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RRZE
� RRZE = Erlangen Regional Computing Center
� ≈ 100 employees and 

studentsstudents, 
10 in HPC Services
� 14 (+60) TFlop/s in

clusters & someclusters & some 
“hot silicon”
� “IT Service Provider 

f FAU”for FAU”
� FAU = 

Friedrich-Alexander 
University of 
Erlangen-Nuremberg
� Second largest� Second largest 

university in Bavaria 
� 26000 students
� 12000 employees
� 550 professors
� 260 chairs
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Statement

Common lore:Common lore:
“An OpenMP+MPI hybrid code is never faster than a pure MPI code 

on the same hybrid hardware except for obvious cases”on the same hybrid hardware, except for obvious cases

Our statement: 
“You have to compare apples to apples, i.e. the best hybrid code to p pp pp , y

the best pure MPI code”

N dl t b th i i ifi t ti i ti ff tNeedless to say, both may require significant optimization effort.

And remember: Using pure MPI on a current cluster 
must be called “hybrid computing” as well!
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Outline

� Hybrid programming benefits and taxonomy
� Vector mode, task mode
� Topology awareness and thread-core mapping

� “Best possible” MPI code
R k bd i i� Rank-subdomain mapping
� Overlapping computation and communication via non-blocking MPI?
� Overlapping cross-node and intra-node communicationOverlapping cross node and intra node communication
� Understanding intra-node MPI behavior

� “Best possible” OpenMP codep p
� Synchronization overhead
� ccNUMA page placement

� “Best possible” MPI+OpenMP hybrid code
� True comm/calc overlap via hybrid task mode

ccNUMA and task mode� ccNUMA and task mode
� Hybrid parallel temporal blocking
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Hybrid taxonomy and possible benefits



Taxonomy of hybrid “modes”:
Several OpenMP threads per MPI process

Vector mode: MPI is called only 
outside OpenMP parallel p p
regions. This is what many 
people mean when they say 
“h b id”“hybrid”
� Similar to what we did on 

vector-parallel machinesvector parallel machines

Task mode: One or moreTask mode: One or more 
threads in the parallel region 
are dedicated to special tasks, 
lik d i i ti ilike doing communication in 
the background
� This is functional parallelism on� This is functional parallelism on 

the thread level

606.09.2010 MPI/OpenMP hybrid computing
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Possible hybrid benefits

Vector mode Task mode

Improved/easier load balancing 

Additional levels of parallelism 

Reliable overlapping ofReliable overlapping of 
communication and computation 

Improved rate of convergence

R f d t i h d hRe-use of data in shared caches 

Reduced MPI overheadReduced MPI overhead
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Possible hybrid drawbacks

Vector mode Task mode

OpenMP overheads

Node level bulk synchronousNode-level bulk-synchronous
communication (          )

Possible deficiencies in codePossible deficiencies in code
optimization by compiler

ccNUMA placement problems

Nonability to saturate network y
interface (          )

Complexities in thread/core affinityComplexities in thread/core affinity
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Hybrid mapping choices 
on current hardware

Choices for running programs on Choices for running programs on 
multicore/multisocket hardware

The LIKWID toolset, esp. likwid-topology and 
likwid-pin



Topology (“mapping”) choices with MPI+OpenMP

One MPI process per 
node

One MPI process per 
socket

OpenMP threads pinnedOpenMP threads pinned 
“round robin” across 
cores in node

Two MPI processes per 
node
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How do we figure out the topology?

� … and how do we enforce the mapping?
� Compilers and MPI libs may give you ways to do that

� But LIKWID supports all sorts of combinations:

Like
I J. Treibig, G. Hager, G. Wellein: LIKWID: A I
Knew
What

g, g ,
lightweight performance-oriented tool suite for x86 
multicore environments. Accepted for PSTI2010, 
Sep 13-16, 2010, San Diego, CA
http://arxiv org/abs/1004 4431I’m

Doing
http://arxiv.org/abs/1004.4431

� Open source tool collection (developed by Jan Treibig at RRZE):

http://code.google.com/p/likwid
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Likwid Tool Suite

� Command line tools for Linux:
� easy to install 
� works with standard Linux 2.6 kernel
� simple and clear to use 
� supports Intel and AMD CPUs

� Current tools:
� likwid-topology: Print thread and cache topology
� likwid-pin: Pin threaded application without touching code
� likwid-perfCtr: Measure performance counters

lik id f t Vi d bl /di bl h d f t h ( l� likwid-features: View and enable/disable hardware prefetchers (only 
for Intel Core2 at the moment)
� likwid-bench: Bandwidth benchmark generator tool� likwid-bench: Bandwidth benchmark generator tool
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likwid-topology – Topology information

� Based on cpuid information
� Functionality:Functionality:
� Measures clock frequency 

� Thread topology: numbering of logical cores� Thread topology: numbering of logical cores

� Cache topology: which HW threads share which cache level(s)

� Cache parameters (-c command line switch)

� ASCII art output (-g command line switch)

� Physical and logical core numbering

� Currently supported:
� Intel Core 2 (45nm + 65 nm)

� Intel NehalemIntel Nehalem

� AMD K10 (Quadcore and Hexacore)

� AMD K8
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Output of likwid-topology

CPU name:       Intel Core i7 processor
CPU clock:      2666683826 Hz
*************************************************************
Hardware Thread Topology
*************************************************************
Sockets:                2
Cores per socket:       4
Th d 2Threads per core:       2
-------------------------------------------------------------
HWThread        Thread          Core            Socket
0               0               0               0
1 1 0 01               1               0               0
2               0               1               0
3               1               1               0
4               0               2               0
5 1 2 05               1               2               0
6               0               3               0
7               1               3               0
8               0               0               1
9               1               0               19 0
10              0               1               1
11              1               1               1
12              0               2               1
13              1               2               1
14              0               3               1
15              1               3               1
-------------------------------------------------------------
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likwid-topology continued

Socket 0: ( 0 1 2 3 4 5 6 7 )
Socket 1: ( 8 9 10 11 12 13 14 15 )( )
-------------------------------------------------------------

*************************************************************
Cache Topology
*************************************************************
Level:   1
Size:    32 kB
Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 )
-------------------------------------------------------------
Level:   2
Size:    256 kB
Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 )
-------------------------------------------------------------
Level:   3
Size:    8 MB
Cache groups:   ( 0 1 2 3 4 5 6 7 ) ( 8 9 10 11 12 13 14 15 )
--------------------------------------------------------------------------------------------------------------------------

� … and also try the ultra-cool -g option!
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likwid-pin
� Inspired by and based on ptoverride (Michael Meier, RRZE) and
taskset

� Pins process and its threads to specific cores without touching code
� Directly supports pthreads, gcc OpenMP, Intel OpenMP
� Allows user to specify skip mask for excluding auxiliary threads
� Based on combination of wrapper tool together with overloaded

pthread library
� Can also be used as replacement for taskset
� Defaults to logical core numbering if started inside a restricted set of 

cores
� Usage examples:

� likwid-pin –t intel -c 0,2,4-6 ./myApp

/� likwid-pin –c S0:0-2@S1:0-2 ./myApp

� mpirun ... likwid-pin -s 0x3 -c 0,3,5,6 ./myApp

1706.09.2010 MPI/OpenMP hybrid computing



Example: STREAM benchmark on 12-core Intel Westmere:
Anarchy vs. thread pinning

no pinning

Pinning (physical cores first)
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Topology (“mapping”) choices with MPI+OpenMP:
More examples using Intel MPI+compiler & home-grown mpirun

One MPI process per 
node

env OMP_NUM_THREADS=8 mpirun -pernode likwid-pin –t intel -c 0-7 ./a.out 

One MPI process per 
socket

OpenMP threads pinned

env OMP_NUM_THREADS=4 mpirun -npernode 2 -pin "0,1,2,3_4,5,6,7" ./a.out 

OpenMP threads pinned 
“round robin” across 
cores in nodeenv OMP_NUM_THREADS=4 mpirun -npernode 2 -pin "0,1,4,5_2,3,6,7" 

Two MPI processes per 

likwid-pin –t intel -c 0,2,1,3 ./a.out 

node
env OMP_NUM_THREADS=2 mpirun -npernode 4 -pin "0,1_2,3_4,5_6,7" 

likwid pin t intel c 0 1 /a out
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likwid-pin –t intel -c 0,1 ./a.out 



</commercial></commercial>
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MPI:
Common problems (beyond the usual…)

Rank-subdomain mappingRank-subdomain mapping

Overlapping computation with communicationOverlapping computation with communication

Intranode communication characteristicsIntranode communication characteristics



“Best possible” MPI:
Minimizing cross-node communication

■ Example: Stencil solver with halo exchange

■ Goal: Reduce internode halo traffic
■ Subdomains exchange halo with neighbors

■ Populate a node's ranks with “maximum neighboring” subdomains
This minimizes a node's communication surface■ This minimizes a node s communication surface

■ Shouldn’t MPI CART CREATE (w/ reorder) take care of this for me?

2206.09.2010 MPI/OpenMP hybrid computing

■ Shouldn t MPI_CART_CREATE (w/ reorder) take care of this for me?



MPI rank-subdomain mapping:
3D stencil solver – theory

“Common” MPI 
library behavior
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MPI rank-subdomain mapping:
3D stencil solver – measurements for 8ppn and 4ppn GBE vs. IB

32 MPI processes

8 ppn QDR-IB + GBE

~ 1.5x 1.5x

4 ppn SDR-IB + GBE
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Overlap of computation and nonblocking MPI:
A simple test

� CN communication buffer buf: 80 MB
� do_work() does intra-register work for some amount of time 

MPI_Barrier(MPI_COMM_WORLD);

if(rank==0) {( a 0) {

stime = MPI_Wtime();

MPI Irecv/Isend(buf,bufsize,MPI DOUBLE,1,0,MPI COMM WORLD,request);_ ( , , _ , , , _ _ , q )

delayTime = do_work(Length);

MPI_Wait(request,status);

etime = MPI_Wtime();

cout << delayTime << " " << etime-stime << endl;

} else {

MPI_Send(buf,bufsize,MPI_DOUBLE,0,0,MPI_COMM_WORLD);

}

MPI_Barrier(MPI_COMM_WORLD);
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Overlap of computation and nonblocking MPI:
Results for different MPI versions and systems

TinyBlue = IBM iDataPlex w/QDR IB

2606.09.2010 MPI/OpenMP hybrid computing 80MB / 1.6GB/s = 0.05s



IMB Ping-Pong: Latency
Intranode vs. internode on Woodcrest DDR-IB cluster (Intel MPI 3.1)
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IMB Ping-Pong: Bandwidth Characteristics 
Intra-node vs. Inter-node on Woodcrest DDR-IB cluster (Intel MPI 3.1)
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Affinity matters!
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MPI take-home messages

� MPI may not do the best it could when mapping your ranks to your 
subdomains
� Even if all it would take is to know how many processes run on a node

MPI t id t l h i ti ith� MPI may not provide truly asynchronous communication with non-
blocking point-to-point calls
� Very common misconceptionVery common misconception
� Check your system using low-level benchmarks
� Task mode hybrid can save you ☺

� MPI intranode characteristics are worth investigating
� Latency is good, but bandwidth may not be what you expect
� Overlapping intranode with internode traffic should not be taken for granted

H. Stengel: Parallel programming on hybrid hardware: Models and 
applications. Master’s thesis, Ohm University of Applied Sciences/RRZE, 
Nuremberg 2010
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A word about barrier overhead for 
OpenMP …

J  Treibig  G  Hager and G  Wellein: Multi-core J. Treibig, G. Hager and G. Wellein: Multi-core 
architectures: Complexities of performance 
prediction and the impact of cache topology. 
To appear.

http://arxiv org/abs/0910 4865http://arxiv.org/abs/0910.4865



Thread synchronization overhead 
pthreads vs. OpenMP vs. Spin loop

2 Threads Q9550 (shared L2) I7 920 (shared L3)
pthreads barrier wait 23739 6511pthreads_barrier_wait 23739 6511
omp barrier (icc 11.0) 399 469
Spin loop 231 270Spin loop 231 270

4 Threads Q9550 I7 920 (shared L3)
pthreads_barrier_wait 42533 9820
omp barrier (icc 11.0) 977 814
Spin loop 1106 475

pthreads Æ OS kernel call

Spin loop does fine for shared cache sync

OpenMP & Intel compiler 
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Thread synchronization overhead 
OpenMP: icc vs. gcc

2 Th d Q9550 ( h d L2) I7 920 ( h d L3)

gcc obviously uses pthreads barrier to for OpenMP barrier.

2 Threads Q9550 (shared L2) I7 920 (shared L3)
gcc 4.3.3 22603 7333
i 11 0 399 469icc 11.0 399 469

4 Threads Q9550 I7 920 (shared L3)4 Threads Q9550 I7 920 (shared L3)
gcc 4.3.3 64143 10901
icc 11 0 977 814icc 11.0 977 814

Correct pinning of threads:

• Manual pinning in source code or

• likwid-pin: http://code.google.com/p/likwid/likwid pin: http://code.google.com/p/likwid/
• Prevent icc compiler from pinning Æ KMP_AFFINITY=disabled
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Thread synchronization overhead 
Topology influence

Xeon E5420
2 Threads

shared L2 same socket different socket

pthreads_barrier_wait 5863 27032 27647
omp barrier (icc 11.0) 576 760 1269
Spin loop 259 485 11602

Nehalem Shared SMT shared L3 different socketNehalem
2 Threads

Shared SMT 
threads

shared L3 different socket

pthreads_barrier_wait 23352 4796 49237
omp barrier (icc 11.0) 2761 479 1206
Spin loop 17388 267 787

• Spin waiting loops are not suited for SMT
Affinity matters!• Well known for a long time…

• Roll-your-own barrier may be better than compiler, but take care

Affinity matters!
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Hybrid task mode in action

 and when it makes sense to consider it at all… and when it makes sense to consider it at all



MPI/OpenMP Parallelization – 3D Jacobi

� Cubic 3D computational domain with periodic BCs in all directions
� Use single-node IB/GE cluster with one dual-core chip per nodeUse single-node IB/GE cluster with one dual-core chip per node
� Homogeneous distribution of workload, e.g. on 8 procs

pure MPI: 1101111,1,0 1,1,1
pu e

100101

110111

1 0 0 000001

010011

1 0 11,0,0 000001

hybrid: 110

1,0,1

k 0,0,10,0,0 100
010

i

j
000
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Performance Data for 3D MPI/hybrid Jacobi
Strong scaling, N3 = 4803

Hybrid: Thread 0: Communication + boundary cell updates 
Thread 1: Inner cell updates

IB
Performance model

T T TIB

GE
T = TCOMM + TCOMP

TCOMP = N3 / P0

TCOMM = Vdata / BW

P0 = 150 MLUP/s
BW(GE)= 100 MByte/s

Vd t = Data volume

Performance estimate (GE) for n nodes:

Vdata  Data volume 
of halo exchange

3606.09.2010 MPI/OpenMP hybrid computing
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JDS Sparse MVM:
Performance and scalability on two different platforms
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G. Wellein and G. Hager and A. Basermann and H. Fehske, Fast sparse 
matrix-vector multiplication for TFlops computers. Proc. VECPAR2002, 
LNCS 2565



The obvious question…

� How do you distribute loop iterations if one thread of your team is 
missing?
� Straightforward answer: Use nested parallelism

#pragma omp parallel num threads(2)#pragma omp parallel num_threads(2)
{
if(!omp_get_thread_num()) {
// do comm thread stuff here

}
else {else {
#pragma omp parallel num_threads(7)
{

#pragma omp for
// do work threads stuff here

}}
}

}
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However…

� Nested parallelism must be supported by the compiler 
� Probably less of a problem today

� You don’t know what actually happens when starting a new team
� ccNUMA page placement?
� Thread-core affinity?

� Alternatives:� Alternatives:
� Use manual work distribution

� This is somewhat clumsy, but well “wrappable”y, pp
� More importantly, it is static (no advanced scheduling options, but also 

less overhead)
� Use “tasking” constructs

� Dynamic scheduling (with all its advantages and drawbacks) 
M Wittmann and G Hager: A proof of concept for optimizing taskM. Wittmann and G. Hager: A proof of concept for optimizing task 
parallelism by locality queues. http://arxiv.org/abs/0902.1884
� Communication thread can participate in worksharing activities after 

i i i

3906.09.2010 MPI/OpenMP hybrid computing
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Hybrid task mode via “tasking” constructs (1) 

� OpenMP 3.0 tasking
#pragma omp parallel  
{{
#pragma omp single
{
#pragma omp task
{
MPI Isend(…);_ ( );
MPI_Irecv(…);
MPI_Waitall(…);

}}
for(i=0; i<no_of_tasks; ++i) { 
#pragma omp task
{{

// ... do work
}

} // end task loop
} // end single

} // end parallel Æ implicit barrier

4006.09.2010 MPI/OpenMP hybrid computing
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Hybrid task mode via “tasking” constructs (2) 

� Dynamic loop scheduling (no implicit barrier at the start of a 
workshared loop!)
#pragma omp parallel  
{
#pragma omp single nowait#pragma omp single nowait
{
MPI Isend(…);_ ( );
MPI_Irecv(…);
MPI_Waitall(…);

} // end single
#pragma omp for schedule(dynamic,cs) nowait
for(i 0 i<no of tasks ++i) {for(i=0; i<no_of_tasks; ++i) {
// ... do work 

} // end task loop} // end task loop
} // end parallel Æ implicit barrier
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Hybrid OpenMP+MPI take-home messages

� Hybrid task mode is almost mandatory if communication has a 
significant impact on runtime
� True overlap of communication with computation

� Know your basics about NUMA placement, chip/node topology, 
thread/core affinitythread/core affinity

� Hybrid (task or vector mode) is sometimes unnecessaryHybrid (task or vector mode) is sometimes unnecessary
� If pure MPI scales OK, why bother?

� But: Try to figure out possible benefits through 
� Profiling/tracingProfiling/tracing
� Appropriate performance models
� Awareness of the basic limitations of the underlying architecturey g
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Case study:
Re-use of shared cache data and relaxedRe use of shared cache data and relaxed 
synchronization with a temporally 
blocked Jacobi solver
G. Wellein, G. Hager, T. Zeiser, M. Wittmann and H. Fehske: Efficient temporal 
blocking for stencil computations by multicore-aware wavefront parallelization.
P  COMPSAC 2009  B t P  A d!Proc. COMPSAC 2009. Best Paper Award!

J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization g, g p
strategies for iterative stencil computations. Submitted.
http://arxiv.org/abs/1004.1741

M. Wittmann, G. Hager, J. Treibig and G. Wellein: Leveraging shared caches for 
parallel temporal blocking of stencil codes on multicore processors and clusters. 
A t d f  P ll l P i  L tt  D b  2010  Accepted for Parallel Processing Letters, December 2010. 
http://arxiv.org/abs/1006.3148



Pipelined temporal blocking

X Y

thread 0 (t0Æ t1)

thread 1 (t1Æ t2)

th d 2 (t Æ t )thread 2 (t2Æ t3)
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Pipelined temporal blocking

X Y

One long pipeline (all cores of a node) advances through the lattice, each 
update is shifted by (-1,-1,-1)

Advantages DrawbacksAdvantages
� Freestyle spatial blocking
� No explicit boundary copies

Drawbacks
� Shift reduces cache reuse
� Huge parameter spaceNo explicit boundary copies

� Multiple updates per core � Boundary tiles
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Temporal Blocking w/ PPP on Nehalem EP 
(Core i7)

core 0 core 1 core 2 core 3core 0 core 1 core 2 core 3

L1 L1 L1 L1

L2 L2 L2 L2

L3 I
2nd upd.

I
3rd upd.

II
2nd upd.

II
3rd upd.

I
1st upd.

I
2nd upd.

II
1st upd.

II
2nd upd.

III
1st upd.

III
2nd upd.

I
0th upd.

I
1st upd.

II
0th upd.

II
1st upd.

III
0th upd.

III
1st upd.

IV
0th upd.

IV
1st upd.

I
3rd upd.

I
4th upd.

Save six memory
accesses by reusing

memory

y g
blocks from shared
cache
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Pipelined temporal blocking 
with compressed Grid

thread 0 (t0Æ t1)thread 0 (t0Æ t1)

thread 1 (t1Æ t2)thread 1 (t1Æ t2)

compressed 
grid

t id

grid

system grid

4706.09.2010 MPI/OpenMP hybrid computing



Pipelined temporal blocking

� All threads need to synchronize after finishing T 
iterations on their current tileiterations on their current tile
� Synchronization gets more expensive with 

increasing number of threads
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Relaxed Synchronisation

� Every thread ti only increments its own counter ci

� Thread ti has a minimal distance dl to its preceding thread ti-1

� Thread ti has a maximal distance du to its following thread ti+1

� Two threads have at least dl and at most du tiles between them
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Performance with different looseness

2 sockets, 
8 cores,

� Intel Nehalem 2.66 GHz
4 / k t8 threads � 4 cores/socket
� 2 HW threads/corew/ barrier

1 socket, soc et,
4 cores,
4 threads

w/ barrier
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Hybrid temporally blocked computations
via multi-layer halos

� Temporal blocking requires multi-layer halos

� Using diagonal communication 
elimination (DCE) (Ding/He SC 2001)

� Exchanging halo with 
neighbors done only alongneighbors done only along
the coordinate directions 2

� More complex stencils, e.g. 
occurring at lattice Boltzmann methods, 

1

need more attention for deciding 
which data to communicate
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Impact of Multi-layer Halo on Performance

� Assumptions for model:
� No overlap between 

communication and 
computation
� QDR InfiniBand

strong 
li� QDR InfiniBand

� 3.2 GB/s
� 1.8 µs latency

scaling

µ y
� Node performance

2 GLUP/s
Reduced latencyReduced latency 
by message 
aggregation

Degrade due to halo 
work

No impact for large
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No impact for large 
domain sizes



Performance Results on NHL EP QDR IB cluster
Single-node and multinode

System size: 6003 (per node) 
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Conclusions
� Whatever you do, be aware of the limitations the hardware puts on 

your code’s performance
� Apply performance models whenever possible� Apply performance models whenever possible

� Investigate and apply proper thread/core affinity
� Use LIKWID or the MPI/compiler facilities or anything but use it!Use LIKWID or the MPI/compiler facilities or anything, but use it!

� Intranode MPI effects may be important

� If MPI performs/scales ok, don’t bother using MPI+OpenMP

� However, if you can leverage new features it may still be worth 
looking into
� Shared caches are the interesting property of modern CPUs
� Load balancing, new levels of parallelism, convergence,…

B f th t i l O MP itf ll� Be aware of the typical OpenMP pitfalls
� Synchronization and work distribution overheads are most prominent
� and they are really topology-dependent

54

… and they are really topology dependent
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