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Abstract

This thesis deals with the computation of a small set of exterior eigenvalues of a
given large sparse matrix on present (and future) supercomputers using a Block-Jacobi-
Davidson method. The main idea of the method is to operate on blocks of vectors and
to combine several sparse matrix-vector multiplications with different vectors in a single
computation. Block vector calculations and in particular sparse matrix-multiple-vector
multiplications can be considerably faster than single vector operations if a suitable
memory layout is used for the block vectors. The performance of block vector compu-
tations is analyzed on the node-level as well as for a cluster of nodes.
The implementation of the method is based on an existing sparse linear algebra frame-
work and exploits several layers of parallelism. Numerical tests show that the block
method developed works well for a wide range of matrices and that a small block size can
speed up the complete computation of a set of eigenvalues significantly in comparison
to a single vector calculation.

Zusammenfassung

Ziel dieser Arbeit ist die Berechnung einer kleinen Anzahl äußerer Eigenwerte großer
dünnbesetzter Matrizen auf aktuellen (und zukünftigen) Supercomputern. Dazu wird ei-
ne Block-Jacobi-Davidson-Methode entwickelt, in der viele Rechenoperationen auf gan-
ze Blöcke von Vektoren angewendet werden. Insbesondere werden so mehrere Matrix-
Vektor-Multiplikationen mit verschiedenen Vektoren zugleich bestimmt. Dadurch steigt
die Performance der benötigten Rechenoperationen erheblich, falls man ein geeignetes
Speicherlayout für die Blöcke von Vektoren verwendet. Dies zeigt sich in der Unter-
suchung der Node-Level-Performance der Matrix-Blockvektor-Multiplikation in dieser
Arbeit. Auch die parallele Performance auf HPC-Clustern wird so verbessert.
Die Implementierung der Methode basiert auf einem bestehenden Framework für linea-
re Algebra mit dünnbesetzten Matrizen und nutzt Parallelität auf mehreren Ebenen.
In numerischen Experimenten mit Eigenwertproblemen aus verschiedenen Disziplinen
erzielt die Block-Methode gute numerische Resultate und in Performance-Tests ergibt
sich für kleine Blockgrößen eine deutliche Beschleunigung der kompletten Rechnung.
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1. Introduction

This thesis deals with the solution of large sparse eigenvalue problems on present (and
future) supercomputers. A particular focus lies on the calculation of a small set of
exterior eigenvalues of possibly non-symmetric matrices. I have developed the algorithm
presented in this thesis as part of the ESSEX (Equipping Sparse Solvers for Exascale)
project1 from the DFG program SPPEXA2.
Large linear eigenvalue problems arise in many important applications; a particular
application that is addressed in the ESSEX project comes from quantum mechanics:
A simple model in the theoretical condensed matter physics consists of interacting
electron spins in a magnetic field (see for example [14]); when we consider a system of
L electrons with spin up or spin down, their configuration can be described by a state
vector Ψ of dimension 2L (due to quantum superposition of the individual spin states).
The stationary states are given by the following form of the Schrödinger equation

HΨ = EΨ .

The Hamiltonian operator H results from interactions between the spins of the elec-
trons. Assuming only interactions between a small number of neighboring spins, we
obtain a large sparse eigenvalue problem where we are interested in the states (e.g.
eigenvectors) with the lowest energy levels E (e.g. eigenvalues).
This short example illustrates that the theoretical analysis of a small quantum system
may already require the solution of a large eigenvalue problem, and that the dimension
of the problem can grow exponentially with the number of particles considered.
In this thesis I investigate a block Jacobi-Davidson method that performs matrix-

vector multiplications and vector-vector calculations with several vectors at once. In
order to understand the possible performance gains of block methods I analyze block
variants of numerical linear algebra operations, in particular of the sparse matrix-
vector multiplication, using simple performance models. This helps to improve the
performance of the required operations and to verify that the implementation achieves
(approximately) the performance limit of the operation on a specific machine. The per-
formance limit is derived through theoretical considerations and benchmarking results.
Jacobi-Davidson methods for the calculation of several eigenvalues were originally pre-
sented in [4]. Stathopoulos and McCombs excellently investigated Jacobi-Davidson
and Generalized Davidson methods for symmetric (respectively Hermitian) eigenvalue
problems in [21] and also addressed block methods briefly.
An interesting new development in the field of parallel sparse eigensolvers is the FEAST
algorithm which is theoretically analyzed in [22]. FEAST is also a research topic of the
ESSEX project because it permits the calculation of inner eigenvalues (or even all eigen-
values). As it requires the solution of linear systems with multiple right-hand sides, the
performance analysis of block operations in this thesis is interesting for FEAST, too.
This also applies to TraceMin-Multisectioning, another parallel approach to calculate
all eigenvalues of a symmetric matrix in a specific interval [12].

1For information about the ESSEX project, see http://blogs.fau.de/essex
2The German Priority Programme Software for Exascale Computing, see http://www.sppexa.de
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The outline of this thesis is as follows:
First, I present a short overview of the mathematical theory of sparse eigensolvers that
is needed to understand the block Jacobi-Davidson method derived later. Then I an-
alyze the performance of block variants of important linear algebra operations. These
include vector operations as well as sparse matrix-vector multiplications. Afterwards,
I derive a block Jacobi-Davidson method for the calculation of a set of exterior eigen-
values. Special attention is paid to the case of multiple eigenvalues and to avoiding
unnecessary communication in the algorithm. Subsequently, important aspects of my
implementation of the method are discussed. Numerical results from experiments with
varying block sizes substantiate the assumptions made in the derivation of the method
and illustrate its numerical behavior for eigenvalue problems from different applica-
tions. Finally, it is demonstrated that the block method can be faster than a single
vector algorithm on the basis of a set of eigenvalue problems from quantum mechanics.
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2. Sparse eigensolvers

This thesis deals with the problem of finding a set of eigenvalues λi ∈ C with corre-
sponding eigenvectors vi ∈ Cn of a given large sparse matrix A ∈ Cn×n:

Avi = λivi. (1)

See [25] or [18] for a detailed discussion of the topic. Here I want to concentrate on
the general case with a non-Hermitian complex matrix A and present some basic ideas
that are needed later.
For problems with small to medium dimension n there are standard methods available:
These are based on the reduction of A to some simpler form, e.g. the Schur form

AQ = QR.

Here Q ∈ Cn×n denotes an orthogonal matrix and R ∈ Cn×n an upper triangular
matrix, whose diagonal entries are obviously the eigenvalues of A. This Schur de-
composition can be calculated by an iterative process that is based on successive QR
decompositions of the form (Q1 = I, Q2R2 = AQ1, Q3R3 = AQ2, . . . ). Combined with
properly chosen shifts and reductions to Hessenberg form one obtains fast convergence
so that the overall costs are of order O(n3) operations and O(n2) storage. For this
reason these methods are also called direct methods.
For large problems with sparse matrices this is not a suitable approach. For this case
several methods were developed in the past century; but this is still an active area of
research because these methods usually lack the robustness of direct methods for gen-
eral matrices. In order to develop efficient algorithms for the solution of large sparse
eigenproblems on current supercomputers it is also important to consider aspects of
high performance computing, especially concerning the parallelization.

2.1. General approach

In order to reduce the dimension of the problem one usually works with a subspace of
lower dimension W = span{w1, w2, . . . , wk} ⊂ Cn×n. We can project the problem onto
this subspace using one of the following conditions:

• Ritz-Galerkin condition: Av − λv ⊥ W, v ∈ W,

• Petrov-Galerkin condition: Av − λv ⊥ W̃, v ∈ W.

Here W̃ = span{w̃1, w̃2, . . . , w̃k} ⊂ Cn×n denotes another subspace with the same
dimension as W.
If we use an orthogonal basis W =

(
w1 w2 . . . wk

)
for W (respectively two bi-

orthogonal bases for W, W̃ in the Petrov-Galerkin case) we can also formulate the
above conditions as

W ∗(AWs− λWs) = 0, s ∈ Ck

⇔ (W ∗AW )︸ ︷︷ ︸
M

s− λs = 0 (2)
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or as (W̃ ∗AW )s− λs = 0 for the Petrov-Galerkin projection.
So from the Galerkin condition we obtain an eigenvalue problem of much lower dimen-
sion with a matrix M ∈ Ck×k which is essentially a projection of A onto the subspace
W. For the projected matrixM we can compute the eigenvalues and eigenvectors using
a direct method. The eigenvalues are called Ritz values of the original problem and
from the eigenvectors si of M we obtain the corresponding Ritz vectors ṽi = Wsi.
On certain assumptions these Ritz values and vectors provide approximations for the
eigenvalues and eigenvectors of A (for more information please refer to [25, section 15
in chapter V], respectively the references therein).
One possibility to construct the subspaceW consists in a Krylov approach where we

select W = K = {x,Ax,A2x, . . . } for some starting vector x ∈ Cn. The idea behind
this is the power method; for increasing k the vector Akx tends to point more and more
in the direction of the eigenvector of the biggest eigenvalue |λi|. In the Hermitian case
one can exploit a short recurrence for the efficient construction of an orthogonal basis
for K. This results in the Lanczos method.
For general matrices it is necessary to orthogonalize Ak+1v in each step to all previous
vectors w1, w2, . . . , wk. This results in the Arnoldi method.
Using a Petrov-Galerkin condition one can also efficiently construct two bi-orthogonal
bases with a short recurrence for non-Hermitian matrices. This is the Bi-Lanczos
method. For details, see [25, chapter VIII].
Another possibility is the Jacobi-Davidson method where the subspaceW is constructed
by an inexact Newton process. A more detailed description of this method will be
presented in Section 4.
A completely different approach consists in the spectral projection of the FEAST

algorithm which essentially combines ideas from complex analysis with linear algebra.
It is based on integrals of the matrix function f(θ) = (A−θI)−1, θ ∈ C on closed curves
in the complex plane [22].
Yet another approach is used in the TraceMin-Multisectioning algorithm presented in
[12]: it transforms the problem of finding a set of eigenvalues into an optimization
problem that seeks to minimize the trace of a projected matrix.

2.2. Generalized eigenproblems

The standard eigenvalue problem (1) is a special case of the generalized eigenvalue
problem:
Given matrices A,B ∈ Cn×n, find pairs α, β ∈ C and corresponding vectors v ∈ Cn
with

αAv = βBv.

Here λ = α
β respectively λ̄ = β

α is called a generalized eigenvalue and v a generalized
eigenvector of the matrix stencil (A,B).
In this thesis I only consider the special case where one matrix is Hermitian positive

definite:
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Given a matrix A ∈ Cn×n and a Hermitian positive definite matrix (hpd) B ∈ Cn×n
we look for generalized eigenpairs (λi, vi), λi ∈ C, vi ∈ Cn with

Avi = λiBvi. (3)

We can treat this problem quite similar to the standard eigenvalue problem in many
cases because the Hermitian positive definite matrix B induces the inner product

< ·, · >B : x, y ∈ Cn → xHBy.

Considering the Ritz-Galerkin condition for the generalized eigenproblem with hpd B,
we see

Av − λBv ⊥ W, v ∈ W
⇔ B−1Av − λv ⊥B W, v ∈ W. (4)

That means we can transform it to the standard case just by switching the inner product
to < ·, · >B. Similar to (2) we obtain a standard eigenvalue problem for the Galerkin
projection onto W if we use a B-orthogonal basis W :

WHB(B−1AWs− λWs) = 0, s ∈ Ck

⇔ (WHAW )︸ ︷︷ ︸
M

s− λs = 0. (5)

In most parts of this thesis I will only discuss the standard eigenvalue problem and
point out some necessary adaptations in the algorithms for this special case of the gen-
eralized eigenproblem.
Additionally, we can replace the generalized eigenproblem with hpd B by the standard
eigenproblem with the matrix B−1A in the Hilbert space (Rn, < ·, · >B). For this we
may just redefine the adjoint operator as (·)∗ := ((·)HB). Subsequently, we can di-
rectly transfer all results for the standard eigenvalue problem to the special generalized
eigenvalue problem from (3).

2.3. Basic Techniques for preconditioning and deflation

The conditioning of a simple isolated eigenvalue is given by

δλi =
1

v̄∗i vi
v̄∗i δAvi .

Here δA denotes a small deviation in the matrix A, vi and v̄i the right and the left
eigenvector and δλi the resulting deviation of the eigenvalue λi.
We see that for a Hermitian matrix A, where the right and left eigenvectors are identical,
the condition number is one. However, for non-Hermitian matrices it depends on the
angle between the right and the left eigenvector.
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The condition number of an eigenvector depends on the distance of the corresponding
eigenvalue to the remaining part of the spectrum, which is

cond(vi) =
1

dist(λi,Λ(A) \ {λi})

for an isolated eigenvalue in the Hermitian case. In this case the condition number
gives also a nice a posteriori error bound for Ritz values:

|λ̃i − λi| ≤
‖r‖22

dist(λi,Λ(A) \ {λi})
.

Here λ̃i =
ṽ∗i Aṽi
ṽ∗i ṽi

denotes a Ritz-value and r = Aλ̃i −Aṽi the corresponding residual.
This indicates that in cases of multiple or tightly clustered eigenvalues it is sensible to
search for the invariant subspace spanned by the corresponding eigenvectors and that
the conditioning of an eigenvector can be improved by separating the wanted eigenvalue
from the remaining part of the spectrum.
So in order to compute eigenvalues near a specific target θ ∈ C we can replace the

matrix A in the subspace methods mentioned previously by the matrix

Ā = (A− θI)−1.

This is called shift and invert. As a result the desired eigenvalues of the shifted and
inverted matrix λ̄i = 1

λi−θ are amplified and hopefully better separated from the rest
of the spectrum whereas the eigenvectors remain the same. The term above is usually
not computed directly, but rather systems of the form (A− θI)z = b are solved.
A more elaborated approach that amplifies the spectrum near a target value θ and
damps it near τ ∈ C is the Cayley transform (formulated for the generalized eigenprob-
lem (3)):

Ā = (A− θB)−1(A− τB). (6)

The resulting eigenvalues of Ā are λ̄i = λi−τ
λi−θ . Additionally, it transforms the general-

ized eigenproblem with the matrices A,B to a standard eigenvalue problem of Ā.
The two approaches presented above can be seen as a special form of polynomial pre-
conditioning where we consider a (rational) matrix polynomial in A which amplifies a
specific part in the spectrum of A.
There are also techniques to blend out already computed eigenvalues and -vectors;

assuming we have a method that calculates the largest eigenvalue λ1 and the corre-
sponding eigenvector v1, and we now want to determine the second largest eigenpair
(λ2, v2): To achieve this we can try making λ2 the largest eigenvalue of some modified
matrix Ā.
In the Wielandt’s deflation procedure we replace A by

Ā := A−QΣQ∗,
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where Q =
(
q1 . . . qk

)
denotes an orthogonal basis that spans the eigenspace of

all already computed eigenvectors v1, . . . , vk, and Σ = diag(σ1, . . . , σk) is a set of ap-
propriate shifts. The resulting spectrum of Ā is given by Λ(Ā) = {λ1 − σ1, . . . , λk −
σk, λk+1, . . . , λn}.
We can also define a deflation procedure based on orthogonal projections: Granted that
we already have a partial Schur form

AQk = QkRk

with an orthogonal matrix Qk ∈ Cn×k and an upper triangular matrix Rk ∈ Ck×k, and
now we want to expand it by another vector qk+1 ∈ Cn, Q∗kq = 0:

A
(
Qk qk+1

)
=
(
Qk qk+1

)(Rk ∗
rk+1,k+1

)
.

This is obviously equivalent to determining an eigenpair of the projection of A onto the
orthogonal complement Q⊥k :

⇒ (I −QkQ∗k)(A− rk+1,k+1I)(I −QkQ∗k)q = 0.

This section should only provide an idea of some basic operations involved in many
eigensolvers. For more details see [18, chapter 4].

2.4. Theory of convergence

For non-Hermitian matrices there are few general convergence results. Even for simple
cases the Ritz values can converge very slowly or result in bad eigenvalue approxima-
tions (see [25, sections 29 and 33 in chapter VII] for some illustrative examples).
An important concept in the theory and also in the practical implementation of eigen-
solvers is the Rayleigh quotient ρA of a vector w ∈ Rn. It is defined as

ρA(w) =
w∗Aw

w∗w
. (7)

For a given vector w it minimizes the residual ‖Aw− ρw‖2, ρ ∈ R; so in this sense it is
the best estimate for the eigenvalue to a given eigenvector approximation. Obviously
Ritz values are Rayleigh quotients of the corresponding Ritz vectors.
In the following I describe the convergence results of two very simple methods that
provide some insight into the behavior of more elaborated methods.
As mentioned previously the power method calculates iterates of the form

wk+1 =
Awk
‖Awk‖2

.

On the assumption |λ1| > |λ2| ≥ . . . the Rayleigh quotients ρA(wk) converge to the
dominant eigenvalue λ1 if the starting vector is not orthogonal to v1. The rate of con-
vergence is linear and depends on the factor |λ2||λ1| (see [25, section 8, chapter IV]).
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This directly presents a lower bound for the convergence rate of Krylov subspace meth-
ods. Since all previous directions are retained in the subspace, they can often provide
much better approximations. Additionally, if we seek several eigenvalues, slow conver-
gence to one eigenvalue may come hand in hand with faster convergence to the next
eigenvalue [25, section 46 in chapter IX].
Note that preconditioning the problem with a shift and invert approach leads to the
factor |λ1−θ||λ2−θ| which is possibly much smaller for a well-chosen shift θ.
If we update the shift in each iteration using the current eigenvalue approximation

ρA(wk), we obtain the following Rayleigh quotient iteration (RQI):

wk+1 =
(A− ρA(wk)I)−1wk
‖(A− ρA(wk)I)−1wk‖2

. (8)

For Hermitian matrices this method converges globally to some eigenvalue and its
speed of convergence is essentially cubic in the neighborhood of an eigenpair. For non-
Hermitian matrices it still features quadratic local convergence (see [16] for an overview
of the convergence properties of RQI methods).
I will refer to these properties in the discussion of Jacobi-Davidson methods in Section 4.
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3. Sparse linear algebra algorithms on present HPC systems

In this section I describe some aspects of present supercomputers that are crucial for
the development of efficient sparse linear algebra algorithms. For a general introduction
to high performance computing the reader may refer to [5].
A simplified model for a present supercomputer is a cluster of compute nodes connected
by a network (distributed memory architecture) where each compute node consists of
several cores, e.g. single sequential computation units that share memory and resources
(shared memory architecture). Additionally, they could contain special accelerator
devices, but for simplicity I only consider clusters of multi-core nodes here.
The performance characteristics of such a supercomputer are complex:
Communication between nodes requires sending messages over the network (for example
using MPI), which is usually slow (in terms of bandwidth and latency) compared to
memory accesses. Still, the speed of the main memory alone is insufficient to feed
the cores with enough data to keep them working. That is why in today computers
a hierarchy of faster caches is employed to hide latencies of data transfers from main
memory. The usual setup consists of one small fast cache per core and one or several
larger slower caches that are possibly shared by all or several cores in a node. The
caches are organized in lines that contain consecutive elements of data.
From the model above we can derive two important aspects that influence the per-

formance of a given application: Parallelism and data locality.

Parallelism and concurrency We need to distribute the work among the compute
nodes of the cluster and among the cores on each node. So we have to exploit
several levels of parallelism to account for the different characteristics of inter-
node and intra-node communication.
We can distinguish between two concepts that help to parallelize a given appli-
cation:

• Distributing the data (data parallelism) such that each compute unit does a
part of the same global operation on his own chunk of data. Communication
is needed to resolve data dependencies. Notably, this allows computations
that are not possible on a single node due to memory restrictions.

• Splitting the algorithm into (mostly) independent subtasks (function paral-
lelism) such that the compute units each do their own operation on different
data items. Synchronization is needed to exchange data between interde-
pendent subtasks.

In the field of sparse eigensolvers we have large data (sparse matrices and several
sets of large (dense) vectors), thus we obviously need to distribute these data
structures among the compute nodes. On each compute node we can employ
both approaches. In particular, it may be useful to execute independent subtasks
concurrently in order to hide communication latencies.
I also need to note that it may be cheaper in some cases to do additional work in
order to avoid slow communication (communication avoiding).
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Data locality In order to minimize data transfers from slower cache or main memory
one should exploit data locality.
This refers to temporal locality ; that is reusing data recently accessed, as well as to
spatial locality ; that is accessing data stored in multiple consecutive (or nearby)
memory addresses sharing a cache line.
As multiple cores in one node usually share a common cache, it is probably not
advisable to execute several independent subtasks concurrently if these access
large amounts of (different) data.

So the performance analysis can basically be split into two parts: First, I examine the
node-level performance which includes effects of the cache architecture. Then I address
the inter-node performance which is influenced by the communication pattern and the
load (im-)balance. The following subsection gives a rough overview of the operations
to be discussed.

3.1. Basic operations

The basic operations needed by sparse linear algebra are essentially sparse matrix-
vector products and vector-vector operations.
Concerning the sparse matrix-vector multiplications (y ← Ax, A ∈ Cn×n, x, y ∈ Cn)
the performance depends on the sparsity pattern of the matrix A: Already for mod-
erately sized problems the single node performance is limited by the main memory
bandwidth because the matrix and vectors do not fit into the cache. And it may be
necessary to load the vector x or y (depending on the matrix storage format) multiple
times because the accesses to the vector exhibit bad spatial and temporal locality.
This situation can be improved by reordering the rows and columns of the matrix (see
for example [13]). Identifying dense blocks (through reordering and storing some addi-
tional zero entries) can also greatly improve the performance because this allows more
consecutive memory accesses and reduces indexing overhead.
If the sparse matrix A is distributed over the nodes, the inter-node performance is easily
dominated by communication. The ideas above also apply for this case; additionally,
it may be worth overlapping communication and local calculations in order to hide
waiting times (see for example [19]).
All the previous considerations to improve the performance of the sparse matrix-vector
multiplication seek to exploit the structure of the matrix A. Another approach con-
sists in grouping together several matrix-vector multiplications of the same matrix with
different right-hand-side vectors (in the following called sparse matrix-multiple-vector
multiplication (spMMVM)) such that the matrix needs only to be loaded once for
several vectors. In Figure 2 in Section 3.2 one can see possible improvements of the
node-level performance for the matrix-multiple-vector product of a matrix from quan-
tum mechanics with different block sizes.
This approach also reduces the number of messages sent compared to multiple consecu-
tive matrix-single-vector multiplications. Obviously, we can also combine this approach
with appropriate matrix reorderings.
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So it may be beneficial to modify a given algorithm such that several matrix-vector
multiplications with the same matrix are grouped together.
There are essentially two kinds of vector-vector operations: dot-products and opera-

tions consisting of simple addition and scaling with a scalar (y ← αx+ βy, α, β ∈ C).
The latter are usually cheap compared to matrix-vector products and perfectly par-
allelizable and thus quite unproblematic. To calculate the dot-product of distributed
vectors we need a reduction operation over all involved processes, which may produce
significant communication overhead on larger numbers of nodes (through synchronizing
all processes).
The performance can still be improved by grouping together several similar operations:
Block vector operations allow to reduce the number of messages sent and also to employ
faster dense matrix operations.
Especially in the field of sparse eigensolvers it may be easy to extend existing algo-

rithms that determine one eigenvector after another to block algorithms that search
for a set of eigenvalues and -vectors at once. This is also interesting from a numerical
point of view since subspace methods usually gather information for eigenvalues near
a specific target eigenvalue automatically. So it may be helpful to investigate block
methods in order to calculate several close eigenvalues.

3.2. Node-level performance modelling and micro benchmarks

We can set up models for the performance of a given algorithm on a given piece of
hardware. These models are useful to obtain a better understanding of the behavior of
the algorithm on the system involved, and they allow us to evaluate the performance
of the implementation. A very simple model is the roofline model. It states that
the attainable performance of a given (part of an) algorithm is limited by the peak
performance of the system and the required bandwidth:

Pideal = min

(
Ppeak,

bdata
Balgorithm

)
. (9)

Here Pideal denotes the attainable performance, Ppeak the peak performance of the
system on the assumption that all data are already available in the fastest cache and
bdata the bandwidth of the slowest data transfer path utilized. The term Balgorithm is
the code balance of the algorithm. It specifies required data transfers (stores and loads)
per floating point operation (flop).
In this model we ignore effects of the caching system and the parallel execution. The
real performance can be much better when (most of) the required data is already in
the cache or also much worse when the data needs to be loaded multiple times to the
cache. As the cache is organized in lines and its size is limited this may happen for
irregular data accesses (e.g. only part of a line is used at once). Also possibly required
synchronization between several compute units may slow down the real performance
(or unintended synchronization due to false sharing in multicore systems). There are
also other more sophisticated performance models (see for example [23]), but these are
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not considered in this thesis. The roofline model already helps us to understand the
effects we are interested in.

3.2.1. Sparse matrix-multiple-vector multiplication

Schubert et al. show in [19] that we can still learn something from this simple model for
the sparse matrix-vector multiplication. They introduce a parameter that incorporates
additional data transfers due to the limitations of the cache system.
The following analysis is based on [19], but I want to introduce two small modifications:
Firstly, we can employ non-temporal stores (see [5, section 1.3] for a short explanation)
for the left-hand side vector. This means that it is not necessary to load the vector
(from the main memory to the cache), but we can directly write the data to the main
memory. Please note that this is not possible if one wants to compute for example
y ← Ax + βy, β ∈ R or in the case of calculating the spMVM of a distributed matrix
with overlapping calculation and communication.
And secondly, I want to show the effect of performing multiple sparse matrix-vector
multiplications at once with different right-hand side vectors. So I obtain the following
algorithm:

Algorithm 1 Sparse matrix-multiple-vector multiplication Y ← AX with a matrix in
the CRS format

1 do i = 1 , nrows
2 tmp ( : ) = 0
3 do j = row_ptr ( i ) , row_ptr ( i +1)−1
4 tmp ( : ) = tmp ( : ) + va l ( j ) ∗ X( : , col_idx ( j ) )
5 end do
6 Y( : , i ) = tmp ( : )
7 end do

Here we assume that the matrix is stored in CRS format (for a description of the CRS
format see for example [18, chapter 2]). To simplify the analysis, I only consider the
representative case of real valued matrices and vectors with calculations in double-
precision. The code balance is composed of 2nb flops per inner iteration, 12 bytes to
load the matrix (8 for val and 4 for col_idx) and 16 nb

nnzr
to load X and store Y .

Without non-temporal stores we would obtain 24 nb
nnzr

here.

BCRS_NT =
12 + 16 nb

nnzr
+ nbκ(nb)

2nb

=
6

nb
+

8

nnzr
+
κ(nb)

2

[
bytes

flops

]
. (10)

Here nb denotes the block size, e.g. the number of vectors xi ∈ Rn and yi ∈ Rn in
X =

(
x1, . . . , xnb

)
and Y =

(
y1, . . . , ynb

)
. The term nnzr is the average number of

non-zero entries in each row of the matrix. Additional loads due to irregular accesses
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Figure 1: Sparsity pattern of the spin20 matrix. It has nr = 106 rows and in each row
there are nnzr ≈ 10 entries.

to X are represented by nbκ(nb); the parameter κ depends obviously not only on the
sparsity pattern of the matrix and the hardware used but also on the block size.
As test case here the matrix spin20 from the ESSEX project is used (see Table 6

in Section 7.1). Figure 1 illustrates the sparsity pattern of the matrix. Its dimension
is approximately 106 × 106 with ∼ 10 non-zero entries per row. The results in [19]
for other matrices on similar hardware show values for κ(1) in the order of 2 − −4.
Obviously, the code balance BCRS_NT is greater than one such that the algorithm is
inevitably memory bounded on present architectures (see [5, Figure 3.2] for an overview
of peak performance vs. peak bandwidth). Increasing the block size nb (say from 1
to 4) greatly improves the code balance if the parameter κ(nb) remains fixed. In
the first row of Table 1 we see the ideal code balance for κ = 0 for different block
sizes nb. As in [19] I have measured the obtained bandwidth and performance to
estimate κ. The results for different numbers of right-hand side vectors and different
implementations of the spMMVM are shown in Figure 2: The first two variants use a
row-major storage scheme for X and Y , in GHOST and Trilinos (see Section 5) the
vectors are stored in column-major order. The STREAM Triad benchmark was used
to determine the effective memory bandwidth (for more information, please refer to [5,
section 1 of chapter 3]). We can see that the row-major variants achieve about 90% of
the STREAM Triad bandwidth. For the column-major implementation in GHOST, the
bandwidth drops significantly for nb > 1. I need to mention that in the version of the
GHOST library used here the developers have not yet tried to optimize the performance
of multiple-vector operations.
For the Trilinos implementation I did not measure the bandwidth, but the performance
only increases for nb = 2 and then decreases slightly for bigger block sizes.
We can also see that the achieved performance increases significantly for the row-
major variants when we increase the block size. For bigger block sizes we observe
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Figure 2: Single-node performance of the sparse matrix-multiple-vector multiplication
for different block sizes using the spin20 matrix on an Intel Westmere EP
(1×Xeon E5645 with 6 cores at 2.4 GHz). Effective STREAM Triads band-
width and measured bandwidth of the spMMVM operation is also shown.

block size nb 1 2 4 8 12 16
ideal code balance BCRS(κ = 0) 6.8 3.8 2.3 1.55 1.3 1.175
measured bytes per flop BCRS 8.0 5.0 3.6 3.0 2.8 2.8
estimated parameter κ 2.4 2.3 2.5 2.8 3.1 3.2

Table 1: Ideal and measured code balance of the spMMVM with non-temporal stores
for the spin20 test case.
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also more additional memory traffic per vector due to the non-consecutive memory
accesses (parameter κ). The results in Table 1 suggest that we may expect no further
performance improvements for nb = 12 and nb = 16. Since the cache line size of the
system used is 64 bytes, with nb = 8 one row of X exactly fits into one cache line. This
could explain these observations. As the parameter κ strongly depends on the sparsity
pattern of the matrix, one could observe different behavior for other matrices.
It is also worth noting that the performance gain through the usage of non-temporal
stores grows with the block size, as we would expect it from the code balance. The
parameter κ is also smaller in this case; this could indicate that without non-temporal
stores cache-lines containing parts of X used again later are discarded to load Y .
From this test case we can draw the following conclusions:

Blocking several vectors together can greatly improve the spMVM performance, mainly
due to the better code balance (matrix only loaded once for several vectors). However,
the storage scheme is important; for the column-major implementations in this test the
performance even decreases. As this seems to go hand in hand with a decrease of the
achieved memory bandwidth, a more careful implementation could probably lead to
better results.
Additionally, I want to note that the row-major storage scheme obviously implies severe
performance penalties in a complete eigensolver algorithm when only one vector from
a block of vectors is accessed in some operations. An interesting compromise between
both storage schemes could be a scheme where a larger block of multiple vectors is stored
as a set of column-major smaller subblocks, but this would need further investigation
that is not possible in the scope of this thesis.

3.2.2. Multiple-vector operations

I also want to explain shortly why blocking multiple vectors together may also be ad-
vantageous for vector-vector operations. As we will see later, the following operation
is needed for the Jacobi-Davidson algorithm as part of orthogonalizations and projec-
tions:

Algorithm 2 Projection with multiple vectors Y ← (I −QQT )Y

1 m( : , : ) = matmul ( t ranspose (Q( : , : ) ) ,Y( : , : ) )
2 Y( : , : ) = Y( : , : ) − matmul (Q( : , : ) ,m( : , : ) )

For simplicity we just consider the hopefully representative case Q =
(
q1, . . . , q8

)
, qi ∈

Rn and Y =
(
y1, . . . , ynb

)
, yi ∈ Rn for different block sizes nb. For the case nb = 1

we have two consecutive dense matrix-vector operations (BLAS2), whereas for nb > 1
these are two dense matrix-matrix operations (BLAS3). The ideal code balance for the
first part of the projection m← QTY in double-precision is given by

BWTV =
(8 + nb)8

8nb · 2
=

4

nb
+

1

2
. (11)
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Here I assume that n is very large while nb is small; so that only the memory transfers
required to load Q and Y are relevant, which gives (8 + nb)8 bytes per row. And we
need to multiply each number in a row of Q with each number in the corresponding
row of Y , and then add the result to m, such that one obtains 8nb · 2 operations per
row.
We can directly see that the performance is memory bounded for huge n and that
it increases significantly when we choose a block size nb > 1. Compared to multiple
consecutive operations with single vectors yi, we do not have to load Q several times.
This is also similar for the second part of the projection Y ← Y −Qm which has the
following ideal code balance in double-precision:

BV m =
(8 + 2nb)8

8nb · 2
=

4

nb
+ 1. (12)

The only difference consists in the fact that we modify Y here, and thus we need to
transfer it back to the main memory.
The code balance demonstrates how the performance of both operations increases for
a given small block size nb. This is nicely illustrated in Figure 3. For nb = 1 both
operations approximately require the same runtime. The runtime decreases as expected
when we increase the block size nb. We can also see that the performance of the first
part of the projection becomes slightly faster then the second part for bigger block sizes
due to its better code balance. Moreover, Figure 3 also shows how the performance of
the spMMVM changes in relation to the vector operations.
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3.3. Discussion of the inter-node performance

In many applications the inter-node performance is dominated by the required com-
munication between the nodes. This term refers to several distinct effects that play
an important role when the calculation is distributed among the nodes of a computing
cluster:
First, the bandwidth of the network is limited and usually considerably smaller than
the memory bandwidth within a node.
Additionally, one may incur a significant latency when messages are sent to another
node respectively received from another node. This latency does not only include the
latency of the network itself (e.g. the traveling time required for the message and over-
head of the hardware used), but in most cases the data needs to be copied to a send
buffer first, then the communication partners need to exchange a handshake before the
data is actually transferred, and afterwards the receiver possibly needs to copy the data
from a receive buffer to the desired destination.
Finally, for increasing numbers of nodes synchronization effects lead to bigger and big-
ger waiting times even if there are only small imbalances in the distribution of the work.
Furthermore, for global communication operations latencies of single messages add up.
How to compensate or hide this communication overhead using more asynchronous
communication patterns is a main challenge of software for future supercomputers.
This includes in particular the usage of non-blocking (collective) communication, but
also aggregating several small messages into one bigger message, which is a key idea of
block methods as the one developed in Section 4.
In the following I address effects of bandwidth and latency occurring on small to

medium numbers of nodes. All tests in this section are performed on the LiMa cluster
of the RRZE3. The nodes of the LiMa cluster are connected by an InfiniBand network,
and each node consists of two Intel Xeon 5650 Westmere processors.
Figure 4 illustrates the effective communication bandwidth between several (pairs of)
nodes when they exchange messages of different size using MPI. Here we see that
latency effects dominate for small messages. Only for large messages with sizes of at
least 0.5 Mb the bandwidth limit of about 5 Gb/s is reached.

3.3.1. Sparse matrix-multiple-vector multiplication

These results helps us to characterize the communication behavior of the sparse matrix-
multiple-vector multiplication. Table 2 presents the estimated average size of data
required to be communicated on each node for the matrices spinSZ22 and spinSZ26
presented in Section 7.1. For these results a suitable reordering of the matrix was
calculated using ParMETIS [11], which seeks to minimize the communication by de-
termining a graph partitioning with small edge-cut. The numbers shown in Table 2
are directly calculated from the global edge-cut (that is the global number of vector
elements that must be communicated) and thus only represent estimated averages.
Additionally, no information was gathered about the actual communication pattern

3The computing center of the university of Erlangen-Nürnberg (http://www.rrze.uni-erlange.de)
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Figure 4: Measured communication bandwidth for different message sizes on two/four
nodes of the RRZE’s LiMa cluster obtained with the Intel MPI Benchmarking
suite [9]. In the Exchange benchmark each process exchanges data with a left
and a right neighbor using non-blocking MPI operations. That means the
reported bandwidth includes both ingoing and outgoing messages of a node.

between the nodes.

matrix 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes
spinSZ22 ∼ 1.4Mb ∼ 1.3Mb ∼ 1.0Mb ∼ 0.7Mb ∼ 0.4Mb
spinSZ26 ∼ 19.8Mb ∼ 21.5Mb ∼ 14.5Mb ∼ 9.4Mb ∼ 6.1Mb ∼ 3.7Mb

Table 2: Average data size per node that must be communicated (e.g. sent to other
nodes or received from other nodes) for each sparse matrix-vector multiplica-
tion for the two matrices spinSZ22 and spinSZ26. This is the size of the buffers
required to send and receive the vector elements. To reduce communication
overhead a suitable distribution was calculated using ParMetis[11].

Still, we can draw several interesting conclusions from Table 2: For a small number
of nodes the message size lies definitely in the range where the full communication
bandwidth can be achieved. For the smaller matrix spinSZ22 this is the case for 2 and
possibly 4 nodes depending on the actual communication pattern, as the message sizes
for different communication partners of one node add up to the value shown in Table 2.
For a distribution onto 8 and more nodes the individual messages are most probably
too small to achieve the full bandwidth.
For the larger matrix spinSZ26 more vector elements need to be communicated for each
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Figure 5: Runtime divided by the block size (1, 2 and 4) of the sparse matrix-multiple-
vector multiplication of the matrix spinSZ22 on 1-64 nodes of the LiMa clus-
ter. Additionally, the relative speedup of the block variants in relation to the
single vector computation is shown. All calculations were performed using a
row-major storage scheme for blocks of vectors.

matrix-vector multiplication. So obviously for at least up to 8 nodes the message sizes
are in average large enough to obtain nearly the limit bandwidth. Since the actual
communication patterns are not known, the results are not as clear for more than 8
nodes. Here we can only assume that the average message sizes may become smaller
than ∼ 0.5 Mb depending on the number of communication partners of the individual
nodes.
As long as the full network bandwidth can be achieved by a matrix-single-vector multi-
plication, we cannot improve the performance of the communication through the usage
of block vectors. The calculation itself is still faster. However, the amount of local
work scales with the number of nodes, that means it decreases by approximately 50 %
if the number of nodes is doubled. In contrast, the required amount of communication
per node decreases only moderately (if it decreases at all) with the number of nodes.
Hence, the speedup that can be obtained by using a bigger block size in the spMMVM
decreases with the number of nodes at least until the messages in the single vector
calculation become too small to achieve the full bandwidth.
This describes very well what we can observe in Figure 5 and Figure 6: Here the bars
show the required runtime for each single vector computation (that is the runtime of
the block operation divided by the block size). In all tests the block variants are faster
than the respective single vector calculations. Interestingly, in Figure 5 the computa-
tion on two nodes is not faster than on one node for the block sizes 1 and 2. Moreover,
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Figure 6: Runtime divided by the block size (1, 2 and 4) of the sparse matrix-multiple-
vector multiplication of the matrix spinSZ26 on 1-64 nodes of the LiMa clus-
ter. Additionally, the relative speedup of the block variants in relation to the
single vector computation is shown. All calculations were performed using a
row-major storage scheme for blocks of vectors.

for a block size of 4 it is slower. Here the communication overhead even outweighs the
decreasing amount of local work. However, we can still see that the speedup obtained
through a bigger block size decreases significantly until a minimum is reached on 8
nodes; then it increases slowly. In particular, there is no big performance difference
between the block sizes 2 and 4 on more than 8 nodes for the matrix spinSZ22.
The tests with the matrix spinSZ26 globally exhibit a similar behavior, but here one
gains more performance through the usage of block vectors as the matrix is much
larger. The minimum speedup is observed on 16 nodes; however, the calculation is still
significantly faster with a block size of 4 than with a block size of 2.
In the tests performed no overlapping of calculation and communication was applied,

which is discussed as pure vector-mode in [19] for single vector spMVM. Ideally, one
would overlap the communication with other calculations performed before the result
of the matrix-vector multiplication is required (but the right-hand size vector must
already be available) such that one could possibly profit from the whole speedup of the
block operations on the node-level.
Please note that the results shown here represent strong scaling experiments; therefore
the parallel speedup is clearly limited due to an increasing amount of communication.
Furthermore, simple scalability metrics such as parallel speedup or parallel efficiency
are not very helpful here because the block operations are much faster on a single node
so that they scale worse even though they achieve a higher performance than single
vector computations in all cases.
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3.3.2. Multiple-vector operations

There is not much to say about multiple-vector operations. Some of the required vector
operations are completely local such as Y ← Y −Qm from Algorithm 2 and thus they
are perfectly scalable. Others require all-reductions of a small fixed amount of data. In
particular, the message size is independent of the number of nodes here. An example
is given by the operation m← QTY (also from Algorithm 2). Combining several single
vectors in Y increases the message size and reduces the number of global communi-
cation operations required. This aggregation of messages should always increase the
performance for small message sizes as indicated in Figure 4. Additionally, this may
reduce the overhead due to synchronization effects on a large number of nodes.

21



4. Block Jacobi-Davidson QR method

To return to the topic of sparse eigenproblems, we search for a small set of eigenvalues
and eigenvectors at the periphery of the spectrum of a matrix:

Avi = λivi, i = 1, . . . , l. (13)

The eigenvectors vi form a basis of the invariant subspace V = span{v1, . . . , vl}, but for
general, non-Hermitian matrices the conditioning of this basis may be arbitrarily bad.
If we consider an orthonormal basis of the invariant subspace, we obtain the following
formulation of the problem: {

AQ−QR = 0,

−1
2Q
∗Q+ 1

2I = 0.
(14)

Here AQ = QR denotes a partial Schur decomposition of the matrix A with an orthog-
onal matrix Q ∈ Cn×l and an upper triangular matrix R ∈ Cl×l with ri,i = λi.
There are also other suitable formulations; see [26] for a discussion of different ap-
proaches for single vectors.

4.1. Derivation of a block correction equation

We can now try applying a Newton scheme to the non-linear system of equations above,
which will lead us to a block Jacobi-Davidson style QR algorithm (see [4]):
First, we write the above equations as corrections ∆Q and ∆R for existing approxima-
tions Q̃ and R̃: {

A(Q̃+ ∆Q)− (Q̃+ ∆Q)(R̃+ ∆R) = 0,

−1
2(Q̃+ ∆Q)∗(Q̃+ ∆Q) + 1

2I = 0.
(15)

Ignoring quadratic terms and assuming an orthogonal approximation Q̃, we obtain{
A∆Q−∆QR̃ ≈ −(AQ̃− Q̃R̃) + Q̃∆R,
1
2Q̃
∗∆Q+ 1

2∆Q∗Q̃ ≈ 0.
(16)

The second equation indicates that the term Q̃∗∆Q must be skew-Hermitian. However,
in a subspace iteration we are only interested in the part of ∆Q perpendicular to Q̃
because only these directions enlarge the subspace. So we can split the correction into
two parts: its projection onto Q̃ and its projection onto the orthogonal complement of
Q̃:

∆Q = Q̃Q̃∗∆Q︸ ︷︷ ︸
∆Q‖

+ (I − Q̃Q̃∗)∆Q︸ ︷︷ ︸
∆Q⊥

. (17)
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In order to improve the conditioning of the linear problem and to reduce its dimension
we can also use the projection of the matrix A onto the orthogonal complement of the
current approximation Q̃:

A⊥ := (I − Q̃Q̃∗)A(I − Q̃Q̃∗) (18)

⇔ A = A⊥ + Q̃Q̃∗A+AQ̃Q̃∗ − Q̃Q̃∗AQ̃Q̃∗.

With these expressions for A and ∆Q and noting that A⊥Q̃ = 0, we get

A⊥∆Q⊥ −∆Q⊥R̃ ≈ −(AQ̃− Q̃R̃)− (I − Q̃Q̃∗)A∆Q‖

+ Q̃Q̃∗(A∆Q−∆QR̃+ Q̃∆R). (19)

The first term on the right-hand side is the residual of the current approximation. All
terms in the first line of the equation are orthogonal to Q̃ if the current approximation
fulfills a Galerkin condition (e.g. the residual is orthogonal to Q̃). So the second line
must vanish in this case.
Additionally, on this assumption we can also express the second term on the right-hand
side using the residual:

(I − Q̃Q̃∗)A∆Q‖ = (I − Q̃Q̃∗)AQ̃Q̃∗∆Q

= (I − Q̃Q̃∗)
(

(AQ̃− Q̃R̃) + Q̃R̃
)
Q̃∗∆Q

= (AQ̃− Q̃R̃)(Q̃∗∆Q) (20)

Near the solution both the residual as well as the correction are small (and Q̃ is or-
thogonal), so this presents a second order term that we simply neglect in the following.
The result is a Jacobi-Davidson style correction equation for an approximate Schur

form (for simplicity I only write ∆Q for ∆Q⊥ in the following):

(I − Q̃Q̃∗)A(I − Q̃Q̃∗)∆Q− (I − Q̃Q̃∗)∆QR̃ = −(AQ̃− Q̃R̃). (21)

This is essentially a Sylvester equation for ∆Q⊥.
For the Hermitian case and thus diagonal R̃ it simplifies to the following set of inde-
pendent Jacobi-Davidson correction equations (with λ̃i = r̃i,i):

(I − Q̃Q̃∗)(A− λ̃iI)(I − Q̃Q̃∗)∆qi = −(Aq̃i − λ̃iq̃i), i = 1, . . . , l. (22)

As R̃ is upper triangular, we can also write (21) as a set of correction equations with
a modified residual for general matrices:

(I − Q̃Q̃∗)(A− λ̃iI)(I − Q̃Q̃∗)∆qi = −(Aq̃i − Q̃r̃i)−
i−1∑
j=1

r̃j,i∆qj , i = 1, . . . , l.

(23)

With this formulation we need to solve the correction equations successively for i =
1, . . . , l. This prevents us from exploiting the performance benefits of block methods.
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So from a computational point of view it would be desirable to ignore the coupling
terms

∑i−1
j=1 r̃j,i∆qj in the residual:

(I − Q̃Q̃∗)(A− λ̃iI)(I − Q̃Q̃∗)∆qi = −(Aq̃i − Q̃r̃i), i = 1, . . . , l. (24)

As we can see from the following argument, this uncoupled formulation should also
provide suitable corrections ∆qi for a subspace iteration:
The classical JDQR from [4] uses the correction equation

(I − Q̄Q̄∗)(A− λ̃I)(I − Q̄Q̄∗)∆q = −(I −QkQ∗k)(Aq̃ − λ̃q̃). (25)

Here Q̄ is composed as Q̄ =
(
Qk q̃

)
and Qk =

(
q1 . . . qk

)
denotes an orthogonal

basis of all previously converged eigenvectors. So we can interpret this equation as the
Jacobi-Davidson correction equation for a single eigenvalue with a deflation of already
computed eigenpairs.
It is quite similar to a single correction ∆qi from the set of equations (24). The difference
lies in the fact that we use a deflation of eigenvector approximations that have not
converged yet. The residuals of the two formulations are also related in this sense: In
the classical JDQR formulation we need to orthogonalize the residual Aq̃ − λ̃q̃ with
respect to Qk, in the formulation Aq̃i − Q̃r̃i we obtain directly the part of the residual
of a single eigenvalue orthogonal to the eigenvector approximations due to the Galerkin
condition of the surrounding subspace iteration.

4.1.1. Generalized eigenproblems

We can use a similar approach for the special generalized eigenvalue problem (3) if
we require Q to be B-orthogonal (see Section 2.2). The resulting uncoupled block
correction equation (corresponding to (24)) is:

(I − (BQ̃)Q̃∗)(A− λ̃iB)(I − Q̃(BQ̃)∗)∆qi = −(Aq̃i −BQ̃r̃i), i = 1, . . . , l. (26)

4.1.2. Relation with RQI methods

The Newton approach presented here may not explain the convergence behavior of
Jacobi-Davidson methods very well: in particular for the case of multiple eigenvalues
the Jacobian of the system (14) can be singular. More precisely, this is the case for a
partial Schur decomposition (Q,R) when the subspace span{q1, . . . , ql} does not contain
the complete invariant subspace of a multiple eigenvalue but only part of it. See [26] for
a more detailed explanation for the single-vector case. This means that the conditions
for the quadratic convergence rate of the Newton method are not always met (Jacobian
singular at solution).
Based on theoretical considerations and numerical results [27] illustrates that one can
explain the fast convergence of Jacobi-Davidson methods better by their relation to the
Rayleigh quotient iteration: in each iteration the Jacobi-Davidson correction expands
the subspace in such a way that it contains the RQI direction xRQI = (A−ρA(q̃)I)−1q̃.
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In the following I want to show how one can transfer this relation to the block correction
equation presented here:
Absil et al. propose a generalization of the RQI method to invariant subspaces with
cubic convergence for Hermitian matrices in [1]. First, they define the matrix Rayleigh
quotient RA ∈ Cl×k as

RA(Q̃) = (Q̃∗Q̃)−1Q̃∗AQ̃. (27)

Then the next direction XGRQI ∈ Cn×l of the Grassmann-Rayleigh quotient iteration
(GRQI) is calculated from the following Sylvester equation:

AXGRQI −XGRQIRA(Q̃) = Q̃. (28)

Obviously, for an approximate partial Schur decomposition (Q̃, R̃) that fulfills a Galerkin
condition we obtain R̃ = RA(Q̃). On certain assumptions the block correction equa-
tion (21) also leads to corrections with XGRQI ∈ span{q1, . . . , ql,∆q1, . . . ,∆ql}l (see
Section A.1).
So if the block correction equation (24) is solved exactly in a subspace method, we may
also expect cubic convergence to an invariant subspace for the Hermitian case. In the
non-Hermitian case we still have quadratic convergence to at least single eigenvalues
(from the standard RQI).
We can gain some insight about the effect of inexact solutions on the convergence from
the theoretical analysis in [15] where Notay shows for a special case that the fast con-
vergence is preserved even with approximate corrections on the assumption that we
increase the required accuracy of the corrections in the outer iteration fast enough.

4.2. Complete algorithm

In the following I discuss shortly all the computational steps that are required in the
complete block Jacobi-Davidson algorithm.

4.2.1. Subspace iteration

As mentioned before we do not employ the block correction equation (24) directly, but
rather consider the resulting corrections ∆qi as hopefully useful directions to enlarge
the search space W. This yields Algorithm 3.
We start with a set of vectors T and an empty search space. In each iteration of the
main loop (line 2 to 24) we need to orthogonalize the new directions in T with respect
to the current search space W. For simplicity we assume here that we abort for the
case T ∈ W; in Section 4.2.3 this is discussed in more detail. Then we add the new
directions in T to the subspace (line 10).
Additionally, we need to update the projection of the matrix A onto the subspace W
(line 8 and 9). For this we also need AW where W denotes the orthogonal basis of W.
Therefore we also need to store WA = AW in the case of a non-symmetric matrix A.
This can be avoided in the symmetric case where we could just update H using W , T̃
and T̃A = AT̃ .
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Algorithm 3 simple block Jacobi-Davidson QR

Input: matrix A ∈ Cn×n, start block vector T ∈ Cn×l, desired accuracy eps, maxIter
Output: approximative partial Schur decomposition AQ ≈ QR

1: H ←
( )

, W ←
( )

, WA ←
( )

, k ← 0 . initialize search space: W ← ∅

2: for nIter ← 1,maxIter do . main iteration loop
3: Orthogonalize T wrt. W
4: l̃← rank(T ), T̃ ←

(
t1 . . . tl̃

)
5: if l̃ = 0 then
6: abort . no valid new directions found
7: end if
8: T̃A ← AT̃

9: H ←
(

H W ∗T̃A
T̃ ∗WA T̃ ∗T̃A

)
. update projection of A onto W

10: W ←
(
W T̃

)
, WA ←

(
W T̃A

)
, k ← k + l̃ . enlarge search space

11: Compute Schur form HQH = QHRH , with the eigenvalues on the diagonal of
RH sorted by modulus

12: R← RH1:l,1:l, Q←WQH1:l . calculate approximate schur form of A
13: if ||Aqi −Qri||2 < eps, i = 1, . . . , l then
14: return (Q,R)
15: end if

16: for i← 1, l do . Calculate corrections
17: if ||Aqi −Qri||2 < eps then
18: ti ← 0
19: else
20: Solve approximately (I −QQ∗)(A− ri,iI)(I −QQ∗)ti = −(Aqi −Qri)
21: ti ← (I −QQ∗)ti
22: end if
23: end for
24: end for

25: abort . no convergence after maxIter iterations

26



The next step (line 12) consists in computing the Schur form of the projection matrix
H. To obtain the desired eigenvalues at the periphery of the spectrum, the Schur form
must be sorted appropriately. Here we can also choose which eigenvalues we want to
compute: possible examples are the largest (smallest) real eigenvalues or largest (small-
est) eigenvalues in modulus.
From the sorted Schur form and the basis vectors of the search space we obtain the cur-
rent approximate partial Schur decomposition of A (line 12). Afterwards, we determine
the current residuals Aqi − Qri. If their norms are smaller than a certain threshold,
the eigensolver algorithm is terminated (line 14). If not, we need to determine new
corrections ti for those eigenvalues that have not yet converged.
This is where we need to compute an approximate solution of the block Jacobi-Davidson
correction equation (line 20).
This variant is still quite simple; in particular, we assumed that the block size is equal

to the number of desired eigenvalues. A more sophisticated algorithm is presented in
Section 4.3, but first I want to discuss two points that were still left open: the block
orthogonalization and the approximate solution of the block correction equation.

4.2.2. Approximate solution of the correction equation

As we need only to approximate the solution of the (block) Jacobi-Davidson equation
in each outer iteration, it is a promising approach to use an iterative scheme here.
For general matrices both BiCGStab- and GMRES-methods have been successfully
employed in practical implementations (see for example [27]). For Hermitian matrices
one can also use special iterative linear solvers for indefinite Hermitian problems (even
if the matrix is hpd, the correction equation is probably indefinite due to the shifts).
A sophisticated stopping criterion that allows to abort the inner iteration early and
still makes progress in the outer iteration is presented in [7]. Additionally, it may be
useful (or even necessary) depending on the conditioning of the matrix A to use a
preconditioner for the inner solver. Here I just want to note that this preconditioner
must be suited for different shifts λ̃i and it needs to work on the projected subspace
(I − Q̃Q̃∗). It is also a common approach to construct a preconditioner for a fixed
shift in order to avoid the need of taking care of the possible indefiniteness and (near)
singularity of (A − λ̃iI). Such a technique could also benefit from the better cache
performance of the block algorithm.
So we can combine a wide range of different methods for linear systems here; for
simplicity I only consider an unpreconditioned GMRES-method.
Obviously, one can avoid the application of the projection at the right side of A in

the correction equation here if the Krylov-subspace is kept orthogonal to Q. As the
residual vectors resi = Aqi− qiri,i are already orthogonal to Q because of the Galerkin
condition, one only needs to choose a starting vector orthogonal to Q (e.g. by simply
starting with the zero vector). So we obtain the following form of the block correction
equation:

(I −QQ∗)(A− ri,iI)ti = −resi i = 1, . . . , l.

27



Please note that this is not possible for the correction equation (26) of the generalized
eigenproblem (3).
As we need to approximate the solutions of a set of linear problems at once, we could

also use a block-GMRES method (or in general a block Krylov-subspace method, see
for example [17, chapter 6, section 12]). It is true that the system matrices of the single
linear problems may differ in their corresponding shifts λ̃i. Even so, this does not lead to
different Krylov-subspaces (shift invariance). This approach may offer some interesting
possibilities: for example one could directly construct a set of orthogonal directions
(because all corrections stem from the same subspace) without much additional effort.
However, in many cases the number of iterations needed by the single systems in the
block correction equation may vary significantly, especially since one wants to choose
a different stopping tolerance for each of them. (A system of a badly approximated
eigenvalue in the current iteration, e.g. with a big residual norm, does not need to be
solved accurately).
So one may probably have more freedom grouping together the operations of several
independent — but concurrently executed — GMRES iterations. From the numerical
point of view this is the same as if the single systems were solved one after another. I
will describe the actual implementation of this approach in Section 5.2.

4.2.3. Block orthogonalization

An accurate method to create an orthogonal basis for the subspaceW is crucial for the
convergence of the Jacobi-Davidson algorithm. In [25, section 39 in chapter IX] this is
underlined with some nice examples.
The efficient parallel (and accurate!) orthogonalization of a complete block of vectors T
with respect to previously calculated basis vectors W is considerably more challenging
than just orthogonalizing one vector after another. Standard methods for the latter
are the iterated classical Gram-Schmidt and the (iterated) modified Gram-Schmidt al-
gorithms. Working with a complete block T , however, offers the possibility to employ
faster BLAS3 operations. One problem here lies in the fact that when we first orthog-
onalize the columns of T internally and then against W , the second step may infringe
the accuracy of the first step and vice versa.
In [8] a new algorithm to orthogonalize a small block of vectors (TSQR) is described: it
uses Householder-transformations of subblocks with reductions on arbitrary tree struc-
tures. This can be used to both optimize cache usage for intra-node performance and
communication between nodes.
In combination with a rank revealing technique and an iterated block Gram-Schmidt
to orthogonalize the new block T against W one obtains a very fast and robust method
(see the discussion about RR-TSQR-BGS in [8]).

4.3. Restart and deflation

In Algorithm 3 I have assumed some unnecessary simplifications: In particular, the
block size does not need to be equal to the number of desired eigenvalues. As in the
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JDQR algorithm presented in [4] one can use deflation with previously calculated eigen-
vectors. Additionally, the algorithm can be restarted to avoid calculations with a huge
subspace. The resulting algorithm is outlined in Algorithm 4.

Algorithm 4 Main loop of the block JDQR algorithm with restart and explicit defla-
tion.
Local operations are marked in blue and global operations in red.
In-/Output: Search space W , WA, the projection H and converged partial (Q,R)

1: Compute Schur form HQH = QHRH

2: Calculate approximate Schur form (Aq − qr) ⊥W from QH , RH and its residual
3: Deflation with previously calculated eigenvectors r̃es← (I −QQ∗)res
4: Calculate the residual norm ε̃i ← ‖r̃esi‖2, i = 1, . . . , l
5: if some eigenvalues converged (ε̃i < εtol) then
6: Update (Q,R), W , H and current approximation (q, r)
7: Deflation with previously calculated eigenvectors r̃es← (I −QQ∗)res
8: Calculate the residual norm ε̃i ← ‖r̃esi‖2, i = 1, . . . , l
9: end if

10: Shrink search space W if necessary

11: Calculate approximate corrections (I − Q̃Q̃∗)(A− ri,iI)ti = −r̃esi

12: Orthogonalize t wrt. W

13: Calculate tA ← At

14: Update projection H ←
(

H W ∗tA
t∗WA t∗tA

)
15: Update search space W ←

(
W t

)
, WA

What is new here is the deflation step in lines 3 and 4. After an eigenvalue has con-
verged, the corresponding Schur vector qi is added as a new column to Q and the upper
triangular matrix R is updated using the corresponding column of r and Q∗res (for
the upper part of R). If all eigenvalues have been calculated, the algorithm can stop
here. If not, it may need to calculate new approximations to the next l eigenvalues and
eigenvectors and apply the deflation step again.
Afterwards, we need to shrink the search spaceW if its size exceeds a certain threshold.
For this we can use the first kmin vectors of WQH . This can be seen as a thick restart.
In fact, this step could also be located at other places in the algorithm; when it is
performed before new directions are calculated, one does probably not need to allocate
additional temporary space for the vectors ti.
For the Jacobi-Davidson projection the block vector Q̃ in line 11 is built from both Q
and q. As explained before we have omitted the right part of the projection here.
The other steps are the same as in Algorithm 3.
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4.3.1. Multiple eigenvalues

I want to address some issues concerning multiple eigenvalues because the matrices
from the ESSEX project used for the tests in Section 7.1 all exhibit a lot of multiple
eigenvalues. In more detail the eigenvalues we are interested in have multiplicities of
1–8.
This may strongly influence the convergence behavior of the Jacobi-Davidson algorithm.
A short discussion about the effects of multiple eigenvalues can also be found in [4].
First of all, we can obviously not associate a single specific eigenvector direction with
a given eigenvalue. So one cannot expect a Schur vector from the approximated Schur
form to converge to a specific Schur vector of an exact solution. Additionally, the
method to calculate a sorted Schur form HQH = QHRH of the projection H may
not produce comparable results in successive iterations. The behavior that I have
observed for some applications of my implementation of the classical JDQR method is
the following:
The whole invariant subspace of a multiple eigenvalue converged slowly (e.g.

∑
i ||resi||22

decreased), but the norms of single residuals (||resi||2) sometimes increased or decreased
significantly from iteration to iteration.
I want to illustrate why this behavior could strongly delay the convergence with a small
example: If we consider a Hermitian matrix with a repeated eigenvalue the algorithm
may calculate approximate eigenvectors q1, q2 with ||res1|| >> ||res2|| and λ̃1 ≈ λ̃2 in
one iteration. Here we would expect to obtain a much better correction from solving
the correction equation of q2 instead that of q1.
As already suggested in [4] a suitable approach for multiple eigenvalues could be to

adjust the block size in accordance to the dimension of the invariant subspace of the
desired eigenvalue.
Since we want to choose a specific block size for reasons of performance, in the following
I present a simple approach that combines this idea with a fixed block size:
One can try to detect which eigenvalue approximations will probably converge to the
same value: in the simplest case one just needs a parameter that specifies a tolerance.
If two or several eigenvalue approximations fall inside this tolerance, the Schur form is
reordered such that the Schur vectors with the smallest residual norm are listed first
inside the corresponding group. This allows the algorithm to lock converged Schur
vectors independently of the original ordering. And this helps to set up the correc-
tion equations for the approximations with the smallest residual norms even when the
current block with a fixed block size only covers part of an invariant subspace corre-
sponding to a multiple eigenvalue.
Additionally, all Schur vectors corresponding to eigenvalues in the given tolerance can
be added to Q̃ to project out all (known) approximate directions of the complete sub-
space. This may also improve the conditioning of the correction equation for several
distinct but close eigenvalues.
In practical applications however, it may be difficult to choose a suitable tolerance when
one has no previous knowledge about the distribution of the eigenvalues.
Please note that the reordering only works in the Hermitian case where RH is a diagonal
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matrix and thus the residual vectors of the reordered Schur form are just those of the
original one after reordering them. For non-Hermitian matrices one could still try to
improve the current approximation to the next Schur vector using linear combinations
of all Schur vectors of the invariant subspace.

4.4. Avoiding communication

I want to analyze briefly the communication required in the implementation of this
algorithm on systems with distributed memory because it may strongly affect the per-
formance. In Algorithm 4 we can see in which operations communication is required
(and which are purely local). Here I assume that the sparse matrix and the vectors are
distributed onto different nodes whereas the small matrices related to projections are
stored redundantly on all nodes.
First of all, we need to calculate the residual, deflate it with the previously determined
Schur vectors and calculate its norm (lines 2-4 and 7-8). Transformations of the search
space with a small matrix (e.g. W ←WQH:,...) are local. These are needed to extract a
converged eigenvalue (line 6) and to shrink the search space (line 10).
In order to calculate approximate corrections, one obviously needs global communica-
tion (line 11), but I want to discuss this in more detail in Section 5.2 and consider only
the outer iteration of the Jacobi-Davidson algorithm here.
The RR-TSQR-BGS algorithm used for the orthogonalization (line 12) needs one or
several projections of the form W ∗T and applications of the TSQR block orthogonal-
ization, which are already essentially designed to avoid communication.
Afterwards, we need to multiply the matrix A with the new directions in t (line 13)
and calculate the missing parts of the new projection H (line 14).
If we look carefully, we notice that for several of these steps all required data are also

locally available — or can be made available by storing intermediate results of previous
operations or regrouping them.
In particular, this is true for the deflation step: We can also make the residual orthogo-
nal to Q if we just keep the converged vectors in the search space (through the Galerkin
condition). Then the additional possibly two global operations for the deflation (line
3 and 7) are not needed any more. Obviously, we still need to orthogonalize the new
corrections t with respect to Q, but this is simply part of the orthogonalization step
in line 12. As locking Schur vectors of converged eigenvalues improves the stability
of the method for multiple or tightly clustered eigenvalues (see [20] and the references
herein), it is important to transform the search space such that the locked Schur vec-
tors are listed as the first basis vectors in W . This allows us to lock kconv eigenvalues
and corresponding Schur vectors in the left part of the projected Schur decomposition
HQH = QHRH with

QH =

(
I 0
0 qH

)
,

RH =

(
R1:kconv ,1:kconv H1:kconv ,kconv :k q

H

0 rH

)
and (29)

Hkconv :k,kconv :k q
H = qHrH . (30)
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Please note that the locking approach described is a standard technique in the field of
subspace accelerated eigensolvers, see for example [18, chapter 5]. But I wanted to show
this specific formulation to illustrate how one can avoid the additional communication
required for the deflation in Algorithm 4.
If an unpreconditioned Krylov-subspace method is used to solve the correction equa-

tion (line 11), one can possibly also calculate At from intermediate results: For the
GMRES method one obtains the solution vector ti in iteration k from the orthogonal
basis Vk of the current Krylov-subspace as:

t = Vky.

The basis Vk is calculated using the Arnoldi process

ĀVk = Vk+1Hk+1,k ,

where each new vector is orthogonalized to all previous vectors (for more details about
the GMRES method please refer to [17, chapter 6, section 5]). Here Ā denotes the
Jacobi-Davidson operator (I − Q̃Q̃∗)(A− λ̃iI) for one approximate eigenvalue λ̃i. Ob-
viously, we need to calculate Avj , j = 1, . . . , k as part of the application of the operator
Ā during the Arnoldi process. If we simply store these intermediate results as (VA)k,
we can directly compute (tA)i := Ati locally using

(tA)i = (VA)ky . (31)

As long as the GMRES subspace is very small, this is probably faster than an additional
application of the matrix. And this approach avoids the communication required for
the matrix-vector multiplication.
In the Jacobi-Davidson algorithm we still need to orthogonalize the new directions ti
with respect to W :

t̃s1 = t−Ws2 .

Here the small matrices s1 ∈ Cl̃×l and s2 ∈ Ck×l are intermediate results of the orthog-
onalization. Obviously, we need to apply the same transformations to tA := At:

⇒ t̃As1 = tA −WAs2 . (32)

This shows us that we may replace the matrix-vector multiplications for the calculation
of At̃ (line 13) by local calculations.
However, in simple tests with this approach I have encountered some problems with the
accuracy of WA obtained this way, possibly due to a problem in my implementation:
The results obtained for tA from the GMRES iteration were still quite accurate, but t̃A
showed significant deviations with respect to At̃ in some cases. There are two possible
sources of inaccuracies here: First, we may require two (or several) iterations of the
orthogonalization where one needs to sum up s1 and s2. Second, one needs to apply
the inverse of s1 which may not be well conditioned.
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The columns of WA together with the orthogonal columns of W , however, are the only
representation of the matrix A in the Jacobi-Davidson algorithm (when Aq is directly
computed from WAQ

H
:,...). This means: If we use inaccurate results for t̃A = At̃ to

enlarge WA, this is effectively the same as calculating the eigenvalues of a different
matrix Ã. Thus, one may simply observe nice reductions in the residual norms for this
case, but the resulting eigenvalue approximations are prone to errors.
So in order to minimize the effects of rounding errors, we should probably apply the
additional matrix-vector multiplications for the calculation of At̃ in each iteration.
With the modifications discussed we obtain Algorithm 5. In line 1 the lower right part

Algorithm 5 Main loop of the communication-optimized block JDQR algorithm.
Local operations are marked in blue and global operations in red.
In-/Output: Search space W , WA and the projection H

1: Update Schur form HQH = QHRH

2: Update the approximative partial Schur form (Q,R)
and its residual vectors res = (QA −QR) ⊥W

3: Calculate residual norms ‖reskconv+i‖2, i = 1, . . . , l

4: Reorder similar eigenvalues in the approximate Schur form by their residual norms
5: Lock converged eigenvalues
6: Shrink search space W if necessary

7: Calculate approximate corrections (I − Q̃Q̃∗)(A− λ̃kconv+iI)ti = −reskconv+i

for non-converged directions ‖reskconv+i‖2 > εtol;
may also be used to calculate: tA = At

8: Orthogonalize t wrt. W

9: Update tA or calculate tA ← At

10: Update projection H ←
(

H W ∗tA
t∗WA t∗tA

)
11: Update search space W ←

(
W t

)
, WA

of the Schur decomposition is calculated according to (30) and the matrices QH , RH

are updated with (29).
With the Schur decomposition of the projection and the basis vectors W we obtain the
current approximation for the next few eigenvalues and Schur vectors in line 2 with

qi = WQH:,i,

ri = RH1:i,i,

(qA)i = WAQ
H
:,i, i = kconv, . . . , kconv + l

resi = (qA)i −Q:,1:iri. (33)
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As mentioned previously, the residual vectors calculated this way are already orthogonal
to previously converged Schur vectors; so no explicit deflation step is needed here.
Afterwards, the residual norms are calculated in line 3, which requires an all-reduce
operation.
In line 4 the algorithm tries to detect possibly multiple eigenvalues and sorts these by
their respective residual norm. For the symmetric case one does not need to modify qi
and resi here, but may rather just modify the small matrices R and QH and store the
new ordering for later.
When the algorithm detects that one or more eigenvalues have converged, it transforms
the search space using the following steps:

W ←WQH ,

WA ←WAQ
H ,

H ← (QH)∗HQH and afterwards

QH ← I. (34)

Then the newly converged Schur vectors and eigenvalues can be marked as locked.
If the search space has reached its maximal dimension in line 6, a similar transformation
as the one above is applied in order to obtain a basis of the most useful directions; the
difference lies only in the fact that we can discard the right part of W and only keep
(w1, . . . , wkmin

).
Subsequently, the correction equations are solved approximately in line 7 and the re-
sulting corrections are orthogonalized in line 8 and added to the search space for the
next iteration in line 11.
In line 9 we need to multiply the matrix A with the new directions t to obtain tA if the
latter is not computed locally using (31) and (32).
Finally, one needs another all-reduction to calculate the missing parts of the new pro-
jected matrix H.
Algorithm 9 in Section B.1 shows the complete block JDQR algorithm for the gen-

eralized eigenvalue problem (3).
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5. Implementation

I have implemented the block JDQR algorithm as part of a framework currently devel-
oped at the DLR for the ESSEX project. As mentioned in the introduction ESSEX is
one of the projects of the DFG program SPPEXA, and it seeks to develop concepts and
methods for large scale sparse eigenvalue solvers on future exascale computers. The
framework has the working title Pipelined Hybrid-parallel Iterative Solver Toolkit, in
the following abbreviated with phist.
In this section I describe shortly the phist framework and address some aspects of my
block JDQR implementation.

5.1. The phist framework

The core of the phist framework is a general linear algebra interface that allows the user
to write complex algorithms for distributed memory systems using simple statements.
This makes it possible to use the same implementation with different numerical linear
algebra libraries; currently one can choose between two kernel libraries: Trilinos and
GHOST. Trilinos is a huge object oriented library developed for parallel mathemati-
cal and scientific computations at the Sandia National Laboratories [6]. In the phist
framework one can also choose between the Trilinos packages Tpetra and Epetra; all
tests shown in this thesis are performed using the package Tpetra. The General, Hy-
brid and Optimized Sparse Toolkit (GHOST) is a library for large sparse linear algebra
computations that is also developed as part of the ESSEX project at the RRZE4.
Both Trilinos and GHOST allow computations with huge sparse matrices and blocks
of huge vectors on distributed systems with multiple threads on each node as well as
hybrid calculations using accelerator devices such as GPUs.
Additionally, I have implemented a set of kernel routines for performance tests with the
block JDQR algorithm. These achieve a much higher performance in some of my test
cases because they use a different memory layout for blocks of vectors (see the previous
discussion in Section 3.2).
The phist framework itself is written in C (and internally partly in C++) to allow

using it from other programming languages as well (respectively make it easy to write
bindings for them). And it offers an extensive set of tests that can both be used
to check the interface to the underlying kernel library (and the library itself under
different parallel configurations) and to check the numerical algorithms implemented
in the framework. For a small example of a simple algorithm in the phist framework
see Algorithm 11 in Section B.2.
In the following I present some aspects of the framework required to understand how the
algorithms developed in this thesis are implemented and how these work in a distributed
setting.

4The computing center of the university of Erlangen-Nürnberg (http://www.rrze.uni-erlange.de)
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5.1.1. Linear algebra data types

The framework currently supports computations in real and complex arithmetic with
single and double precision, but for simplicity one cannot mix these scalar types. In or-
der to allow writing algorithms for different scalar types the macros TYPE and SUBR
add prefixes for the currently selected scalar type (e.g. TYPE(mvec_ptr) becomes
Dmvec_ptr_t for double precision). Furthermore, there are macros respectively pre-
defined classes in C++ for the allocation and calculation with the currently selected
scalar type; here we distinguish between the scalar type (_ST_) and the magnitude
type (_MT_), since the norm of a complex vector is a real number. One obtains for
example:

typedef double complex _ST_;
typedef double _MT_;

The following basic linear algebra data types are provided by the phist interface:

crsMat specifies a large distributed sparse matrix. It provides a routine to calculate
a sparse matrix-multiple-vector multiplication in parallel (crsMat_times_mvec).
Despite the name the kernel library employed is free to choose an appropriate
distributed data format for the sparse matrix. Therefore we also decided that
the construction of preconditioners that need to access individual entries of the
matrix (like incomplete factorizations) should be handled by the kernel library
itself.

mvec specifies a block of vectors where the individual columns are distributed among
the nodes. It offers mainly three different kinds of routines:
AXPY-like routines that add or scale multiple vectors at once possibly with dif-
ferent scaling factors (mvec_vadd_mvec). The scaling factors must be provided
on all nodes; so these computations do not involve any communication.
DOT-like routines for multiple vectors that calculate the individual dot prod-
ucts v∗iwi, i = 1, . . . , nb of two blocks of vectors V = (v1, . . . , vnb

) and W =
(w1, . . . , wnb

). The result is returned on all nodes, which requires obviously an
all-reduction.
Two kinds of GEMM-like routines where the first one can be seen as an exten-
sion of an AXPY operation to complete blocks of vectors: It computes locally
dense matrix-matrix multiplications of the form W ← V m with a small matrix
m ∈ Cnb×nb (mvec_times_sdMat). And the second one can be seen as an exten-
sion of DOT operations to complete blocks: It provides essentially operations of
the form m← V ∗W (mvecT_times_mvec) and also requires an all-reduction.

sdMat specifies a small dense matrix that is stored redundantly on all nodes. It
is needed for the m matrix from the routines mentioned above. Additionally,
it provides routines for the addition and multiplication of several sdMats (e.g.
sdMat_add_sdMat and sdMat_times_sdMat).

These data types and the corresponding routines provide all operations required in
the block JDQR and other linear algebra algorithms such as GMRES. And due to the
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multiple vector approach one may also formulate block variants of a given single vector
method very easily.

5.1.2. Important concepts

There are mainly two important concepts in the phist framework I want to point out:
views and operators.
A view allows to access contiguous subblocks of a sdMat or a mvec. It essentially
creates a new sdMat respectively mvec that consists of the selected submatrix of the
sdMat respectively the selected set of columns of the mvec. Here we do not allow the
construction of scattered views (e.g. views to non-contiguous subblocks) in order to
avoid performance penalties due to complex memory access patterns. I want to note
that in the phist interface the user does not know (and should not need to know) if a
given sdMat respectively mvec is actually a view of another matrix or multi-vector. So
you can also create views of views and the phist interface together with the underlying
kernel library take care that this works as expected; The user of a function must make
sure though that the arguments passed to a function do not point to overlapping regions
of data (e.g. aliasing arguments are not allowed).
An operator is an abstract function that applies some transformations to a block of

vectors of type mvec. In the phist framework it is currently only used to represent
linear operators (but not restricted to it). So one can replace a crsMat in an algorithm
by an operator. This gives two advantages: First of all, the matrix does not need to be
explicitly available in a linear solver or an eigensolver from the phist framework. And
secondly, one can easily replace a matrix by a more complex linear operator such as
the Jacobi-Davidson operator (I − Q̃Q̃∗)(A− λ̃iI) or a preconditioned matrix.

5.1.3. Self-implemented kernel routines

As shown in Section 3.2 the kernel libraries Trilinos and GHOST do not achieve a
satisfying node-level performance for cases with multiple vectors. This also holds for
GEMM-like vector operations (e.g. mvecT_times_mvec and mvec_times_sdMat). In
both libraries multiple vectors are stored in column-major order and for both libraries
we use the same data type for the phist types mvec and sdMat with additional flags to
specify that the data in the sdMat should be replicated on all nodes. And both libraries
simply call the appropriate GEMM routine from the BLAS, which may be problematic
in the context of non-uniform memory accesses (NUMA) (see Section 5.4). Besides, my
tests with the Intel MKL5 and OpenBLAS6 suggest that the BLAS libraries may not
provide optimized algorithms for the relevant cases here. These are in particular cases
with tall skinny matrices (e.g. block vectors) with a very small number of entries in
one dimension (for example nb = 1, 2, 4 or 10) and n > 105 in the other dimension.
My self-implemented kernel routines use a row-major storage scheme for the type

mvec and use OpenMP for intra-node parallelization and MPI for communication be-

5For the Intel MKL see http://software.intel.com/en-us/intel-mkl.
6For OpenBLAS please refer to http://www.openblas.net.
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tween nodes. Most of the kernel functions themselves are quite short; but in order
to obtain adequate compiler optimizations I have implemented individual routines for
different block sizes, e.g. for nb = 1, nb = 2, nb = 4 and nb = 8. Additionally, in most
cases there are two variants for each block size, one for completely contiguous data and
one with strided memory accesses for views.
In Algorithm 6 we see an example of such a kernel routine.

Algorithm 6 Self-implemented GEMM implementation for the local part of the com-
putation of mvecT_times_mvec for block size nb = 4 and strided memory accesses

1 subroutine dgemm_sC_strided_4( nrows , nvecw , v , w, ldw , M)
2 integer , intent ( in ) : : nrows , nvecw , ldw
3 real (kind=8) , intent ( in ) : : v (4 , nrows )
4 real (kind=8) , intent ( in ) : : w( ldw , nrows )
5 real (kind=8) , intent (out ) : : M(4 , nvecw )
6 integer : : i , j
7
8 M = 0.
9 ! $omp p a r a l l e l do reduc t i on (+:M) schedu l e ( s t a t i c )

10 do i = 1 , nrows
11 do j = 1 , nvecw
12 M( : , j ) = M( : , j ) + v ( : , i )∗w( j , i )
13 end do
14 end do
15
16 end subroutine dgemm_sC_strided_4

This specific subroutine performs continuous accesses to v and allows a stride ldw > 4
for w. And the calculation for the individual rows is partitioned in equally sized chunks
among the cores of the node using OpenMP with static scheduling. In order to calcu-
late the resulting small dense matrix M an array reduction (OpenMP 3.0 feature) is
performed.
I do also assume that matrices of the type sdMat are very small compared to a multi-
vector (mvec), so for operations which involve both types my implementation always
creates a contiguous copy for the data from the sdMat. Additionally, all operations
involving only sdMat types are performed serially, as it obviously does not make sense
to use multiple threads to add for example two 4× 4-matrices.
In the wrapper routines for the phist interface an appropriate individual implemen-

tation is chosen based on the memory layout (e.g. stride and block size). There I also
try to detect cases where one could employ non-temporal stores: the previous data in
resulting mvec must not be needed in the calculation and the resulting data must be
aligned on 16 byte boundaries (single contiguous vector or stride and block size multi-
ples of 2 for double precision). These restrictions are mainly due to my implementation
as the SSE-streaming statements employed always work on aligned pairs of double-
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precision numbers (see [10, volume 1, chapter 11] for more information). There are
also more complex SSE-statements for non-temporal stores that could handle individ-
ual double-precision numbers. Furthermore, the Intel compiler offers nice vectorization
pragmas but these are not portable.)
The following example in Algorithm 7 shows the implementation for nb = 2 and contin-
uous data accesses. The header file emmintrin.h provides data types and functions to

Algorithm 7 Self-implemented vector version of an AXPY operation for the compu-
tation of mvec_add_mvec for block size nb = 2 and continuous memory accesses with
non-temporal stores

1 #inc l ude <emmintrin . h>
2 void daxpy_nt_2_c( int nrows , const double ∗ restr ict alpha ,
3 const double ∗ restr ict x , double ∗ restr ict y )
4 {
5 __m128d alpha_ = _mm_set_pd( alpha [ 1 ] , alpha [ 0 ] ) ;
6 #pragma omp p a r a l l e l f o r s chedu l e ( s t a t i c )
7 for ( int i = 0 ; i < nrows ; i++)
8 {
9 // ge t x

10 __m128d x_ = _mm_load_pd(x+2∗ i ) ;
11 // mu l t i p l y wi th a lpha
12 __m128d y_ = _mm_mul_pd(x_, alpha_ ) ;
13 // non−temporal s t o r e
14 _mm_stream_pd(y+2∗ i , y_) ;
15 }
16 }

use SSE-instructions explicitly: the type __m128d stores two double-precision values
at once and the function _mm_stream_pd actually performs the non-temporal store
(e.g. writes y_ to y[2∗i+1] and y[2∗i ] without polluting the cache).
For all these kernel routines I have checked that they achieve nearly the same main

memory bandwidth as the STREAM benchmark using LIKWID[24]. The implementa-
tion of the matrix-multiple-vector multiplication with non-temporal stores looks similar
to the vector addition above, but the implementation is a bit more complex than Al-
gorithm 1 because of the additional buffer required for non-local vector elements.
Unfortunately, the TSQR implementation in Trilinos can only be used with a column-
major storage scheme for blocks of vectors. Therefore I had to implement a simple
block IMGS scheme for the orthogonalization that cannot compete with the TSQR
algorithm.
This is not discussed further in Section 7, but the effect on the runtime is small in
relation to the total computation time for the tests cases considered.
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5.2. Linear solver: pipelined GMRES

The idea of the pipelined GMRES solver is to allow the concurrent solution of a fixed
number of independent linear systems using a standard GMRES method and to group
together similar operations, such that one can work with blocks of vectors instead of
single vectors. Additionally, it should be easy to replace a system that has converged
(to a given tolerance) by a new linear system. And when there are no new linear
systems to solve, it must still be possible to continue the iteration of the remaining
unconverged systems.
In the following I describe first the interface available to the user of the PGMRES
algorithm in phist and then shortly discuss the internal data structures required to
perform most operations with blocks of vectors.

5.2.1. Public interface

In order to handle different linear systems in the PGMRES solver individually, we
assign a state object to each system. Each state has an id (unique index in the array of
states created) and its own status. Additionally, one can adjust the residual tolerance
and obtain the total number of iterations performed with a state object. The status of
a state allows the user to check whether a system reached its residual tolerance (e.g.
converged) or requires a restart.
The following code shows the definition of the state type:

struct TYPE( pgmresState )
{

// pu b l i c par t :
const int id ; // index o f t h i s s t a t e in b l o c k o f s t a t e s
_MT_ to l ; // de s i r e d r e s i d u a l t o l e r anc e
int s t a tu s ; // {converged , i t e r a t i n g , needs r e s t a r t }
int t o t a l I t e r ; // t o t a l number o f i t e r a t i o n s performed

// p r i v a t e par t :
// . . . data used i n t e r n a l l y . . .

} ;

Internally, each state also stores all data needed by the GMRES method: the right-
hand side vector b, the orthogonal basis of the current Krylov subspace (Vk) with
the corresponding matrix (Hk+1,k) from the Arnoldi process (AVk = Vk+1Hk+1,k) and
orthogonal transformations (parameters of Givens rotations).
There are three operations that can be performed with a state object (except for

allocation and deallocation): We can reset a state, perform some GMRES iterations
or update the solution vector. Resetting a state means to start with a new empty
Krylov subspace in the next iteration for this state object. This can be used to assign
a new system to a state or to perform a restart of the GMRES method (which tears
down to starting a new GMRES iteration with an empty subspace with the current
approximation as starting vector).
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The reset function is defined as:

void SUBR( pgmresState_reset ) ( TYPE( pgmresState_ptr ) S ,
TYPE( const_mvec_ptr ) b ,
TYPE( const_mvec_ptr ) x0 ,
int ∗ i e r r ) ;

It takes a single state object S, the right-hand side vector of the linear system to be
solved b, which can be set to NULL to indicate a restart, and the starting vector x0.
The latter can also be set to NULL to use the vector b directly as the first residual
vector in the Krylov subspace. This indicates a starting vector of zero and allows to
omit an additional matrix-vector multiplication.
To start or continue the GMRES iterations of a set of state objects, one needs to call
the following function:

void SUBR( pgmresStates_ite rate ) ( TYPE( const_op_ptr ) Op,
TYPE( pgmresState_ptr ) s t a t e s [ ] ,
int nStates ,
int∗ i e r r ) ;

The first argument defines the operator that is applied in each GMRES iteration to
calculate the next directions of the individual Krylov subspaces. This means that the
user must provide an appropriate operator that calculates the desired matrix-vector
multiplications of all systems currently iterated. The operator does not necessarily
need to apply the same linear operation to all vectors. This allows us to solve several
linear systems concurrently that differ not only in the right-hand side vectors but also
in the system matrices. The id of the states defines which columns of the multi-vectors
in the operator correspond to which system.
This is essentially required for the solution of the correction equations in the block
JDQR algorithm because the individual linear systems have different shifts.
One does not need to call this function with a set of states with continuous ids; this
allows the user to finish the calculation of some remaining systems that have not con-
verged yet. A drawback of this approach is that one may require computations with
non-contiguous blocks of vectors. For example if one continues an iteration with a
previous block size of 4 and two states with ids 1 and 3, the operator is applied to a
multi-vector with stride 4 (for row-wise storage), but one only needs the results of the
1st and 3rd column.
The iterate-function above returns when at least one system converged or needs to be
restarted.
In order to obtain the approximate solution of one or several linear systems one needs

to call the following function:

void SUBR( pgmresStates_updateSol ) (TYPE( pgmresState_ptr ) s t a t e s [ ] ,
int nStates ,
TYPE(mvec_ptr ) x ,
_MT_ ∗resNorm ,
int∗ i e r r ) ;
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ṽk+1 ← Avk

GMRES subspace 1:

GMRES subspace 2:
...

Figure 7: Visualization of the PGMRES ringbuffer for the Krylov subspaces of 4 differ-
ent linear systems.

For the given state objects it adds the current GMRES correction to x. This means
that x must be set to the starting value x0 from the last call to pgmresState_reset for
this specific state object. This also allows adding up the individual solution vectors
over several restarts of the GMRES iteration. In addition, the current estimate of the
relative residual norm is written to the parameter resNorm.

5.2.2. Internal data structures

A single GMRES iteration consists of the following steps: First, one needs to multiply
the matrix with the preceeding Krylov subspace basis vector (ṽk+1 ← Avk). Then the
new vector must be orthogonalized with respect to all previous basis vectors. For the
PGMRES this is implemented using a modified Gram-Schmidt method. Afterwards,
one still needs to apply and calculate some small orthogonal transformations and check
the new estimated residual norm (see [17, chapter 6, section 5] for a complete GMRES
algorithm). This only requires local operations that are not relevant for the performance
of the method (at least for huge systems).
In order to allow the computation of the matrix-vector multiplications for all iterated
systems at once, the basis vectors of the subspaces of the individual systems are stored
as blocks of vectors in a ring buffer. In Figure 7 we see an illustration of a partly
filled buffer from 4 systems. The dimensions of the Krylov subspaces of the individual
systems (rows in the figure) may differ; the single basis vectors of the subspaces are
visualized as filled black circles: For the first system we have a subspace dimension of
k1 = 4, for the second k2 = 6 and for the third and fourth k3,4 = 1. So the last two
systems were just added in the previous iteration using the pgmresState_reset function.
The individual basis vectors from the different subspaces are stored in blocks of 4 vectors
(columns in the figure). Currently unused blocks are greyed out. In the next iteration
a new full block of vectors will be required to store the result of the next matrix-
vector multiplication (greyed out block directly right of the red line). This allows us to
apply a spMMVM with full blocks of vectors even for subspaces of different dimension.
Moreover, we can also group the vector operations required for the orthogonalization
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by column. This means that in most cases we may require several operations with full
blocks, and then some additional operations with single vectors or parts of blocks for
the subspaces of higher dimension. The PGMRES algorithm always tries to perform
the vector calculations with the biggest contiguous subblock.
We employ a ring buffer here to allow replacing converged systems by new systems with
a fixed amount of preallocated memory for the subspaces. When the subspace of one
system fills a complete row in the ring buffer, a restart is required.
The approximate solution of several states objects can be computed in a single call to
the function pgmresStates_updateSol. In this case the algorithm also tries to perform
the required calculations (vector additions) with contiguous (sub)blocks where possible.

5.3. Complete BJDQR driver

In this section I describe the setup and possible configuration options of my block
JDQR eigensolver driver in the phist framework.
There are two variants of the BJDQR driver: the first one reads a matrix from a file,
the second one obtains the matrix entries from a function, which is currently used for
the spin matrices described in Section 7.1. The only advantage of the second variant
consists in the fact that one does not need to write the matrix to a file and read it
later, which can be quite slow for huge matrices.
Both variants set up the distributed matrix in parallel so that the maximum possible
matrix size scales with the number of nodes (e.g. the matrix only needs to fit in the
combined memory of all nodes).
For the performance tests with symmetric eigenvalue problems the matrices were re-
ordered (symmetrically) using ParMETIS [11] to reduce the costs of communication.
To obtain the resulting eigenvectors one simply needs to apply the inverse permutation
in this case. Non-symmetric matrix reorderings, however, lead to different eigenvectors
(apart from simply permutated eigenvectors) and thus effectively modify the original
eigenvalue problem.
In the current implementation the user can select the number of eigenvalues desired
and specify in which eigenvalues he is interested in. Possible options are the largest or
smallest eigenvalues in modules respectively the eigenvalues with the largest or smallest
real part. The user can also specify the desired residual tolerance of the approximate
Schur vectors.
In addition, one can set the maximal number of block JDQR iterations and various
block sizes and subspace dimensions. In particular, one can choose the minimal and
maximal dimension of the Jacobi-Davidson subspace and the block size used in the
BJDQR algorithm. As the converged Schur vectors are still stored in the subspace, its
minimal dimension must be larger than the number of desired eigenvalues. For a block
size of 1 one obtains a variant of the classical JDQR algorithm with my modifications
concerning the deflation and the handling of multiple eigenvalues.
Additionally, one may choose the block size of the pipelined GMRES solver, e.g. the
number of systems solved concurrently, and the maximal Krylov subspace dimension.
In the configuration used for the test cases in this thesis the latter also specifies the
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maximal number of GMRES iterations; this means that the GMRES solver is not
restarted because in most cases a few GMRES iterations should be sufficient to obtain
approximate solutions of the Jacobi-Davidson correction equations. Furthermore, in
the GMRES solver one can either use a modified Gram-Schmidt orthogonalization or
an iterated modified Gram-Schmidt orthogonalization. The iterated orthogonalization
is more costly as it often requires an additional MGS iteration. It is only employed for
the numerical tests in Section 6 as some of the matrices used there are badly condi-
tioned.
And one can choose to abort the iteration of a complete block in the pipelined GMRES
iteration when the first system in the block reached its residual norm. This allows to
avoid operations with single vectors in the PGMRES algorithm, but also most probably
produces less accurate corrections. In Section 6 I will test different combinations of the
options mentioned above and discuss the results.
The BJDQR driver first performs a set of Arnoldi iterations to construct an orthog-

onal basis of an initial subspace of the specified minimal subspace dimension. One can
also choose to use a fixed shift (near target eigenvalues) in the first iterations of the
(block) JDQR method, but this is not tested in this thesis because I want to focus on
the effects of different block sizes.

5.3.1. Unimplemented features

For non-symmetric real matrices one may obtain pairs of complex-conjugated eigen-
values. In real arithmetic one needs to work with 2 × 2 blocks on the diagonal of the
(approximated) Schur form for this case. In the block JDQR algorithm one may need
to adjust the block size for this case. This case is currently not fully supported in my
block JDQR implementation. So the numerical tests with non-symmetric matrices in
Section 6 are simply performed in complex arithmetic. And for the performance tests
in Section 7 I will only consider symmetric matrices.
For parallel computations on a large number of nodes the costs of communication

increase significantly. Essentially the communication required in the matrix-vector
multiplication but also the all-reductions required in the algorithm are concerned. Using
block operations may help to decrease latency effects, but the parallel performance of
the matrix-vector multiplication may be limited by the bandwidth of the network (as
discussed in Section 3.3). One way to hide the communication overhead consists in
overlapping the communication with local calculations. This is possible in both kernel
libraries GHOST and Trilinos but currently not fully supported in the phist framework
yet, and hence not implemented in the BJDQR driver.

5.4. NUMA awareness?

On the Lima-cluster at the RRZE each node consists of two Intel Xeon 5650 Westmere
processors. Each processor has its own memory attached, but can also access the mem-
ory of the other processor (ccNUMA). Thus, the attainable memory bandwidth depends
on the correct placement of the data in NUMA domains as illustrated in Table 3 (here
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1 CPU 2 CPUs
wrong placement 12.1 Gb/s 18.5 Gb/s
correct placement 19.8 Gb/s 39.5 Gb/s

Table 3: Measured STREAM bandwidth on a single node of the Lima cluster with
different NUMA placements using LIKWID

a NUMA domain corresponds to one CPU). One obtains the worst bandwidth (12.1
Gb/s) when all threads run on one CPU but the data lies in the memory attached to
the other CPU. With a correct placement the attainable bandwidth on the node is the
sum of the bandwidths of the individual CPUs (39.5 Gb/s ≈ 2 · 19.8 Gb/s).
As previously discussed in Section 3.2, the memory bandwidth is the limiting factor of
the node-level performance of the operations required in the JDQR algorithm. There-
fore the correct NUMA placement is crucial to obtain an adequate performance. If it is
not handled correctly, the performance may drop significantly (up to a factor of three
on the Lima cluster).
In order to obtain the best performance possible in the presence of NUMA one needs

to address two points (for more information see [5, chapter 8]):
First, the threads must be pinned to the individual CPU cores (or at least to the
NUMA domains) to make sure that a specific thread will always run in the same
NUMA domain. For the results shown in this thesis I have used the KMP_AFFINITY
environment variable which offers control over the pinning of OpenMP threads when the
application is compiled with the Intel compiler. The following command line statement
was employed on the Lima cluster to start the BJDQR driver in parallel using Intel
MPI with a given number of nodes and 12 threads on each nodes with 1 thread per
core:

mpirun -np <NNODES> -npernode 1 \
env OMP_NUM_THREADS=12 \
env KMP_AFFINITY="granularity=fine,compact,1,0" \
<BJDQR driver and arguments>

There are also other methods to pin the threads of an application (e.g. the linux
taskset utility, likwid-pin), but the Intel OpenMP and MPI create additional threads
for management purposes. These must be distinguished from the OpenMP threads.
Second, the data must be distributed correctly among the NUMA domains. One possi-
bility to achieve this is the first touch policy. It essentially states that pages of memory
previously allocated are stored in the NUMA domain of the thread that first touches
them (e.g. writes to them). This way one may allocate a long array shared by all
threads, but the memory used by the array is actually distributed over the NUMA do-
mains. In Algorithm 8 you can see in a simple example that shows how this is handled
in my self-implemented kernel routines.
The GHOST kernel library takes care of pinning the threads itself; therefore one

should not set the KMP_AFFINITY variable. GHOST should also place the data in the
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Algorithm 8 Example of NUMA placement with OpenMP in Fortran (all threads in
one NUMA domain should have consecutive ids)

1 ! a l l o c a t e array A
2 allocate (A(n ) )
3
4 ! i n i t i a l i z e A to 0 wi th co r r e c t NUMA placement
5 ! $omp p a r a l l e l do schedu l e ( s t a t i c )
6 do i = 1 , n
7 A( i ) = 0
8 end do
9

10 ! a l l f u r t h e r acce s s e s shou ld be o f the form :
11 ! $omp p a r a l l e l do schedu l e ( s t a t i c )
12 do i = 1 , n
13 ! . . . A( i ) . . .
14 end do

correct NUMA domains, but there still seemed to be a problem when using the phist
interface with GHOST that somehow interfered with the NUMA placement. So I have
obtained the best performance results using two MPI processes per node, such that on
each node GHOST pins all threads of the first process to the first NUMA domain and
all threads of the second process to the second NUMA domain:

mpirun -np <2*NNODES> -npernode 2 \
env OMP_NUM_THREADS=6 \
<BJDQR driver and arguments>

This setup with one MPI process per NUMA domain also allows the correct configura-
tion with additional threaded libraries. In particular, a threaded BLAS library (such
as the Intel MKL) may probably not distribute the work, and thus the data accesses,
among the threads in the way intended by the user of the library.
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6. Numerical results

I have tested the block JDQR method developed in this thesis with different symmet-
ric and non-symmetric (real) matrices from the Matrix Market [2], the University of
Florida Sparse Matrix Collection [3] and matrices from the ESSEX project. The latter
are used for the performance tests in Section 7. In the following I analyze the numeri-
cal behavior of the method, in particular the number of matrix-vector multiplications
performed to calculate a given number of eigenvalues. Here, the focus lies on the effect
of different block sizes for the matrices considered. I also compare the BJDQR variant
derived in this thesis with an implementation of the classical JDQR algorithm in order
to show the effects of my modifications for the single vector case. These consist mainly
in the following two points: A different approach for the deflation of previously calcu-
lated eigenvalues to avoid communication and a modification of the Jacobi-Davidson
correction equation for the case when multiple eigenvalues are detected.
The discussion of the numerical experiments is divided into two parts because the setup
for the different kinds of matrices varies significantly.

6.1. Non-symmetric matrices

The 5 matrices used for the experiments with non-symmetric eigenproblems are listed
in Table 4. For these matrices one is interested in a set of eigenvalues with largest real
value. For the ck656 matrix only the eigenvalues with a real value bigger than one are
relevant (about 22). I have picked these matrices out of the matrices from the Matrix
Market [2] because they depict difficult non-symmetric eigenvalue problems from dif-
ferent fields of applications where one is interested in a set of exterior eigenvalues.

name number of rows non-zero count eigenvalues sought remarks
ck656 656 3884 rightmost real, clustered
cry10000 1 · 104 ∼ 5 · 104 rightmost real, κ ≈ 7 · 1020

dw8192 8, 192 ∼ 4.2 · 104 rightmost real
olm5000 5 · 103 ∼ 2.0 · 104 rightmost real
rdb3200l 3, 200 ∼ 1.9 · 104 rightmost real

Table 4: Overview of the non-symmetric matrices used in the experiments. They all
come from the Matrix Market [2]

To discuss the different behavior of the methods for multiple and tightly clustered
eigenvalues we first look at the eigenvalue distribution in the desired part of the spec-
trum. Figure 8 and Figure 9 show the calculated eigenvalues obtained with the classical
JDQR implementation. In particular, one can also see which eigenvalues are tightly
clustered (on the real axis), respectively (nearly) multiple. However, in some cases the
eigenvalues are not detected in the correct order by the algorithm; that means that first
a few smaller eigenvalues are found before parts of eigenvectors of larger eigenvalues
enter the subspace. So, obviously, the algorithm may have missed some of the rightmost
eigenvalues.
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Figure 8: Calculated distribution of the rightmost eigenvalues for the matrices ck656
and rdb3200l. The images on the top show the largest real eigenvalues in the
complex plane. The images on the bottom show the corresponding number of
eigenvalues within a specific tolerance of their real value in order to visualize
(nearly) multiple eigenvalues and pairs of complex conjugate eigenvalues.
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Figure 9: Calculated distribution of the rightmost eigenvalues for the matrices dw8192,
cry10000 and olm5000. For dw8192 also the clustering is visualized. No
(nearly) multiple eigenvalues where found for these matrices.
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The Ritz residual of all approximated eigenvalues is smaller than 10−7. However, as
already mentioned previously, this does not ensure that slight deviations may not dis-
turb the results significantly. In the following the terms eigenvalue and spectrum always
refer to calculated eigenvalues. Additionally, the multiplicity relates to the number of
calculated eigenvalues within a small tolerance.
Looking at Figure 8 we state that the desired part of the spectra of the matrices

ck656 and rdb3200l are tightly clustered and feature several multiple eigenvalues with
a maximal multiplicity of 4. The desired eigenvalues of the matrix ck656 lie all near
the real axis whereas the matrix rdb3200l has several complex-conjugate eigenpairs.
As seen from Figure 9 the desired eigenvalues of the matrix dw8192 are all real and
well separated but still clustered loosely. In the rightmost part of the spectrum of the
matrices cry10000 and olm5000 there are many complex-conjugate eigenpairs and we
observe no tight clusters.

6.1.1. Setup of the experiments

For the matrices described above I have performed tests with different configurations:
The number of desired rightmost eigenvalues nev varies between 1 and 50 and the tested
block sizes are 1, 2, 4 and 10 for the block JDQR algorithm (in the following called
BJDQR1, BJDQR2, . . . ). The minimal and maximal Jacobi-Davidson subspace di-
mensions depend on the number of eigenvalues sought: nev + 9 < k < nev+ + 29. The
iteration starts with a subspace of minimal dimension obtained by an Arnoldi iteration
with a starting vector of (1, 1, . . . , 1)T . If the Arnoldi algorithm breaks down (because
it found an invariant subspace), the construction of the initial subspace continues with
a random vector.
The inner solver used for the approximate solution of the correction equation is an
unpreconditioned GMRES iteration. For each correction vector the inner iteration is
stopped either when a maximal number of iterations or a sufficient reduction in the
relative residual is reached. The residual tolerance is simply set to 0.5nev_iter where
nev_iter corresponds to the number of iterations already performed for a specific ap-
proximate eigenvalue. The maximal number of iterations was set to 25 respectively 8
(GMRES25 and GMRES8). Additionally, for block sizes of nb > 1 we can also stop the
iteration when any of the correction vectors in the block reaches a sufficient residual
reduction (denoted by GMRES25* and GMRES8*). In the GMRES method an iter-
ated modified Gram-Schmidt orthogonalization (IMGS) was used because with MGS
the orthogonality of the basis vectors strongly deteriorates in some cases even after only
a few GMRES iterations. This may be caused by the fact that no preconditioner was
employed while the conditioning of some of the matrices used here is bad.
For comparison a similar setup with at most 25 inner GMRES iterations was used
for the classical JDQR algorithm (in the following simply denoted by JDQR). In all
cases the number of matrix-vector multiplications required for the calculation of the
given number of eigenvalues is determined irrespective of whether these eigenvalues are
actually the rightmost eigenvalues of the matrix.
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6.1.2. Comparison with classical JDQR

In order to see how my modifications to the classical JDQR algorithm influence the con-
vergence behavior of the method we can compare the JDQR algorithm with BJDQR1.
Figure 10 and Figure 11 show the number of matrix-vector multiplications performed
for the calculation of a given number of eigenvalues using JDQR and BJDQR1 with
at most 25 GMRES steps per outer iteration. Additionally, also the results of BJDQR
with at most 8 GMRES steps are shown.
For the matrices cry10000 and dw8192 we observe similar behavior for a low num-
ber of eigenvalues; but when we seek more eigenvalues, the classical JDQR algorithm
needs less matrix-vector multiplications (see red and blue lines in Figure 10c and Fig-
ure 10d). This may be contributed to the fact that the effectively usable dimension
of the Jacobi-Davidson subspace is smaller for BJDQR1 because all previously calcu-
lated Schur vectors are locked in the subspace whereas they are stored separately in
the JDQR algorithm. However, the BJDQR1 method requires less memory and also
needs fewer operations for the deflation of already calculated eigenvalues. So in order
to decide which variant is preferable here one needs to look at the obtained runtime
performance which is discussed in Section 7.
For the matrix olm5000 we observe similar trends for 1, 5 and 10 eigenvalues, but for 20
eigenvalues the JDQR algorithm needs more iterations than BJDQR1 (see Figure 10b).
As there are no (nearly) multiple or tightly clustered eigenvalues in the desired part
of the spectrum we cannot explain this behavior by the different handling of multiple
eigenvalues. However after eigenvalue 10 was found, the algorithm seems to detect
spurious eigenvalues with big real value in some iterations and then switches back to a
better eigenvalue approximation with smaller real part. In this case the BJDQR1 algo-
rithm resets the required residual norm used as stopping criterion in the inner GMRES
iteration in contrast to the JDQR implementation used. Hence, the JDQR implemen-
tation possibly performs many useless GMRES iterations for correction equations from
these bad eigenvalue approximations. So this only suggests that there is problem in
our implementation of the JDQR algorithm and not in the JDQR method itself. This
effect did not occur in any of the other test cases.
The results of the calculations with the matrix ck656 in Figure 10a show that the detec-
tion of multiple or clustered eigenvalues in BJDQR1 works well and that one can reduce
the number of required matrix-vector multiplications in the JDQR method significantly
by the approach for multiple eigenvalues presented in Section 4.3.1.
At first sight the behavior observed for the matrix rdb3200l in Figure 11a looks

strange as the algorithms seem to converge much faster for the tests with 50 eigenvalues
than for the tests with fewer eigenvalues. However, we can explain this by the fact that
the calculations use different subspace dimensions depending on the number of desired
eigenvalues. For all three configurations the convergence rate (e.g. the required number
of matrix-vector multiplications per eigenvalue) is much slower for 20 eigenvalues than
for 10 eigenvalues. Through the usage of a bigger subspace for 50 eigenvalues the
convergence rate increases significantly. So in this case the subspace dimension has a
great impact on the required number of matrix-vector multiplications.
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Figure 10: Total number of matrix-vector multiplications required by the JDQR and
the BJDQR1 method for the calculation of the rightmost eigenvalues of
the matrices ck656, olm5000, cry10000 and dw8192 with a residual norm of
10−7..
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Figure 11: Total number of matrix-vector multiplications required by the JDQR and
the BJDQR1 method for the calculation of the rightmost eigenvalues of the
matrix rdb3200l with a residual norm of 10−7..

This also explains why the JDQR algorithm achieves much better results than the
BJDQR1 algorithm here: As mentioned above, the usable subspace dimension of the
BJDQR method decreases through locking of converged Schur vectors.

6.1.3. Influence of the block size

If we increase the block size of the BJDQR method, the individual operations can
achieve a much better performance but we may also need more operations. In order to
understand in which cases choosing a bigger block size lowers the overall computation
time, I want to analyze the influence of the block size on the convergence behavior of
the BJDQR algorithm. As before I use the required number of matrix-vector opera-
tions to compare the different algorithms. Here a block operation is counted as several
single operations, e.g. a spMMVM with two vectors is considered as two matrix-vector
multiplications keeping in mind that the block operations are faster. So a small number
of additional operations is acceptable for a bigger block size.
In Figure 12, Figure 13 and Figure 14 we see the number of matrix-vector multiplica-
tions divided by the desired number of eigenvalues (MatVec ratio) for the test cases
considered. Only the results for maximal 8 respectively for maximal 25 inner iterations
are shown depending on which configuration was faster for the specific matrices. In
almost all most cases the MatVec ratio increases when the block size is increased. How-
ever, the effect is much smaller if more than 20 eigenvalues are sought. Additionally, for
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Figure 12: Ratio of Matrix-vector multiplications to the number of desired eigenvalues
obtained with the BJDQRmethod with different block sizes. Here the results
are shown for the calculation of the rightmost eigenvalues of the matrices
ck656 and olm5000 with a residual norm of 10−7.
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Figure 13: Ratio of Matrix-vector multiplications to the number of desired eigenvalues
obtained with the BJDQRmethod with different block sizes. Here the results
are shown for the calculation of the rightmost eigenvalues of the matrices
cry10000 and dw8192 with a residual norm of 10−7.
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Figure 14: Ratio of Matrix-vector multiplications to the number of desired eigenvalues
obtained with the BJDQRmethod with different block sizes. Here the results
are shown for the calculation of the rightmost eigenvalues of the matrix
rdb3200l with a residual norm of 10−7.

more than 10 eigenvalues the overall number of matrix-vector multiplications changes
only slightly when the inner GMRES iteration is aborted after the first vector in a
block reached its residual tolerance (GMRES8* and GMRES25*).
The results for the matrices cry10000 and dw8192 shown in Figure 13 look very similar:
For the calculation of 5 eigenvalues one needs almost twice as many operations when
the block size is increased from 1 to 2. The observed speedup of the Jacobi-Davidson
operator in Section 3.2 lies in the range of 1.6 for a block size of 2 and 2.5 for a block
size of 4, but there are also other operations that do not benefit as much from the
block size (orthogonalizations of the individual Krylov subspaces in the GMRES iter-
ations). So for the calculation of 5 eigenvalues a block method may not be beneficial
yet. However, already for 10 eigenvalues the number of additional operations reduces
significantly (in a relative sense), such that block methods could become faster. For
more eigenvalues (20-50) block sizes of 2 and 4 only lead to a small increase in the
number of operations. Furthermore, also with a block size of 10 one needs less than
twice the number of operations.
The behavior observed for the matrix rdb3200l in Figure 14 is similar for larger numbers
of desired eigenvalues (40 and 50). For 20 and 30 eigenvalues the MatVec ratios spread
more widely, but the results obtained with block sizes 2 and 4 still look promising.
Surprisingly, for 5 eigenvalues one needs slightly fewer operations with a block size of
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2 and significantly fewer operations with a block size of 4 (using GMRES25 and not
GMRES25*). This may be due to the repeated complex-conjugate eigenvalues in the
right part of the spectrum of this matrix (see Figure 10).
For the matrix olm5000 we observe a significant number of additional operations de-
pending on the block size (see Figure 12b). So here blocking may not be as beneficial
as in the other cases.
Similar to the tests with matrix rdb3200l a block size of 2 (with GMRES8) leads to a
smaller number of iterations for the matrix ck656 when only 5 eigenvalues are sought
(see Figure 12a). For 10 desired eigenvalues the MatVec ratio for the block sizes 1, 2
and 4 is very similar. When more eigenvalues are sought the number of additionally
required operations increases slightly for all block sizes. Here a block size up to 4 seems
promising whereas a block size of 10 leads to a significant overhead.

6.2. Symmetric matrices

The second set of test matrices is presented in Table 5 and consists of four real and
symmetric positive definite matrices from the University of Florida Sparse Matrix Col-
lection [3]. In contrast to the previous experiments, one is interested in the smallest
eigenvalues here. In [21] these matrices are also used amongst others for numerical
experiments with several different Davidson and Jacobi-Davidson methods. I want to
note that we cannot easily compare the BJDQR algorithm with the elaborated meth-
ods presented in [21] (GD+k, JDQMR) because the latter are specifically designed to
calculate a larger set of eigenvalues of a real symmetric matrix with a subspace dimen-
sion independent of the number of eigenvalues sought, whereas the BJDQR algorithm
is based on the assumptions that one only wants to calculate a small set of outer eigen-
values of a distributed huge and possibly non-symmetric matrix. Therefore for the test
problems at hand the GD+k and JDQMR methods are most probably much better
suited and require much less vector-vector operations for the same number of matrix-
vector multiplications performed.

name number of rows non-zero count eigenvalues sought remarks
Andrews 6.0 · 104 760,154 smallest real spd
cfd1 ∼ 7.1 · 104 ∼ 1.8 · 106 smallest real spd
finan512 ∼ 7.5 · 104 ∼ 6.0 · 105 smallest real spd
torsion1 1.0 · 104 ∼ 2.0 · 105 smallest real spd

Table 5: Overview of the symmetric matrices used in the experiments. They all come
from the University of Florida Sparse Matrix Collection[3]

Figure 15 illustrates the distribution and (nearly) multiplicity of the calculated small-
est eigenvalues of the matrices obtained with the JDQR algorithm. Only the matrix
torsion1 features multiple eigenvalues, mostly of multiplicity 2 with one exception of
multiplicity 5. The considered part of the spectrum of the matrix finan512 is clustered
loosely. The matrix cfd1 has only several close eigenvalues, and the smallest eigenvalues
of the matrix Andrews are more evenly distributed.
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Figure 15: Calculated distribution of the smallest 50 eigenvalues for the spd matrices
Andrews, cfd1, finan512 and torsion1. As all eigenvalues are real only their
distribution on the real axis and their multiplicity (within a tolerance) is
shown.
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The setup of the experiments is similar to the one previously used for the non-
symmetric matrices; the only difference lies in the fact that here all eigenvalues are
positive and real and that we are interested in the smallest eigenvalues, that is the
leftmost part of the spectra.

6.2.1. Comparison with classical JDQR

In Figure 16 we can see the number of required matrix-vector multiplications of the
algorithms JDQR and BJDQR1 for the different symmetric matrices. We observe
essentially the same effects as previously discussed for the non-symmetric matrices.
For a small number of eigenvalues the results of JDQR and BJDQR1 with at most
25 GMRES iterations are very similar for the matrices Andrews, cfd1 and finan512.
The detection of multiple eigenvalues helps to reduce the number of matrix-vector
multiplications for the matrix torsion1 (see Figure 16d). Interestingly, there is almost
no difference in the results for 5 eigenvalues but only for 10 eigenvalues. This indicates
that the high multiplicity of the smallest eigenvalue of the matrix torsion1 is only
detected when more than 5 eigenvalues are sought so that we observe convergence to
bigger eigenvalues first before more smaller eigenvalues are discovered.
For all four matrices we can see that the JDQR method requires less matrix-vector
multiplications in cases with more than 20 desired eigenvalues. As discussed previously,
we can contribute this fact to the smaller usable subspace dimension of the BJDQR
method after a set of Schur vectors has been locked.
Additionally, we can note that for the matrices Andrews, finan512 and torsion1 it is
favorable to lower the maximal number of GMRES iterations as the results obtained
with GMRES8 are slightly faster.
In [21, Figure 5.6] the number of matrix-vector multiplications is shown that is re-

quired for the calculation of a set of the smallest eigenvalues of the matrix cfd1 with a
tolerance of 10−7 using amongst others the GD+k and the JDQMR methods presented
there. Thus, the setup of the experiments is similar except for the starting vector. As
already discussed the (B)JDQR methods analyzed here probably require many more
vector-vector operations per matrix-vector multiplication. Nevertheless, we can com-
pare the required number of matrix-vector multiplications in order to underline that
the results shown in this thesis are reasonable. In fact, the GD+k and the JDQMR
methods require approximately 2500 matrix-vector multiplication for the calculation
of 10 eigenvalues and about 2 · 104 matrix-vector multiplications for 50 eigenvalues.
In Figure 16b we see nearly 5000 matrix-vector multiplications for 10 eigenvalues and
about 1.8 · 104 for 50. This means that the required number of operations observed
here for the matrix cfd1 is of the same order of magnitude as in [21].

6.2.2. Influence of the block size

Concerning the usage of different block sizes in the BJDQR algorithm the results ob-
tained with the symmetric matrices shown in Figure 17 and Figure 18 affirm the trends
observed previously for the non-symmetric test cases.

59



0

1000

2000

3000

4000

5000

1 5 10 20 30 40 50

M
at
V
ec

co
un

t

Number of smallest eigenvalues found

JDQR, GMRES25
BJDQR1, GMRES8
BJDQR1, GMRES25

(a) Andrews

0

5000

10000

15000

20000

25000

1 5 10 20 30 40 50
M
at
V
ec

co
un

t

Number of smallest eigenvalues found

JDQR, GMRES25
BJDQR1, GMRES8
BJDQR1, GMRES25

(b) cfd1

0

2000

4000

6000

8000

10000

1 5 10 20 30 40 50

M
at
V
ec

co
un

t

Number of smallest eigenvalues found

JDQR, GMRES25
BJDQR1, GMRES8
BJDQR1, GMRES25

(c) finan512

0

2000

4000

6000

8000

10000

1 5 10 20 30 40 50

M
at
V
ec

co
un

t

Number of smallest eigenvalues found

JDQR, GMRES25
BJDQR1, GMRES8
BJDQR1, GMRES25

(d) torsion1

Figure 16: Total number of matrix-vector multiplications required by the JDQR and
the BJDQR1 method for the calculation of the smallest eigenvalues of the
matrices Andrews, cfd1, finan512 and torsion1 with a residual norm of 10−7..
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Figure 17: Total number of matrix–single-vector multiplications for the calculation of
the smallest eigenvalues of the matrices Andrews and cfd1 with a residual
norm of 10−7 and different block sizes.
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Figure 18: Total number of matrix–single-vector multiplications for the calculation of
the smallest eigenvalues of the matrices finan512 and torsion1 with a residual
norm of 10−7 and different block sizes.
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For all four matrices one needs considerably more matrix-vector multiplications for a
block size of 2 and 4 when only few eigenvalues are sought. For 20 and more eigenvalues
the number of additional operations for the block variants may be amortized by the
better performance of block operations. However, the relative overhead of the block
methods depends on the matrix:
We obtain the best results for the matrix Andrews (see Figure 17a) where for 5 eigen-
values the number of additional matrix-vector multiplications only increases by a factor
of 1.5 for a block size of 2. For larger numbers of eigenvalues there is no significant
overhead in this case. Even for a block size of 4 the required number of operations
increases only slightly.
The results of the matrix finan512 shown in Figure 18a look very similar but feature a
slightly higher overhead. For the matrix torsion1 the overhead for smaller numbers of
eigenvalues is larger than for the other matrices even though there are a lot of multiple
eigenvalues in the desired part of the spectrum.
The largest overhead of block methods (in a relative sense) even for up to 50 eigenval-
ues occurs in the experiments with the matrix cfd1, but it is still in a range where the
blocking could be beneficial.
Furthermore, we can see that aborting the inner iteration after the first vector in the
block converged has at most a very small negative effect and in some cases also leads
to fewer operations.

6.3. Conclusions from the numerical experiments

From the numerical experiments discussed we can draw several interesting conclusions:
First of all, the block JDQR method works fine for symmetric matrices as well as for
general, non-symmetric matrices. Additionally, there is no indication that the block
variants lead to significantly slower convergence for non-symmetric matrices compared
to the symmetric case. This underlines that the assumptions made in the derivation
of the block method in Section 4.1 are reasonable. In particular, one obtains satisfying
results even though we ignore the coupling terms that occur in the block-correction
equation in the non-symmetric case in Equation 23.
Many of the test cases represent examples of complex eigenvalue problems that require
a huge number of matrix-vector multiplications. We could probably speed up the con-
vergence significantly by applying an appropriate preconditioner in the inner GMRES
iteration but this is out of the scope of this thesis.
For the case of multiple or tightly clustered eigenvalues the number of matrix-vector
multiplications may be reduced significantly by using additional approximate Schur
vectors for the projection in the Jacobi-Davidson correction equation. This requires
only little computational overhead when several eigenvalues are sought.
If one does only look at the required number of matrix-vector multiplications, the setup
of the experiments performed privileges the classical JDQR method for larger amounts
of eigenvalues. This can be related to the fact that the usable subspace of the BJDQR1
algorithm becomes smaller when converged Schur vectors are locked. However, we can
also argue that the BJDQR1 algorithm allows a better usage of the available mem-
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ory resources because the storage reserved for the resulting Schur vectors are not used
in the JDQR method at the beginning of the iteration. Furthermore, the number of
vector-vector operations required for the deflation in the JDQR method increases with
the number of eigenvalues found, which is not the case for the BJDQR1 algorithm.
The results for different block sizes are very promising: For some matrices with sev-
eral multiple eigenvalues an appropriate block size may lead to fewer operations (in
addition to using more projection vectors), but this is not always the case and thus
probably difficult to exploit. In most cases the required number of operations increases
moderately with the block size depending on the matrix, and it is less significant when
larger numbers of eigenvalues are sought. So the additional directions obtained from
the approximate solution of the block-correction equation mostly speed up the conver-
gence of eigenvalues detected later in the iteration.
Altogether, the performance speedup of block operations could outweigh the small num-
ber of additional operations in many cases. In particular, one may also restrict the inner
iteration to perform only block operations by aborting the GMRES method when one
vector in the block reached its convergence criterion. This does not seem to influence
the convergence rate considerably. The most interesting block sizes for possible gains
in the overall performance are 2 and 4. Only for larger numbers of eigenvalues bigger
block sizes (e.g. 8 or 10) may become beneficial.
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7. Performance tests

Based on the numerical results discussed I demonstrate in the following that the
block JDQR algorithm can be significantly faster than a single vector Jacobi-Davidson
method. Here, I only consider the total runtime required by the algorithms for the
calculation of a given number of exterior eigenvalues, but one has to keep in mind that
small numerical deviations in the algorithms tested may already lead to slightly differ-
ent numbers of inner and outer iterations of the Jacobi-Davidson method. Additionally,
the initial subspace varies in the tests performed here, because different random vectors
were used for its construction (due to a breakdown of the initial Arnoldi iteration for
a vector of ones).

7.1. Matrices from the ESSEX project

The eigenvalue problems used for the performance measurements come from a target
application of the ESSEX project. They arise in the simulation of electron spins in a
magnetic field as described shortly in the introduction. In Table 6 we see an overview
of the matrices used:

name number of rows non-zero count eigenvalues sought remarks
spin20 ∼ 106 ∼ 107 leftmost real symm.
spinSZ22 ∼ 7 · 105 ∼ 8.8 · 106 leftmost real symm.
spinSZ24 ∼ 2.7 · 106 ∼ 3.6 · 107 leftmost real symm.
spinSZ26 ∼ 107 ∼ 1.5 · 108 leftmost real symm.

Table 6: Overview of the test matrices from the ESSEX project.

They all have multiple and tightly clustered eigenvalues in the desired part of the
spectrum. In particular one of the leftmost eigenvalues of the matrix spin20 has a
multiplicity of 8. The smallest matrix spinSZ22 is only listed here as it was used
for benchmarking the sparse matrix-vector multiplication in Section 3.3. However,
the numerical behavior observed for the three matrices spinSZ22 - spinSZ24 is very
similar. Therefore only a few selected performance results of the matrices spinSZ24
and spinSZ26 are shown to illustrate the performance on the node-level as well as on a
cluster of nodes.
The numbers in the names of the matrices (20–26) refer to the number L of electrons
considered; in the spinSZ model specific symmetries are assumed such that the resulting
matrices spinSZ<L> have basically the same spectra as the spin<L>-matrices, but the
eigenvalues have lower multiplicities and the matrices are much smaller.

7.2. Intra-node performance

Figure 19 presents the required runtime for the calculation of 20 eigenvalues of the
matrices spin20 and spinSZ24 on a single node of the LiMa cluster. We can also
compare the performance obtained with the GHOST library and my self-implemented
kernel routines.
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Figure 19: Runtime required for the calculation of the 20 leftmost eigenvalues of the
matrices spinSZ24 and spin20 on a single node of the RRZE’s LiMa cluster
using the JDQR and the BJDQR algorithm with different block sizes. Re-
sults are shown for both the GHOST library that stores blocks of vectors
in column-major order as well as for my self-implemented kernel routines
based on a row-major storage scheme.

First of all, we notice that the BJDQR1 algorithm is significantly faster than the
classical JDQR implementation for the matrix spin20 (with both kernel libraries). This
is due to the better handling of multiple eigenvalues in my BJDQR algorithm. A bigger
block size however does not speed up the computation in all cases for this matrix.
The results for the matrix spinSZ24 on the right show the typical behavior that I have
also observed in other calculations with the spinSZ-matrices: There is only a small
improvement from JDQR to BJDQR1 in spite of the fact that the matrices have multiple
eigenvalues in the desired part of the spectrum (especially for GHOST). Changing the
block size from 1 to 2 or 4 reduces the overall computation time considerably. This
effect is much smaller for GHOST because the block operations in GHOST are slower.
When we look at the results of the single vector JDQR method for both matrices, we
notice that GHOST achieves a slightly better performance in this case. We can explain
this by the fact that the row-major storage scheme yields a performance penalty when
only single vectors of a complete block are accessed. In the BJDQR1 implementation I
have tried to avoid operations that involve such strided accesses, but the basis vectors
of the Jacobi-Davidson subspace are still stored as one big block so that almost all
calculations with these basis vectors (such as the block orthogonalization) incur this
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performance penalty. Nevertheless, the results underline the potential benefits of block
Jacobi-Davidson methods on the node-level.

7.3. Inter-node performance

In the following I examine the performance of the BJDQR algorithm on a small to
medium number of nodes on the LiMa cluster (up to 64 nodes, respectively 768 cores).
I only consider results obtained with my self-implemented kernel routines in order to
focus on the effects of varying the block size. It would be very insightful to investigate
the behavior of the block Jacobi-Davidson method on an even larger number of nodes,
where the aggregation of several global all-reduction operations should decrease the
communication overhead significantly. However, this is left to future work because the
current implementation lacks the possibility to overlap communication and calculations
efficiently.
In Figure 20 we see the required runtime for the calculation of the 10 and 20 leftmost

eigenvalues of the matrix spinSZ26 on 1-64 nodes of the LiMa cluster. In all cases
BJDQR1 is at least slightly faster than the JDQR implementation.
When only 10 eigenvalues are sought, a block size of 2 improves the performance com-
pared to the single vector computation, but increasing the block size further is not
always beneficial (see Figure 20a). This reflects what we observed in Section 6: For a
small number of eigenvalues increasing the block size from 2 to 4 raises the required
number of operations significantly, which is not always compensated by the better per-
formance of block operations.
When we seek 20 eigenvalues however, we expect that the number of additional oper-
ations required by the block method is more or less negligible, at least for block sizes
of 2 and 4. The performance results shown in Figure 20b confirm this assumption:
Compared to the single vector calculation the total runtime decreases significantly for
a block size of 2 and a block size of 4 further speeds up the computation.
We essentially observe this behavior for the whole range of 1–64 nodes. To point out the
performance gains achieved by the block algorithm I have plotted the block speedup,
that is the quotient of the runtimes of the single vector and block vector computations
(see Figure 21). Here we can see that a block size of 2 increases the overall performance
by a factor of 1.2− 1.3 for both the calculation of 10 and of 20 eigenvalues. When 20
eigenvalues (or more) are sought, a block size of 4 increases the performance on average
by a factor of ∼ 1.4.
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Figure 20: Runtime required for the calculation of the 10 respectively 20 leftmost eigen-
values of the matrix spinSZ26 on 1-64 nodes of the RRZE’s LiMa cluster
using the JDQR and the BJDQR algorithm with different block sizes. These
results are obtained with my self-implemented kernel routines.
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Figure 21: Speedup over BJDQR1 obtained with the block sizes 2 and 4 for the calcula-
tion of 10 respectively 20 eigenvalues of the matrix spinSZ26 on 1-64 nodes
of the RRZE’s LiMa cluster.

8. Conclusion

In this thesis a block Jacobi-Davidson algorithm was developed suitable for the cal-
culation of a set of exterior eigenvalues of large sparse symmetric or non-symmetric
matrices. Specific adjustments were made to improve the handling of multiple eigen-
values and to avoid unnecessary global communication operations for highly parallel
calculations.
The method was tested with a set of symmetric and non-symmetric matrices from a
wide range of applications, which showed that a bigger block size increases the total
operation count in most cases (as already noted in previous work, see [21] respectively
the references therein). Nevertheless, in many cases the amount of additional work is
in a range where the performance gains through the usage of block operations could
prevail. Additionally, the overhead of block methods is less significant when larger
numbers of eigenvalues are sought. These conclusions can be drawn for both symmet-
ric and non-symmetric matrices.
An important ingredient for a successful block method could be a sufficiently large
subspace so that eigenvalues detected later in the Jacobi-Davidson iteration may profit
from the directions calculated. This distinguishes the method analyzed here from the
methods discussed for example in [21], where it is stated that block JD methods (with a
very small block size) may only be beneficial in special cases for matrices with multiple
or highly clustered eigenvalues.
Another interesting result of the numerical experiments performed is the fact that one
can in most cases abort the linear solver in the BJDQR algorithm as soon as the first
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eigenvector in a complete block reached its convergence criterion. This does not have
(strong) negative effects on the convergence rate of the method. Thus, a block GMRES
method (or any other approximate linear block solver for multiple right-hand sides) is
probably also a good choice for the approximate solution of the correction equation.
This would also allow the exploitation of fast block vector operations in the inner iter-
ation.
As inner linear solver an unpreconditioned GMRES iteration was used in this thesis. In
the ESSEX project preconditioners for the linear problems suitable for highly parallel
computations still have to be investigated. This is perhaps more involved as standard
methods based on incomplete factorizations are difficult to parallelize.
The current versions of the linear algebra libraries GHOST and Trilinos analyzed

in this thesis did not achieve a satisfactory node-level performance for block variants
of the sparse matrix-vector multiplication with multiple vectors. In contrast, it was
demonstrated that an implementation using a row-major storage scheme for blocks of
vectors is clearly superior because it allows the exploitation of caches. This has draw-
backs for other operations however, when only single vectors out of a complete block
are accessed. So one has to find a good balance to profit from an appropriate block
size without slowing down operations required at other points in the algorithm. There
might be storage schemes that may mostly overcome these problems (for example using
a small fixed block size and storing larger blocks of vectors as sets of smaller blocks),
but the main problem consists in the fact that strided accesses occur in at least one
dimension.
Beyond that, the inter-node performance can further be increased by using block op-
erations (as long as the bandwidth is not the limiting factor), which was analyzed in
strong scaling experiments with the sparse matrix-vector multiplication. The author
also assumes that block operations increase the scalability on highly parallel clusters
and future supercomputers significantly. Unfortunately, this could not be analyzed in
this thesis because the implementation of the method currently does not yet support
overlapping communication and calculation and non-blocking (collective) communica-
tion. This would avoid increasing waiting times on a high number of nodes. To obtain
reasonable performance on future supercomputers the algorithm also must be modified
in such a way that more asynchronous calculations are possible. One way to achieve
this could be a communication avoiding inner linear solver (see [8]), but one can also
think of modifying the Jacobi-Davidson algorithm itself: Since the subspace iteration
is very robust one could for example interleave the inner and outer iterations such that
the resulting correction vectors of the inner solver are only available after an additional
outer iteration. This would increase possible parallelism in the algorithm. Similarly to
block methods, this obviously raises the question if the (possible) performance gains
outweigh an increasing number of operations.
In short, the node-level performance of block operations for large problems heavily

depends on the storage scheme of the block vectors. A block Jacobi-Davidson method
can significantly speed up the calculation for small block sizes in comparison with a
single vector Jacobi-Davidson implementation. This is valid for a wide range of sparse
eigenvalue problems, as long as the number of desired eigenvalues is not too small.
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A. Formula

A.1. From the block correction equation to a GRQI-direction

We can transform (21) to

(I − Q̃Q̃∗)
(
A∆Q⊥ −∆Q⊥R̃

)
= −(AQ̃− Q̃R̃),

⇔ A∆Q⊥ −∆Q⊥R̃ = −(AQ̃− Q̃R̃) + Q̃Q̃∗A∆Q⊥ . (35)

If we define M ∈ Cl×l as M = Q̃∗A∆Q⊥, we obtain

A∆Q⊥ −∆Q⊥R̃ = −(AQ̃− Q̃R̃) + Q̃M. (36)

Assuming that M is invertible, the correction ∆Q⊥ is given by

Q̃+ ∆Q⊥ = XGRQIM, (37)

where XGRQI is the next iterate of the GRQI method from [1]:

AXGRQI −XGRQI(Q̃
∗Q̃)−1Q̃∗AQ̃ = Q̃.

Note the homogeneity property of the GRQI algorithm (algorithm independent of rep-
resentation of the subspace, e.g. invariant wrt. to right-multiplication by an invertible
matrix).
The assumption above thatM is invertible is probably not valid in all cases, but we have
at least M 6= 0 because the assumption M = 0 leads to the contradiction ∆Q⊥ = Q
since the Sylvester equation above is only singular in the case that A and R̃ have at
least one eigenvalue in common.
So we can always show the property (37) for the largest regular submatrix of M and
the corresponding columns of ∆Q.
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B. Algorithms

B.1. Complete block JDQR algorithm for the generalized eigenproblem

Algorithm 9 Complete block Jacobi-Davidson QR (part 1)

Input: A ∈ Cn×n, hpd B ∈ Cnn× n, v0 ∈ Cn, nEig, nb, εtol, maxIter, mmin,mmax

Output: approximative partial Schur composition AQ ≈ BQR

Initialize result:
1: Q← 0, QA ← 0, QB ← 0, R← 0
2: l← 0 . number of converged eigenvalues
3: ñEig ← nEig + nb − 1 . for multiplicity detection

Initialize search space:
4: Compute mmin Arnoldi-iterations: AW:,1:mmin = W:,1:mmin+1H1:mmin+1,1:mmin

with w1 = v0, WB = BW and W ∗BW = I
5: m← mmin . m = dim(W)
6: WA ←WA:,1:m+1H1:m+1,1:m, W ←W:,1:m, WB ←WB :,1:m

7: H ← (W ∗WA) . for B = I : H ← H1:m,1:m

Main iteration loop:
8: for nIter ← 1,maxIter do

Update projected Schur form:
9: Calculate Schur decomposition Hl:m,l:mq

H = qHrH

with the eigenvalues on the diagonal of rH sorted by modulus

10: QH ←
(
I 0
0 qH

)
, RH ←

(
R1:l,1:l H1:l,l:mq

H

0 rH

)
Update approximate Schur form:

11: qi ←WQH:,i, (qA)i = WAQ
H
:,i, (qB)i = WBQ

H
:,i, i = l, . . . , ñEig

12: ri ← RH1:i,i, i = l, . . . , ñEig
13: resi ← (qA)i − (QB):,1:iri, i = l, . . . , ñEig
14: εi ← ‖resi‖2, i = l, . . . , ñEig

15: For Hermitian A: Reorder multiple eigenvalues in (QH , RH) by εi
16: Update ordering of Q,QB, R, res
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Algorithm 10 Complete block Jacobi-Davidson QR (part 2)

Check for converged eigenpairs
17: ∆l← max{i : εi < εtol, i = 1, . . . , nEig} − l
18: if ∆l > 0 then
19: W ←WQH :,1:m, WA ←WAQ

H
:,1:m, WB ←WBQ

H
:,1:m

20: H ← QH
∗
:,1:mHQ

H
:,1:m

21: QH ← I, RH ← RH1:m,1:m

22: l← l + ∆l
23: if l = nEig then
24: return (Q,R)
25: end if
26: nb ← min(nb, nEig − l)
27: end if

Shrink search space:
28: if m+ nb > mmax then
29: W ←WQH :,1:mmin

, WA ←WAQ
H

:,1:mmin
, WB ←WBQ

H
:,1:mmin

30: H ← QH
∗
:,1:mmin

HQH :,1:mmin

31: m← mmin

32: end if

Calculate corrections:
33: Choose l̃ ≥ l + nb depending on eigenvalue multiplicity
34: Q̃← Q1:l̃, Q̃B ← (QB)1:l̃
35: for i← 1, nb do
36: Solve approximately (I − Q̃BQ̃∗)(A− rl+i,l+iB)(I − Q̃Q̃∗B)ti = −resl+i
37: ti ← (I − Q̃Q̃∗B)ti
38: end for

Enlarge search space:
39: Orthogonalize t wrt. W and < ·, · >B;

use random orthogonal vector on breakdown
40: tA ← At, tB ← Bt

41: H ←
(

H W ∗tA
t∗WA t∗tA

)
42: W ←

(
W t

)
, WA ←

(
WA tA

)
, WB ←

(
WB tB

)
43: end for

44: abort . no convergence after maxIter iterations
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B.2. Example implementations in the phist-framework

In order to shorten and simplify the examples I have left out code and macros used
for error checking; all statements accessing ierr can be wrapped with the following
macro that prints an error message with a backtrace and allows a (hopefully) clean
exit: PHIST_CHK_IERR( ..., ∗ierr)).

Algorithm 11 Implementation of the Arnoldi process used to create an initial subspace
for the BJDQR algorithm

1 void SUBR( s imple_arno ld i ) (TYPE( const_op_ptr ) A_op,
2 TYPE( const_mvec_ptr ) v0 ,
3 TYPE(mvec_ptr ) V,
4 TYPE( sdMat_ptr ) H,
5 int m,
6 int∗ i e r r )
7 {
8 // de f i n e v iews r equ i r ed l a t e r
9 TYPE(mvec_ptr ) v = NULL, Av = NULL, Vprev = NULL;

10 TYPE( sdMat_ptr ) R1 = NULL, R2 = NULL;
11 SUBR( mvec_view_block ) (V, &v , 0 , 0 , i e r r ) ;
12 // i n i t i a l i z e f i r s t column of V with v0 and s e t H to zero
13 SUBR( mvec_set_block ) (V, v0 , 0 , 0 , i e r r ) ;
14 SUBR( sdMat_put_value ) (H, s t : : z e ro ( ) , i e r r ) ;
15
16 for ( int i = 0 ; i < m; i++)
17 {
18 // move views in V
19 SUBR( mvec_view_block ) (V, &Vprev , 0 , i , i e r r ) ;
20 SUBR( mvec_view_block ) (V, &Av, i +1, i +1, i e r r ) ;
21 // app ly the matrix opera tor
22 A_op−>apply ( s t : : one ( ) , A_op−>A, v , s t : : z e ro ( ) , Av, i e r r ) ;
23
24 // move views to the next column in H
25 SUBR( sdMat_view_block ) (H, &R2 , 0 , i , i , i , i e r r ) ;
26 SUBR( sdMat_view_block ) (H, &R1 , i +1, i +1, i , i , i e r r ) ;
27 // or thogona l i z e , Q∗R1 = Av − Vprev∗R2; W <− Q
28 // f i l l s in or thog . random vec t o r s when Av i s in span (Vprev )
29 SUBR( orthog ) ( Vprev , Av, R1 , R2 , 3 , i e r r ) ;
30
31 // swap the v iews v and Av ; so Av becomes v
32 // in the next i t e r a t i o n and v i s reused f o r the new Av
33 std : : swap (v , Av ) ;
34 }
35
36 // d e l e t e a l l l o c a l v iews
37 SUBR( mvec_delete ) ( v , i e r r ) ;
38 SUBR( mvec_delete ) (Av, i e r r ) ;
39 SUBR( mvec_delete ) ( Vprev , i e r r ) ;
40 SUBR( sdMat_delete ) (R1 , i e r r ) ;
41 SUBR( sdMat_delete ) (R2 , i e r r ) ;
42 }
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