microbenchmarking may help clear up the
situation

(c) RRZE 2014 Basic Performance Modeling 5

A little information on
modern computer architecture

Core architecture

SIMD

Data transfers and caches
Memory organization
Performance composition
Topology

General-purpose cache based microprocessor core rr?

= (Almost) the same basic design in all modern systems

L1 data
cache

Memory queue
INT reg. file

L2 unified cache

Main memory

L1 instr.
cache

interface
INT/FP queue
FP reg. file

Not shown: most of the control unit, e.g. instruction fetch/decode, branch prediction,...

(c) RRZE 2014 Basic Performance Modeling

Core details: SIMD processing

= Single Instruction Multiple Data (SIMD) operations allow the concurrent
execution of the same operation on “wide” registers

= x86 SIMD instruction sets:

= SSE: register width = 128 Bit - 2 double precision floating point operands
= AVX: register width = 256 Bit = 4 double precision floating point operands
= Adding two registers holding double precision floating point operands

RO R1 R2 RO R1 R2
F [— [—

SIMD execution:
V64ADD [RO,R1] ©R2

Scalar execution:;
R2< ADD [RO,R1]

B[O]
C[O]

ol &

(c) RRZE 2014

Basic Performance Modeling

There is no single driving force for chip performance! rr?:

:T1 T2||T1 | T2||T1 | T2||T1 | T2||T1 | T2||T1 | T2||T1 | T2||T1 T2: Floating Point (FP) Performance:
PP [P||P|P|P|P|P| _ % %
| | e S e P =MNeore "F 5 STV
: L3 i
:| Memory Interface ! Neore number of cores: 8
F FP instructions per cycle: 2
{ Memory } (1 MULT and 1 ADD)
Intel Xeon S FP ops /instruction: 4 (dp) / 8 (sp)
“Sandy Bridge EP” socket (256 Bit SIMD registers — “AVX”)

4,6,8 core variants available v Clock speed : «2.7 GHz

TOP500 rank 1 (mid-90s) ’\ P =173 GF/s (dp) / 346 GF/s (sp)

‘ But: P=5.4 GF/s for serial, non-SIMD code \

(c) RRZE 2014 Basic Performance Modeling 9

Registers and caches: Data transfers in a memory hierarchy rr?:
= How does data travel from memory to the CPU and back?

= Remember: Caches are organized
in cache lines (e.g., 64 bytes)

= Only complete cache lines are
transferred between memory
hierarchy levels (except registers)

= MISS: Load or store instruction does
not find the data in a cache level
- CL transfer required

FHIT

write| |evict
allocate| [(delayed)

3CL
transfers

= Example: Array copy A(:)=C(:)

(c) RRZE 2014 Basic Performance Modeling 10

Latency and bandwidth in modern computer environments rrEE

1 GB/s

ns 1 10°° T~ }———1 L1 cache _[—— 107
108 —— | L2/L3 cache
1077 Main memory 1010
us | 10°° ——
}7 HPC networks
10° —— — 10°
} Cricratit-Etrerrret
104 ——
1 Solid state disk
ms 102 —— 108
102 __] Local hard disk
Internst
10" — — 107
Latency Bandwidth
[sec] [bytes/sec]
(c) RRZE 2014

/‘ HPC plays here

Avoiding slow data paths
is the key to most
performance
optimizations!

Basic Performance Modeling 11

r

From UMA to ccNUMA —r
Basic architecture of commodity compute cluster nodes rrll:

Yesterday (2006): Dual-socket Intel node: (Core2)

P P P P

L1D L1D
L2

Uniform Memory Architecture (UMA)

L1D L1D
L2

Flat memory ; symmetric MPs

But: system “anisotropy”
{ Memory }

n|m 11|12 T1|T2 T1|T2 11|12 T1|T2 :T1|T2 T1|T2 T1|T2 11|1'2 T1|T2 T1|T2|]

PP PP [PIP| P|[P|[P|[P [P P| Cache-coherent Non-Uniform Memory
e e Lai‘:’ Glle| feloeloe LBT? == Architecture (ccNUMA)

| Memory.lnterface HI Memoryllnterface i

price of ccNUMA architectures: Where
(LI] { LI does my data finally end up?

On AMD it is even more complicated = ccNUMA within a socket!

(c) RRZE 2014 Basic Performance Modeling 12

Parallelism in a modern compute node rr7|:

B PYP| P o PIPIPIP [olns
i L1D L1D L1D 4[9‘ i i L1D L1D L1D L1D i @
i - = L3 = i i = = L3 6 = : Other 1/0

‘ Memory ‘ { Memory }
Parallel resources: Shared resources:
= Execution/SIMD units € = Outer cache level per socket

= Cores @

= Inner cache levels 6
= Sockets / ccNUMA domains @)
= Multiple accelerators @

Memory bus per socket @)
Intersocket link Q

PCle bus(es) Q

Other 1/O resources @

How does your application react to all of those details?

(c) RRZE 2014 Basic Performance Modeling 13

Case study:
OpenMP-parallel sparse matrix-vector
multiplication (part 1)

A simple (but sometimes not-so-simple) example for
bandwidth-bound code and saturation effects in memory

Sparse matrix-vector multiply (spMVM) rr?:

= Key ingredient in some matrix diagonalization algorithms
= Lanczos, Davidson, Jacobi-Davidson

= Store only N,, nonzero elements of matrix and RHS, LHS vectors
with N, (number of matrix rows) entries

= “Sparse”: N, ~ N,

\
General case:
= + ° > some indirect
r addressing
required!
)

(c) RRZE 2014 Basic Performance Modeling 15

Popular sparse matrix storage scheme: CRS rr?:

column index
1234.. val[] stores all the nonzeros
(length N_,)
col idx[] stores the column index
of each nonzero (length N_,)
row_ptr[] stores the starting index

of each new row in val[] (length:
N,)

HrOWN R

row index

vall]

112)13]|5|1[2|5[1[3[4]6]3]4]7]1]12|5|8]| ... col_idx[]

115]18]12]15]19] ... row_ptrl]

(c) RRZE 2014 Basic Performance Modeling 16

Case study: Sparse matrix-vector multiply [T =

= Strongly memory-bound for large data sets
= Streaming, with partially indirect access:

ISOMP parallel do

do i = 1,N,

do j = row ptr(i), row ptr(i+l) - 1
c(i) = c(i) + * b(col idx(]j))

enddo

enddo

ISOMP end parallel do

= Usually many spMVMs required to solve a problem

= Following slides: Performance data on one 24-core AMD “Magny
Cours” node

(c) RRZE 2014 Basic Performance Modeling

Application: Sparse matrix-vector multiply r r?—
Strong scaling on one XE6 Magny-Cours node | R
= Case 1: Large matrix
z z cant, 62451x62451, non-zero: 4007383
H H 8000 T ' ' T
CRS-magnycours —+—
- - 7000 -
-------------------------------------- 6000 -
z e 5000 -
O 4000 -
i
0 s dAH JuBIaY E
""""""""""""""""""""" 3000 -
Intrasocket ~—
bandwidth 2000 Good scaling i
bottleneck across NUMA
1000 . -
domains
0 1 L L L
0 5 10 15 20 25
threads
Basic Performance Modeling 19

(c) RRZE 2014

Application: Sparse matrix-vector multiply ——
Strong scaling on one XE6 Magny-Cours node r r

= Case 2: Medium size

Coherent erTransport (16x+8x

z z mc2depi, 525825x525825, non-zero: 2100225
§ s 10000 . ' — ,
CRS-magnycours —+
‘ 9000 F -
: 2 < gooo)) -
o2 = Working set fits
7000 in aggregate -
. . cache
g g 6000 } -
= = _(_Q
o\
o
(@] 5000 f -
—1
LL
(xg+xg1) Hodsueil1edAH wsiayod E
""""""""""""""""""""" 4000 | -
3000 | B -
Intrasocket -
bandwidth 2000 [~ T
bottleneck 1000 _
D [[[
0 5 10 15 20 25

threads

(c) RRZE 2014 Basic Performance Modeling 20

Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

= Case 3: Small size

Coherent erTransport (16x+8x

Memory
Memory

Memory
Memory

No bandwidth
bottleneck

(c) RRZE 2014

h |
rbs480a, 480x480, non-zero: 17088
4500 r r r T
CRS-magnycours —+
4000 | . -
3500 f \%_
e
—~—+

3000 | -
w
%)
[
O 2500 .
—
L
s

2000 .

Parallelization
1500 overhead .
dominates
1000 [.
500 1 [1 [
0 5 10 15 20 25
threads
Basic Performance Modeling 21

Conclusions from the spMVM benchmarks rr?:

= If the problem is “large”, bandwidth saturation on the socket is
a reality
= - There are “spare cores”
= Very common performance pattern

= What to do with spare cores? e

= Let them idle = saves energy with minor o _
loss in time to solution -

= Use them for other tasks, such as MPI
communication [Memory]

= Can we predict the saturated performance?

= Bandwidth-based performance modeling!

= What is the significance of the indirect access? 2%
Can it be modeled?

= Can we predict the saturation point?
= ... and why is this important? "o)

[Memory Interface |

1000 I

X
Y
See later for
answers!

(c) RRZE 2014 Basic Performance Modeling 22

“Simple” performance modeling:
The Roofline Model

Loop-based performance modeling: Execution vs. data transfer
Example: array summation

The Roofline Model!:2

1. P

max

comes from L1 cache (this is not necessarily P

= Applicable peak performance of a loop, assuming that data

2. | = Computational intensity (“work” per byte transferred) over the

slowest data path utilized (“the bottleneck”)
= Code balance B, =11

3. bg =Applicable peak bandwidth of the slowest data path utilized

[F/B]

[B/s]

Expected performance:

\

P = min(Ppax, I - bs)

1W. Schonauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. (2000)

25, Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

(c) RRZE 2014 Basic Performance Modeling

24

http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

“Simple” Roofline: The vector triad r r ‘m—

Example: Vectortriad A(:)=B(:)+C(:)*D(:)
on a 2.7 GHz 8-core Sandy Bridge chip (AVX vectorized)

" bs =40 GB/s
= B, = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)
2> 1=04F/W=0.05F/B

-2 |- bs=2.0 GF/s (1.2 % of peak performance)

* P eak = 173 Gflop/s (8 FP units x (4+4) Flops/cy x 2.7 GHz)

=pP__.7 = Observe LD/ST throughput maximum of 1 AVX Load and

max *

Y5 AVX store per cycle - 3 cy /8 Flops = P, = 57.6 Gflop/s (33%
peak)

P = min(Pyax, I - bs) = min(57.6,2.0) GFlop/s
= 2.0 GFlop/s

(c) RRZE 2014 Basic Performance Modeling 25

“Simple” Roofline: The vector triad r r ‘m—

Example: Vectortriad A(:)=B(:)+C(:)*D(:)
on a 1.05 GHz 60-core Intel Xeon Phi chip (vectorized)

" b =160 GB/s
= B, = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)
2> 1=04F/W=0.05F/B

- |- bs =8.0 GF/s (0.8 % of peak performance)

" Ppeak = 1008 Gflop/s (60 FP units x (8+8) Flops/cy x 1.05 GHz)

" P,.? =2 Observe LD/ST throughput maximum of 1 Load or 1 Store

max *

per cycle = 4 cy /16 Flops = P, ., = 252 Gflop/s (25% of peak)

P = min(Pyax, I * bs) = min(252,8.0) GFlop/s
= 8.0 GFlop/s

(c) RRZE 2014 Basic Performance Modeling 26

A not so simple Roofline example rr?:

Example: do i=1,N; s=s+a(i); enddo
in double precision on a 2.7 GHz Sandy Bridge socket @ “large” N

Y S 7 P = min(PmaX,I " bs)

| 86AGHs L
64l 3O .
S)

& ADD peak
— 320 — .
2 20 aeaws & (best possible code)
% 16 0@\" - no SIMD How do we get
E these?
E s . A = -> See next!
b=
: | ~~ 3-cycle latency per ADD

if not unrolled

/

|
1/32 1\6 1/8 1/4 12 1 2
Computational intensity [Flops/Byte]

P =5 Gflop/s

| =1 Flop / 8 byte (in DP)

(c) RRZE 2014 Basic Performance Modeling 27

Applicable peak for the summation loop

Plain scalar code, no SIMD

LOAD rl.0 € O

i €1

loop:
LOAD r2.0 € a(i)
ADD r1l.0 € rl1.0+r2.0
++i 27 loop

result € rl.0

(c) RRZE 2014

ADD pipes utilization:

| —

%

&

%

- 1/12 of ADD peak

Basic Performance Modeling

SIMD lanes

28

Applicable peak for the summation loop rr7|:

Scalar code, 3-way unrolling
LOAD r1l.0 € O
LOAD r2.0 € 0

o 50 € o T
i€1

loop:
LOAD r4.0 € a(i)
LOAD r5.0 € a(i+l)
LOAD r6.0 € a(i+2)

ADD pipes utilization:

- 1/4 of ADD peak
ADD r1l.0 € rl1.0+r4.0
ADD r2.0 € r2.0+r5.0
ADD r3.0 € r3.0+r6.0

i+=3 =2°? loop
result € rl.0+r2.0+r3.0

(c) RRZE 2014 Basic Performance Modeling 29

Applicable peak for the summation loop _

_ ADD pipes utilization:
SIMD-vectorized, 3-way unrolled

LOAD [rl.0,..,rl1l.3] € [0,0]
LOAD [r2.0,..,r2.3] € [0,0]
LOAD [r3.0,..,r3.3] € [0,0]
i €1

- ADD peak

loop:
LOAD [r4.0,..,r4.3] € [a(i),..,a(i+3)]
LOAD [r5.0,..,r5.3] € [a(i+4),..,a(i+7)]
LOAD [r6.0,..,r6.3] € [a(i+8),..,a(i+1l1l)]

ADD rl €& rl+r4
ADD r2 €& r2+r5
ADD r3 €& r3+ré6

i+=12 -? loop
result € rl1l.0+rl.1+...4r3.2+r3.3

(c) RRZE 2014 Basic Performance Modeling 30

Assumptions for the Roofline Model rr?:

= The roofline formalism is based on some (crucial) assumptions:
= There is a clear concept of “work™ vs. “traffic”
= “work” = flops, updates, iterations...
= “traffic” = required data to do “work”

= Attainable bandwidth of code = input parameter! Determine effective
bandwidth via simple streaming benchmarks to model more complex
kernels and applications

= Data transfer and core execution overlap perfectly!

= Slowest data path is modeled only; all others are assumed to be infinitely
fast

= |f data transfer is the limiting factor, the bandwidth of the slowest data path
can be utilized to 100% (“saturation”)

= Latency effects are ignored, i.e. perfect streaming mode

(c) RRZE 2014 Basic Performance Modeling 31

Factors to consider in the roofline model rrT'_

e e

Bandwidth-bound (simple case) Core-bound (may be complex)
= Accurate traffic calculation (write- = Multiple bottlenecks: LD/ST,

allocate, strided access, ...) arithmetic, pipelines, SIMD,
= Practical # theoretical BW limits execution ports
[] Erratic access patterns = lelt iS Iinear in # Of cores

I I // I I //
161 /_/j____ 1 /_/_/____
8- — 8 —

'2_

Performance [GF/s]
Performance [GE/s]

1_

0.5 — 0.5

0.25 — 025

| | | | | | |
/64 132 1/16 1/8 1/4 /2 L 2 /o4 1732 116 L/8 1/4 1/2 1 2

Computational intensity [F/B] Computational intensity [F/B])

(c) RRZE 2014 Basic Performance Modeling 32

Complexities of in-core execution rrE:

Multiple bottlenecks: L1 Icache

/
L1 Icache (LD/ST) bandwidth

Decode/retirement

Port contention
(direct or indirect)

Register pressure
Alignment issues

Arithmetic pipeline stalls . > Reorder buffer / Register renaming & o
(dependencies) S 2 Scheduler
. . I
Overall pipeline stalls Port 0 Port 1 Port 2 Port 3 Port 4 Port 5
(branching) P F F P P
L1 Dcache bandwidth
ALU AU | “LoaD | LoAD | ‘sTomRE | AL

(LD/ST throughput)

_ W ADRS ADRS JMP
Scalar vs. SIMD execution DIV I]

v

l l P Data flow
* Control flow
L1 Dcache Memory control " Pot. bottleneck

(c) RRZE 2014 Basic Performance Modeling 33

Typical code optimizations in the Roofline Model rrTI:

1. Hit the BW bottleneck by good

serial code
2. Increase intensity to make better ‘[N
use of BW bottleneck oL .,
% =
3. Increase intensity and go from £ 4| -~ TS
memory-bound to core-bound 5 | Vil
4. Hit the core bottleneck by good % | 7
serial code =
0.5]‘ l
5. Shift P, by accessing s @
additional hardware features or .
. . | | | | | |
using a different _ /64 1/32 1/16 1/8 1/4 12 1 2
algorlth mllmplementatlon Computational intensity 7 [F/B]

(c) RRZE 2014 Basic Performance Modeling

34

Shortcomings of the roofline model rr?:

= Saturation effects in multicore chips are not explained
= Reason: “saturation assumption”

= Cache line transfers and core execution do sometimes not overlap
perfectly

= Only increased “pressure” on the memory A(:)=B(:)+C(:)*D(:)
interface can saturate the bus Orr—T—T T T T T
- need more cores! '

o
N

fad
=

= ECM model gives more insight

J
n

]
=

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance
and power properties of modern multicore chips via simple machine
models. Concurrency and Computation: Practice and Experience.

DOI: 10.1002/cpe.3180 Preprint: arXiv:1208.2908 i

—_—
h
I
l

Memory bandwidth [GB/s]

,_.
=]
|

Roofline predicts_full
socket BW

n
|

(c) RRZE 2014 Basic Performance Modeling 35

http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908

=

Putting Roofline to use where it should
not work

Sparse matrix-vector multiplication, part 2

Example: SpMVM node performance model [T =»'—

L tip—
= Sparse MVM in do i =1,N
double precision do j = row_ptr(i), row ptr(1+1) -1
w/ CRS data storage: C(i) = c()]+[val(j)]*{Blcol_idx (j)]
enddo
enddo

flops
= DP CRS comp. intensity I¢Rs = 811 4 8. |16 N, |byt
I €
= a quantifies traffic A C¥I+ [narlPY
for loading RHS

=a=0-> RHS s in cache

= a = 1/N,, = RHS loaded once

= a=1-> no cache

= a > 1 - Houston, we have a problem!
= “Expected” performance = bg X lgs

= Determine a by measuring the actual memory traffic
= Maximum memory BW may not be achieved with spMVM

(c) RRZE 2014 Basic Performance Modeling 37

Determine RHS traffic rr?:

[DP 2 flops Ny, - 2 flops
CRS ~ 8+ 4+ 8a + 16/N, ,, byte

Vme as

" Vineas 1S the measured overall memory data traffic (using, e.g.,
likwid-perfctr)

= Solve for a: 1(Voeas 8 >

ad = —

N,,, - 2 bytes B N, .

= Example: kkt_power matrix from the UoF collection

on one Intel SNB socket
= N,, =14.6-10% N,,,. = 7.1
" Vneas = 258 MB

"D a= 043, aNTlZT = 3.1
= 2 RHS is loaded 3.1 times from memory \
rand CRS(l/NnZT) —115— 15% extra traffic 9

Iggs(a) B optimization potentiall

(c) RRZE 2014 Basic Performance Modeling 38

Roofline analysis for spMVM rr?:

= Conclusion from Roofline analysis

= The roofline model does not work 100% for spMVM due to the RHS
traffic uncertainties

= We have “turned the model around” and measured the actual
memory traffic to determine the RHS overhead

= Result indicates:
1. how much actual traffic the RHS generates
2. how efficient the RHS access is (compare BW with max. BW)
3. how much optimization potential we have with matrix reordering

= Conseqguence: If the model does not work, we learn
something!

(c) RRZE 2014 Basic Performance Modeling 39

