
1

Parallelization Strategies for Parallelization Strategies for
Density Matrix Renormalization Group Density Matrix Renormalization Group
algorithms on Sharedalgorithms on Shared--Memory SystemsMemory Systems

G. Hager HPC Services, Computing Center Erlangen, Germany

E. Jeckelmann Theoretical Physics, Univ. Mainz, Germany

H. Fehske Theoretical Physics, Univ. Greifswald, Germany

G. Wellein HPC Services, Computing Center Erlangen, Germany

2

Microscopic Model: Hamiltonian H

Ground state
properties

Thermodynamics
excitation spectra

Dynamical
correlation functions

Highly correlated electron/spin-phonon Systems

HighHigh--TTcc CupratesCuprates, CMR , CMR manganitesmanganites, Quasi, Quasi--1D Metal/Spin Systems1D Metal/Spin Systems

„The whole is greater than its parts“

Exact numerical studies of finite systems
using Supercomputers

Physics

Motivation – From Physics to Supercomputers

3

Motivation – Microscopic Models

Microscopic Hamiltonians in second quantization
e.g. Hubbard model

e.g. Holstein-Hubbard model (HHM)

Hilbert space / #quantum states growth exponentially

-t U -t

HHM: Coupling between
electrons and phonons
(lattice oscillations)

4N * (M+1)N (N~10-100; M~10)HHM using an N-site lattice:
Electrons Phonons: Max. M per Site

4

Motivation – Numerical Approaches

Traditional Approaches
Quantum Monte Carlo (QMC)
Exact Diagonalizaton (ED)

New Approach
Density Matrix Renormalization Group (DRMG) Method

Originally introduced by White in 1992
Large sequential C++ package is in wide use

(quantum physics and quantum chemistry)
Elapsed Times: hours to weeks
No parallel implementation available to date

Massively Parallel Codes
on Supercomputers

Aim: Parallelization strategy for DMRG package

5

Algorithms

Summary: Exact Diagonalization

DRMG algorithm

6

Algorithms – Exact Diagonalization

Exact Diagonalization (ED)
Chose COMPLETE basis set (e.g. localized states in real
space): Sparse matrix representation of H
Exploit conservation laws and symmetries to reduce to
effective Hilbert space by a factor of ~N (still exponential
growth in N)
Perform ONE Exact Diagonalization step using iterative
algorithms e.g. Lanczos or Davidson
Sparse Matrix-Vector Multiply determines computational
effort Do not store matrix!
ED on TFlop/s computers:
N=8 ; M=7 Matrix Dimension ~ 10 billion
No approximations !!

7

Algorithms - DMRG

Basic Idea: Find an appropriate (reduced) basis set
describing the ground-state of H with high accuracy
Basic Quantities:

Superblock = system & environment

Superblock state (product of system & environment states)

Reduced density matrix (DM) (summation over environment states)

Eigenstates of DM with largest eigenvalues have most
impact on observables !!!

System Environment
Superblock

8

Algorithm - DMRG

DMRG algorithm (finite size; left to right sweep)
1. Diagonalize the reduced DM for a system block of size l

and extract the m eigenvectors with largest eigenvalue
2. Construct all relevant operators (system block &

environment,…) for a system block of size l+1 in the
reduced density matrix eigenbasis

3. Form a superblock Hamiltonian from system &
environment Hamiltonians plus two single sites

4. Diagonalize the new superblock Hamiltonian

Accuracy depends mainly on m (m~100 – 10000)

9

Algorithm - DMRG

Implementation
Start-Up with infinite-size algorithm
DM diagonalization: LAPACK (dsyev) costs about 5 %
Superblock diagonalization costs about 90 %
(Davidson algorithm)
Most time-consuming step: Sparse matrix-vector multiply
(MVM) in Davidson (costs about 85 %)
Sparse matrix H is constructed by the transformations of
each operator in H:

Contribution from system block and from environment

10

Algorithm - DMRG

Implementation of sparse MVM (1)
Sparse MVM: Sum over dense matrix-matrix multiplies!

However A and B may contain only a few nonzero
elements, e.g. if conservation laws (quantum numbers)
have to be obeyed
To minimize overhead
an additional loop (running
over nonzero blocks only)
is introduced

11

DMRG

Benchmark Systems
Benchmark Cases
Single Processor Performance
Potential Parallelization approaches
Parallel BLAS
OpenMP Parallelization

12

DMRG: Benchmark Systems

ccNUMA

ccNUMA

UMA

UMA

ccNUMA

Memory
arch.

24 / 24 SunFire
6800

1.8 GFlop/s0.9 GHzUltraSparc
III

4 / 4HP rx56704.0 GFlop/s1.0 GHzIntel
Itanium2

28 / 32
128 / 512

SGI O3400
SGI O3800

1.0 GFlop/s0.5 GHzMIPS
R14000

2 / 2Intel8604.8 GFlop/s2.4 GHzIntel
Xeon DP

32 / 32IBM p6905.2 GFlop/s1.3 GHzIBM
Power4

#Processor
Size / Max

System
Peak

PerformanceFrequencyProcessor

13

DMRG: Benchmark Cases

Case1: 2D - 4X4 periodic Hubbard model at half filling
U=4, tx/y=1
Small number of lattice sites (16)
large values of m (m~1000 – 10000) are required to achieve convergence
in 2D

Case2: 1D – 8 site periodic Holstein-Hubbard model at half filling
U=3, t=1, ω0=1, g2=2
Max. 6 phonons per site ->Phonons are implemented as pseudo-sites ->
large effective lattice size (~50)
m is at most 1000

Metrics:
P(N) is total performance on N CPUs
Speed-Up: S(N) = P(N) / P(1)

Parallel efficiency: ε(N) = S(N) / N

14

DMRG: Single Processor Performance

0

1000

2000

3000

M
Fl

op
/s Hubbard 4X4

IBM Power4 Intel Itanium2 Intel Xeon
UltraSparcIII MIPS R14000

Numerical core: DGEMM

High sustained single processor performance

15

DMRG: Single Processor Efficiency

0

25

50

75

100

Ef
fi

ci
en

cy
 [

%
] HUBBARD 4X4

IBM Power4 Intel Itanium2 Intel Xeon
UltraSparcIII MIPS R14000

Processor Efficiency: Fraction of Peak Performance achieved

Parameters:

•DGEMM implementation (proprietary)

•C++ compiler (proprietary)

16

DMRG: Potential Parallelization approaches

Implementation of sparse MVM - pseudocode

// W: wavevector ; R: result
for (α=0; α < number_of_hamiltonian_terms; α++) {

term = hamiltonian_terms[α];

for (k=0 ; k < term.number_of_blocks; k++) {

li = term[k].left_index;
ri = term[k].right_index;

temp_matrix = term[k].B.transpose() * W[ri];

R[li] += term[k].A * temp_matrix;

}} Matrix-Matrix-Multiply
(Parallel DGEMM ?!)Data dependency !

Parallel loop !?

Parallel loop !?

17

DMRG: Potential Parallelization approaches

Parallelization strategies
1. Linking with parallel BLAS (DGEMM)

Does not require restructuring of code
Significant speed-up only for large (transformation) matrices (A , B)

2. Shared-Memory parallelization of outer loops
Chose OpenMP for portability reasons
Requires some restructuring & directives
Speed-Up should not depend on size of (transformation) matrices

Exxpacted maximum speed-up for total program:
if MVM is parallelized only: ~6 - 8
if also Davidson algorithm is parallelized: ~10

MPI parallelization
Requires complete restructuring of algorithm -> Ian?

18

DMRG: Parallel BLAS

Linking with parallel BLAS
Useless on IBM
for #CPU > 4
Best scalability on SGI
(Network,
BLAS implementation)
Dual processor nodes can
reduce elapsed runtime
by about 30 %

Increasing m to 7000:
S(4) = 3.2
Small m (~600) with HHM:
No Speed-Up

19

DMRG: OpenMP Parallelization

OpenMP Parallelization
Parallelization of innermost k loop: Scales badly

loop too short
collective thread operations within outer loop

Parallelization of outer α loop: Scales badly
even shorter
load imbalance (trip count of k loop depends on α)

Solution:
“Fuse” both loops (α & k)
Protect write operation R[li] with lock mechanism
Use list of OpenMP locks for each block li

20

DMRG: OpenMP Parallelization

Implementation of parallel sparse MVM – pseudocode (prologue loops)
// store all block references in block_array
ics=0;
for (α=0; α < number_of_hamiltonian_terms; α++) {

term = hamiltonian_terms[α];
for (k=0 ; k < term.number_of_blocks; k++) {

block_array[ics]=&term[q];
ics++;

}}
icsmax=ics;

// set up lock lists
for(i=0; i < MAX_NUMBER_OF_THREADS; i++)

mm[i] = new Matrix // temp.matrix

for (i=0; I < MAX_NUMBER_OF_LOCKS; i++) {
locks[i]= new omp_lock_t;
omp_init_lock(locks[i]);
}

21

DMRG: OpenMP Parallelization

Implementation of parallel sparse MVM – pseudocode (main loop)
// W: wavevector ; R: result
#pragma omp parallel private(mymat, li, ri, myid, ics)
{

myid = omp_get_thread_num();
mytmat = mm[myid]; // temp thread local matrix

#pragma omp for
for (ics=0; ics< icsmax; ics++) {

li = block_array[ics]->left_index;
ri = block_array[ics]->right_index;

mytmat = block_array[ics]->B.transpose() * W[ri];

omp_set_lock(locks[li]);
R[li] += block_array[ics]->A * mytmat;
omp_unset_lock(locks[li]);
}

}

Fused (α,k) loop

Protect each block of
result vector R with
locks

22

DMRG: OpenMP Parallelization

The parallel code is compliant to the OpenMP standard
However: NO system did compile and produce correct
results with the initial MVM implementation!

Allocate
everything
outside loop

Complex data structures
can not be allocated inside
omp parallel regions

SGI MIPSpro
7.3.1.3m

Does not workDoes not allow
omp critical inside
C++ classes!

SUN forte7

Does not workomp for Loop is not distributed
(IA64) or produces garbage (IA32)
→ call to Intel

Intel efc V7
ifc V7

Fixed by IBMOpenMP locks prevent omp for
parallelization

IBM xlC V6.0

23

DMRG : OpenMP Parallelization

Scalability on SGI Origin

OMP_SCHEDULE=STATIC

OpenMP scales significantly
better than parallel DGEMM

Serial overhead in parallel
MVM is only about 5%

Parallelization of Davidson
should be the next step

24

DMRG : OpenMP Parallelization

Scalability & Performance:
SGI Origin vs. IBM p690

Scalability is pretty much the same
on both systems

Single processor run and
OMP_NUM_THREADS=1
differ by approx. 5% on IBM

Hardly any difference in SGI

Total performance
1 * Power4 = 8 * MIPS
8 * Power4 > 12 GFlop/s sustained !

25

DMRG : OpenMP Parallelization

Further improvement of total performance/scalability

Chose best distribution strategy
for parallel for loop:
OMP_SCHEDULE=“dynamic,2”
(reduces serial overhead in MVM
to 2%)
Re-Link with parallel LAPACK
/BLAS to speed-up density-
matrix diagonalization (DSYEV).
Good thing to do:
OMP_NESTED=FALSE

HHM spends much more time in
serial SuperBlock generation
than Hubbard case
ToDo: Parallelization of Davidson
& SuperBlock generation!

26

Application: Peierls insulator (PI) – Mott insulator (MI)
transition in the Holstein Hubbard Model

• Use charge-structure factor
Sc(π) to determine
transition point between PI
and MI

• Sc(π) may depend sig-
nificantly on lattice size (N)

• Exact Diagonalization: At
most N=10 sites

• DMRG allows to study
finite size effects (see next
slide)

• At small lattice sizes ED
and DMRG are in good
agreement!

U=4

N-1

27

Application: Finite-Size Study of Spin & Charge Structure
Factors in the half-filled 1D periodic HHM

Parameters: U=4, t=1,
ω0=1, g2=2 (QC point
– see prev. slide)
5 boson pseudosites
DMRG can get to very
large lattices (up to 32
sites)
Strong support for the
conjecture that Sc(π)
and Ss(π) vanish at
quantum critical point
in the thermodynamic
limit (N→∞)

28

Application: Peierls insulator (PI) – Mott insulator (MI)
transition in the Holstein Hubbard Model

DMRG computational requirements
compared to ED

10 GB~ 72 Hrs. elapsed time4 CPU
(SGI Origin)

DMRG
(N=24; m=1000)

2 GB~18 Hrs. elapsed time1 CPU
(SGI Origin)

DMRG
(N=8; m=600)

600 GB
~12 Hrs. elapsed time1024 CPUs

(Hitachi SR8k)

ED
(N=8;
Mat. Dim~1010)

29

Summary

Existing DMRG code from quantum physics/chemistry:
Kernel: sparse Matrix-Vector-Multiply (MVM)

Approaches for shared-memory parallelization of MVM (parallel BLAS
vs. OpenMP)

Fusing inner & outer loop allows a scalable OpenMP implementation
for MVM routine with a parallel efficiency of 98% for MVM

May compute ground-state properties for 1D Holstein-Hubbard model
at high accuracy with minimal computational requirements (when
compared to ED)

SMP parallelization has still some optimization potential, but more
than 8 CPUs will presumably never be reasonable

30

Acknowledgement

Our work is funded by the Bavarian Network for High
Performance Computing (KONWIHR)

