Advanced Scientific Computing on Intel Xeon Phi

PARCO'13, Garching (Germany)

Alexander Heinecke

Technische Universität München, Chair of Scientific Computing

Sep 13th 2013

Acknowledgment

For input and fruitful discussions I want to thank:

 Intel DE: Michael Klemm, Hans Pabst, Christopher Dahnken
 Intel Labs US/IN, PCL: Mikhail Smelyanskiy, Karthikeyan Vaidyanathan, Pradeep Dubey, Victor Lee, Christopher Hughes
 Intel US: Mike Julier, Susan Meredith, Catherine Djunaedi, Michael Hebenstreit
 Intel RU: Dmitry Budnikov, Maxim Shevtsov, Alexander Batushin Intel IL: Ayal Zaks, Arik Narkis, Arnon Peleg

And a very special thank you to Joe Curley and the KNC Team for providing the SE10P cards for my test cluster!

Outline

Introduction to Intel Xeon Phi

Codes, which are not fully optimized for Xeon Phi, yet!

Molecular Dynamics Earthquake Simulation - SeisSol, SuperMUC bid workload

Hybrid HPL

Data Mining with Sparse Grids

Conclusions

The Intel Xeon Phi SE10P (5110P)

- 61(60) cores with 4 threads each at 1.1(1.053) GHz
- 32 KB L1\$, 512 KB L2\$, pre core
- L2\$ are kept coherent through a fast on-chip ring bus network
- 512 bit wide vector instructions, 2 cycle throughput
- 1074(1010) GFLOPS Peak DP
- 2148(2020) GFLOPS Peak SP
- 8 GB GDDR5, 512 bit interface, 352(330) GB/s
- PCIe 2.0 Host-Interface

пπ

The Intel Xeon Phi Usage Model

- scalar: CPU hosted
- highly parallel: MIC offload
- offload through MPI: symmetric
- scalar phases: reverse offload
- highly parallel: MIC hosted

Infiniband-Connectivity of Xeon Phi

 \Rightarrow Xeon E5 has only 16 PCIe read buffers but 64 PCIe write buffers!

 \Rightarrow Start-up latency is 9us (host \leftrightarrow host: 1.5us, 1 hop), with 3 hops!

 \Rightarrow Using hosts as proxy like in GPU diret results in up to 6GB/s!

Outline

Introduction to Intel Xeon Phi

Codes, which are not fully optimized for Xeon Phi, yet!

Molecular Dynamics Earthquake Simulation - SeisSol, SuperMUC bid workload

Hybrid HPL

Data Mining with Sparse Grids

Conclusions

Linked Cell Particle Simulations with Is1 mardyn*

- with increasing vectorlength net-vector usage goes down (holes)
- Xeon E5 has too low bandwidth to L1 (32 byte read, 16 byte write)
- gather/scatter can be used to achieve 100% vectorregister load

 \Rightarrow Porting ls1 mardyn to MIC hosted mode is ongoing research

*Eckhardt, et.al.: 591 TFLOPS Multi-Trillion Particles Simulation on SuperMUC, ISC'13

пπ

Single Card Performance Xeon Phi*

Compute distances

d_a_m7	d_a_m6	d_a_m5	d_a_m4	d_a_m3	d_a_m2	d_a_m1	d_a_m0
--------	--------	--------	--------	--------	--------	--------	--------

• Execute force computation

*Eckhardt, et.al.: Vectorization of Multi-Center, Highly-Parallel Rigid-Body Molecular Dynamics Simulations, Poster SC'13, accepted

SeisSol*

SeisSol is a software-package for the simulation of seismic wave phenomena on unstructured grids, based on the discontinuous Galerkin method com- bined with ADER time discretization.

On key-routine is the ADER time integration working on following matrix patterns:

 \Rightarrow we are currently at 1.3X for compute kernels comparing 1 Xeon Phi to 1 dual socket SNB-EP!

*Breuer, et.al.: Accelerating SeisSol by Generating Vectorcode for Sparse Matrix Operators, PARCO'13, accepted

*Heinecke, et.al.: Optimized Kernels for large scale earthquake simulations with SeisSol, an

unstructured ADER-DG code, Poster SC'13, accepted

Outline

Introduction to Intel Xeon Phi

Codes, which are not fully optimized for Xeon Phi, yet!

Molecular Dynamics Earthquake Simulation - SeisSol, SuperMUC bid workload

Hybrid HPL

Data Mining with Sparse Grids

Conclusions

The HPL Benchmark*

	Finished part of U		
_	D	U _i	
Finished part of	Current panel L _i	A _i =A _i -L _i U _i	

- Matrix is stored in block-cyclic layout
- Matrix is decomposed into *P*-process-rows and *Q*-process-columns
- LU is most critical component
- DGEMM fraction grows with increasing system size

 \Rightarrow solve largest possible problem for best performance \Rightarrow keep MIC busy all the time (doing DGEMM)

*: Heinecke, et.al.: Design and Implementation of the Linpack Benchmark for Single and Multi-Node Systems Based on Intel(R) Xeon Phi(TM) Coprocessor, IPDPS'13

Designing Offload-DGEMM with work-stealing

- $T_c = \frac{2MNK}{\text{Peak}}$
- $T_t = \frac{8MN}{PCle} < T_c$
- $K > 4 \frac{\text{Peak}}{\text{PCle}} \approx 1000$
- C,A,B are split into tiles
- MIC starts to process tiles from *C*(0,0)
- CPU starts to process tiles from *C*(*X*, *X*)
- dynamic load balancing assigns work to MIC or CPU

пπ

Hybrid HPL using Pipelined Lookahead

- A panel was already swapped in last iteration
- swap, U broadcast and DTRSM on one B-tile
- panel free-up on CPU is merged with swap, U broadcast and DTRSM
- afterwards start pipelined execution of swap, U broadcast, DTRSM and trailing update DGEMM

 \Rightarrow Xeon Phi is executing DGEMM basically all the time!

Lookahead Comparison

Standard Lookahead

Pipelined Lookahead

Comparison of Lookahead variants on a four node cluster with 2 Xeon Phi per node and 64 GB RAM per node, local matrix size is 82.8K, P = Q = 2.

Performance Results

System	N	Ρ	Q	TFLOPS	Eff.
CPU only, 64GB	84K	1	1	0.29	86.4
CPU only, 64GB	168K	2	2	1.10	82.8
no pipeline, 1 card, 64GB	84K	1	1	0.99	71.0
pipeline, 1 card, 64GB	84K	1	1	1.12	79.8
no pipeline, 1 card, 64GB	168K	2	2	3.88	69.1
pipeline, 1 card, 64GB	168K	2	2	4.36	77.6
no pipeline, 1 card, 64GB	825K	10	10	95.2	67.7
pipeline, 1 card, 64GB	825K	10	10	107.0	76.1
no pipeline, 2 cards, 64GB	84K	1	1	1.66	68.2
pipeline, 2 cards, 64GB	84K	1	1	1.87	76.6
no pipeline, 2 cards, 64GB	166K	2	2	6.36	65.0
pipeline, 2 cards, 64GB	166K	2	2	7.15	73.1
no pipeline, 2 cards, 64GB	822K	10	10	156.5	64.0
pipeline, 2 cards, 64GB	822K	10	10	175.8	71.9
pipeline, 1 card, 128GB	242K	2	2	4.42	79.6

Outline

Introduction to Intel Xeon Phi

Codes, which are not fully optimized for Xeon Phi, yet!

Molecular Dynamics Earthquake Simulation - SeisSol, SuperMUC bid workload

Hybrid HPL

Data Mining with Sparse Grids

Conclusions

Sparse Grids in a nutshell*

- Curse of Dimensionality: $O(N^d)$ grid points
- Therefore: Sparse Grids
 - Reduce cost to $O(N\log(N)^{d-1})$
 - Similar accuracy, if problem sufficiently smooth
- Basic idea: hierarchical basis in 1d (here: piecewise linear)

*: Heinecke, et.al.: Data Mining on Vast Dataset as a Cluster System Benchmark, PMBS'13, submitted

Alexander Heinecke: Advanced Scientific Computing on Intel Xeon Phi PARCO'13, Garching (Germany) , Sep 13th 2013

ππ

Data Mining with SG - In a nutshell

d-dimensional instances and ansatz-functions $f_N(\vec{x})$:

$$S = \left\{ (\vec{x}_m, y_m) \in \mathbb{R}^d \times K \right\}_{m=1,\dots,M} \qquad f_N(\vec{x}) = \sum_{j=1}^N \vec{u}_j \varphi_j(\vec{x})$$

. .

problem to be solved:

$$f_N \stackrel{!}{=} \operatorname*{arg\,min}_{f_N \in V_N} \left(\frac{1}{M} \sum_{m=1}^M (y_m - f_N(\vec{x}_m))^2 + \lambda ||\nabla f_N||_{L^2}^2 \right)$$

results into SLE:

$$\left(rac{1}{M}BB^T + \lambda C
ight)ec{u} = rac{1}{M}Bec{y}$$
 here $C = I, b_{ij} = arphi_i(ec{x}_j)$

Implementation of B^T and B

 B^{T} : Parallelization over dataset instances:

B: Parallelization over grid points:

Non-uniform Basis Functions - *B^T* **Operator**

```
for \vec{x}_m \in S with |S| = M, \vec{y}_m \leftarrow 0 do
    for all g \in grid with s \leftarrow \vec{\alpha}_g do
        for k = 1 to d do
            if g_{l_{\nu}} = 1 then
                 s \leftarrow s \cdot 1
            else if g_{i\nu} = 1 then
                 s \leftarrow s \cdot \max(2 - g_{l_{\mu}} \cdot \vec{x}_{m_{\mu}}; 0)
            else if g_{i_k} = 2^{g_{i_k}} - 1 then
                 s \leftarrow s \cdot \max(g_{l_{\mu}} \cdot \vec{x}_{m_{\mu}} - g_{i_{\mu}} + 1; 0)
            else
                 s \leftarrow s \cdot \max(1 - |g_{l_{\mu}} \cdot \vec{x}_{m_{\mu}} - g_{l_{\mu}}|; 0)
            end if
        end for
        \vec{V}_m \leftarrow \vec{V}_m + S
    end for
end for
```

Alexander Heinecke: Advanced Scientific Computing on Intel Xeon Phi PARCO'13, Garching (Germany) , Sep 13th 2013

пп

Extending B^T and B to Clusters

Performance Model for MPI_Allreduce

Total learning time on *p* nodes:

$$T_{\text{learn}}(\boldsymbol{\rho},\boldsymbol{N}) = T_{\text{seq}}(\boldsymbol{N}) + T_{\boldsymbol{B}}(\boldsymbol{\rho},\boldsymbol{N}) + T_{\boldsymbol{B}^{T}}(\boldsymbol{\rho},\boldsymbol{N}) + T_{\text{comm}}(\boldsymbol{\rho},\boldsymbol{N}),$$

with

$$T_{
m seq} = T_{
m total_{singlenode}} - T_{B_{
m singlenode}} - T_{B_{
m singlenode}^T}$$

and

$$T_B(p) = rac{T_{B_{ ext{singlenode}}}}{p} \quad ext{and} \quad T_{B^T}(p) = rac{T_{B_{ ext{singlenode}}}}{p}.$$

The communication time can be estimated by:

$$T_{\text{comm}}(p, N) = \sum_{r \in \text{Refinements}} T_{\text{commCG}}(p, N),$$

with employing the OSU MVAPICH benchmark suite:

 $T_{\text{commCG}}(p, N) = \text{microbenchmark}(N, p) \cdot (\text{#iterations} + 1).$

Performance Model Evaluation

test dataset DR5: 400K instances, 5 dimensions

Xeon Phi Offload vs. Xeon Phi Native

- DR5 dataset, 400K instances, 5 dimensions (upper)
- Friedman1 dataset, 10M instances per node, 10 dimensions (lower)
- We're running out of parallel tasks
- offloading is a limitation in case of small grids

пπ

Using MIC native implementation on Cluster

- Beacon CPU only
- Beacon 1 5110P native
- Beacon symmetric (CPU+MIC)
- Beacon 1 5110P offload
- Beacon Hybrid (CPU+MIC)

- test dataset DR5: 400K instances, 5 dimensions
- symmetric mode: 2 ranks per Xeon Phi, 1 per Xeon E5

Conclusions

Data Parallelism in x86 delivers performance comparable to GPUs, but at a higher programming productivity!

Key Findings:

- · we are flexible to use different programming models
- we can just re-compile and code runs directly on Xeon Phi
- Intrinsics can be easily transferred
- Optimizations on Xeon Phi are optimization on Xeon E5, too!
- tuning for Intel MIC Architecture does not differ from tuning for a standard CPU which is also required when using GPUs (since CPU FLOPS should not be neglected)
- but: running 60+ MPI ranks on Xeon Phi seems to be suboptimal
- but: ccNUMA like L2 cache needs to be respected

BACKUP

STREAM on Xeon Phi

DGEMM on Xeon Phi

Heinecke, et.al.: Design and Implementation of the Linpack Benchmark for Single and Multi-Node Systems Based on Intel(R) Xeon Phi(TM) Coprocessor, at IPDPS'13

DGETRF on Xeon Phi

Heinecke, et.al.: IPDPS'13

The Intel Xeon Phi Usage Model - Offloading

Iow-level SCI Low-level MPI-like interface (DMA-windows, mem-fences) med-level COI OpenCL-like, handles, buffers, etc.

high-level #pragma annotations for driving offload to MIC

Example: #pragma offload target(mic:d) nocopy(ptrData) in(ptrCoef:length(size) alloc_if(0) free_if(0) align(64)) out(ptrCoef[start:mychunk] : into (ptrCoef[start:mychunk]) alloc_if(0) free_if(0) align(64)) in(size) { ...

пп

Offload-DGEMM with one Xeon Phi

Offload-DGEMM with two Xeon Phis

Naive Hybrid HPL

- very simple
- Least change to HPL, plug and play
- no-lookahead is even inefficient on CPU
- Performance is limited by swapping and panel fact. running on CPU
- As MIC is 3-4× faster than CPU, MIC idle time is more expensive

 \Rightarrow Keeping Xeon Phi as busy as possible is major goal!

Hybrid HPL using Standard Lookahead

- little changes to HPL
- DGEMM is split into tow parts: panel free-up and trailing update
- trailing update DGEMM is load-balanced via work-stealing between MIC and CPU
- panel fact. is entirely hidden

 \Rightarrow U broadcast, swapping of trailing matrix and DTRSM are still exposed!

Outline

Introduction to Intel Xeon Phi

Codes, which are not fully optimized for Xeon Phi, yet!

Molecular Dynamics Earthquake Simulation - SeisSol, SuperMUC bid workload

Hybrid HPL

Data Mining with Sparse Grids

Conclusions

THE UNIVERSITY OF TENNESSEE UT

Beacon: A Path to Energy-Efficient HPC

R. Glenn Brook

Director, Application Acceleration Center of Excellence National Institute for Computational Sciences <u>glenn-brook@tennessee.edu</u>

Green500 Hardware

• Appro Xtreme-X Supercomputer powered by ACE

Beacon Green500 Cluster				
Nodes	36 compute			
CPU model	Intel® Xeon® E5-2670			
CPUs per node	2x 8-core, 2.6GHz			
RAM per node	256 GB			
SSD per node	960 GB (RAID 0)			
Intel® Xeon Phi™ Coprocessors 5110P per node	4			
Cores per Intel [®] Xeon Phi™ coprocessor 5110P	60 @ 1.053GHz			
RAM per Intel [®] Xeon Phi™ coprocessor 5110P	8 GB GDDR5			

THE UNIVERSITY of TENNESSEE UT NATIONAL LEADERSHIP IN HPC

Assembled Team

- Intel:
 - Mikhail Smelyanskiy software lead
 - Karthikeyan Vaidyanathan MIC HPL
 - Ian Steiner host HPL optimization
 - Many, many others: Joe Curley, Jim Jeffers, Pradeep Dubey, Susan Meredith, Rajesh Agny, Russ Fromkin, and many dedicated and passionate team members
- Technische Universität München:
 - Alexander Heinecke MIC HPL
- Appro:
 - John Lee hardware lead
 - David Parks HPL and system software
 - Edgardo Evangelista, Danny Tran, others system deployment and support
- NICS:
 - Glenn Brook project lead
 - Ryan Braby, Troy Baer system support

THE UNIVERSITY OF TENNESSEE UT NATIONAL LEADERSHIP IN HPC

Power Consumption

classical, recursive function evaluation

Algorithm: Learning data sets with adaptive sparse grids

- 1: D := data set
- 2: G := start grid
- 3: $\vec{u} := \vec{0}$
- 4: while TRUE do
- 5: $trainGrid(G, \vec{u}, D)$
- 6: $acc = getAccuracy(G, \vec{u}, D)$
- 7: if $acc \geq acc_{needed}$ then
- 8: **return** *u*, *G*
- 9: end if
- 10: refineGrid(G, \vec{u})
- 11: end while

First results (modlinear) - Baseline: classic algorithms

DR5 data set (370K instances):

First results (regular) - Baseline: classic algorithms

DR5 data set (370K instances):

Scaling on SuperMUC

modlinear: spatially adaptive grids (5K - 21K gridpoints in 7 refinements), modlinear basis, MSE: 4.8*10-4, runtime 16384: 4.4s

linear boundary: regular grid (100K gridpoints), regular linear basis, MSE: 5.4*10-4, runtime 32768: 3.6s

Data Mining with Sparse Grids @SC12

