A fault tolerant application using
the GASPI communication layer

ERLANGEN-NURNBERG
Faisal Shahzad', Markus Wittmann', Moritz Kreutzer', Rui Machado?,
Andreas Pieper’, Thomas Zeiser', Georg Hager', Gerhard Wellein*

BEWaJ\

Motivation Benchmark & Results

iyl LANCZOS Algorihtm

core count: 3,120,000

Performance Development o i -
for i:=1.2, ..., ConvergenceCriterion do

1 EFlopls function LANCZOS-STEP

Sequoia Prototype for Krylov subspace wi — Av;

Perf.: 17.17 PFlop/s method aj — wj.v
— WL core count: 1,572,864 wj & wj — avj — Bivi—1
P Pain - —r Mean Time To Failure!" = 19hr Elgenvalue Computatlon Bi+1 < ||w;ll
i Vil — wi/Bis1
end function
CalecMinimumFEigenVal()
end for

10 EFlop/s

10 PFlop/s

10 TFlop/s
1 TFlop/s ¢
100 GFlopis |44~ ="

10 GFlop/s

N Large scale applications must
1 GFlop/s |—w

onevss | expect AINISHILENS Checkpoint Data Structure

199 1996 1998 6 8 1 1 1 1
)94)96)9 2000 2002 2004 2006 200 2010 2012 2014 petascale machlnes

Lists

Each process once stores matrix communication data structure (to be
later used by rescue process in case of a failure).

MPI still does not provide a
solution to a single process

e Two recent Lanczos vectors are stored at each checkpoint iteration with

recently computed eigenvalues.
Application : Checkpoint library

;—‘/ W Multi-level checkpointing via Cstart D

Introduction & I\/Iethodology asynchronous library thread: — e

cr_thread_init() : &cp_monitoring_th, ...)

cr_thread
GASPI! enables fault tolerance via timeout based communication routines.

1) Node level 5
2) Neighbor node level ‘, | el Achk.

— transfer CP
write in-memory

A process local health-state vector is updated after every communication 3) Parallel file system level sieciocii s o
call. 5

\
signal library th.
to transfer CP

A process is considered as a failed process if it is unable to respond to a Trarster O 1 painer
communication request within a certain amount of time. ; node or

Health state of a process gets refreshed after every successful/
unsuccessful communication.

In order to have a consistent view of all processes’ health, a process must
Commur"Cate W|th every Other prOCGSS. Runtime of the application with various number of failure recoveries.

128 processes (1 process per node) are used in this benchmark with 12-threads each.

1750 [e Computation time

H ea Ith C h eCk Redo-work time

B M Re-initialize time
1500 & Fault detection time

Program started with 'x' redundant processes.
One of the redundant processes also acts as fault detector.
Health check via one sided ping.

1250 |

—_—

~

N’
|

Runtime [s]

Worker Communicator
4 9

'\
~
(N
S
.

....................)

gaspi_write(); L N Failed Rescue
return_val = gaspi_wait(); ID | wo HC wo HC with HC 1 fail 2 fail 3 fail 3 sim. fail
— — proc(s) IDs proc(s) IDs | wo CP with CP with CP recovery recovery — recovery recovery

return values: 6,7 1,2
1) GASPI_SUCCESS T
2) GASPI_TIMEOUT Detector processes informs

g | 3 every process about failure .
3) GASPI_ERROR details via gaspi_write() Overhead component Time (se(:()nds)

4 Failure detection time (OH;y) 65.3
Rebuild communicator + read checkpoint time* (OHo>) 12.8
Redo-work™* (OHj) 9.6

Breakdown of the overhead time for process 0 during failure recovery.

P rOg ra m F I OW * application dependent, ** failure instance dependent

@ Scaling test of failure detection time.

no (idle-proc.)

\ 4

create work-
group

\ 4

work +
communication

N
-

Error detection time [s]

(5l : fail-sig.
checkpoint recvd?
[

reconstruct : D
work-group Number of nodes

8

Failure detector process

Conclusion & Future Work

* \Worker processes are not interupted for health checking purpose.
* Overhead only in case of worker failure(s).
References

. . . . *» Scalable health check approach.
1. Jack Dongarra. Emerging Heterogeneous Technologies for High Performance Computing. Invited talk.

website: http://www.netlib.org/utk/people/JackDongarra/SLIDES/hcw-0513.pdf, IPDPS'13, May 2013. * Redo-work after failure recover <=> Checkpoint frequency
2. GASPI project website: http://www.gaspi.de/en/project.html]

1) Erlangen Regional Computing Center (RRZE), University of Erlangen-Nuremberg, Germany

2) Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany

3) Institute of Physics, University of Greifswald, Greifswald, Germany E S SE X

4) Department of Computer Science, University of Erlangen-Nuremberg, Germany
Email: faisal.shahzad@fau.de

Equipping sparse solvers for Exascale

