High Performance Computing
Sequential code optimization by example

G. Hager, G. Wellein
Regionales Rechenzentrum Erlangen

W. u. E. Heraeus Summerschool
on Computational Many Particle Physics
Sep 18-29, Greifswald, Germany
A warning

“Premature optimization is the root of all evil.”

Donald E. Knuth
Outline

- Warm-up example: Monte Carlo spin simulation
 - „Common sense“ optimizations
 - Strength reduction by tabulation
 - Reducing the memory footprint
- General remarks on algorithms and data access
- Example: Matrix transpose
 - Data access analysis
 - Cache thrashing
 - Optimization by padding and blocking
- Example: Sparse matrix-vector multiplication
 - Sparse matrix formats: CRS and JDS
 - Optimizing data access for sparse MVM
 - Strengths and weaknesses of the two formats
„Common sense“ optimizations:
A Monte Carlo spin code
Optimization of a Spin System Simulation:
Model

- 3-D cubic lattice
- One variable („spin“) per grid point with values +1 or -1
- Next-neighbour interaction terms
- Code chooses spins randomly and flips them as required by MC algorithm
Optimization of a Spin System Simulation: Model

- **Systems under consideration**
 - $50 \cdot 50 \cdot 50 = 125000$ lattice sites
 - 2^{125000} different configurations
 - **Computer time:** $2^{125000} \cdot 1 \text{ ns} \approx 10^{37000}$ years – without MC 😊

- **Memory requirement of original program** ≈ 1 MByte
Optimization of a Spin System Simulation: Original Code

- **Program Kernel:**

 \[
 \begin{align*}
 IA &= IZ(KL,KM,KN) \\
 IL &= IZ(KLL,KM,KN) \\
 IR &= IZ(KLR,KM,KN) \\
 IO &= IZ(KL,KMO,KN) \\
 IU &= IZ(KL,KMU,KN) \\
 IS &= IZ(KL,KM,KNS) \\
 IN &= IZ(KL,KM,KNN)
 \end{align*}
 \]

 Load neighbors of a random spin

 \[
 edelz = iL + iR + iU + iO + iS + iN
 \]

 \[
 BF = 0.5d0*(1.d0+tanh(edelz/tt))
 \]

 CRITERION FOR FLIPPING THE SPIN

 \[
 \begin{align*}
 & IF(YHE.LE.BF) then \\
 & iz(kl,km,kn)=1 \\
 & else \\
 & iz(kl,km,kn)=-1 \\
 & endif
 \end{align*}
 \]

 decide about spin orientation
Optimization of a Spin System Simulation: Code Analysis

- **Profiling shows that**
 - 30% of computing time is spent in the \(\tanh \) function
 - Rest is spent in the line calculating \(\text{edelz} \)

- **Why?**
 - \(\tanh \) is expensive by itself (see previous talk)
 - Compiler fuses spin loads and calculation of \(\text{edelz} \) into a single line

- **What can we do?**
 - Try to reduce the „strength“ of calculations (here \(\tanh \))
 - Try to make the CPU move less data

- **How do we do it?**
 - Observation: argument of \(\tanh \) is always integer in the range -6..6 (\(\tt \) is always 1)
 - Observation: Spin variables only hold values +1 or -1
Optimization of a Spin System Simulation: Making it Faster

- Strength reduction by **tabulation** of \(\tanh \) function

 \[
 BF = 0.5d0*(1.d0+tanh_table(\text{edelz}))
 \]

 - Performance increases by 30% as table lookup is done with „lightspeed“ compared to \(\tanh \) calculation
 - By declaring spin variables with **INTEGER*1** instead of **INTEGER*4** the memory requirement is reduced to about \(\frac{1}{4} \)
 - Better cache reuse
 - Factor 2–4 in performance depending on platform
 - Why don’t we use just one bit per spin?
 - Bit operations (mask, shift, add) too expensive \(\rightarrow \) no benefit
 - Potential for a variety of data access optimizations
 - But: choice of spin must be absolutely random!
Optimization of a Spin System Simulation: Performance Results

- Pentium 4 (2.4 GHz)

<table>
<thead>
<tr>
<th>Code Description</th>
<th>Runtime [sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original code</td>
<td>200</td>
</tr>
<tr>
<td>Table + 1Bit/Spin</td>
<td>185</td>
</tr>
<tr>
<td>Table + 1Byte/Spin</td>
<td>105</td>
</tr>
</tbody>
</table>

Between the two optimized versions, the 8-bit version is 10% faster than the 1-bit version.
General remarks on algorithms and data access
Data access

- Data access is the most frequent performance-limiting factor in HPC
- Cache-based microprocessors feature small, fast caches and large, slow memory
 - “Memory Wall”, “DRAM Gap”
 - Latency can be hidden under certain conditions (prefetch, software pipelining)
 - Bandwidth limit cannot be circumvented
 - Instead, modify the code to avoid the slow data paths
- General guideline: examine “traffic-to-work” ratio (balance) of algorithm to get a hint at possible limitations
 - Examination of performance-critical loops is vital
 - Important metric: (“LOADs/STOREs to FLOPs”)
 - Optimization: lower LDST/FLOP ratio
- … and always remember that stride-1 access is best!
“Lightspeed” estimates

- How do you know that your code makes good use of the resources?
- In many cases one can estimate the possible performance limit (lightspeed) of a loop
- Architectural boundary conditions:

Memory bandwidth \(\text{GW} \text{ords/s} \) (1 W = 8 bytes)
Floating point peak performance \(\text{GFlops/s} \)

Machine balance

\[
B_m = \frac{\text{bandwidth}[\text{words/s}]}{\text{FP performance}[\text{flops/s}]}
\]

- Typical values (memory):
 - 0.13 W/F (Itanium2 1.5 GHz)
 - 0.125 W/F (Xeon 3.2 GHz),
 - 0.5 W/F (NEC SX8)
“Lightspeed” estimates

- **Expected performance on the loop level?**

- **Code balance:**
 \[B_c = \frac{\text{data transfer (LD/ST)} \ [\text{words}] }{\text{arithmetic operations} \ [\text{flops}]} \]

- **Expected fraction of peak performance („lightspeed“):**
 \[l = \frac{B_m}{B_c} \]

- **Example:** Vector triad \(A(\cdot) = B(\cdot) + C(\cdot) \cdot D(\cdot) \) on 3.2 GHz Xeon
 \[B_m/B_c = 0.125/2 = 0.0625, \text{ i.e. } 6.25\% \text{ of peak performance!} \]

- **Many code optimizations thus aim at lowering** \(B_c \)
Data access – general considerations

- **Case 1: \(O(N)/O(N)\) Algorithms**
 - \(O(N)\) arithmetic operations vs. \(O(N)\) data access operations
 - Examples: Scalar product, vector addition, sparse MVM etc.
 - Performance limited by memory bandwidth for large \(N\) (“memory bound”)
 - Limited optimization potential for single loops
 - at most constant factor for multi-loop operations
 - Example: successive vector additions

\[
\begin{align*}
\text{do } i=1,N \\
a(i) &= b(i) + c(i) \\
\text{enddo} \\
\text{do } i=1,N \\
z(i) &= b(i) + e(i) \\
\text{enddo}
\end{align*}
\]

- Loop fusion
 - \(B_c = 3/1\)
 - no optimization potential for either loop

\[
\begin{align*}
\text{do } i=1,N \\
a(i) &= b(i) + c(i) \\
z(i) &= b(i) + e(i) \\
\text{enddo}
\end{align*}
\]

- Fusing different loops allows \(O(N)\) data reuse from registers
 - \(B_c = 5/2\)
Data access – general guidelines

- **Case 2: \(O(N^2)/O(N^2)\) algorithms**
 - Examples: dense matrix-vector multiply, matrix addition, dense matrix transposition etc.
 - Nested loops
 - Memory bound for large \(N\)
 - Some optimization potential (at most constant factor)
 - Can often enhance LDST/FLOP ratio by outer loop unrolling
 - Example: dense matrix-vector multiplication

```plaintext
  do i=1,N
    do j=1,N
      c(i) = c(i) + a(i,j) * b(j)
    enddo
  enddo
```

Naïve version loads \(b[\cdot]\) \(N\) times!
Data access – general guidelines

- **O(N^2)/O(N^2) algorithms cont’d**
 - “Unroll & jam” optimization (or “outer loop unrolling”)

```plaintext
do i=1,N
  do j=1,N
    c(i)=c(i)+a(i,j)*b(j)
  enddo
endo
endo
```

```plaintext
unroll

```
```plaintext
```

```
```
```

```

```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
Data access – general guidelines

- **O(N²)/O(N²) algorithms cont’d**
 - Data access pattern for 2-way unrolled dense MVM:
 - Vector \(b[\cdot] \) now only loaded \(N/2 \) times!
 - Remainder loop handled separately
 - Code balance can still be enhanced by more aggressive unrolling (i.e., \(m \)-way instead of 2-way)
 - Significant code bloat (try to use compiler directives if possible)
 - Ultimate limit: \(b[\cdot] \) only loaded once from memory (\(B_c \approx 1/2 \))
 - Beware: CPU registers are a limited resource
 - Excessive unrolling can cause register spills to memory
Optimizing data access for dense matrix transpose
Dense matrix transpose

- Simple example for data access problems in cache-based systems

- Naïve code:

```plaintext
do i=1,N
  do j=1,N
    a(j,i) = b(i,j)
  enddo
enddo
```

- Problem: Stride-1 access for `a` implies stride-N access for `b`
 - Access to `a` is perpendicular to cache lines (→)
 - Possibly bad cache efficiency (spatial locality)

- Remedy: Outer loop unrolling and blocking
Dense matrix transpose:
Vanilla version on different architectures

Second drop; reason?
Dense matrix transpose: Cache thrashing

- A closer look (e.g. on Xeon/Netburst) reveals interesting performance characteristics:
 - Matrix sizes of powers of 2 seem to be extremely unfortunate
 - Reason: Cache thrashing!
 - Remedy: Improve effective cache size by padding the array dimensions!
 - $a(1024,1024) \rightarrow a(1025,1025)$
 - $b(1024,1024) \rightarrow b(1025,1025)$
 - Eliminates the thrashing completely
 - Rule of thumb: If there is a choice, use dimensions of the form $16 \cdot (2k+1)$
Dense matrix transpose: Unrolling and blocking

\[
\begin{align*}
 \text{do } & i=1,N \\
 \text{do } & j=1,N \\
 & a(j,i) = b(i,j) \\
 \text{enddo} \\
 \text{enddo}
\end{align*}
\]

blocking

\[
\begin{align*}
 \text{do } & i=1,N,U \\
 \text{do } & j=1,N \\
 & a(j,i) = b(i,j) \\
 & a(j,i+1) = b(i+1,j) \\
 & \ldots \\
 & a(j,i+U-1) = b(i+U-1,j) \\
 \text{enddo} \\
 \text{enddo}
\end{align*}
\]

unroll/jam

\[
\begin{align*}
 \text{do } & ii=1,N,B \\
 & \text{istart}=ii; \ iend=ii+B-1 \\
 \text{do } & jj=1,N,B \\
 & \text{jstart}=jj; \ jend=jj+B-1 \\
 \text{do } & i=\text{istart},\iend,U \\
 \text{do } & j=\text{jstart},\jend \\
 & a(j,i) = b(i,j) \\
 & a(j,i+1) = b(i+1,j) \\
 & \ldots \\
 & a(j,i+U-1) = b(i+U-1,j) \\
 \text{endo};\text{endo};\text{endo};\text{endo}
\end{align*}
\]

Blocking and unrolling factors \((B,U)\) can be determined experimentally; be guided by cache sizes and line lengths.
Dense matrix transpose:
Blocked/unrolled versions on Xeon/Netburst 3.2 GHz

Breakdown only eliminated by blocking!
Case 3: \(O(N^3)/O(N^2)\) algorithms

- Most favorable case – computation outweighs data traffic by factor of \(N\)
- Examples: Dense matrix diagonalization, dense matrix-matrix multiplication
- Huge optimization potential: proper optimization can render the problem cache-bound if \(N\) is large enough
- Example: dense matrix-matrix multiplication

```
do i=1,N
  do j=1,N
    do k=1,N
      c(j,i)=c(j,i)+a(k,i)*b(k,j)
    enddo
  enddo
enddo
```

Core task: dense MVM \((O(N^2)/O(N^2))\)
→ memory bound
→ Tutorial exercise: Which fraction of peak can you achieve?
Optimizing sparse matrix-vector multiplication
Sparse matrix-vector multiply (sMVM)

- Key ingredient in some matrix diagonalization algorithms
 - Lanczos, Davidson, Jacobi-Davidson
- Store only N_{nz} nonzero elements of matrix and RHS, LHS vectors with N_r (number of matrix rows) entries
- “Sparse”: $N_{nz} \sim N_r$
- Type $O(N)/O(N) \rightarrow$ memory bound
 - Nevertheless, there is more than one loop here!

General case: some indirect addressing required!
Sparse matrix-vector multiply:
Different matrix storage schemes

- Choice of sparse matrix storage scheme is crucial for performance
 - Different schemes yield entirely different performance characteristics

- Most important formats:
 - CRS (Compressed Row Storage)
 - JDS (Jagged Diagonals Storage)

- Other possibilities:
 - CCS (Compressed Column Storage, “Harwell-Boeing”)
 - CDS (Compressed Diagonal Storage)
 - SKS (Skyline Storage)
 - SYDY (Something You Devised Yourself)

- Depending on the storage scheme, the memory access patterns differ vastly between the formats
 - So do the opportunities for optimization
 - Choose the storage scheme that best fits your needs
CRS matrix storage scheme

- `val[]` stores all the nonzeroes (length N_{nz})
- `col_idx[]` stores the column index of each nonzero (length N_{nz})
- `row_ptr[]` stores the starting index of each new row in `val[]` (length: N_r)
CRS sparse MVM

- **Implement** $c(i) = m(:, :) * b(:)$
- **Only the nonzero elements of the matrix are used**
 - **Operation count** = $2N_{nz}$

```plaintext
do i = 1, Nr
   do j = row_ptr(i), row_ptr(i+1) - 1
      c(i) = c(i) + val(j) * b(col_idx(j))
   enddo
endo
do i = 1, Nr
endo
```

- **Features**
 - Long outer loop (N_r)
 - Probably short inner loop (number of nonzero entries in each respective row)
 - Register-optimized access to result vector $c[]$
 - Stride-1 access to matrix data in $val[]$
 - Indexed (indirect) access to RHS vector $b[]$
JDS matrix storage scheme

- `val[]` stores all the nonzeroes (length N_{nz})
- `col_idx[]` stores the column index of each nonzero (length N_{nz})
- `jd_ptr[]` stores the starting index of each new jagged diagonal in `val[]`
- `perm[]` holds the permutation map (length N_r)
JDS sparse MVM

- **Implement** \(\mathbf{c}(:, \:) = \mathbf{m}(\:) * \mathbf{b}(\:) \)

- **Only the nonzero elements of the matrix are used**
 - Operation count = \(2N_{nz}\)

```plaintext
do diag=1, zmax
  diagLen = jd_ptr(diag+1) - jd_ptr(diag)
  offset = jd_ptr(diag)
  do i=1, diagLen
    c(i) = c(i) + val(offset+i) * b(col_idx(offset+i))
  enddo
endo
do diag=1, zmax
  diagLen = jd_ptr(diag+1) - jd_ptr(diag)
  offset = jd_ptr(diag)
  do i=1, diagLen
    c(i) = c(i) + val(offset+i) * b(col_idx(offset+i))
  enddo
endo
```

- **Features**
 - **Long inner loop (max. \(N_r\))**
 - candidate for vectorization/parallelization
 - **Short outer loop (number of jagged diagonals)**
 - Multiple accesses to each element of result vector \(\mathbf{c}[]\)
 - optimization potential
 - **Stride-1 access to matrix data in \(\mathbf{val}[]\)**
 - Indexed (indirect) access to RHS vector \(\mathbf{b}[]\)
JDS sparse MVM optimization

- Outer 2-way loop unrolling for JDS ($B_c 9/4 \rightarrow 7/4$)

```plaintext
\[
\text{do } \text{diag}=1,zmax,2 \\
\quad \text{diagLen} = \min( (\text{jd_ptr(diag+1)}-\text{jd_ptr(diag)}) , \backslash \\
\quad \quad \quad \quad \quad (\text{jd_ptr(diag+2)}-\text{jd_ptr(diag+1)})) \\
\quad \text{offset1} = \text{jd_ptr(diag)} \\
\quad \text{offset2} = \text{jd_ptr(diag+1)} \\
\text{do } i=1, \text{diagLen} \\
\quad c(i) = c(i)+\text{val(offset1+i)}*b(\text{col_idx(offset1+i)}) \\
\quad c(i) = c(i)+\text{val(offset2+i)}*b(\text{col_idx(offset2+i)}) \\
\text{enddo} \\
\quad \text{offset1} = \text{jd_ptr(diag)} \\
\text{do } i=(\text{diagLen+1}), (\text{jd_ptr(diag+1)}-\text{jd_ptr(diag)}) \\
\quad c(i) = c(i)+\text{val(offset1+i)}*b(\text{col_idx(offset1+i)}) \\
\text{enddo} \\
\text{enddo}
\]
```

Remainder loop (omitted in code)
JDS sparse MVM optimization

- Blocking optimization for JDS sparse MVM:
 - Does not enhance code balance but cache utilization

```plaintext
do ib=1, maxDiagLen, blocklen
  block_start = ib
  block_end   = min(ib+blocklen-1, maxDiagLen)
  do diag=1, zmax
    diagLen = jd_ptr(diag+1)-jd_ptr(diag)
    offset = jd_ptr(diag)
    if(diagLen .ge. block_start) then
      do i=block_start, min(block_end, diagLen)
        c(i) = c(i)+val(offset+i)*b(col_idx(offset+i))
      enddo
    endif
  enddo
enddo
```

Loop over blocks

Loop over diagonal chunks

Standard JDS MVM kernel
Performance comparison: CRS vs. JDS

- CRS: Vanilla version
- JDS: Vanilla vs. Unrolled vs. Blocked
 - Experimentally determined optimal block length: 400

Best IA32 version: CRS

Best Itanium version: blocked JDS
Performance comparison:
Real programmers use vector computers…
References

- S. Goedecker, A. Hoisie
 Performance Optimization of Numerically Intensive Codes

- R. Gerber et al.
 The Software Optimization Cookbook, Second Edition
 High-Performance Recipes for IA-32 Platforms
 Intel Press (ISBN 0-9764832-1-1)

- R. Barrett et al.
 Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods
 http://www.netlib.org/templates/Templates.html