
Failure
Detector

Equipping sparse solvers for Exascale

A fault tolerant application using
the GASPI communication layer

Faisal Shahzad1, Markus Wittmann1, Moritz Kreutzer1, Rui Machado2,
Andreas Pieper3, Thomas Zeiser1, Georg Hager1, Gerhard Wellein4

1) Erlangen Regional Computing Center (RRZE), University of Erlangen-Nuremberg, Germany
2) Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany
3) Institute of Physics, University of Greifswald, Greifswald, Germany
4) Department of Computer Science, University of Erlangen-Nuremberg, Germany

Email: faisal.shahzad@fau.de

Worker Communicator

4 5 6 7 8 9

1 2 3

0

Worker Communicator

4 5 1 2 8 9

 3

0

gaspi_write();
return_val = gaspi_wait();

return values:
 1) GASPI_SUCCESS
 2) GASPI_TIMEOUT
 3) GASPI_ERROR

Funded by:

Breakdown of the overhead time for process 0 during failure recovery.
* application dependent, ** failure instance dependent

Detector processes informs
every process about failure

details via gaspi_write()

Failed
proc(s) IDs

Rescue
proc(s) IDs

6, 7 1, 2

re
co

ve
r+

re
do

-w
or

k

fa
ilu

re
 d

et
ec

tio
n

co
m

pu
ta

tio
n

co
m

pu
ta

tio
n

Runtime of the application with various number of failure recoveries.
128 processes (1 process per node) are used in this benchmark with 12-threads each.

Scaling test of failure detection time.

Worker processes are not interupted for health checking purpose.

Overhead only in case of worker failure(s).

Scalable health check approach.

Redo-work after failure recover <=> Checkpoint frequency.

GASPI

Health Check

Program Flow

Program started with 'x' redundant processes.

One of the redundant processes also acts as fault detector.

Health check via one sided ping.

F
ai

lu
re

 d
et

ec
to

r
pr

oc
es

s

LANCZOS Algorihtm

Checkpoint Data Structure

Prototype for Krylov subspace
method

Eigenvalue computation

GASPI[2] enables fault tolerance via timeout based communication routines.

A process local health-state vector is updated after every communication
call.

A process is considered as a failed process if it is unable to respond to a
communication request within a certain amount of time.

Health state of a process gets refreshed after every successful/
unsuccessful communication.

In order to have a consistent view of all processes' health, a process must
communicate with every other process.

1. Jack Dongarra. Emerging Heterogeneous Technologies for High Performance Computing. Invited talk.
 website: http://www.netlib.org/utk/people/JackDongarra/SLIDES/hcw-0513.pdf, IPDPS'13, May 2013.
2. GASPI project website: http://www.gaspi.de/en/project.html

Each process once stores matrix communication data structure (to be
later used by rescue process in case of a failure).

Two recent Lanczos vectors are stored at each checkpoint iteration with
recently computed eigenvalues.

Multi-level checkpointing via
asynchronous library thread:

 1) Node level
 2) Neighbor node level
 3) Parallel file system level

Motivation Benchmark & Results

References

Conclusion & Future Work

Introduction & Methodology

Tianhe-2
Perf.: 33.8 PFlop/s

core count: 3,120,000

Sequoia
Perf.: 17.17 PFlop/s

core count: 1,572,864
Mean Time To Failure[1] = 19hr

Large scale applications must
expect failures in post
petascale machines

MPI still does not provide a
solution to a single process

failure.

ESSEX

