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Each process once stores matrix communication data structure (to be
later used by rescue process in case of a failure).

MPI still does not provide a
solution to a single process

e Two recent Lanczos vectors are stored at each checkpoint iteration with

recently computed eigenvalues.
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GASPI! enables fault tolerance via timeout based communication routines.
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A process is considered as a failed process if it is unable to respond to a Trarster O 1 painer
communication request within a certain amount of time. ; node or

Health state of a process gets refreshed after every successful/
unsuccessful communication.

In order to have a consistent view of all processes’ health, a process must
Commur"Cate W|th every Other prOCGSS. Runtime of the application with various number of failure recoveries.

128 processes (1 process per node) are used in this benchmark with 12-threads each.
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Program started with 'x' redundant processes.
One of the redundant processes also acts as fault detector.
Health check via one sided ping.
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return values: 6,7 1,2
1) GASPI_SUCCESS T
2) GASPI_TIMEOUT Detector processes informs

g | 3 every process about failure .
3) GASPI_ERROR details via gaspi_write() Overhead component Time (se(:()nds)

4 Failure detection time (OH;y) 65.3
Rebuild communicator + read checkpoint time* (OHo>) 12.8
Redo-work™* (OHj) 9.6

Breakdown of the overhead time for process 0 during failure recovery.
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@ Scaling test of failure detection time.
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Conclusion & Future Work

* \Worker processes are not interupted for health checking purpose.
* Overhead only in case of worker failure(s).
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