
Hybrid (i.e. Hybrid (i.e. MPI+OpenMPMPI+OpenMP) applications) applications
(i.e. programming) on modern (i.e. multi(i.e. programming) on modern (i.e. multi--
socket multisocket multi--NUMANUMA--domain multidomain multi--core core

l il i h l ih l i h) hih) himultimulti--cache multicache multi--whatever) architectures:whatever) architectures:
Things to considerThings to consider

Georg HagerGeorg Hager HolgerHolger StengelStengel
Gerhard Gerhard WelleinWellein Jan Jan TreibigTreibigGerhard Gerhard WelleinWellein Jan Jan TreibigTreibig
Markus Markus WittmannWittmann

Erlangen Regional Computing Center (RRZE)Erlangen Regional Computing Center (RRZE)
SIAM PP10, MS45SIAM PP10, MS45,,
February 26th, 2010February 26th, 2010

Statement

Common lore:
“An OpenMP+MPI hybrid code is never faster than a pure MPI code

on the same hybrid hardware, except for obvious cases”

Our statement:
“You have to compare apples to apples, i.e. the best hybrid code to

the best pure MPI code”the best pure MPI code
Needless to say, both may require significant optimization effort.

202/26/2010 Hybrid Parallel Programming

Outline

Hybrid programming benefits and taxonomy
Vector mode, task mode
Thread-core mapping

“Best possible” MPI code
R k bd i iRank-subdomain mapping
Overlapping computation and communication via non-blocking MPI
Overlapping cross-node and intra-node communicationOverlapping cross node and intra node communication

“Best possible” OpenMP code
Cache re-use
Synchronization overhead
ccNUMA page placement

“Best possible” MPI+OpenMP hybrid code
True comm/calc overlap
Load distrib tion iss esLoad distribution issues
ccNUMA and task mode

302/26/2010 Hybrid Parallel Programming
To see it all, visit one of the hybrid tutorials at SC, ISC, … !

Hybrid taxonomy and possible benefitsHybrid taxonomy and possible benefits

Taxonomy of hybrid “modes”:
Several OpenMP threads per MPI process

Vector mode: MPI is called only
outside OpenMP parallel p p
regions. This is what many
people mean when they say
“h b id”“hybrid”

Similar to what we did on
vector-parallel machinesvector parallel machines

Task mode: One or moreTask mode: One or more
threads in the parallel region
are dedicated to special tasks,
lik d i i ti ilike doing communication in
the background

This is functional parallelism onThis is functional parallelism on
the thread level

502/26/2010 Hybrid Parallel Programming
R. Rabenseifner and G. Wellein, Communication and Optimization Aspects of Parallel Programming
Models on Hybrid Architectures. Int. J. High Perf. Comp. Appl. 17(1), 49-62 (2003)

Possible hybrid benefits

Vector mode Task mode

Improved/easier load balancing

Additional levels of parallelism

Overlapping communication andOverlapping communication and
computation

Improved rate of convergence

R f d t i h d hRe-use of data in shared caches

Reduced MPI overheadReduced MPI overhead

602/26/2010 Hybrid Parallel Programming

Hybrid mapping choices Hybrid mapping choices
on current on current harwareharware

Topology (“mapping”) choices with MPI+OpenMP

One MPI process per
node

One MPI process per
socket

OpenMP threads pinnedOpenMP threads pinned
“round robin” across
cores in node

Two MPI processes per
node

802/26/2010 Hybrid Parallel Programming

How do we figure out the topology?

… and how do we enforce the mapping?
Compilers and MPI libs may give you ways to do that

But LIKWID supports all sorts of combniations:

Like
II
Knew
What
I’m
Doing

Open source tool collection (developed at RRZE):

http://code.google.com/p/likwid

902/26/2010 Hybrid Parallel Programming

Likwid Tool Suite

Command line tools for Linux:
easy to install
works with standard linux 2.6 kernel
simple and clear to use
supports Intel and AMD CPUs

Current tools:
likwid-topology: Print thread and cache topology
likwid-pin: Pin threaded application without touching code
likwid-perfCtr: Measure performance counters
lik id f t Vi d bl /di bl h d f t hlikwid-features: View and enable/disable hardware prefetchers

1002/26/2010 Hybrid Parallel Programming

likwid-topology – Topology information

Based on cpuid information
Functionality:Functionality:

Measured clock frequency

Thread topologyThread topology

Cache topology

Cache parameters (-c command line switch)

ASCII art output (-g command line switch)

Currently supported:
Intel Core 2 (45nm + 65 nm)

Intel Nehalem

AMD K10 (Quadcore and Hexacore)AMD K10 (Quadcore and Hexacore)

AMD K8

1102/26/2010 Hybrid Parallel Programming

Output of likwid-topology

CPU name: Intel Core i7 processor
CPU clock: 2666683826 Hz

Hardware Thread Topology

Sockets: 2
Cores per socket: 4
Th d 2Threads per core: 2

HWThread Thread Core Socket
0 0 0 0
1 1 0 01 1 0 0
2 0 1 0
3 1 1 0
4 0 2 0
5 1 2 05 1 2 0
6 0 3 0
7 1 3 0
8 0 0 1
9 1 0 19 0
10 0 1 1
11 1 1 1
12 0 2 1
13 1 2 1
14 0 3 1
15 1 3 1

1202/26/2010 Hybrid Parallel Programming

likwid-topology continued

Socket 0: (0 1 2 3 4 5 6 7)
Socket 1: (8 9 10 11 12 13 14 15)()

Cache Topology

Level: 1
Size: 32 kB
Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15)

Level: 2
Size: 256 kB
Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15)

Level: 3
Size: 8 MB
Cache groups: (0 1 2 3 4 5 6 7) (8 9 10 11 12 13 14 15)
--

… and also try the ultra-cool -g option!

1302/26/2010 Hybrid Parallel Programming

likwid-pin

Inspired and based on ptoverride (Michael Meier, RRZE) and
taskset

Pins process and threads to specific cores without touching code
Directly supports pthreads, gcc OpenMP, Intel OpenMP
Allows user to specify skip mask (hybrid)
Based on combination of wrapper tool together with overloadedg
pthread library
Can also be used as replacement for taskset
Configurable colored output

Usage:
likwid-pin -c 0,2,4-6 ./myApp parameters

mpirun likwid-pin -s 0x3 -c 0,3,5,6 ./myApp parameters

1402/26/2010 Hybrid Parallel Programming

MPI:MPI:
Common problems (beyond the usual…)Common problems (beyond the usual…)

RankRank--subomainsubomain mappingmappingRankRank--subomainsubomain mappingmapping

Overlapping computation with communicationOverlapping computation with communicationOverlapping computation with communicationOverlapping computation with communication

“Best possible” MPI:
Minimizing cross-node communication

■ Example: Stencil solver with halo exchange

■ Goal: Reduce cross-node (CN) halo traffic
■ Subdomains exchange halo with neighbors

■ Populate a node's ranks with “maximum neighboring” subdomains
This minimizes a node's CN communication surface■ This minimizes a node s CN communication surface

■ Shouldn’t MPI CART CREATE (w/ reorder) take care of this for me?

1602/26/2010 Hybrid Parallel Programming

■ Shouldn t MPI_CART_CREATE (w/ reorder) take care of this for me?

MPI rank-subdomain mapping:
3D stencil solver – theory

“Common” MPI
library behavior

ke
t

ke
t

rs
2-

so
ck

ga
ra

 2

2-
so

ck
et

-s
oc

ke
t

ha
i 4

-s
oc

k

ag
ny

C
ou

r

Magny Cours
4-socket

ck
et Su

n
N

ia
g

al
em

 E
P

2

st
an

bu
l 2

Sh
an

gh M
a

Nehalem EX
4-socket

es
t

2-
so

c

N
eh

a Is

W
oo

dc
re

1702/26/2010 Hybrid Parallel Programming

MPI rank-subdomain mapping:
3D stencil solver – measurements for 8ppn and 4ppn GBE vs. IB

32 MPI processes

8 ppn QDR-IB

~ 1.5x 1.5x

4 ppn SDR-IB

1802/26/2010 Hybrid Parallel Programming

Overlap of computation and non-blocking MPI:
A simple test

CN communication buffer buf: 80 MB
do_work() does intra-register work for some amount of time

MPI_Barrier(MPI_COMM_WORLD);

if(rank==0) {(a 0) {

stime = MPI_Wtime();

MPI Irecv/Isend(buf,bufsize,MPI DOUBLE,1,0,MPI COMM WORLD,request);_ (, , _ , , , _ _ , q)

delayTime = do_work(Length);

MPI_Wait(request,status);

etime = MPI_Wtime();

cout << delayTime << " " << etime-stime << endl;

} else {

MPI_Send(buf,bufsize,MPI_DOUBLE,0,0,MPI_COMM_WORLD);

}

MPI_Barrier(MPI_COMM_WORLD);

1902/26/2010 Hybrid Parallel Programming

Overlap of computation and non-blocking MPI:
Results for different MPI versions

TinyBlue = IBM iDataPlex w/QDR IB

2002/26/2010 Hybrid Parallel Programming 80MB / 1.6GB/s = 0.05s

MPI take-home messages

MPI may not do the best it could when mapping your ranks to your
subdomains

Even if all it would take is to know how many processes run on a node

MPI may not provide truly asynchronous communication with non-
blocking point-to-point callsblocking point to point calls

Very common misconception
Check your system using low-level benchmarks
Task mode hybrid can save you ☺

2102/26/2010 Hybrid Parallel Programming

A word about barrier overhead in A word about barrier overhead in
general…general…

J J TreibigTreibig G Hager and G G Hager and G WelleinWellein: : MultiMulti--core core J. J. TreibigTreibig, G. Hager and G. , G. Hager and G. WelleinWellein: : MultiMulti--core core
architectures: Complexities of performance architectures: Complexities of performance
prediction and the impact of cache prediction and the impact of cache topologytopology. .
To appear.To appear.

http://arxiv org/abs/0910 4865http://arxiv org/abs/0910 4865http://arxiv.org/abs/0910.4865http://arxiv.org/abs/0910.4865

Thread synchronization overhead
pthreads vs. OpenMP vs. Spin loop

2 Threads Q9550 (shared L2) I7 920 (shared L3)
pthreads barrier wait 23739 6511pthreads_barrier_wait 23739 6511
omp barrier (icc 11.0) 399 469
Spin loop 231 270Spin loop 231 270

4 Threads Q9550 I7 920 (shared L3)
pthreads_barrier_wait 42533 9820
omp barrier (icc 11.0) 977 814
Spin loop 1106 475

pthreads OS kernel call

Spin loop does fine for shared cache sync

OpenMP & Intel compiler

2302/26/2010 Hybrid Parallel Programming

Thread synchronization overhead
OpenMP: icc vs. gcc

2 Th d Q9550 (h d L2) I7 920 (h d L3)

gcc obviously uses pthreads barrier to for OpenMP barrier.

2 Threads Q9550 (shared L2) I7 920 (shared L3)
gcc 4.3.3 22603 7333
i 11 0 399 469icc 11.0 399 469

4 Threads Q9550 I7 920 (shared L3)4 Threads Q9550 I7 920 (shared L3)
gcc 4.3.3 64143 10901
icc 11 0 977 814icc 11.0 977 814

Correct pinning of threads:

• Manual pinning in source code or

• likwid-pin: http://code.google.com/p/likwid/likwid pin: http://code.google.com/p/likwid/
• Prevent icc compiler from pinning KMP_AFFINITY=disabled

2402/26/2010 Hybrid Parallel Programming

Thread synchronization overhead
Topology influence

Xeon E5420
2 Threads

shared L2 same socket different socket

pthreads_barrier_wait 5863 27032 27647
omp barrier (icc 11.0) 576 760 1269
Spin loop 259 485 11602

Nehalem Shared SMT shared L3 different socketNehalem
2 Threads

Shared SMT
threads

shared L3 different socket

pthreads_barrier_wait 23352 4796 49237
omp barrier (icc 11.0) 2761 479 1206
Spin loop 17388 267 787

• Spin waiting loops are not suited for SMT
• Well known for a long time…

• Roll-your-own barrier may be better than compiler, but take care

2502/26/2010 Hybrid Parallel Programming

Hybrid task mode in actionHybrid task mode in action

 and when it makes sense to consider it at all and when it makes sense to consider it at all… and when it makes sense to consider it at all… and when it makes sense to consider it at all

02/26/2010

MPI/OpenMP Parallelization – 3D Jacobi

Cubic 3D computational domain with periodic BCs in all directions
Use single-node IB/GE cluster with one dual-core chip per nodeUse single-node IB/GE cluster with one dual-core chip per node
Homogeneous distribution of workload, e.g. on 8 procs

pure MPI: 1101111,1,0 1,1,1
pu e

100101

110111

1 0 0 000001

010011

1 0 11,0,0 000001

hybrid: 110

1,0,1

k 0,0,10,0,0 100
010

i

j
000

27

i

02/26/2010

Performance Data for 3D MPI/hybrid Jacobi
Strong scaling, N3 = 4803

Hybrid: Thread 0: Communication + boundary cell updates
Thread 1: Inner cell updates

IB
Performance model

T T TIB

GE
T = TCOMM + TCOMP

TCOMP = N3 / P0

TCOMM = Vdata / BW

P0 = 150 MLUP/s
BW(GE)= 100 MByte/s

Vd t = Data volume

Hybrid Parallel
ProgrammingPerformance estimate (GE) for n nodes:

Vdata Data volume
of halo exchange

28

P(n) = N3 / ((TCOMP/n) + TCOMM(n))
02/26/2010

JDS Sparse MVM:
Performance and scalability on two different platforms

GBE
P
C

P
C

C C

P
C

P
C

C C
71·106
nonzeroesGBEMI

Memory

MI

Memory

hybrid
advantage

Opteron 270 2 GHz

Xeon 5160 3 GHz
no NUMA

placement!

P
C

P
C

C

P
C

P
C

CSDR IB

p

Chipset

Memory

2902/26/2010

G. Wellein and G. Hager and A. Basermann and H. Fehske, Fast sparse
matrix-vector multiplication for TFlops computers. Proc. VECPAR2002,
LNCS 2565

The obvious question…

How do you distribute loop iterations if one thread of your team is
missing?

Straightforward answer: Use nested parallelism

#pragma omp parallel num threads(2)#pragma omp parallel num_threads(2)
{
if(!omp_get_thread_num()) {
// do comm thread stuff here

}
else {else {
#pragma omp parallel num_threads(7)
{

#pragma omp for
// do work threads stuff here

}}
}

}

3002/26/2010 Hybrid Parallel Programming

However…

Nested parallelism must be supported by the compiler
Probably less of a problem today

You don’t know what actually happens when starting a new team
ccNUMA page placement?
Thread-core affinity?

Alternatives:Alternatives:
Use manual work distribution

This is somewhat clumsy, but well “wrappable”This is somewhat clumsy, but well wrappable
More importantly, it is static (no advanced scheduling options)

Use OpenMP 3.0 tasking constructs
Dynamic scheduling (with all its advantages and drawbacks)
M. Wittmann and G. Hager: A proof of concept for optimizing task
parallelism by locality queues http://arxiv org/abs/0902 1884parallelism by locality queues. http://arxiv.org/abs/0902.1884
Communication thread can participate in worksharing activities after
communication is over

3102/26/2010 Hybrid Parallel Programming

Conclusions

Hybrid MPI+OpenMP programming
is not for the faint of heart

Know your basics about NUMA placement, chip/node topology,
thread/core affinity
Leverage task mode to really overlap communication with computationLeverage task mode to really overlap communication with computation

is sometimes unnecessary
If pure MPI scales OK why bother?If pure MPI scales OK, why bother?

may give you substantial performance boost
But: Try to figure out whether this is possible at all through y g p g
profiling/tracing and apropriate performance models

3202/26/2010 Hybrid Parallel Programming

THANK YOUTHANK YOU

02/26/2010

BACKUP

ReRe--use of shared cache data and relaxed use of shared cache data and relaxed
synchronizationsynchronization

G G WelleinWellein G Hager T Zeiser M Wittmann G Hager T Zeiser M Wittmann andand H H FehskeFehske: : EfficientEfficientG. G. WelleinWellein, G. Hager, T. Zeiser, M. Wittmann , G. Hager, T. Zeiser, M. Wittmann andand H. H. FehskeFehske: : EfficientEfficient
temporal temporal blockingblocking forfor stencilstencil computationscomputations byby multicoremulticore--awareaware
wavefrontwavefront parallelizationparallelization.. ProcProc. COMPSAC 2009. Best Paper Award! . COMPSAC 2009. Best Paper Award!

M. Wittmann, G. Hager M. Wittmann, G. Hager andand G. G. WelleinWellein: : MulticoreMulticore--awareaware parallel temporal parallel temporal
blockingblocking ofof stencilstencil codescodes forfor sharedshared andand distributeddistributed memorymemory.. Workshop Workshop
on Largeon Large--ScaleScale Parallel Processing (Parallel Processing (LSPP), IPDPS 2010LSPP), IPDPS 2010, April 23rd, , April 23rd, 2010, 2010,
AtlantaAtlanta, GA, GAAtlantaAtlanta, GA, GA

Pipelined temporal blocking

X Y

thread 0 (t0 t1)

thread 1 (t1 t2)

th d 2 (t t)thread 2 (t2 t3)

3502/26/2010 Hybrid Parallel Programming

Pipelined temporal blocking

X Y

One long pipeline (all cores of a node) advances through the lattice, each
update is shifted by (-1,-1,-1)

Advantages DrawbacksAdvantages
Freestyle spatial blocking
No explicit boundary copies

Drawbacks
Shift reduces cache reuse
Huge parameter spaceNo explicit boundary copies

Multiple updates per core Boundary tiles

3602/26/2010 Hybrid Parallel Programming

Pipelined temporal blocking
with compressed Grid

thread 0 (t0 t1)thread 0 (t0 t1)

thread 1 (t1 t2)thread 1 (t1 t2)

compressed
grid

t id

grid

system grid

3702/26/2010 Hybrid Parallel Programming

Pipelined temporal blocking

All threads need to synchronize after finishing T
iterations on their current tileiterations on their current tile
Synchronization gets more expensive with
increasing number of threads

3802/26/2010 Hybrid Parallel Programming

Relaxed Synchronisation

Every thread ti only increments its own counter ci

Thread ti has a minimal distance dl to its preceding thread ti-1

Thread ti has a maximal distance du to its following thread ti+1

Two threads have at least dl and at most du tiles between them

3902/26/2010 Hybrid Parallel Programming

Performance with different looseness

2 sockets,
8 cores,

Intel Nehalem 2.66 GHz
4 / k t8 threads 4 cores/socket
2 HW threads/corew/ barrier

1 socket, soc et,
4 cores,
4 threads

w/ barrier

4002/26/2010 Hybrid Parallel Programming

Performance Results on TinyBlue
Single Node

System size: 6003

4102/26/2010 Hybrid Parallel Programming

