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gaspi_write();
return_val = gaspi_wait();

return values:
        1) GASPI_SUCCESS
        2) GASPI_TIMEOUT
        3) GASPI_ERROR

Funded by:

Breakdown of the overhead time for process 0 during failure recovery. 
* application dependent, ** failure instance dependent

Detector processes informs 
every process about failure 

details via gaspi_write()

Failed
proc(s) IDs

Rescue
proc(s) IDs
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Runtime of the application with various number of failure recoveries. 
128 processes (1 process per node) are used in this benchmark with 12-threads each.

Scaling test of failure detection time. 

Worker processes are not interupted for health checking purpose.

Overhead only in case of worker failure(s).

Scalable health check approach.

Redo-work after failure recover <=> Checkpoint frequency.

GASPI

Health Check

Program Flow

Program started with 'x' redundant processes.

One of the redundant processes also acts as fault detector.

Health check via one sided ping.
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Checkpoint Data Structure

Prototype for Krylov subspace 
method

Eigenvalue computation

GASPI[2] enables fault tolerance via timeout based communication routines.

A process local health-state vector is updated after every communication 
call.

A process is considered as a failed process if it is unable to respond to a 
communication request within a certain amount of time.

Health  state of a  process gets refreshed after every successful/
unsuccessful communication.

In order to have a consistent view of all processes' health, a process must 
communicate with every other process.
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Each process once stores matrix communication data structure (to be 
later used by rescue process in case of a failure).

Two recent Lanczos vectors are stored at each checkpoint iteration with 
recently computed eigenvalues. 

Multi-level checkpointing via 
asynchronous library thread:

     1) Node level
     2) Neighbor node level
     3) Parallel file system level

Motivation Benchmark & Results

References

Conclusion & Future Work

Introduction & Methodology

Tianhe-2 
Perf.: 33.8 PFlop/s

core count: 3,120,000

Sequoia
Perf.: 17.17 PFlop/s

core count: 1,572,864
Mean Time To Failure[1] = 19hr

Large scale applications must 
expect failures in post 
petascale machines

MPI still does not provide a 
solution to a single process 

failure.
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