
C++ programming techniques for
High Performance Computing on systems with
non-uniform memory access using OpenMP

Holger Stengel, diploma thesis supervised by Dr. Georg Hager, RRZE

Abstract

This work develops programming methodologies for
C++ that respect the need for optimal NUMA page
placement in OpenMP code. An overloaded new[]

operator is presented that guarantees proper place-
ment for arrays of objects. Along the same lines, the
STL vector<> class can be endowed with an alloca-
tor class argument that serves the same purpose. The
disadvantages of std::vector<> in terms of perfor-
mance and usability in a NUMA setting are circum-
vented by developing a special numa_vector<> con-
tainer which is compatible with all STL algorithms.
Finally, a container with a segmented, padded data
structure, including appropriate iterators, allows one
to make generic algorithms aware of data segmenta-
tion of any kind (including NUMA) without sacrificing
performance.

ccNUMA

In High Performance Computing (HPC), shared-
memory systems with cache coherent non-uniform
memory access (ccNUMA) characteristics are becom-
ing more common:

Memory

CC C

CC

P P PP

C

Memory

C

C

Fig. 1: Two-socket Opteron node with ccNUMA
via HyperTransport and two locality do-
mains

Advantages:

•Memory bandwidth scales with number of locality
domains

• Low cost

Challenges:

• Cache coherence traffic has larger latencies than
on UMA

• Non-local access has lower bandwidth and larger
latency

• Improper page placement can lead to bandwidth
bottlenecks

Vector Triad

The performance of the parallel vector triad is used to
pinpoint bandwidth-related issues [3]:

for(int j = 1; j < NITER; ++j) {

#pragma omp parallel for

for(int i = 0; i < N; ++i) {

a[i] = b[i] + c[i] * d[i];

}

if(obscure) dummy(a,b,c,d);

}

Properties:

• Code balance is 2 Words/Flop without RFO and
2.5 Words/Flop with RFO. This is well beyond the
machine balance of any current microprocessor
(0.05–0.2 Words/Flop).

• Triad shows a rich set of performance features on
different architectures.

The current OpenMP [1] standard has no elements to
implement locality constraints. Moreover, OS activi-
ties can fill LDs (e. g. with buffer space) and prevent
applications from using local memory.

Does the vector triad performance scale with core
count for large N?

[1] http://www.openmp.org

Page Placement

Distributing data across locality domains (LDs) in a
way that enables concurrent, local access makes a
huge difference for memory-bound codes:

10
2

10
3

10
4

10
5

10
6

10
7

N

0

500

1000

1500

2000

M
Fl

op
/s

1T non-local
1T local
2T no placement
2T w/ placement

Fig. 2: Performance penalty for vector triad: Lo-
cality and bandwidth problems (HP DL585)

How can proper placement be accomplished?

The Golden Rule of ccNUMA:

A memory page is mapped to the locality domain of
the processor core that touches it, i. e. writes to it,
first (first touch policy).

Solution in standard languages (Fortran, C): Exploit
first-touch policy on data initialization:

double *a=new double[N], *b = ...;

#pragma omp parallel for \

schedule(static)

for(int i = 0; i < N; ++i)

a[i]=b[i]=c[i]=d[i]=1.0;

for(int j = 1; j < NITER; ++j) {

#pragma omp parallel for \

schedule(static)

for(int i = 0; i < N; ++i)

a[i]=b[i]+c[i]*d[i];

if(obscure) dummy(a,b,c,d);

}

The static schedule is vital to control the mapping of
threads to iterations. A possible chunk size should
encompass whole pages if possible.

Is there a problem with NUMA placement in C++?

NUMA-Unfriendly C++?

Arrays of objects

are constructed sequentially by design, leading to page
placement in a single LD if the ctor initializes member
data:

class D {

double d;

public:

D() : d(0) {}

};

D *array = new D[10000000];

STL vector<> containers

initialize data by calling uninitialized_fill() or
similar:

std::vector<double> v(10000000);

In both cases, there is no way to influence the con-
struction process in a similar way as with standard C
arrays, i. e. by inserting parallelization pragmas.

Possible solutions:

•Overload operator new[] for each class

• Use optional allocator template argument for
std::vector<> [4]

•Design high-performance, configurable NUMA-
aware container

• Account for locality constraints via segmented
data structures

[2] G. Hager, G. Wellein: Concepts of High Perfor-
mance Computing (Regionales Rechenzentrum,
Erlangen), 2007.

Overloading operator new[]

Responsible for allocating raw dynamic storage; ob-
jects are constructed elsewhere using placement new.
Example for class D:

void* D::operator new[](size_t n)

throw(std::bad_alloc) {

void *m;

if(!(m=malloc(n))

throw std::bad_alloc;

char *p = static_cast<char*>(m);

#pragma omp parallel for \

schedule(static)

for(int i=0; i < n ; ++i) {

// non-destructive f.t.

char a = p[i];

p[i]=a;

}

return m;

}

10
2

10
3

10
4

10
5

10
6

10
7

N

0

200

400

600

800

1000

M
Fl

op
/s

1T new double
1T ::new D
1T D::new D
2T ::new D
2T D::new D
4T ::new D
4T D::new D

Fig. 3: Benefits of overloaded operator new[]

for parallel vector triad performance using
class D

Disadvantage: Dynamic (heap) storage referenced by
objects is not first-touched correctly — placement new
call is not under programmer’s influence.

Allocator Template for
std::vector<>

Allocator template arguments for STL containers pro-
vide a way of customizing raw memory allocation:

std::vector<Type,Allocator<Type> > v(N);

Most important methods of custom allocators:

• allocate() allocates raw memory, including
NUMA placement (see above)

• construct() uses placement new to construct
one object at a certain address

• destroy() calls the dtor of an object at certain
address

• deallocate() frees raw memory

10
2

10
3

10
4

10
5

10
6

10
7

N

0

500

1000

1500

M
Fl

op
/s

1T new double
1T vector
1T vector numa_allocator
2T vector
2T vector numa_allocator
4T vector
4T vector numa_allocator

Fig. 4: Benefits of customized NUMA allocator for
std::vector<>

Disadvantages

• As with overloaded operator new[], objects with
dynamic data are problematic because the loop that
calls numa_allocator::construct() is inacces-
sible.

• std::vector<> has too many NUMA-unsuitable
features like capacity vs. size

[3] W. Schönauer: Scientific Supercomputing - Ar-
chitecture and Use of Shared and Distributed
Memory Parallel Computers (self-edition, Karlsru-
he), 2000.

A Fully NUMA-aware Container

10
2

10
3

10
4

10
5

10
6

10
7

N

0

1000

2000

3000

M
Fl

op
/s

1T new double
2T new double
4T new double
1T vector numa_allocator
1T numa_vector
2T vector numa_allocator
2T numa_vector
4T vector numa_allocator
4T numa_vector

Fig. 5: numa vector<> provides high speed
operator[] and proper page placement

Benefits of numa vector<>

• Supports allocator concept

•More efficient operator[] (compared to
std::vector<>)

• Supports iterator concept for compatibility with
STL algoritms

• Includes valarray<> features

• Provides NUMA-aware resize() function

•Operators can take arguments with different allo-
cators

A Segmented Container

Memory is naturally segmented on NUMA and multi-
core machines. Segmented memory creates memory
blocks shared between threads.

• Solution: Segmentation-aware container with con-
figurable padding prevents boundary effects

• But: Bad performance of overloaded operator++

int l

T* p
vector<segm<T> >

PaddingPadding

Fig. 6: Data layout of seg array<>

• Introduction of segmented iterator (local and seg-
ment iterator)

• Traits class supports dispatching algorithms [5]

10
2

10
3

10
4

10
5

10
6

10
7

N

0

1000

2000

3000

M
Fl

op
/s

1T new double
1T 1 segment (++)
2T new double
4T new double
2T 2 segments
1T 1 segment
4T 4 segments

Fig. 7: seg array<> allows low level algorithms
with optimal performance

Disadvantage: Issues with alignment, prefetching and
memory consumption.

Conclusion

Correct page placement is essential for the perfor-
mance of memory-bound parallel algorithms on cc-
NUMA architectures. We have presented differ-
ent methods to achieve NUMA placement semi-
automatically in a C++ context. Optimized contain-
ers were provided that outperform std::vector<> in
several ways.

[4] C. Terboven, D. an Mey: OpenMP and C++
Proceedings of IWOMP2006 - International
Workshop on OpenMP, Reims, France, June 12-
15, 2006.

[5] M. H. Austern: Segmented Iterators and Hierar-
chical Algorithms (in M. Jazayeri, R. G. K. Loos,
and D. R. Musser (ed.), Generic programming:
International Seminar on Generic Programming,
Castle Dagstuhl, Springer), 2001.


