
Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Why is performance productivity poor on
modern architectures?

Dagstuhl Seminar on Petacomputing, Feb 13–17, 2006

Jan Treibig1 Georg Hager2

1Lehrstuhl für Systemsimulation, FAU Erlangen-Nürnberg

2Regionales Rechenzentrum Erlangen, FAU Erlangen-Nürnberg

February 16, 2006

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Contents

1 Introduction
Going parallel as a popular pastime
The OpenMP story

2 Problems with using new paradigms — a Case Study
The C++/OpenMP/ccNUMA mess
Implementing first touch the easy way

3 Performance (un)productivity
Getting bad performance the easy way
Lessons learned from the high-level approach

4 No way out?
Getting good performance — the hard way

5 Machine Analysis
6 Example 1: Getting Memory Bandwidth

Memcpy
Stream Triad Benchmark

7 Example 2: Red-Black Gauss-Seidel Smoother
Itanium2: Software Pipelined loops

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Application writers at new frontiers

Parallelization techniques well established among HPC “power
users”

Don’t forget: Petacomputing == gigacomputing at the serial level!
New users forced into parallelization with obstacles to take:

Multi-/many-core
ccNUMA
Network topologies
Efficient I/O
Strange architectures
Stupid compilers
Lack of mature and “simple” tools
. . . you name it!

Interesting paradigm: “Constellation” clusters
Motivation: 30/60 TFlop/s SGI Altix 4000 to be installed in Bavaria
very soon
Promising strategy: Choose the “easiest” path and use OpenMP if
possible!

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

OpenMP?

Incremental parallelism, serial equivalence
Good language support, at least in theory

Lots of bugs, esp. in C++ compilers

Easy to learn, hard to master

Flexible enough to emulate “minimalistic MPI”

DSM variants available (Cluster OpenMP . . .)

Advanced tools for correctness checking

Thread safety↔ performance issues?

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

The C++/OpenMP/ccNUMA mess

C++ is all about objects and templates, and it should stay that
way when doing parallel programming
Problem: Constructors usually called in a serial region. Test
case:

Example (Wrapped double)

class D {
double d;

public:
D(double _d=0.0) throw() : d(_d) {}
inline D operator+(const D& o) throw() {

return D(d+o.d);
}
[...]

};
[...]

D* A = new array[20000];

// Locality problem!

Solution: Use parallel “first touch” in allocation

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

The C++/OpenMP/ccNUMA mess

C++ is all about objects and templates, and it should stay that
way when doing parallel programming
Problem: Constructors usually called in a serial region. Test
case:

Example (Wrapped double)

class D {
double d;

public:
D(double _d=0.0) throw() : d(_d) {}
inline D operator+(const D& o) throw() {

return D(d+o.d);
}
[...]

};
[...]

D* A = new array[20000]; // Locality problem!

Solution: Use parallel “first touch” in allocation

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

The C++/OpenMP/ccNUMA mess

C++ is all about objects and templates, and it should stay that
way when doing parallel programming
Problem: Constructors usually called in a serial region. Test
case:

Example (Wrapped double)

class D {
double d;

public:
D(double _d=0.0) throw() : d(_d) {}
inline D operator+(const D& o) throw() {

return D(d+o.d);
}
[...]

};
[...]

D* A = new array[20000]; // Locality problem!

Solution: Use parallel “first touch” in allocation

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Implementing first touch the easy way

Correct placement by allocating with “first touch”:

Example (First touch allocation)

template <class T> T* pnew(size_t n) {
[...]
char *p = new char[len];

#pragma omp parallel for schedule(static) private(ofs)
for(i=0; i<pages; ++i) {

ofs = static_cast<size_t>(i) « PAGE_BITS;
p[ofs]=0;

}
for(ofs=0; ofs<n; ++ofs) {

new(static_cast<void*>(p+ofs*st)) T ;

// placement new

}
return static_cast<T*>(p);

}

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Implementing first touch the easy way

Correct placement by allocating with “first touch”:

Example (First touch allocation)

template <class T> T* pnew(size_t n) {
[...]
char *p = new char[len];

#pragma omp parallel for schedule(static) private(ofs)
for(i=0; i<pages; ++i) {

ofs = static_cast<size_t>(i) « PAGE_BITS;
p[ofs]=0;

}
for(ofs=0; ofs<n; ++ofs) {

new(static_cast<void*>(p+ofs*st)) T ;
// placement new

}
return static_cast<T*>(p);

}

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Implementing first touch with STL vector s

But we want to do real C++ and use STL, in a user-friendly way.

Solution: Design a NUMA-aware STL allocator

Example (STL NUMA allocator)

template <class T> class NUMA_Allocator {
public: [...]

T* allocate(size_type n, const void *lH=0) {
size_type ofs,len = n*sizeof(T);
char *p = malloc(len);

#pragma omp parallel for schedule(static) private(ofs)
[... same as before ...]

}
void construct (T* p, const T& x) {

new(p) value_type(x);
}
void destroy (T* p) { p->~T(); }

};

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Getting bad performance the easy way

Now we can do

vector<double,NUMA_Allocator<double> > A(20000);

and use A in OpenMP loops and be happy. Or can’t we?

Performance penalties of 1-thread vector triad with respect to
“vanilla” version for out-of-cache data set:

S,op S,it S,op,O S,it,O d,O

Intel V9 IA64 0.50 0.99 0.25 0.28 0.98

Intel V9 EM64T 0.78 0.80 0.64 0.79 1.00

PGI x86_64 0.53 0.90 0.47 0.68 0.79

Pathscale x86_64 0.87 0.87 0.81 0.87 1.00

MIPSPro MIPS 0.78 1.00 0.84 0.95 1.00

Legend: S=STL, op=operator[] , it=iterator , O=OpenMP

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Lessons learned from the high-level approach

Compilers are extremely sensitive to any obstruction

There is only one layer between vector<T>::operator[] and
vector<T>::iterator

STL was designed to expose all necessary code to the compiler,
enabling “vanilla-like” optimization. It seems that this approach
failed.

Should we abandon STL, or even C++, for low-level operations?
Generally speaking, OpenMP is bad for serial performance

Not only in cache, but also for streaming
Some issues with NT stores on x86, but in general?

Should we start from scratch and dump the shared memory
approach altogether?

Are we tackling tomorrow’s performance challenges with
yesterday’s tools?

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Lessons learned from the high-level approach

Compilers are extremely sensitive to any obstruction
There is only one layer between vector<T>::operator[] and
vector<T>::iterator

STL was designed to expose all necessary code to the compiler,
enabling “vanilla-like” optimization. It seems that this approach
failed.

Should we abandon STL, or even C++, for low-level operations?
Generally speaking, OpenMP is bad for serial performance

Not only in cache, but also for streaming
Some issues with NT stores on x86, but in general?

Should we start from scratch and dump the shared memory
approach altogether?

Are we tackling tomorrow’s performance challenges with
yesterday’s tools?

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Lessons learned from the high-level approach

Compilers are extremely sensitive to any obstruction
There is only one layer between vector<T>::operator[] and
vector<T>::iterator

STL was designed to expose all necessary code to the compiler,
enabling “vanilla-like” optimization. It seems that this approach
failed.

Should we abandon STL, or even C++, for low-level operations?
Generally speaking, OpenMP is bad for serial performance

Not only in cache, but also for streaming
Some issues with NT stores on x86, but in general?

Should we start from scratch and dump the shared memory
approach altogether?

Are we tackling tomorrow’s performance challenges with
yesterday’s tools?

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Lessons learned from the high-level approach

Compilers are extremely sensitive to any obstruction
There is only one layer between vector<T>::operator[] and
vector<T>::iterator

STL was designed to expose all necessary code to the compiler,
enabling “vanilla-like” optimization. It seems that this approach
failed.

Should we abandon STL, or even C++, for low-level operations?

Generally speaking, OpenMP is bad for serial performance

Not only in cache, but also for streaming
Some issues with NT stores on x86, but in general?

Should we start from scratch and dump the shared memory
approach altogether?

Are we tackling tomorrow’s performance challenges with
yesterday’s tools?

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Lessons learned from the high-level approach

Compilers are extremely sensitive to any obstruction
There is only one layer between vector<T>::operator[] and
vector<T>::iterator

STL was designed to expose all necessary code to the compiler,
enabling “vanilla-like” optimization. It seems that this approach
failed.

Should we abandon STL, or even C++, for low-level operations?
Generally speaking, OpenMP is bad for serial performance

Not only in cache, but also for streaming
Some issues with NT stores on x86, but in general?

Should we start from scratch and dump the shared memory
approach altogether?

Are we tackling tomorrow’s performance challenges with
yesterday’s tools?

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Lessons learned from the high-level approach

Compilers are extremely sensitive to any obstruction
There is only one layer between vector<T>::operator[] and
vector<T>::iterator

STL was designed to expose all necessary code to the compiler,
enabling “vanilla-like” optimization. It seems that this approach
failed.

Should we abandon STL, or even C++, for low-level operations?
Generally speaking, OpenMP is bad for serial performance

Not only in cache, but also for streaming

Some issues with NT stores on x86, but in general?

Should we start from scratch and dump the shared memory
approach altogether?

Are we tackling tomorrow’s performance challenges with
yesterday’s tools?

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Lessons learned from the high-level approach

Compilers are extremely sensitive to any obstruction
There is only one layer between vector<T>::operator[] and
vector<T>::iterator

STL was designed to expose all necessary code to the compiler,
enabling “vanilla-like” optimization. It seems that this approach
failed.

Should we abandon STL, or even C++, for low-level operations?
Generally speaking, OpenMP is bad for serial performance

Not only in cache, but also for streaming
Some issues with NT stores on x86, but in general?

Should we start from scratch and dump the shared memory
approach altogether?

Are we tackling tomorrow’s performance challenges with
yesterday’s tools?

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Lessons learned from the high-level approach

Compilers are extremely sensitive to any obstruction
There is only one layer between vector<T>::operator[] and
vector<T>::iterator

STL was designed to expose all necessary code to the compiler,
enabling “vanilla-like” optimization. It seems that this approach
failed.

Should we abandon STL, or even C++, for low-level operations?
Generally speaking, OpenMP is bad for serial performance

Not only in cache, but also for streaming
Some issues with NT stores on x86, but in general?

Should we start from scratch and dump the shared memory
approach altogether?

Are we tackling tomorrow’s performance challenges with
yesterday’s tools?

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Lessons learned from the high-level approach

Compilers are extremely sensitive to any obstruction
There is only one layer between vector<T>::operator[] and
vector<T>::iterator

STL was designed to expose all necessary code to the compiler,
enabling “vanilla-like” optimization. It seems that this approach
failed.

Should we abandon STL, or even C++, for low-level operations?
Generally speaking, OpenMP is bad for serial performance

Not only in cache, but also for streaming
Some issues with NT stores on x86, but in general?

Should we start from scratch and dump the shared memory
approach altogether?

Are we tackling tomorrow’s performance challenges with
yesterday’s tools?

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Getting good performance – the hard way

Observation:

The memory wall is not the only problem we are facing. After
algorithmic and data layout changes the mapping of the high level
language to the ISA is an important issue.

Compilers have difficulties to utilize the performance of modern
CPUs. Reasons are:

Still the well-known issue that caches are not transparent with
regard to performance
Developements in modern CPU architectures:

Prefetching
SIMD
Special instructions: e.g. Non temporal stores

General code quality (address calculation, register scheduling)

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Architectural Overview

Intel Prescott AMD Athlon64

Clock speed 3.2 GHz 2.4 GHz

Cacheline length 64(128) Byte 64 Byte

L2 Cache Size 1 MByte 1 MByte

L1 Cache Size 16 kByte 64 Byte

L2 Latency 56 cycles (min 21) 13 cycles (min 11)

L2 Read Bandwidth 23 GB/s 13 GB/s

L2 Write Bandwidth 12 GB/s 12 GB/s

L1 Latency 4 cycles (min 1) 3 cycles (min 2)

L1 Read Bandwidth 46 GB/s 35 GB/s

L1 Write Bandwidth 12 GB/s 35 GB/s

Memory Read Bandwidth 5.8 GB/s 6.1 GB/s

Memory Write Bandwidth 4.1 GB/s 6.1 GB/s

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Memory Hierarchy Cache Bandwidth

10 100 1000
KByte

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

M
B

yt
e/

s

Intel Pentium 4 Prescott
AMD Athlon64 4000+

Cacheread 16 byte loads

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Memory Hierarchy Cache Bandwidth

10 100 1000
KByte

0

5000

10000

15000

20000

25000

30000

35000

40000

M
B

yt
e/

s

Intel Pentium 4 Prescott
AMD Athlon64 4000+

Cacheread 8 byte loads

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Memory Hierarchy Cache Bandwidth

10 100 1000
KByte

0

5000

10000

15000

20000

25000

30000

M
B

yt
e/

s

Intel Pentium 4
AMD Athlon 64

Cachewrite 16 byte stores

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Memory Hierarchy Cache Bandwidth

10 100 1000
KByte

0

5000

10000

15000

20000

25000

30000

35000

40000

M
B

yt
e/

s

AMD Athlon 64
Intel Pentium 4

Cachewrite16 byte stores

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Peak Performance

Pentium 4 Athlon64

Add 2920 Mflops (44.6 %) 2338 Mflops (48.7 %)

23.3 GByte/s 18.7 GByte/s

MultAdd

Add 2

Add 2 var

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Peak Performance

Pentium 4 Athlon64

Add 2920 Mflops (44.6 %) 2338 Mflops (48.7 %)

23.3 GByte/s 18.7 GByte/s

MultAdd 5229 MFlops (81 %) 4153 MFlops (86 %)

20.9 GByte/s 16.1 GByte/s

Add 2

Add 2 var

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Peak Performance

Pentium 4 Athlon64

Add 2920 Mflops (44.6 %) 2338 Mflops (48.7 %)

23.3 GByte/s 18.7 GByte/s

MultAdd 5229 MFlops (81 %) 4153 MFlops (86 %)

20.9 GByte/s 16.1 GByte/s

Add 2 2339 MFlops (36 %) 1187 (24 %)

37.4 GByte/s 19.0 GByte/s

Add 2 var

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Peak Performance

Pentium 4 Athlon64

Add 2920 Mflops (44.6 %) 2338 Mflops (48.7 %)

23.3 GByte/s 18.7 GByte/s

MultAdd 5229 MFlops (81 %) 4153 MFlops (86 %)

20.9 GByte/s 16.1 GByte/s

Add 2 2339 MFlops (36 %) 1187 (24 %)

37.4 GByte/s 19.0 GByte/s

Add 2 var 2454 MFlops (38 %) 2082 MFlops (43.3 %)

39.2 GByte/s 33.3 GByte/s

movdqa xmm1, [x+ecx*8]
movdqa xmm3, [y+ecx*8]
addpd xmm3, xmm1
replaced by
movdqa xmm4, [x+ecx*8]
addpd xmm4, [y+ecx*8]

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Peak Performance: The Code

Example (Peakflop Code snippet)

.loop:
movapd xmm1, [x+ecx*8]
addpd xmm6, xmm0
mulpd xmm1, xmm7
movapd xmm2, [x+ecx*8+16]
addpd xmm5, xmm0
mulpd xmm2, xmm7
movapd xmm3, [x+ecx*8+32]
addpd xmm1, xmm0
mulpd xmm3, xmm7
movapd xmm4, [x+ecx*8+48]
addpd xmm2, xmm0
mulpd xmm4, xmm7
add ecx, 8
cmp ecx,1000
jb .loop

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Intel vs. AMD

Low latency (AMD) against high bandwidth (Intel)

Intel is more sensitive against type of instructions

AMD suffers from low bandwidth L2 Cache connection

For streaming applications the Netburst Architecture is superior

AMD has very good memory connection

Hardware prefetcher works more efficently on the P4

Software prefetch instructions work more efficently on the
Athlon64

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Memcpy: Influence of instruction types

Pentium 4 Athlon64

CISC 2481 MB/s 2001 MB/s

RISC 2424 MB/s 2834 MB/s

MMX 2489 MB/s 2880 MB/s

MMX NT 3737 MB/s 4104 MB/s

MMX NT SW-Prefetch 3964 MB/s 5199 MB/s

SSE NT SW-Prefetch 4012 MB/s 5206 MB/s

SSE2 Block Prefetch 4644 MB/s 6030 MB/s

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Stream Triad: In Memory

Pentium 4 Athlon64

Compiler 4193 MB/s 4533 MB/s (3114 MB/s)

Optimized 4946 MB/s 5626 MB/s

The difference in performance is caused by effective prefetching and
the seperation of prefetching data into cache and doing the actual
computations with storing it back.

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Stream Triad: In Cache

10 100 1000
Dimension

0

5000

10000

15000

20000

25000

30000

35000

M
B

yt
e/

s

Intel Pentium 4
AMD Athlon64
AMD Athlon 64 opt

Stream triad
in cache

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Software Pipelined Loops

0 250 500 750 1000
Length in x dimension

0

1000

2000

3000

4000

5000

M
Fl

op
s/

s C Version dd
Fastest C Version
ASM reuse register
ASM melted pipelines

Itanium 2
Red-Black Gauss-Seidel in Cache

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Can you afford to waste a factor of 2-5?

0 1000 2000 3000
Dimension

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

M
Fl

op
s/

s

Reference C
Non Temporal Moves ASM
Non Temporal Moves with Prefetching ASM
3 Iterations blocked ASM
3 Iterations blocked with Prefetching ASM

Intel Pentium 4 Prescott
Red-Black Gauss-Seidel 2D

Introduction New Paradigm Performance (un)productivity No way out? Analysis Example 1 Example 2 Conclusion

Conclusion

A gap is opening between hardware techniques and the
capabilities of compilers

Modern CPUs often are intransparent to the programmer

Much performance is wasted by an inappropriate usage of the
instruction set

Points for discussion

There is obviously a strong need for a tighter integration of ISA and
Software. In addition to that the implementation of the ISA should be
more transparent and reliable.

What can be done to solve that problem on hardware and software
side?

	Introduction
	Going parallel as a popular pastime
	The OpenMP story

	Problems with using new paradigms --- a Case Study
	The C++/OpenMP/ccNUMA mess
	Implementing first touch the easy way

	Performance (un)productivity
	Getting bad performance the easy way
	Lessons learned from the high-level approach

	No way out?
	Getting good performance --- the hard way

	Machine Analysis
	Example 1: Getting Memory Bandwidth
	Memcpy
	Stream Triad Benchmark

	Example 2: Red-Black Gauss-Seidel Smoother
	Itanium2: Software Pipelined loops

	Conclusion

