
MPI+OpenMP hybrid computing
(on modern multicore systems)(on modern multicore systems)
Georg Hager Holger Stengel
Gerhard Wellein Jan TreibigGerhard Wellein Jan Treibig
Markus Wittmann Michael Meier
Erlangen Regional Computing Center (RRZE), Germanyg g p g (), y

39th Speedup Workshop on High-Performance Computing
ETH Zürich, September 6-7, 2010

RRZE
� RRZE = Erlangen Regional Computing Center
� ≈ 100 employees and

studentsstudents,
10 in HPC Services
� 14 (+60) TFlop/s in

clusters & someclusters & some
“hot silicon”
� “IT Service Provider

f FAU”for FAU”
� FAU =

Friedrich-Alexander
University of
Erlangen-Nuremberg
� Second largest� Second largest

university in Bavaria
� 26000 students
� 12000 employees
� 550 professors
� 260 chairs

206.09.2010 MPI/OpenMP hybrid computing

260 chairs

Statement

Common lore:Common lore:
“An OpenMP+MPI hybrid code is never faster than a pure MPI code

on the same hybrid hardware except for obvious cases”on the same hybrid hardware, except for obvious cases

Our statement:
“You have to compare apples to apples, i.e. the best hybrid code to p pp pp , y

the best pure MPI code”

N dl t b th i i ifi t ti i ti ff tNeedless to say, both may require significant optimization effort.

And remember: Using pure MPI on a current cluster
must be called “hybrid computing” as well!

306.09.2010 MPI/OpenMP hybrid computing

Outline

� Hybrid programming benefits and taxonomy
� Vector mode, task mode
� Topology awareness and thread-core mapping

� “Best possible” MPI code
R k bd i i� Rank-subdomain mapping
� Overlapping computation and communication via non-blocking MPI?
� Overlapping cross-node and intra-node communicationOverlapping cross node and intra node communication
� Understanding intra-node MPI behavior

� “Best possible” OpenMP codep p
� Synchronization overhead
� ccNUMA page placement

� “Best possible” MPI+OpenMP hybrid code
� True comm/calc overlap via hybrid task mode

ccNUMA and task mode� ccNUMA and task mode
� Hybrid parallel temporal blocking

406.09.2010 MPI/OpenMP hybrid computing

Hybrid taxonomy and possible benefits

Taxonomy of hybrid “modes”:
Several OpenMP threads per MPI process

Vector mode: MPI is called only
outside OpenMP parallel p p
regions. This is what many
people mean when they say
“h b id”“hybrid”
� Similar to what we did on

vector-parallel machinesvector parallel machines

Task mode: One or moreTask mode: One or more
threads in the parallel region
are dedicated to special tasks,
lik d i i ti ilike doing communication in
the background
� This is functional parallelism on� This is functional parallelism on

the thread level

606.09.2010 MPI/OpenMP hybrid computing
R. Rabenseifner and G. Wellein, Communication and Optimization Aspects of Parallel Programming
Models on Hybrid Architectures. Int. J. High Perf. Comp. Appl. 17(1), 49-62 (2003)

Possible hybrid benefits

Vector mode Task mode

Improved/easier load balancing

Additional levels of parallelism

Reliable overlapping ofReliable overlapping of
communication and computation

Improved rate of convergence

R f d t i h d hRe-use of data in shared caches

Reduced MPI overheadReduced MPI overhead

706.09.2010 MPI/OpenMP hybrid computing

Possible hybrid drawbacks

Vector mode Task mode

OpenMP overheads

Node level bulk synchronousNode-level bulk-synchronous
communication ()

Possible deficiencies in codePossible deficiencies in code
optimization by compiler

ccNUMA placement problems

Nonability to saturate network y
interface ()

Complexities in thread/core affinityComplexities in thread/core affinity

806.09.2010 MPI/OpenMP hybrid computing

Hybrid mapping choices
on current hardware

Choices for running programs on Choices for running programs on
multicore/multisocket hardware

The LIKWID toolset, esp. likwid-topology and
likwid-pin

Topology (“mapping”) choices with MPI+OpenMP

One MPI process per
node

One MPI process per
socket

OpenMP threads pinnedOpenMP threads pinned
“round robin” across
cores in node

Two MPI processes per
node

1006.09.2010 MPI/OpenMP hybrid computing

<commercial><commercial>

1106.09.2010 MPI/OpenMP hybrid computing

How do we figure out the topology?

� … and how do we enforce the mapping?
� Compilers and MPI libs may give you ways to do that

� But LIKWID supports all sorts of combinations:

Like
I J. Treibig, G. Hager, G. Wellein: LIKWID: A I
Knew
What

g, g ,
lightweight performance-oriented tool suite for x86
multicore environments. Accepted for PSTI2010,
Sep 13-16, 2010, San Diego, CA
http://arxiv org/abs/1004 4431I’m

Doing
http://arxiv.org/abs/1004.4431

� Open source tool collection (developed by Jan Treibig at RRZE):

http://code.google.com/p/likwid

1206.09.2010 MPI/OpenMP hybrid computing

Likwid Tool Suite

� Command line tools for Linux:
� easy to install
� works with standard Linux 2.6 kernel
� simple and clear to use
� supports Intel and AMD CPUs

� Current tools:
� likwid-topology: Print thread and cache topology
� likwid-pin: Pin threaded application without touching code
� likwid-perfCtr: Measure performance counters

lik id f t Vi d bl /di bl h d f t h (l� likwid-features: View and enable/disable hardware prefetchers (only
for Intel Core2 at the moment)
� likwid-bench: Bandwidth benchmark generator tool� likwid-bench: Bandwidth benchmark generator tool

1306.09.2010 MPI/OpenMP hybrid computing

likwid-topology – Topology information

� Based on cpuid information
� Functionality:Functionality:
� Measures clock frequency

� Thread topology: numbering of logical cores� Thread topology: numbering of logical cores

� Cache topology: which HW threads share which cache level(s)

� Cache parameters (-c command line switch)

� ASCII art output (-g command line switch)

� Physical and logical core numbering

� Currently supported:
� Intel Core 2 (45nm + 65 nm)

� Intel NehalemIntel Nehalem

� AMD K10 (Quadcore and Hexacore)

� AMD K8

1406.09.2010 MPI/OpenMP hybrid computing

� AMD K8

Output of likwid-topology

CPU name: Intel Core i7 processor
CPU clock: 2666683826 Hz

Hardware Thread Topology

Sockets: 2
Cores per socket: 4
Th d 2Threads per core: 2

HWThread Thread Core Socket
0 0 0 0
1 1 0 01 1 0 0
2 0 1 0
3 1 1 0
4 0 2 0
5 1 2 05 1 2 0
6 0 3 0
7 1 3 0
8 0 0 1
9 1 0 19 0
10 0 1 1
11 1 1 1
12 0 2 1
13 1 2 1
14 0 3 1
15 1 3 1

1506.09.2010 MPI/OpenMP hybrid computing

likwid-topology continued

Socket 0: (0 1 2 3 4 5 6 7)
Socket 1: (8 9 10 11 12 13 14 15)()

Cache Topology

Level: 1
Size: 32 kB
Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15)

Level: 2
Size: 256 kB
Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15)

Level: 3
Size: 8 MB
Cache groups: (0 1 2 3 4 5 6 7) (8 9 10 11 12 13 14 15)
--

� … and also try the ultra-cool -g option!

1606.09.2010 MPI/OpenMP hybrid computing

likwid-pin
� Inspired by and based on ptoverride (Michael Meier, RRZE) and
taskset

� Pins process and its threads to specific cores without touching code
� Directly supports pthreads, gcc OpenMP, Intel OpenMP
� Allows user to specify skip mask for excluding auxiliary threads
� Based on combination of wrapper tool together with overloaded

pthread library
� Can also be used as replacement for taskset
� Defaults to logical core numbering if started inside a restricted set of

cores
� Usage examples:

� likwid-pin –t intel -c 0,2,4-6 ./myApp

/� likwid-pin –c S0:0-2@S1:0-2 ./myApp

� mpirun ... likwid-pin -s 0x3 -c 0,3,5,6 ./myApp

1706.09.2010 MPI/OpenMP hybrid computing

Example: STREAM benchmark on 12-core Intel Westmere:
Anarchy vs. thread pinning

no pinning

Pinning (physical cores first)

1806.09.2010 MPI/OpenMP hybrid computing

Topology (“mapping”) choices with MPI+OpenMP:
More examples using Intel MPI+compiler & home-grown mpirun

One MPI process per
node

env OMP_NUM_THREADS=8 mpirun -pernode likwid-pin –t intel -c 0-7 ./a.out

One MPI process per
socket

OpenMP threads pinned

env OMP_NUM_THREADS=4 mpirun -npernode 2 -pin "0,1,2,3_4,5,6,7" ./a.out

OpenMP threads pinned
“round robin” across
cores in nodeenv OMP_NUM_THREADS=4 mpirun -npernode 2 -pin "0,1,4,5_2,3,6,7"

Two MPI processes per

likwid-pin –t intel -c 0,2,1,3 ./a.out

node
env OMP_NUM_THREADS=2 mpirun -npernode 4 -pin "0,1_2,3_4,5_6,7"

likwid pin t intel c 0 1 /a out

1906.09.2010 MPI/OpenMP hybrid computing

likwid-pin –t intel -c 0,1 ./a.out

</commercial></commercial>

2006.09.2010 MPI/OpenMP hybrid computing

MPI:
Common problems (beyond the usual…)

Rank-subdomain mappingRank-subdomain mapping

Overlapping computation with communicationOverlapping computation with communication

Intranode communication characteristicsIntranode communication characteristics

“Best possible” MPI:
Minimizing cross-node communication

■ Example: Stencil solver with halo exchange

■ Goal: Reduce internode halo traffic
■ Subdomains exchange halo with neighbors

■ Populate a node's ranks with “maximum neighboring” subdomains
This minimizes a node's communication surface■ This minimizes a node s communication surface

■ Shouldn’t MPI CART CREATE (w/ reorder) take care of this for me?

2206.09.2010 MPI/OpenMP hybrid computing

■ Shouldn t MPI_CART_CREATE (w/ reorder) take care of this for me?

MPI rank-subdomain mapping:
3D stencil solver – theory

“Common” MPI
library behavior

ke
t

ke
t

rs
 2

-s
oc

k

ga
ra

 2

2-
so

ck
et

-s
oc

ke
t

ha
i 4

-s
oc

k

ag
ny

 C
ou

r

Magny Cours
4-socket

ck
et Su

n
N

ia
g

al
em

 E
P

2

st
an

bu
l 2

Sh
an

gh M
a

Nehalem EX
4-socket

es
t

2-
so

c

N
eh

a Is

W
oo

dc
re

2306.09.2010 MPI/OpenMP hybrid computing

MPI rank-subdomain mapping:
3D stencil solver – measurements for 8ppn and 4ppn GBE vs. IB

32 MPI processes

8 ppn QDR-IB + GBE

~ 1.5x 1.5x

4 ppn SDR-IB + GBE

2406.09.2010 MPI/OpenMP hybrid computing

Overlap of computation and nonblocking MPI:
A simple test

� CN communication buffer buf: 80 MB
� do_work() does intra-register work for some amount of time

MPI_Barrier(MPI_COMM_WORLD);

if(rank==0) {(a 0) {

stime = MPI_Wtime();

MPI Irecv/Isend(buf,bufsize,MPI DOUBLE,1,0,MPI COMM WORLD,request);_ (, , _ , , , _ _ , q)

delayTime = do_work(Length);

MPI_Wait(request,status);

etime = MPI_Wtime();

cout << delayTime << " " << etime-stime << endl;

} else {

MPI_Send(buf,bufsize,MPI_DOUBLE,0,0,MPI_COMM_WORLD);

}

MPI_Barrier(MPI_COMM_WORLD);

2506.09.2010 MPI/OpenMP hybrid computing

Overlap of computation and nonblocking MPI:
Results for different MPI versions and systems

TinyBlue = IBM iDataPlex w/QDR IB

2606.09.2010 MPI/OpenMP hybrid computing 80MB / 1.6GB/s = 0.05s

IMB Ping-Pong: Latency
Intranode vs. internode on Woodcrest DDR-IB cluster (Intel MPI 3.1)

3 , 2 4

3

3 , 5 P
C

P
C

C

P
C

P
C

C

2 , 5

3

Chipset

C C

1 , 5

2

cy
 [µ

s]

Memory

0 , 5 5
0 , 3 1

0 5

1La
te

n

0

0 , 5

IB in t e r n o d e IB in t r a n o d e 2 S IB in t r a n o d e 1 S

Affinity matters!

27MPI/OpenMP hybrid computing06.09.2010

IMB Ping-Pong: Bandwidth Characteristics
Intra-node vs. Inter-node on Woodcrest DDR-IB cluster (Intel MPI 3.1)

Shared cache
advantage

B t t

Between two nodes
via InfiniBand

P P P P

Between two cores
of one socket

intranode shm
comm

P
C

Chipset

P
C

C

P
C

P
C

C

Between two

Memory
sockets of one node

Affinity matters!

2806.09.2010 MPI/OpenMP hybrid computing

MPI take-home messages

� MPI may not do the best it could when mapping your ranks to your
subdomains
� Even if all it would take is to know how many processes run on a node

MPI t id t l h i ti ith� MPI may not provide truly asynchronous communication with non-
blocking point-to-point calls
� Very common misconceptionVery common misconception
� Check your system using low-level benchmarks
� Task mode hybrid can save you ☺

� MPI intranode characteristics are worth investigating
� Latency is good, but bandwidth may not be what you expect
� Overlapping intranode with internode traffic should not be taken for granted

H. Stengel: Parallel programming on hybrid hardware: Models and
applications. Master’s thesis, Ohm University of Applied Sciences/RRZE,
Nuremberg 2010

2906.09.2010 MPI/OpenMP hybrid computing

Nuremberg, 2010

A word about barrier overhead for
OpenMP …

J Treibig G Hager and G Wellein: Multi-core J. Treibig, G. Hager and G. Wellein: Multi-core
architectures: Complexities of performance
prediction and the impact of cache topology.
To appear.

http://arxiv org/abs/0910 4865http://arxiv.org/abs/0910.4865

Thread synchronization overhead
pthreads vs. OpenMP vs. Spin loop

2 Threads Q9550 (shared L2) I7 920 (shared L3)
pthreads barrier wait 23739 6511pthreads_barrier_wait 23739 6511
omp barrier (icc 11.0) 399 469
Spin loop 231 270Spin loop 231 270

4 Threads Q9550 I7 920 (shared L3)
pthreads_barrier_wait 42533 9820
omp barrier (icc 11.0) 977 814
Spin loop 1106 475

pthreads Æ OS kernel call

Spin loop does fine for shared cache sync

OpenMP & Intel compiler

3106.09.2010 MPI/OpenMP hybrid computing

Thread synchronization overhead
OpenMP: icc vs. gcc

2 Th d Q9550 (h d L2) I7 920 (h d L3)

gcc obviously uses pthreads barrier to for OpenMP barrier.

2 Threads Q9550 (shared L2) I7 920 (shared L3)
gcc 4.3.3 22603 7333
i 11 0 399 469icc 11.0 399 469

4 Threads Q9550 I7 920 (shared L3)4 Threads Q9550 I7 920 (shared L3)
gcc 4.3.3 64143 10901
icc 11 0 977 814icc 11.0 977 814

Correct pinning of threads:

• Manual pinning in source code or

• likwid-pin: http://code.google.com/p/likwid/likwid pin: http://code.google.com/p/likwid/
• Prevent icc compiler from pinning Æ KMP_AFFINITY=disabled

3206.09.2010 MPI/OpenMP hybrid computing

Thread synchronization overhead
Topology influence

Xeon E5420
2 Threads

shared L2 same socket different socket

pthreads_barrier_wait 5863 27032 27647
omp barrier (icc 11.0) 576 760 1269
Spin loop 259 485 11602

Nehalem Shared SMT shared L3 different socketNehalem
2 Threads

Shared SMT
threads

shared L3 different socket

pthreads_barrier_wait 23352 4796 49237
omp barrier (icc 11.0) 2761 479 1206
Spin loop 17388 267 787

• Spin waiting loops are not suited for SMT
Affinity matters!• Well known for a long time…

• Roll-your-own barrier may be better than compiler, but take care

Affinity matters!

3306.09.2010 MPI/OpenMP hybrid computing

Hybrid task mode in action

 and when it makes sense to consider it at all… and when it makes sense to consider it at all

MPI/OpenMP Parallelization – 3D Jacobi

� Cubic 3D computational domain with periodic BCs in all directions
� Use single-node IB/GE cluster with one dual-core chip per nodeUse single-node IB/GE cluster with one dual-core chip per node
� Homogeneous distribution of workload, e.g. on 8 procs

pure MPI: 1101111,1,0 1,1,1
pu e

100101

110111

1 0 0 000001

010011

1 0 11,0,0 000001

hybrid: 110

1,0,1

k 0,0,10,0,0 100
010

i

j
000

3506.09.2010 MPI/OpenMP hybrid computing

i

Performance Data for 3D MPI/hybrid Jacobi
Strong scaling, N3 = 4803

Hybrid: Thread 0: Communication + boundary cell updates
Thread 1: Inner cell updates

IB
Performance model

T T TIB

GE
T = TCOMM + TCOMP

TCOMP = N3 / P0

TCOMM = Vdata / BW

P0 = 150 MLUP/s
BW(GE)= 100 MByte/s

Vd t = Data volume

Performance estimate (GE) for n nodes:

Vdata Data volume
of halo exchange

3606.09.2010 MPI/OpenMP hybrid computing

P(n) = N3 / ((TCOMP/n) + TCOMM(n))

JDS Sparse MVM:
Performance and scalability on two different platforms

GBE
P
C

P
C

C C

P
C

P
C

C C
71·106
nonzeroesGBEMI

Memory

MI

Memory

hybrid
advantage

Opteron 270 2 GHz

Xeon 5160 3 GHz
no NUMA

placement!

P
C

P
C

C

P
C

P
C

CSDR IB

p

Chipset

Memory

3706.09.2010 MPI/OpenMP hybrid computing

G. Wellein and G. Hager and A. Basermann and H. Fehske, Fast sparse
matrix-vector multiplication for TFlops computers. Proc. VECPAR2002,
LNCS 2565

The obvious question…

� How do you distribute loop iterations if one thread of your team is
missing?
� Straightforward answer: Use nested parallelism

#pragma omp parallel num threads(2)#pragma omp parallel num_threads(2)
{
if(!omp_get_thread_num()) {
// do comm thread stuff here

}
else {else {
#pragma omp parallel num_threads(7)
{

#pragma omp for
// do work threads stuff here

}}
}

}

3806.09.2010 MPI/OpenMP hybrid computing

However…

� Nested parallelism must be supported by the compiler
� Probably less of a problem today

� You don’t know what actually happens when starting a new team
� ccNUMA page placement?
� Thread-core affinity?

� Alternatives:� Alternatives:
� Use manual work distribution

� This is somewhat clumsy, but well “wrappable”y, pp
� More importantly, it is static (no advanced scheduling options, but also

less overhead)
� Use “tasking” constructs

� Dynamic scheduling (with all its advantages and drawbacks)
M Wittmann and G Hager: A proof of concept for optimizing taskM. Wittmann and G. Hager: A proof of concept for optimizing task
parallelism by locality queues. http://arxiv.org/abs/0902.1884
� Communication thread can participate in worksharing activities after

i i i

3906.09.2010 MPI/OpenMP hybrid computing

communication is over

Hybrid task mode via “tasking” constructs (1)

� OpenMP 3.0 tasking
#pragma omp parallel
{{
#pragma omp single
{
#pragma omp task
{
MPI Isend(…);_ ();
MPI_Irecv(…);
MPI_Waitall(…);

}}
for(i=0; i<no_of_tasks; ++i) {
#pragma omp task
{{

// ... do work
}

} // end task loop
} // end single

} // end parallel Æ implicit barrier

4006.09.2010 MPI/OpenMP hybrid computing

} p p

Hybrid task mode via “tasking” constructs (2)

� Dynamic loop scheduling (no implicit barrier at the start of a
workshared loop!)
#pragma omp parallel
{
#pragma omp single nowait#pragma omp single nowait
{
MPI Isend(…);_ ();
MPI_Irecv(…);
MPI_Waitall(…);

} // end single
#pragma omp for schedule(dynamic,cs) nowait
for(i 0 i<no of tasks ++i) {for(i=0; i<no_of_tasks; ++i) {
// ... do work

} // end task loop} // end task loop
} // end parallel Æ implicit barrier

4106.09.2010 MPI/OpenMP hybrid computing

Hybrid OpenMP+MPI take-home messages

� Hybrid task mode is almost mandatory if communication has a
significant impact on runtime
� True overlap of communication with computation

� Know your basics about NUMA placement, chip/node topology,
thread/core affinitythread/core affinity

� Hybrid (task or vector mode) is sometimes unnecessaryHybrid (task or vector mode) is sometimes unnecessary
� If pure MPI scales OK, why bother?

� But: Try to figure out possible benefits through
� Profiling/tracingProfiling/tracing
� Appropriate performance models
� Awareness of the basic limitations of the underlying architecturey g

4206.09.2010 MPI/OpenMP hybrid computing

Case study:
Re-use of shared cache data and relaxedRe use of shared cache data and relaxed
synchronization with a temporally
blocked Jacobi solver
G. Wellein, G. Hager, T. Zeiser, M. Wittmann and H. Fehske: Efficient temporal
blocking for stencil computations by multicore-aware wavefront parallelization.
P COMPSAC 2009 B t P A d!Proc. COMPSAC 2009. Best Paper Award!

J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization g, g p
strategies for iterative stencil computations. Submitted.
http://arxiv.org/abs/1004.1741

M. Wittmann, G. Hager, J. Treibig and G. Wellein: Leveraging shared caches for
parallel temporal blocking of stencil codes on multicore processors and clusters.
A t d f P ll l P i L tt D b 2010 Accepted for Parallel Processing Letters, December 2010.
http://arxiv.org/abs/1006.3148

Pipelined temporal blocking

X Y

thread 0 (t0Æ t1)

thread 1 (t1Æ t2)

th d 2 (t Æ t)thread 2 (t2Æ t3)

4406.09.2010 MPI/OpenMP hybrid computing

Pipelined temporal blocking

X Y

One long pipeline (all cores of a node) advances through the lattice, each
update is shifted by (-1,-1,-1)

Advantages DrawbacksAdvantages
� Freestyle spatial blocking
� No explicit boundary copies

Drawbacks
� Shift reduces cache reuse
� Huge parameter spaceNo explicit boundary copies

� Multiple updates per core � Boundary tiles

4506.09.2010 MPI/OpenMP hybrid computing

Temporal Blocking w/ PPP on Nehalem EP
(Core i7)

core 0 core 1 core 2 core 3core 0 core 1 core 2 core 3

L1 L1 L1 L1

L2 L2 L2 L2

L3 I
2nd upd.

I
3rd upd.

II
2nd upd.

II
3rd upd.

I
1st upd.

I
2nd upd.

II
1st upd.

II
2nd upd.

III
1st upd.

III
2nd upd.

I
0th upd.

I
1st upd.

II
0th upd.

II
1st upd.

III
0th upd.

III
1st upd.

IV
0th upd.

IV
1st upd.

I
3rd upd.

I
4th upd.

Save six memory
accesses by reusing

memory

y g
blocks from shared
cache

4606.09.2010 MPI/OpenMP hybrid computing

Pipelined temporal blocking
with compressed Grid

thread 0 (t0Æ t1)thread 0 (t0Æ t1)

thread 1 (t1Æ t2)thread 1 (t1Æ t2)

compressed
grid

t id

grid

system grid

4706.09.2010 MPI/OpenMP hybrid computing

Pipelined temporal blocking

� All threads need to synchronize after finishing T
iterations on their current tileiterations on their current tile
� Synchronization gets more expensive with

increasing number of threads

4806.09.2010 MPI/OpenMP hybrid computing

Relaxed Synchronisation

� Every thread ti only increments its own counter ci

� Thread ti has a minimal distance dl to its preceding thread ti-1

� Thread ti has a maximal distance du to its following thread ti+1

� Two threads have at least dl and at most du tiles between them

4906.09.2010 MPI/OpenMP hybrid computing

Performance with different looseness

2 sockets,
8 cores,

� Intel Nehalem 2.66 GHz
4 / k t8 threads � 4 cores/socket
� 2 HW threads/corew/ barrier

1 socket, soc et,
4 cores,
4 threads

w/ barrier

5006.09.2010 MPI/OpenMP hybrid computing

Hybrid temporally blocked computations
via multi-layer halos

� Temporal blocking requires multi-layer halos

� Using diagonal communication
elimination (DCE) (Ding/He SC 2001)

� Exchanging halo with
neighbors done only alongneighbors done only along
the coordinate directions 2

� More complex stencils, e.g.
occurring at lattice Boltzmann methods,

1

need more attention for deciding
which data to communicate

5106.09.2010 MPI/OpenMP hybrid computing

Impact of Multi-layer Halo on Performance

� Assumptions for model:
� No overlap between

communication and
computation
� QDR InfiniBand

strong
li� QDR InfiniBand

� 3.2 GB/s
� 1.8 µs latency

scaling

µ y
� Node performance

2 GLUP/s
Reduced latencyReduced latency
by message
aggregation

Degrade due to halo
work

No impact for large

5206.09.2010 MPI/OpenMP hybrid computing

No impact for large
domain sizes

Performance Results on NHL EP QDR IB cluster
Single-node and multinode

System size: 6003 (per node)

5306.09.2010 MPI/OpenMP hybrid computing

Conclusions
� Whatever you do, be aware of the limitations the hardware puts on

your code’s performance
� Apply performance models whenever possible� Apply performance models whenever possible

� Investigate and apply proper thread/core affinity
� Use LIKWID or the MPI/compiler facilities or anything but use it!Use LIKWID or the MPI/compiler facilities or anything, but use it!

� Intranode MPI effects may be important

� If MPI performs/scales ok, don’t bother using MPI+OpenMP

� However, if you can leverage new features it may still be worth
looking into
� Shared caches are the interesting property of modern CPUs
� Load balancing, new levels of parallelism, convergence,…

B f th t i l O MP itf ll� Be aware of the typical OpenMP pitfalls
� Synchronization and work distribution overheads are most prominent
� and they are really topology-dependent

54

… and they are really topology dependent

06.09.2010 MPI/OpenMP hybrid computing

THANK YOU

Supported by Supported bySupported by
BMBF, grant No 01IH08003A
(project SKALB)

Supported by
KONWIHR, project
OMI4PAPPS

