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Another warning

Optimization of sequential code goes first!
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Outline

Architecture of shared memory computers
UMA/ccNUMA
Cache coherence

Shared memory programming
Introduction to OpenMP
Common pitfalls
Parallelization of sparse MVM

Programming for ccNUMA systems
Correct page placement
Optimization of parallel sparse MVM
C++ issues
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Shared memory computers:
Basic concepts

Shared Memory Computer provides 
single, shared address space for all parallel processors

Two basic categories of shared memory systems
Uniform Memory Access (UMA): 

Flat Memory: Memory is equally accessible to all processors 
with the same performance (Bandwidth & Latency).
A.k.a Symmetric Multi Processor (SMP) system

Cache-Coherent Non Uniform Memory Access (ccNUMA):
Memory is physically distributed: Performance (Bandwidth & 
Latency) is different for local and remote memory access.

Cache-Coherence protocols and/or hardware provide 
consistency between data in caches (multiple copies of same 
data!) and data in memory
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Shared memory computers:
UMA

UMA architecture

Simplest implementation: Dual-Core 
Processor (e.g. AMD Opteron dual-core 
or Intel Core)

Multi-Processor servers use bus or switch to connect CPUs 
with main memory

Memory

CPU 1 CPU 2 CPU 3 CPU 4

Switch/Bus

Cache1 Cache2 Cache3 Cache4

MSMain Memory

register

L1 cache

L2 cache

register

L1 cache

Bus: Only one processor 
can access bus at a time! 

Switch: Cache-Coherency 
traffic can “pollute” switch

Scalability beyond 2–8 
CPUs is a problem

Dual core chips, small 
Itanium servers, NEC SX8 
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Shared memory computers:
ccNUMA
ccNUMA architecture

Proprietary hardware concepts (e.g. Hypertransport/Opteron
or NUMALink /SGI) provide single address space  & cache 
coherency  for physically distributed memory

Advantages:
Scalable concept (systems 
up to 1024 CPUs are 
available)

Disadvantages:
Cache Coherence hard to 
implement / expensive
Performance depends on 
access to local or remote 
memory 
(no flat view of memory!)

Memory

CPU CPU

Memory

CPU CPU

Memory

CPU CPU

Memory

CPU CPU
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Shared memory computers:
Some examples

Dual CPU Intel Xeon node Dual Intel “Core” node

Dual AMD Opteron node SGI Altix (HLRB2 @ LRZ)
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Memory

Shared memory computers
Cache coherence

Data in cache is only a copy of data in memory
Multiple copies of same data on multiprocessor systems
Cache coherence protocol/hardware ensure consistent data view
Without cache coherence, shared cache lines can become 
clobbered: 

C1

P1

A1, A2

C2

P2
P1 P2

Load A1
Write A1=0

A1, A2

Load A2

Write A2=0

A1, A2

Bus

Write-back to memory leads to 
incoherent data

A1, A2 A1, A2 A1, A2

C1 & C2 entry can not 
be merged to:

A1, A2
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Memory

Shared Memory Computers
Cache coherence

Cache coherence protocol must keep track of cache line (CL) 
status

C1

P1

A1, A2

C2

P2 Load A1
Write A1=0:

P1
Load A2

Write A2=0:

P2

A1, A2 A1, A2

Bus

t

1. Request exclusive
access to CL

2. Invalidate CL in C2

3. Modify A1 in C1

A1, A2

1. Request exclusive
CL access

2. CL write back+ Invalidate

3. Load CL to C2

4. Modify A2 in C2

A1, A2

A1, A2A1, A2

C2 is exclusive owner of CL
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Shared Memory Computers
Cache coherence

Cache coherence can cause substantial overhead
may reduce available bandwidth

Different implementations
Snoopy: On modifying a CL, a CPU must broadcast its address 
to the whole system
Directory, “snoop filter”: Chipset (“network”) keeps track of 
which CLs are where and filters coherence traffic

Directory-based ccNUMA can reduce pain of  additional 
coherence traffic

But always take care:

Multiple processors should never write frequently to the same 
cache line (“false sharing”)!



SharedShared--Memory ParallelizationMemory Parallelization
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Parallel Programming with OpenMP

“Easy” and portable parallel programming of 
shared memory computers: OpenMP

Standardized set of compiler directives & library functions: 
http://www.openmp.org/

FORTRAN, C and C++ interfaces are defined
Supported by most/all commercial compilers, GNU starting 
with 4.2
Few free tools are available

OpenMP program can be compiled and executed on a single-
processor machine just by ignoring the directives

API calls must be masked out though
Supports data parallelism

Central concept of OpenMP programming: Threads
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privateprivate

Shared 
Memory
Shared 
Memory

Shared Memory Model used by OpenMP

T

T

T

T

Threads access globally 
shared memory
Data can be shared or 
private

shared data available 
to all threads (in 
principle)
private data only to 
thread that owns it

Data transfer transparent 
to programmer
Synchronization takes 
place, is mostly implicit

privateprivate

privateprivate
privateprivate
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OpenMP Program Execution
Fork and Join

Program start: only 
master thread runs
Parallel region: team of 
worker threads is 
generated (“fork”)
synchronize when 
leaving parallel region 
(“join”)
Only master executes 
sequential part

worker threads persist, 
but are inactive

task and data distribution 
possible via directives
Usually optimal: 
1 Thread per ProcessorThread # 0    1    2    3    4    5
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Hybrid parallelization on clustered SMPs

Parallelized by 
library call (MPI)

Multi-Threading (OpenMP)

Low-Level Optimization

Inter-Node

Node

Single 
CPU

DO j=1,m Intra-node OpenMP processing 

DO I=1,l

DO k=1,n

Node Performance = OpenMP + Low-Level OptimizationNode Performance = OpenMP + Low-Level Optimization

single processor execution

Inter-node parallelization (MPI)

Message PassingMessage Passing



Basic OpenMP functionalityBasic OpenMP functionality

About Directives and ClausesAbout Directives and Clauses

About DataAbout Data

About Parallel RegionsAbout Parallel Regions
and Work Sharingand Work Sharing
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program compute_pi
...  (declarations omitted)

! function to integrate
f(a)=4.0_8/(1.0_8+a*a)

w=1.0_8/n
sum=0.0_8

do i=1,n
x=w*(i-0.5_8)
sum=sum+f(x)

enddo
pi=w*sum

...   (printout omitted)
end program compute_pi

First example:
Numerical integration
Approximate by a discrete sum

where

We want

solve this in OpenMP
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First example:
Numerical integration

...
pi=0.0_8 
w=1.0_8/n              
!$OMP parallel private(x,sum)
sum=0.0_8 
!$OMP do
do i=1,n 
x=w*(i-0.5_8) 
sum=sum+f(x) 

enddo
!$OMP end do 
!$OMP critical 
pi=pi+w*sum
!$OMP end critical 
!$OMP end parallel

concurrent execution 
by “team of threads”

worksharing among 
threads

sequential execution
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Each directive starts with sentinel in column 1: 
fixed source:  !$OMP or  C$OMP or   *$OMP
free source:   !$OMP

followed by a directive and, optionally, clauses. 
For function calls:

conditional compilation of lines starting with !$ or C$ or  *$
Example:

use include file for API call prototypes (or Fortran 90 
module omp_lib if available) 

myid = 0
!$ myid = omp_get_thread_num()

OpenMP Directives
Syntax in Fortran
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OpenMP Directives
Syntax in C/C++

Include file
#include <omp.h>

pragma preprocessor directive:

#pragma omp [directive [clause ...]]
structured block

Conditional compilation: Compiler’s OpenMP switch sets 
preprocessor macro

#ifdef _OPENMP

... do something

#endif
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OpenMP Syntax:
Clauses

Many (but not all) OpenMP directives support clauses
Clauses specify additional information with the directive
Integration example: 

private(x,sum) appears as clause to the parallel
directive

The specific clause(s) that can be used depend on the 
directive
Another example: schedule(…) clause 

static[,chunksize]: round-robin distribution of chunks 
across threads (no chunksize: max. chunk size – default!)
dynamic[,chunksize]: threads get assigned work chunks 
dynamically; used for load balancing
guided[,chunksize]: like dynamic, but with decreasing 
chunk size (minimal size = chunksize); used for load 
balancing when dynamic induces too much overhead
runtime: determine by OMP_SCHEDULE shell variable
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OpenMP parallel regions
How to generate a team of threads

!$OMP PARALLEL and !$OMP END PARALLEL

Encloses a parallel region: All code executed 
between start and  end of this region is executed by
all threads. 
This includes subroutine calls within the region 
(unless explicitly sequentialized)
Both directives must appear in the same routine.

C/C++:
#pragma omp parallel
structured block

No END PARALLEL directive since block structure defines 
boundaries of parallel region
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OpenMP work sharing for loops

Requires thread distribution directive
!$OMP DO / !$OMP END DO encloses a loop which is to be 

divided up if within a parallel region (“sliced”).
all threads synchronize at the end of the loop body
this default behaviour can be changed ...

Only loop immediately following the directive is sliced
C/C++:
#pragma omp for [clause]
for ( ... )  {  

...
}

restrictions on parallel loops (especially in C/C++)
trip count must be computable  (no do while)
loop body with single entry and single exit point
Use integers, not iterators als loop variables  
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Directives for data scoping:
shared and private

Remember the OpenMP memory model?
Within a parallel region, 
data can either be
private to each executing thread

each thread has its own local copy of data
or be
shared between threads

there is only one instance of data available to all threads
this does not mean that the instance is always visible to all threads!

Integration example:
shared scope not desirable for x and sum since values 
computed on one thread must not be interfered with by 
another thread.
Hence: 

!$OMP parallel private(x,sum)

Shared 
Memory

Shared 
Memory

T

T

T

T
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Defaults for data scoping

All data in parallel region is shared
This includes global data (Module, COMMON)
Exceptions:

1. Local data within enclosed subroutine calls are private
(Note: Inlining must be treated correctly by compiler!) 
unless declared with SAVE attribute

2. Loop variables of parallel (“sliced”) loops are private
Due to stack size limits it may be necessary to give large 
arrays the SAVE attribute

This presupposes it is safe to do so!
If not: make data dynamically allocated
For Intel Compilers: KMP_STACKSIZE may be set at run 
time (increase thread-specific stack size)
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Changing the scoping defaults

Default value for data scoping can be changed by using the 
default clause on a parallel region:

!$OMP parallel default(private)

Beware side effects of data scoping:
Incorrect shared attribute may lead to race conditions and/or 
performance issues (“false sharing”).

Use verification tools.
Scoping of local subroutine data and global data

is not (hereby) changed
compiler cannot be assumed to have knowledge 

Recommendation: Use
!$OMP parallel default(none)

to not overlook anything

Not in 
C/C++
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Storage association of private data

Private variables: undefined on entry and upon exit of 
parallel region

Original value of variable (before parallel region) is 
undefined after exit from parallel region 
To change this:

Replace private by firstprivate or lastprivate

Private variable within parallel region has no storage 
association with same variable outside region
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Running an OpenMP program

Number of threads: Determined by shell variable 

OMP_NUM_THREADS

Loop scheduling: Determined by shell variable

OMP_SCHEDULE

Some implementation-specific environment variables exist 
(here for Intel):

KMP_STACKSIZE: configure thread-local stack size
KMP_LIBRARY: specify the strategy for releasing 
threads that have nothing to do
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Common OpenMP pitfalls

Correctness
Deadlock: Thread waits for resources that never become 
available

Write correct programs (tools help to detect deadlocks)
Race condition: Uncontrolled writes to shared variable

Use private clause
Performance

False sharing: Frequent writes from different threads to 
same cache line

Insert padding, choose appropriate OpenMP schedule
Load imbalance: Different workloads assigned to different 
threads leads to idling CPUs

Use dynamic or guided schedule, rearrange workload 
OpenMP loop overhead: Loop is too short to amortize the 
cost of starting a team of threads

Use programming techniques to fatten loop body



OpenMPOpenMP parallelization of sparse MVMparallelization of sparse MVM
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Data parallelism for sparse MVM

Parallelize the loop that treats consecutive elements of 
result vector (or consecutive matrix rows)
General idea:

+=

RHS vector is accessed by all threads
… but this is shared memory, so it does not have to be 
stored multiple times!

•

T0

T1

T2

T3

T4
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OpenMP parallelization of CRS MVM

Parallelized loop is outer loop

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1
c(i) = c(i) + val(j) * b(col_idx(j)) 
enddo
enddo

Features
Long outer loop

small OpenMP overhead
Variable length of inner loop

possible load imbalance

!$OMP parallel do

!$OMP end parallel do
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OpenMP parallelization of JDS MVM

Parallelized loop is inner loop

do diag=1, zmax
diagLen = jd_ptr(diag+1) - jd_ptr(diag)
offset = jd_ptr(diag)

do i=1, diagLen
c(i) = c(i) + val(offset+i) * b(col_idx(offset+i))

enddo

enddo

!$OMP parallel private(diag,diagLen,offset,i)

!$OMP do

!$OMP end do

!$OMP end parallel

Features
Long inner loop
No load imbalance problems
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OpenMP parallelization of blocked
JDS MVM

Parallelization can now be pulled to outer loop

do ib=1, maxDiagLen, blocklen
block_start = ib
block_end = min(ib+blocklen-1, maxDiagLen)
do diag=1, zmax
diagLen = jd_ptr(diag+1)-jd_ptr(diag)
offset = jd_ptr(diag)
if(diagLen .ge. block_start) then
do i=block_start, min(block_end,diagLen)
c(i) = c(i)+val(offset+i)*b(col_idx(offset+i))

enddo
endif

enddo
enddo

!$OMP parallel do private(block_start,block_end,i,diag,
!$OMP& diagLen,offset)

!$OMP end parallel do

Features
Least OpenMP overhead
Some load imbalance possible
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Parallel sparse MVM:
Scalability

Scalability data for OpenMP version
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Something is 
obviously 
wrong…



Data locality in Data locality in ccNUMAccNUMA systemssystems
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Memory Locality Problems

ccNUMA:
whole memory is transparently accessible by all processors
but physically distributed
with varying bandwidth and latency
and potential congestion (shared memory paths)

How do we make sure that memory access is always as 
"local" and "distributed" as possible?

C C C C

M M

C C C C

M M
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Coding for Data Locality 

In OpenMP the programmer must ensure that memory pages 
get mapped locally, i.e. data that is accessed from CPU n 
should reside in a local memory block
rigorously apply the "Golden Rule": 

A memory page gets mapped into the local memory of 
the processor that first touches (reads or writes to) it!

i.e. we have to take a closer look at initialization code

Locality is always observed on the page level
Page sizes: 4kB, 16kB, sometimes larger

Some false (page) sharing at domain boundaries may be 
unavoidable
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Coding for Data Locality

Integer,parameter :: N=1000000
Real*8 A(N), B(N)

A=0.d0

!$OMP parallel do
Do I = 1, N

B(i) = function ( A(i) )
End do

Integer,parameter :: N=1000000
Real*8 A(N),B(N)

!$OMP parallel do
Do I = 1, N

A(i)=0.d0
End do

!$OMP parallel do
Do I = 1, N

B(i) = function ( A(i) )
End do

Simplest case: explicit initialization 
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Coding for Data Locality

Sometimes initialization is not so obvious: I/O cannot be 
easily parallelized, so "localize" arrays before I/O

Integer,parameter :: N=1000000
Real*8 A(N), B(N)

READ(1000) A
!$OMP parallel do
Do I = 1, N

B(i) = function ( A(i) )
End do

Integer,parameter :: N=1000000
Real*8 A(N),B(N)

!$OMP parallel do
Do I = 1, N

A(i)=0.d0
End do
READ(1000) A
!$OMP parallel do
Do I = 1, N

B(i) = function ( A(i) )
End do
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Coding for Data Locality

Required condition: OpenMP loop schedule of 
initialization must be the same as in all computational 
loops

best choice: static! Specify explicitly on all NUMA-sensitive 
loops, just to be sure…
imposes some constraints on possible optimizations (e.g. 
load balancing) → some sensibly large chunk size may be 
better than plain static

How about global objects?
better not use them
if communication vs. computation is favorable, might 
consider properly placed copies of global data
in C++, STL allocators provide an elegant solution
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Data locality in parallel sparse MVM

No code change in MVM loop required (apart from static 
schedule)
CRS

Initialization of arrays val[], c[], b[], row_ptr[] and 
col_idx[] must be done in parallel

do i=1,Nr
start = row_ptr(i)
end = row_ptr(i+1)
do j=start,end-1

val(j) = 0.d0
col_idx(j)= 0

enddo
enddo

!$OMP parallel do private(start,end,j)
!$OMP& schedule(static)

Similar for JDS
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Parallel sparse MVM
Doing it right on ccNUMA

Correct placement leads to acceptable scalability
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No difference for Core 
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JDS scalability worse 
than CRS – why?
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Coding for Data Locality:
C++ issues

Bck to C++: Don't forget that constructors tend to touch 
the data members of an object. Example:

class D {
double d;

public:
D(double _d=0.0) throw() : d(_d) {}
inline D operator+(const D& o) throw() {

return D(d+o.d);
}
inline D operator*(const D& o) throw() {

return D(d*o.d);
}

...
};

→ placement problem with 
D* array = new D[1000000];
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Coding for Data Locality:
C++ issues

Solution: Provide overloaded new operator or special function 
that places the memory before constructors are called 
(PAGE_BITS = base-2 log of pagesize)

template <class T> T* pnew(size_t n) {
size_t st = sizeof(T);
int ofs,len=n*st;
int i,pages = len >> PAGE_BITS;
char *p = new char[len];

#pragma omp parallel for schedule(static) private(ofs)
for(i=0; i<pages; ++i) {
ofs = static_cast<size_t>(i) << PAGE_BITS;
p[ofs]=0;

}
#pragma omp parallel for schedule(static) private(ofs)

for(ofs=0; ofs<n; ++ofs) {
new(static_cast<void*>(p+ofs*st)) T;

}
return static_cast<T*>(m);

}

placement 
new!

parallel first touch
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Coding for Data Locality:
NUMA allocator for parallel first touch
template <class T> class NUMA_Allocator {
public:
T* allocate(size_type numObjects, const void  

*localityHint=0) {
size_type ofs,len = numObjects * sizeof(T);
void *m = malloc(len);
char *p = static_cast<char*>(m);
int i,pages = len >> PAGE_BITS;

#pragma omp parallel for schedule(static) private(ofs)
for(i=0; i<pages; ++i) {
ofs = static_cast<size_t>(i) << PAGE_BITS;
p[ofs]=0;

}
return static_cast<pointer>(m);

}
...
}; Application:

vector<double,NUMA_Allocator<double> > x(1000000)
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Application: DMRG – Parallelization of sparse MVM 
in superblock diagonalization

Sparse MVM: Sum over dense matrix-matrix multiplies!

However, A and B may contain only a few nonzero 
elements, e.g. if conservation laws (quantum numbers) 
have to be obeyed 
To minimize overhead 
an additional loop (running 
over nonzero blocks only) 
is introduced
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Sparse MVM in DMRG

Implementation of sparse MVM - pseudocode

// W: wavevector ; R: result
for (α=0; α < number_of_hamiltonian_terms; α++) {

term = hamiltonian_terms[α];

for (k=0 ; k < term.number_of_blocks; k++) {

li = term[k].left_index;
ri = term[k].right_index;

temp_matrix = term[k].B.transpose() * W[ri];

R[li] += term[k].A * temp_matrix;

}} Matrix-matrix multiply
Data dependency !

Parallel loop !?

Parallel loop !?
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DMRG: OpenMP Parallelization

Parallelization of innermost k loop: Scales badly 
loop too short 
collective thread operations within outer loop

Parallelization of outer α loop: Scales badly
even shorter
load imbalance (trip count of k loop depends on α)

Solution:
“Fuse” both loops (α & k)
Protect write operation R[li] with lock mechanism
Use list of OpenMP locks for each block li
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DMRG: OpenMP Parallelization

// store all block references in block_array
ics=0;
for (α=0; α < number_of_hamiltonian_terms; α++) {

term = hamiltonian_terms[α];
for (k=0 ; k < term.number_of_blocks; k++) {

block_array[ics]=&term[q];
ics++;

}}
icsmax=ics;

// set up lock lists
for(i=0; i < MAX_NUMBER_OF_THREADS; i++)

mm[i] = new Matrix // temp.matrix

for (i=0; I < MAX_NUMBER_OF_LOCKS; i++) {
locks[i]= new omp_lock_t;
omp_init_lock(locks[i]);
}

Preparation
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DMRG: OpenMP Parallelization

// W: wavevector ; R: result
#pragma omp parallel private(mymat, li, ri, myid, ics)
{

myid = omp_get_thread_num();
mytmat = mm[myid]; // temp thread local matrix

#pragma omp for
for (ics=0; ics< icsmax; ics++) {

li = block_array[ics]->left_index;
ri = block_array[ics]->right_index;

mytmat = block_array[ics]->B.transpose() * W[ri];

omp_set_lock(locks[li]);
R[li] += block_array[ics]->A * mytmat;
omp_unset_lock(locks[li]);
}

}

Fused (α,k) loop

Protect each block of 
result vector R with 
locks 
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DMRG : OpenMP Parallelization

Scalability on SGI Origin

OMP_SCHEDULE=STATIC

OpenMP scales 
significantly better than 
parallel DGEMM

Serial overhead in 
parallel MVM is only 
about 5%
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DMRG : OpenMP Parallelization
Further improvements

Chose best distribution strategy for parallel for loop:
OMP_SCHEDULE=“dynamic,2”
(reduces serial overhead in MVM to 2%)

Re-link with parallel LAPACK/BLAS to speed up density-
matrix diagonalization (DSYEV)

Observe vendor advice


