
Introduction to IAIntroduction to IA--32 and IA32 and IA--64: 64:
Architectures, Tools and LibrariesArchitectures, Tools and Libraries

G. HagerG. Hager

Regionales Rechenzentrum Erlangen (RRZE)Regionales Rechenzentrum Erlangen (RRZE)

HPC ServicesHPC Services

13.10.2003 georg.hager@rrze.uni-erlangen.de 2IA-32/IA-64 Introduction

Outline

IA-32 Architecture
Architectural basics

Optimization with SIMD operations

Cluster computing on IA-32 basis

IA-64 Architecture
Intel‘s EPIC concept

Available system architectures

Peculiarities of IA-64 application performance

Libraries
Optimized BLAS/LAPACK

Tools
Intel IA-32 and IA-64 compilers

VTune Performance Analyzer

IAIA--3232

13.10.2003 georg.hager@rrze.uni-erlangen.de 4IA-32/IA-64 Introduction

IA-32 Architecture Basics – a Little History

IA-32 has roots dating back to the early 80s
Intel‘s first 16-bit CPU: 8086 with 8087 math coprocessor
(x86 is born)

Even the latest Pentium 4 is still binary compatible with 8086

loads of advances over the last 20 years:
addressing range (1MB → 16MB → Terabytes)

protected mode (80286)

32 bit GPRs and usable protected mode (80386)

on-chip caches (80486)

SIMD extensions and superscalarity (Pentium)

CISC-to-RISC translation and out-of-order superscalar processing
(Pentium Pro)

floating-point SIMD with SSE and SSE2 (Pentium III/4)

Competitive High Performance Computing was only possible
starting with Pentium III

Pentium 4 is today rivaling all other established processor
architectures

13.10.2003 georg.hager@rrze.uni-erlangen.de 5IA-32/IA-64 Introduction

IA-32 Architecture Basics

IA-32 has a CISC instruction set
„Complex Instruction Set Computing“

Operations like „load value from memory, add to register and store
result in register“ are possible in one single machine instruction

Huge number of assembler instructions

Very compact code possible

Hard to interpret for CPU hardware, difficulties with out-of-order
processing

Since Pentium Pro, CISC is translated to RISC (called μOps here)
on the fly

„Reduced Instruction Set Computing“

Very simple instructions like „load value from memory to register“
or „add two registers and store result in another“

RISC instructions are held in a reorder buffer for later out-of-order
processing

13.10.2003 georg.hager@rrze.uni-erlangen.de 6IA-32/IA-64 Introduction

IA-32 Architecture Basics:
Pentium 4 Block Diagram

Source:

http://www.top500.org/ORSC/

13.10.2003 georg.hager@rrze.uni-erlangen.de 7IA-32/IA-64 Introduction

IA-32 Architecture Basics

Pentium 4 seems to be quite an ordinary processor. It has
caches (instruction/data)

register files

functional units for integer & FP operations

a memory bus

What‘s special about the Pentium 4?
high clock frequency (currently 3.2 GHz)

L1 instruction cache is a "trace cache" and contains pre-
decoded instructions

double speed integer units

special SIMD (Single Instruction Multiple Data) functional
units and registers enable „vector computing for the
masses“

Result: It‘s very hard to beat a Pentium 4…

13.10.2003 georg.hager@rrze.uni-erlangen.de 8IA-32/IA-64 Introduction

IA-32 Architecture Basics:
What Makes the Pentium 4 so fast?

Very high clock frequencies
every pipeline stage is kept as simple as possible, leading to
very long pipelines (20 stages)
L1 data cache is tiny but fast (only 2 cycles latency)
lower instruction level parallelism (ILP) than previous IA-32
designs

L1 instruction cache
long pipelines lead to large penalties for branch
mispredictions
L1I cache takes pre-decoded instructions in order to reduce
pipeline fill-up latency
P4 can very accurately predict conditional branches

Integer add, subtract, inc, dec, logic, cmp, test all take
only 0.5 clock cycles to execute

latency and throughput are identical for those operations

13.10.2003 georg.hager@rrze.uni-erlangen.de 9IA-32/IA-64 Introduction

IA-32 Architecture Basics:
Floating Point Operations

Before the advent of SIMD, IA-32 had a stack-based FP
engine ("x87")

ST(0)

ST(1)
ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

Operations were done with stack top
or stack top and another stack
register

Result always on stack top

Advantage: easy tp program (trivial
register allocation – UPN-like)

Drawback: hard to do instruction-
level parallelism

All other modern architectures use a
flat register model80 bits (long double)

+

Intel decided to kill two birds with one stone and combine
flat register addressing with SIMD capability!

13.10.2003 georg.hager@rrze.uni-erlangen.de 10IA-32/IA-64 Introduction

IA-32 Architecture Basics:
Floating Point Operations and SIMD

First SIMD implementation: Pentium MMX
SIMD registers shared with FP stack

Switch between SIMD and FP mode was expensive overhead

Nobody should use this any more

„Sensible SIMD“ came about with SSE (Pentium III) and SSE2
(Pentium 4) – Streaming SIMD Extensions

Register Model:

xmm0

xmm1
xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

128 bits

Each register can be
partitioned into several integer
or FP data types

8 to 128-bit integers

single (SSE) or double
precision (SSE2) floating point

SIMD instructions can operate
on the lowest or all partitions
of a register at once

13.10.2003 georg.hager@rrze.uni-erlangen.de 11IA-32/IA-64 Introduction

IA-32 Architecture Basics:
Floating Point Operations and SIMD

Possible data types in an SSE register

16x 8bit

8x 16bit

4x 32bit

2x 64bit

1x 128bit

in
te

g
er

4x 32 bit

2x 64 bit fl
o

at
in

g

p
o

in
t

13.10.2003 georg.hager@rrze.uni-erlangen.de 12IA-32/IA-64 Introduction

IA-32 Architecture Basics:
Floating Point Operations and SIMD

Example: Single precision FP packed vector addition

x3 x2 x1 x0 xmm0

y3 y2 y1 y0 xmm1

+ + + +

xi and yi are single precision FP numbers (4 per SSE register)

Four single precision FP additions are done in one single
instruction

Pentium 4: 2-cycle latency & 2-cycle throughput for double
precision SSE2 MULT & ADD leading to a peak performance
of 2 (DP) FLOPs/cycle

x3 + y3 x2 + y2 x1 + y1 x0 + y0 xmm1

13.10.2003 georg.hager@rrze.uni-erlangen.de 13IA-32/IA-64 Introduction

IA-32 Architecture Basics:
Floating Point Operations and SIMD

In addition to packed SIMD operations, scalar operations
are also possible

operate on lowest item only!

alternative for non-vectorizable codes (still better than x87)

Caveat: SSE2 operations are carried out with 64-bit
accuracy, whereas the x87 FP instructions use 80 bits

slight numerical differences between x87 and SSE mode
possible

Significant performance boost achievable by using
SSE(2)!

in cache

hardly any gain for out of cache performance expected

see below for compiler options concerning SSE

13.10.2003 georg.hager@rrze.uni-erlangen.de 14IA-32/IA-64 Introduction

IA-32 Architecture Basics:
Triads Performance: A(:) = B(:) + C(:) * D(:)

0

500

1000

1500

2000

2500

3000

10 100 1000 10000 100000

No SSE
SSE

loop length

M
F

lo
p

s/
s

13.10.2003 georg.hager@rrze.uni-erlangen.de 15IA-32/IA-64 Introduction

IA-32 Architecture Basics:
Programming With SIMD Extensions

When given correct options, compiler will automatically
try to vectorize simple loops

Rules for vectorizability similar as for SMP parallelization or
"real" vector machines

See compiler documentation

SIMD can also be used directly by the programmer if
compiler fails

Several alternatives:
Assembly language
For experts only

Compiler Intrinsics
Map closely to assembler instructions, programmer is relieved of
working with registers directly.

C++ class data types and operators
High-level interface to SIMD operations. Easy to use, but
restricted to C++.

13.10.2003 georg.hager@rrze.uni-erlangen.de 16IA-32/IA-64 Introduction

IA-32 Architecture Basics:
Programming With SIMD Extensions

Special C++ data types map to SSE registers

FP types:

F32vec4 4 single-precision FP numbers
F32vec1 1 single-precision FP number
F64vec2 2 double-predision FP numbers

Integer types: Is32vec4, Is64vec2, etc.

C++ operator+ and operator* are overloaded to
accomodate operations on those types

programmer must take care of remainder loops manually

Alignment issues arise when using SSE data types
compiler intrinsics and command line options control
alignment

uncontrolled unaligned access to SSE data will induce
runtime exceptions!

13.10.2003 georg.hager@rrze.uni-erlangen.de 17IA-32/IA-64 Introduction

IA-32 Architecture Basics:
Programming With SIMD Extensions

A simple example: vectorized array summation

Original code (compiler-vectorizable):

Hand-vectorized code:

double asum(double *x, int n) {
int i;
double s = 0.0;
for(i=0; i<n; i++)

s += x[i];
return s;

}

#include <dvec.h>
double asum_simd(double *x, int n) {

int i; double s = 0.0;
F64vec2 *vbuf = (F64vec2*)x;
F64vec2 accum(0.,0.);
for(i=0; i<n/2; i++)

accum += vbuf[i];
for(i=n&(-2); i<n; i++)

s += x[i];
return accum[0] + accum[1] + s;

}

remainder loop

summation across
SSE register

compiler-vectorized
version is still faster than
hand-vectorized; WHY?

→ exercise!

13.10.2003 georg.hager@rrze.uni-erlangen.de 18IA-32/IA-64 Introduction

IA-32 Architecture Basics:
Programming With SIMD Extensions

Alignment issues
alignment of arrays in SSE calculations should be on 16-byte
boundaries

other alternatives: use explicit unaligned load operations (not
covered here)

How is manual alignment accomplished?

2 alternatives
manual alignment of structures and arrays with

__declspec(align(16)) <declaration>;

dynamic allocation of aligned memory (align=alignment
boundary)

void* _mm_malloc (int size, int align);
void _mm_free (void *p);

13.10.2003 georg.hager@rrze.uni-erlangen.de 19IA-32/IA-64 Introduction

IA-32 Architecture Basics:
Hyperthreading

Hyper-Threading Technology enables multi-threaded
software to execute tasks in parallel within each processor

Duplicates architectural state allowing 1 physical
processor to appear as 2 “logical” processors to software
(operating system and applications)

One set of shared execution resources (caches, FP, ALU,
dispatch, etc.)

only registers and a few other things are duplicated

System Bus

Architectural state

Processor
Execution
Resources

System Bus

Architectural state

Processor
Execution
Resources

Architectural state

Processor
Execution
Resources

Architectural state

Architectural state

Processor
Execution
Resources

Architectural state

13.10.2003 georg.hager@rrze.uni-erlangen.de 20IA-32/IA-64 Introduction

IA-32 Architecture Basics:
Hyperthreading

Idea behind HT: usually a large fraction of a CPU's
resources are unused during execution

L2-Cache Data-Cache

Trace-Cache

Register Set

Control

Execution Units

Memory

Task
© Intel

13.10.2003 georg.hager@rrze.uni-erlangen.de 21IA-32/IA-64 Introduction

IA-32 Architecture Basics:
Hyperthreading

By duplicating architectural state, two threads or
processes can share the resources of one CPU and put
better use to them:

L2-Cache Data-Cache

Trace-Cache

Register Set

Control

Execution Units

Memory

Task-1
Task-2

© Intel

13.10.2003 georg.hager@rrze.uni-erlangen.de 22IA-32/IA-64 Introduction

IA-32 Architecture Basics:
Hyperthreading

What is the advantage of HT?
puts better use to one CPU's resources

CPU is faster under high workload (many processes/threads)

helps throughput, not performance

What does HT not do?
can not speed up one single process/thread (can even slow it down)

does not give you more resources per CPU

Who can benefit from HT?
workloads in which different threads use different functional units
(e.g. integer & fp operations, respectively)

Where is HT useless?
purely floating-point code that uses the FP units continuously

code which is very sensitive to cache size

spin waits do not free resources

With suitable applications, speedups of 30% per node are
possible

13.10.2003 georg.hager@rrze.uni-erlangen.de 23IA-32/IA-64 Introduction

IA-32 System Architecture

CPU comes in many flavours
Pentium 4

Xeon DP for dual-CPU systems with larger L2 cache (512 kB)

Xeon MP for multi-CPU systems, up to 16 today with L3 cache
(up to 1 Mbyte)

Memory Interface
currently: FSB800 (theoretical memory bandwidth of 6.4
Gbytes/s)

Common chipsets cover mainly single and dual CPU
configurations

There is always only one path to memory in 2- and 4-CPU
systems!

A multitude of PCI, AGP, I/O configurations possible

13.10.2003 georg.hager@rrze.uni-erlangen.de 24IA-32/IA-64 Introduction

IA-32 Clustering

Due to its unrivaled price/performance ratio the Pentium 4
is very suitable for cluster computing on any scale

"Poor man's supercomputer": Go to ALDI and buy a
bunch of boxes and a Fast Ethernet switch (100 Mbit)

might be perfectly well suited for many applications

Other end: Quadrics Elan3 interconnect
expensive, but at least 30 times more communication
bandwidth than Fast Ethernet

far more than $1000 per node "just for the network"

Common setups (compromise between speed and purse)
Myrinet (LRZ Linux Cluster)

Gbit Ethernet (RRZE Linux cluster)

13.10.2003 georg.hager@rrze.uni-erlangen.de 25IA-32/IA-64 Introduction

IA-32 Cluster at RRZE

73 (soon 86) nodes (146/172 CPUs)
dual Xeon 2.66 GHz
2GB RAM
Gbit Ethernet
80 GByte local disk

Peak performance: 776 GFlops/s
2 frontend nodes with 4 GB RAM
NFS fileserver (approx. 700GB)

server traffic shares communication
network

Queueing System: OpenPBS
serial queue with 48h runtime
(max. 1 node)
parallel queue with 24h runtime
(max. 32 nodes)
special queue for high-priority projects
(max. 73 nodes, unlimited runtime)

IAIA--6464

13.10.2003 georg.hager@rrze.uni-erlangen.de 27IA-32/IA-64 Introduction

Itanium: Intel´s new 64 Bit Architecture:
What´s so new about it?

It´s not RISC:
Compiler generates bundles with three instructions each

It´s not VLIW:
Compiler generates a 5-Bit template field containing information
about instruction level parallelism

This is called Explicity Parallel Instruction Computing (EPIC)

I2 I1 I0
Length:

41 bits each =
123 bits

I2 I1 I0 T

13.10.2003 georg.hager@rrze.uni-erlangen.de 28IA-32/IA-64 Introduction

Itanium: Intel´s new 64 Bit Architecture
Principles of EPIC

Template field provides information about
the instruction type / execution unit of each instruction

independent instruction groups (instruction level parallelism)

Template field allows only a limited number of instruction
combinations (12) in each bundle, e.g.:

a maximum of one Floating-Point-Instruction per bundle

a maximum of two Memory-Instruction per bundle

Template field may include up to two stop operations (;;) to
mark the end of an independent instruction group:

I ;;MM ;;0B

F ;;MM0F

FMM0E

I2I1I0Template

13.10.2003 georg.hager@rrze.uni-erlangen.de 29IA-32/IA-64 Introduction

Itanium: Intel´s new 64 Bit Architecture
Principles of EPIC

If instruction sequence does not fit one of the templates the
compiler will pack one or two nop instructions into the
bundle

No correlation between (independent) instruction groups and
beginning or end of bundles

Bundle1 Bundle2 Bundle3 Bundle4

Instruction group A Instruction group B

;; ;;

IG C

stop! stop!

13.10.2003 georg.hager@rrze.uni-erlangen.de 30IA-32/IA-64 Introduction

Itanium: Intel´s new 64 Bit Architecture
Principles of EPIC

Itanium1/Itanium2 can execute two bundles at each
processor cycle

maximum of 6 instructions per cycle

6 way "superscalar"

No out-of-order execution

Ability of compiler to determine (independent) instruction
groups is crucial for Itanium processors

Use appropriate algorithms

Do not hide independence of operations

Use compiler directives (CDIR$ IVDEP)

13.10.2003 georg.hager@rrze.uni-erlangen.de 31IA-32/IA-64 Introduction

Itanium2: Intel´s current 64 Bit processor
Processor Specifications

Processor frequencies (today): 1 GHz ... 1.5 GHz

Functional units:
6 INTEGER

3 BRANCH

2 FLOATING POINT (FMA) max. 4 Flop/Cycle

Huge set of registers:
128 Floating Point (82 Bit)

128 Integer (64-Bit)

64 Branch

64 Predicate

Rotating Register / Register Stack

13.10.2003 georg.hager@rrze.uni-erlangen.de 32IA-32/IA-64 Introduction

Itanium2: Intel´s current 64 Bit processor
Processor Specifications

L1 cache (instruction)
16 kB; 4-way set associative; 64 byte cache line

L1 cache (data)
16 kB; 4-way set associative; 64 byte cache line

no floating point data (L1-cache bypass)

Latency: 1 cycle / write through

4 references per cycle

L2 cache (unified)
256 kB; 8-way set associative; 128 byte cache line

Latency: 5 cycles (LD) ; 7 cycles (ST) / write back

2 LD & 2 LD/ST per cycle

13.10.2003 georg.hager@rrze.uni-erlangen.de 33IA-32/IA-64 Introduction

Itanium2: Intel´s current 64 Bit processor
Processor Specifications

L3 cache (unified)
1.5 MB ... 6 MB on die!

6-way or 12-way set associative; 128 byte Cache line

Latency: 7 Cycles (ST) ; 12 cycles (LD) / write back

System/memory bus
128 Bits wide, running at 400 MHz ("double-pumped" 200 MHz)

Bandwidth: 6.4 GB/s (of which you can get 6.4)

Maximum of 18 outstanding Bus requests per CPU

Addressing
50 Bit physical / 64 Bit virtual

Max. page size: 4 GB (current Linux Kernel limit: max. 64 kB)

13.10.2003 georg.hager@rrze.uni-erlangen.de 34IA-32/IA-64 Introduction

L1 instruction cache and
fetch/pre-fetch engine

128 integer registers 128 floating-point registers

L
2

ca
ch

e
–

q
u

ad
 p

o
rt

quad-port
L1

data
cache
and

DTLB

branch
units

branch & predicate
registers

sc
or

eb
oa

rd
,

pr
ed

ic
at

e,
N

aT
s,

 e
xc

ep
tio

ns

A
LA

T

ITLB

B B B M M M M F F

IA-32
decode

and
control

instruction
queue

floating-
point
units

8 bundles

register stack engine / re-mapping

11 issue ports

L
3

ca
ch

e

bus controller
ECC

ECC

integer
and

MM units

I I

branch
prediction

ECC

ECC

ECC

ECC

ECC

Intel Itanium 2 Microarchitecture Block diagram

H. Strauss, HP

13.10.2003 georg.hager@rrze.uni-erlangen.de 35IA-32/IA-64 Introduction

L2 Data
Cache

Floating Point

L1i
CacheIA32

MMUIEUL1d
Cache

D-TLB

L2 Tag

L3 Tag

Pipeline

Bus Logic

L3
Cache

H. Strauss, HP

Itanium2: Intel´s current 64 Bit processor
Processor Die (McKinley, 3MB L3)

13.10.2003 georg.hager@rrze.uni-erlangen.de 36IA-32/IA-64 Introduction

Itanium Systems in use by RRZE

Itanium1: 1 x SGI750
dual Itanium1 - 733MHz - 2MB L3

2 GB RAM

Intel "white box"

test and compilation machine (newest compilers are always
tested here first)

Itanium2: 2 x HP zx6000
dual Itanium2 - 900 MHz – 1.5 MB L3

10 GB RAM; HP zx1 Chipset ; 3*73 GB SCSI

GB Ethernet

Soon (end of October): SGI Altix 3700 with 28 CPUs (1.3 GHz)
and 112 Gbyte shared memory

13.10.2003 georg.hager@rrze.uni-erlangen.de 37IA-32/IA-64 Introduction

SGI Altix:
ccNUMA Distributed Shared Memory

System Architecture
building block: SC-Brick (4 CPUs) with two 2-CPU nodes

Itanium 2

Itanium 2

Memory

Itanium 2

Itanium 2

SHUB

Memory

SHUB
2x3.2

10
.2

NUMAlink3 2x1.6 XIO 2.4

13.10.2003 georg.hager@rrze.uni-erlangen.de 38IA-32/IA-64 Introduction

SGI Altix :
ccNUMA Distributed Shared Memory

System Architecture cont‘d
NUMAlink3 network (like Origin 3000, but Fat Tree topology)

Layout for 32-CPU system:

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

R R

R R

NUMA placing is important issue due to larger bandwidth
imbalance as compared to Origin 3000!

13.10.2003 georg.hager@rrze.uni-erlangen.de 39IA-32/IA-64 Introduction

Itanium2: Intel´s current 64 Bit processor
Application Performance Peculiarities

Some dos and don'ts for Itanium2

Do try to use FMA where possible; formulate your inner
loops in an FMA-friendly way

Avoid very short, tight inner loops; if a short trip count
cannot be avoided, try to unroll outer loops to make the body
fatter

When working in L2 cache, try different array paddings; due
to banked L2 layout, significant performance boosts can be
achieved by not hitting the same bank in every loop iteration

With current Intel compilers, try to avoid too many
synchronization points in OpenMP programs – locks and
barriers tend to be slow

Use !DIR$ IVDEP when applicable (indirect array access)

13.10.2003 georg.hager@rrze.uni-erlangen.de 40IA-32/IA-64 Introduction

Itanium2: Intel´s current 64 Bit processor
Triads Performance at Different Array Paddings

Libraries & Tools for Intel Libraries & Tools for Intel
ArchitecturesArchitectures

13.10.2003 georg.hager@rrze.uni-erlangen.de 42IA-32/IA-64 Introduction

High-Performance Libraries

Important functionality for every architecture: optimized
dense linear algebra (BLAS, LAPACK) and FFT libs

"vanilla code" from http://www.netlib.org/ is unsuitable
performancewise

optimized versions available from Intel and other sources

Intel's High Performance LAPACK/BLAS/FFT package:
Math Kernel Library (MKL)

complete BLAS 1/2/3 and LAPACK3 implementation

FFT functions

commercial, but free (beer) for personal use

Alternative: Goto's High Performance BLAS
approx. 10% faster than MKL for matrix-matrix operations
http://www.cs.utexas.edu/users/flame/goto/

Intel's Integrated Performance Primitives (IPP)
special subroutines esp. for multimedia processing

13.10.2003 georg.hager@rrze.uni-erlangen.de 43IA-32/IA-64 Introduction

Using Intel MKL

Usually installed in /opt/intel/mkl
-L/opt/intel/mkl/lib/{32,64} required

dynamic linking on IA-32 or IA-64:
–lmkl_lapack64 –lmkl_lapack32 –lmkl –lguide –lpthread

static linking on IA-32:
-lmkl_lapack –lmkl_ia32 –lguide -lpthread

static linking on IA-64:
–lmkl_lapack –lmkl_ipf –lguide –lpthread

watch for correct LD_LIBRARY_PATH (or equivalent compiler
options) when using dynamic libs
C headers for BLAS functions available: mkl.h

13.10.2003 georg.hager@rrze.uni-erlangen.de 44IA-32/IA-64 Introduction

Using Intel MKL

MKL is shared-memory parallelized

Default: No parallel execution (starting with V6.0)
OMP_NUM_THREADS environment variable determines
number of threads at runtime
Force serial mode (regardless of OMP_NUM_THREADS):
MKL_SERIAL=YES

Calling MKL from OpenMP regions is ok – MKL will use
serial mode.

Calling parallel MKL from concurrent POSIX (OS) threads
is not safe – use serial mode in this case

13.10.2003 georg.hager@rrze.uni-erlangen.de 45IA-32/IA-64 Introduction

Intel Compilers

Fortran95 and C++ compilers available from Intel
commercial, but free (beer) for personal use (yet)

Nearly identical interface (command line options) for IA-32
and IA-64

Fortran compiler can cope with little- and big-endian
UNFORMATTED files

GNU compiler compatibility and interoperability

C++ compiler is up to modern standards

Unrivaled Fortran performance, C++ has some room for
improvements

Inlcuded: Short Vector Math Library
automatically used by compiler to speed up vector
calculations with transcendental and other functions

Included: Command line debugger with parallel debugging
support

13.10.2003 georg.hager@rrze.uni-erlangen.de 46IA-32/IA-64 Introduction

Intel Compilers:
Basics of Usage

Compiler executable
IA-32: ifc, icc IA-64: efc, ecc

To set up correct paths and manpaths, source

/opt/intel/compiler71/ia{32,64}/bin/{e,i}fcvars.[c]sh

first

Important environment variables at program runtime
TMP
determines directory for Fortran temporary files (scratch files)
F_UFMTENDIAN
allows unit-specific runtime conversion of Fortran unformatted
binary files

13.10.2003 georg.hager@rrze.uni-erlangen.de 47IA-32/IA-64 Introduction

Intel Compilers: Basics of Usage
Endianness Conversion

Endianness conversion for Fortran UNFORMATTED files

F_UFMTENDIAN = MODE | [MODE;] EXCEPTION
where:
MODE = big | little
EXCEPTION = big:ULIST | little:ULIST | ULIST
ULIST = U | ULIST,U
U = decimal | decimal-decimal

Examples:

F_UFMTENDIAN=big file format is big-endian for all
units

F_UFMTENDIAN=big:9,12 big-endian for units 9 and 12,
little-endian for others

F_UFMTENDIAN="big;little:8" big-endian for all except
unit 8

13.10.2003 georg.hager@rrze.uni-erlangen.de 48IA-32/IA-64 Introduction

Intel Compilers:
Important Options

Not processor-specific

check program syntax only; do not generate
code

-syntax

enable OpenMP directives-openmp

compile for profiling with gprof-qp, -p

include debugging information in binary; can be
combined with optimization options

-g

enable interprocedural optimizations across files-ipo

compile OpenMP program as serial program;
use stub OpenMP library

-openmpS

assume there is [no] aliasing in program; esp.
suitable for C(++) and F90

-f[no-]alias

13.10.2003 georg.hager@rrze.uni-erlangen.de 49IA-32/IA-64 Introduction

Intel Compilers:
Important Options

Not processor-specific

high level optimizations (loop
nest, prefetching, unrolling,…)

-O3

report on parallelization
success with different
verbosity (0..3, default: 1)

-par_reportlevel

enables auto-parallelization of
loops

-parallel

print availabe optimization
phases to report on

-opt_report_help

report only for certain
optimization phases

-opt_reportphase

verbosity level of optimization
report

-opt_report_level[min|med|max]

print optimization report to
stderr

-opt_report

13.10.2003 georg.hager@rrze.uni-erlangen.de 50IA-32/IA-64 Introduction

Intel Compilers:
Important Options

print diagnostic information about vectorization;
levels 0..5, default is 1

-vec_reportn

use rounding instead of truncation for float-to-int
conversions in C++; faster, but not standard-
conforming

-rcd

enable [disable] vectorizer-vec[-]

use SSE2 extensions when possible; code will only
run on SSE2 capable architectures

-xW

optimize for Pentium 4 and Xeon-tpp7

IA-32 specific/IA-64 specific

when a loop is marked by !DIR$ IVDEP, assume
there is no loop-carried dependency

-ivdep_parallel

flush denormals to zero; faster, but not IEEE
compliant

-ftz

13.10.2003 georg.hager@rrze.uni-erlangen.de 51IA-32/IA-64 Introduction

Intel VTune Performance Analyzer

For performance analysis, gprof will suffice in many
cases

For more advanced performance metrics than "time per
function" other tools are required; some of them are free:

HW counter analysis from system level down to line level with
Oprofile (http://oprofile.sourceforge.net/)

GNU coverage tool: gcov

Performance Counter Library (PCL): very flexible, but manual
instrumentation required

…

Intel VTune: Commercial tool (free trial versions available,
time-limited)

Windows (GUI)

Linux (command line), GUI coming next year

remote sampling of Linux applications from Windows GUI

will be covered in separate tutorial (Thursday)

13.10.2003 georg.hager@rrze.uni-erlangen.de 52IA-32/IA-64 Introduction

References

R. Gerber: The Software Optimization Cookbook. High
Performance Recipes for the Intel Architecture. Intel Press
(2002)

good introduction, must be complemented with compiler and
architecture documentation

W. Triebel et al: Programming Itanium-based Systems.
Developing High Performance Applications for Intel‘s New
Architecture. Intel Press (2001)

extremely detailed, suitable for assembler programmers

slightly outdated

http://developer.intel.com/
tutorials, manuals, white papers, discussion forums etc.

c‘t Magazine 13/2003, several articles (25th birthday of
Intel‘s x86 architecture)

