Dot-bound and Dispersive States in Graphene Quantum Dot Superlattices
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We use numerically exact Chebyshev expansion and ker- e tight-binding Hamiltonian v
nel polynomial methods to study transport through circular E
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tight-binding honeycomb lattice model. Our focus lies on the
regime where individual modes of the electrostatically de- on-site potential V; =V , .» ©(R — |fi — f{nm))
fined dot dominate the charge carrier dynamics. In particular, e wave packet propagation |1(7)) = U(T, 70)|¥(70)) Y ‘H
we monitor the scattering of an injected Dirac electron wave e expansion in Chebyshev polynomials of first kind T;(x)
packet for a single quantum dot, electron confinement in the M U
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linear array of dots. Moreover we consider a square lattice | =
configuration of dots and calculate local density of states and f/(dAT/ h) = (=) J(dAT/h), J Bessel function, Schematic representation of the scattering geometry. Up-  Dirac electron scattering at a single dot.
the momentum resolved photoemission spectrum. Again we H = (H — b)/d rescaled Hamiltonian per panel: An electron wave packet of energy E, momentum  For E < V, the incident (1/;) and reflected
find clear evidence for a series of quasibound states at the e particle density ni(T) — ’</‘ U(7-7 TO)W(To» ’2 k and width Ax propagates in a broad graphene sheet. It im- (v,) electron waves reside in the conduc-
. We further | ' he | | f th latti LT : - inges on a circular, electrostatically defined dot with radius R tion band, while the transmitted wave
dots. We further investigate the interplay of the superlattice o current density () = |(i|(—J/e)U(r TO)W(TO)HZ ping . . y tior (?ﬁt).
structure with dot-localized modes on the electron energy dis- and applied potential V. Lower panel: Graphene quantum dots inside the dot corresponds to a state in the
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current operator J = —(ite/h) Z(f/ r.)(c; G — G ci) arranged in a square superlattice with lattice constant D. valence band.

persion. Effects of disordered dot lattices are discussed too.

Transport through a linear array of dots
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nmand V/t = 0.081615. At time 7 = 0 the a; mode (energy E = 0) is excited at the central dot. The left panels show
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Scattering and particle confinement by a gate-defined circular quantum dot. The scattering efficiency Q (defined o Q0PN o s a, a, - .
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as scattering cross section divided by the geometric cross section) for plane-wave scattering in the Dirac approximation 0 006 , | , | , | ,
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for the tight-binding model for the scattering of a wave packet with Ax = 148 nm after passing through the dot. The 0.02 pacr 1
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lower panels show three time steps during the scattering process at the a; resonance [marker (3)]. Here we also show 0.06 , | ,
. e . . . o . R=4.775nm, V/t=0.17092, (d) -
the current field exhibiting six vortices. The circumference of the quantum dot is indicated by the dashed circle. 0.04 3, D_19.1nm. . 20x20 dots (d)
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Density of states of the dot superlattice in dependence on R, D, E/t

and V. Peaks related to quasibound dot modes are designated by Intensity plots for the local DOS in the central
an. Dot parameter n = VR/vr is the same in panels (a), (c), and part of a larger (square) dot superlattice. Pa-
(d) — a4 is pinned to E = 0. The DOS for the case V; = 0 Viis rameters are same as in the left figure panel (d);

Single-particle spectral function included (dashed lines). The DOS is calculated by the KPM using  since only 4096 Chebyshev moments were used
0.1 for a 20x20 dot superlattice with 16384 Chebyshev moments. the a,, band splittings are not resolved.
0.05 R = 4'775T and D = 19.1 nm
. along the 'K direction (horizon- Disorder effects
u 0 tal; left-hand panels) and parallel
_0.05 to the M’ direction (vertical, e Employing analytical and exact numerical techniques
right-hand panels) through the we have studied the electronic properties of graphene
0.1 Dirac K point, as indicated in the with circular gate-defined quantum dots.
0.1 upper central figure (b). n e Tracing the time evolution of wave packet scattering
0.05 ~ on a free-standing dot we find temporary particle trap-
N Egnels (a) and (c) QiV? A(k, E)fora ping at the dot when normal modes become resonant.
1] 0 ];I:IIS) saanrgple o\; /2rlitlnoe1%r$rzrneor;ee S.ignatures o.f f:lot-bou.nd states als.o appear i.n the op.-
-0.05 2 falls on E = 0), in (f) and (q) tical conductivity. Tuning the chemical potential transi-
0 V/t = 0.171 (mode a; on E = 0), = tions between these states can be selected.

and in (h) and (i) V/t = 0.229
(mode a, on E = 0). The green
marker (circle) traces the energy
shift of the nodal point for pristine
graphene when V is increased. In

e Following the propagation of an excitation along a lin-
ear chain of dots we can identify an effective inter-dot

hopping on a reduced time scale.
e For graphene quantum dot superlattices with only one

L view of transfer of spectral weight Spectral function near the Dirac K point for a disor- sharp localized mode at the charge neutrality point a
to other nodal points it should, dered 20x20 dot superlattice. Parameters are R = dispersionless dot band emerges while the conical en-
however, no longer be identified 4.775nm, D =19.1 nmand V/t = 0.171 nm, i.e., the ergy dispersion is preserved and pinned to £ = 0. For

02 01 0 01 _ _ _ _ _ as the genuine Dirac point. Within a, mode falls on E = 0. Panels (a) and (b) give A(k, E) other choices of the dot potential the group velocity at
the KPM 8192 moments were used. :
k, V3a Ky V33 with randﬁom Rnm/R € 10.9, 1.1]. Panels (c) and (d) the Dirac cone is significantly renormalized.
show A(k, E) if the dots were displaced from their reg- e In disordered superlattices, quasi-bound dot states
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