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Abstract

Processor and system architectures that feature multiple memory con-
trollers and/or ccNUMA characteristics are prone to show bottlenecks and
erratic performance numbers on scientific codes. Although cache thrash-
ing, aliasing conflicts, and ccNUMA locality and contention problems are
well known for many types of systems, they take on peculiar forms on
the new Sun UltraSPARC T2 and T2+ processors, which we use here as
prototypical multi-core designs. We analyze performance patterns in low-
level and application benchmarks and put some emphasis on a comparison
of performance features between T2 and its successor. Furthermore we
show ways to circumvent bottlenecks by careful data layout, placement
and padding.

1 The Sun UltraSPARC T2 and T2+ processors

Trading high single core performance for a highly parallel single chip architec-
ture is the basic idea of T2 as can be seen in Fig. 1: Eight simple in-order
SPARC cores (running at 1.2 or 1.4 GHz) are connected to a shared, banked
L2 cache and four independently operating dual channel FB-DIMM memory
controllers through a non-blocking switch, thereby providing UMA access char-
acteristics with scalable bandwidth. Such features were previously only available
in shared-memory vector computers like the NEC SX series. To overcome the
restrictions of in-order architectures and long memory latencies, each core is able
to support up to eight threads, i.e. there are register sets, instruction pointers
etc. to accommodate eight different machine states. There are two integer, two
memory and one floating point pipeline per core. Although all eight threads
can be interleaved across the floating point and memory pipes, each integer
pipe is hardwired to a group of four threads. The CPU can switch between the
threads in a group on a cycle-by-cycle basis, but only one thread per group is
simultaneously active at any time. If a thread has to wait for resources like,
e.g., memory references, it will be put in an inactive state until the resources
become available which allows for effective latency hiding [1] but restricts each
thread to a single outstanding cache miss. Running more than a single thread
per core is therefore mandatory for most applications, and thread placement
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Figure 1: Block diagram of the Sun UltraSPARC T2 processor (see text for
details). Picture by courtesy of Sun Microsystems.

(“pinning”) must be implemented. This can be done with the standard So-
laris processor_bind() system call or, more conveniently but only available
for OpenMP, using the SUNW_MP_PROCBIND environment variable.

Each memory controller is associated with two L2 banks. A very simple
scheme is employed to map addresses to controllers and banks: Bits 8 and 7 of
the physical memory address select the memory controller to use, while bit 6
determines the L2 bank [1, 2]. Consecutive 64-byte cache lines are thus served
in turn by consecutive cache banks and memory controllers. Due to the fact
that typical page sizes are at least 4 kB the distinction between physical and
virtual addresses is of no importance here.

The aggregated nominal main memory bandwidth of 42 GB/s (read) and
21 GB/s (write) for a single socket is far ahead of most other general purpose
CPUs and topped only by the NEC SX-8 vector series. Since there is only a
single floating point unit (performing MULT or ADD operations) per core, the
system balance of approximately 4 bytes/flop (assuming read) is the same as
for the NEC SX-8 vector processor. In our experience, as shown in Sect. 2.1,
only about one third of the theoretical bandwidth can actually be measured.

Recently, Sun Microsystems has released the UltraSPARC T2+ eight-core
processor. With its four built-in coherence links (6.4 GB/s each per direction), it
is designed to be used in four- and two-socket nodes (see Fig. 2 for a schematic
layout of the latter). Due to the ccNUMA access characteristics, care must
be taken to employ proper first-touch page placement in shared-memory par-
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Figure 2: Architecture of a Sun UltraSPARC T2+ system with eight cores per
socket and two ccNUMA locality domains. Each of the four coherence links can
transport up to 6.4 GB/s per direction.

allel codes and the system must be configured accordingly1. As each processor
chip has only two built-in memory controllers, the overall theoretical memory
bandwidth in a two-socket system is the same as in a single-socket T2 configu-
ration. For purely memory-bound code like the low-level STREAM benchmark
one would thus expect only minor improvements due to the doubled number
of outstanding misses. This will be discussed below. Other characteristics like
peak performance or outstanding misses per core are the same as for T2.

Beyond the requirements of the tests presented here one should be aware that
the T2 chip also comprises on-chip PCIe-x8 and 10 Gb Ethernet connections as
well as a cryptographic coprocessor. These features are reminiscent of the actual
concept of the chip: It is geared towards commercial, database and typical server
workloads. Consequently, one should not expect future versions to improve
on HPC-relevant weaknesses of its design. The T2+ variant lacks the on-chip
Ethernet hardware due to the additional space requirements for coherence logic.

2 Benchmarks and optimizations

This section describes the benchmarks that were used to pinpoint aliasing ef-
fects, performance results and optimization techniques. Measurements were
performed on a Sun SPARC Enterprise T5120 system at RRZE and a pre-
production SPARC Enterprise T5240 at Sun Microsystems, both equipped with
PC2-5300 FBDIMM modules and running at 1.2 GHz. The latter system uses
a T2+ processor in release 1.1; see Sect. 2.1.2 for a discussion.

The pre-production server was installed shortly before the official release of

1This means that 1GB interleaving should be used so that successive 1GB chunks of

physical memory addresses are assigned to alternating locality domains. Whenever a physical

page gets mapped to a logical address, it is taken from the pool in the local domain, if possible.
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the platform. Results may change slightly on production hardware, but we do
not expect any major changes.

2.1 McCalpin STREAM

The STREAM benchmark [3] is a widely used code to assess the memory
bandwidth capabilities of a single processor or shared memory computer sys-
tem. It performs OpenMP-parallel copy (C(:)=A(:)), scale (B(:)=s*C(:)), add
(C(:)=A(:)+B(:)) and triad (A(:)=B(:)+s*C(:)) operations on double preci-
sion (DP) vectors A, B, and C at an array length that is large compared to all
cache sizes. The standard Fortran code allows some variations as to how the
data is allocated. If the arrays are put into a COMMON block, a configurable
offset (“padding”) can be inserted so that their base addresses vary with the
offset in a defined way:

PARAMETER (N=20000000,offset=0, &

ndim=N+offset,ntimes=10)

DOUBLE PRECISION a(ndim),b(ndim),c(ndim)

COMMON a,b,c

Performance results are reported as bandwidth numbers (GB/s). The required
cache line read for ownership (RFO) on the store stream is not counted, so the
actual data transfer bandwidth for, e.g., STREAM triad (copy) is a factor of
4/3 (3/2) larger than the reported number (some architectures provide means
to bypass the cache on write misses or claim ownership of a cache line without
a prior read).

Fig. 3 (lower panel) shows STREAM triad performance on 8, 16, 32 and 64
threads for T2 as well as 128-thread data for T2+ versus the offset parameter
at an array size of N = 225.

2.1.1 STREAM on the T2

On the T2 there is a striking periodicity of 64 for 16 threads and above, and
the 32 and 64 thread data shows an additional, albeit weaker variation with
a period of 32. For this simple bandwidth-bound benchmark it does not seem
possible to draw advantage from the T2’s large memory bandwidth. The reasons
for this shortcoming are as yet unclear; the processor does definitely not suffer
from a lack of outstanding references as peak bandwidth does not change when
going from 32 to 64 threads. It has been shown, however, that kernels which are
almost exclusively dominated by loads can achieve somewhat larger bandwidths
[4], which leads to the conclusion that at least part of the problem is caused
by overhead for bidirectional transfers. This conjecture is substantiated by the
significantly lower STREAM copy performance (upper panel in Fig. 3).

Performance starts off on a very low level at zero offset and returns to the
same level at an offset of 64 which corresponds to 512 bytes. Considering that
the array length is a power of two, the 512-byte periodicity reflects perfectly
the mapping between memory addresses and memory controllers which is based
on bits 8 and 7. Therefore, the starting addresses of arrays A, B, and C are
mapped to the same memory controller if the offset is zero or a multiple of 64
DP words. This is even true for each single OpenMP chunk, which means that
all threads hit exactly one memory controller at a time. As the loop count
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Figure 3: Lower panel: Parallel STREAM triad bandwidth at N = 225 and sta-
tic OpenMP scheduling (no chunksize) for thread counts between 8 and 64 on T2
and 128 on T2+ versus array offset. Upper panel: STREAM copy bandwidth
for 64 (128) threads on T2 (T2+). Threads were distributed equidistantly across
cores.

proceeds, successive controllers are of course used in turn, but not concurrently.
At odd multiples of 32, the situation is improved because bit 8 is different for
array B’s base and thus two controllers are addressed, leading to an expected
performance improvement of 100 %. The fact that 16 threads seem to suffer less
under such conditions might be attributed to congestion effects.

Finally, at “skewed” offsets the addresses of different streams in one thread
and also between threads ensure a rather uniform utilization of all four memory
controllers. Surprisingly, this condition seems to hold in an optimal way for
only about half of all offsets.

2.1.2 STREAM on the T2+

The STREAM performance data for T2+ displays a completely different be-
haviour (128-thread data in Fig. 3). For release 1.1 of this processor, Sun Mi-
crosystems decided to change the prioritization of read vs. write accesses within
the memory interface which led to different access characteristics in comparison
to T2 [2], but we have confirmed (using low-level code which uses no write opera-
tions at all) that this change has no influence on alignment issues. Nevertheless,
the performance variations with varying array offset have since vanished (apart
from minor noise). One must emphasize, however, that all currently available
systems using the T2 still show the effect, and we are not aware of any plans to
release an update similar to the T2+. In what follows, it will consequently be re-
garded as a major optimization issue. For the T2+ we will present performance
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Figure 4: Parameters for alignments and offsets of array segments in the
seg array data structure.

data without any special alignment provisions, unless otherwise noted.
Comparing maximum achievable performance, the two-socket T2+ system

shows between 25 % (for triad) and 50 % (for copy) bandwidth improvement
versus T2. Also, taking the real data transfer due to the cache line RFO into ac-
count one must conclude that the bandwidth advantage for the read-dominated
triad has disappeared; STREAM copy is slightly faster. The reasons for this
change are unknown as of now.

2.2 Vector triad

One could argue that using an array length of 225 and powers of two for thread
counts on STREAM measurements are bound to provoke aliasing conflicts. Even
on the T2+, which does not suffer from aliasing problems on memory access,
the ccNUMA system architecture forces the programmer to employ correct first-
touch memory placement. In this case it is useful to know the characteristics
of the coherent links between the sockets for judging the influence of non-local
accesses. In order to fathom aliasing and locality effects on both architectures,
we turn to a more flexible framework for bandwidth assessment and use a self-
developed vector triad code. In the subsequent sections, a 2D relaxation solver
and finally an implementation of the lattice-Boltzmann algorithm will be used to
implement the developed optimizations in a more application-centered setting.

The vector triad is quite similar to the STREAM triad benchmark but fea-
tures three instead of two read streams (A(:)=B(:)+C(:)*D(:))[5]. We have de-
veloped a flexible C++ framework in which all arrays and also OpenMP chunks
can be aligned on definite address boundaries and then shifted by configurable
amounts (see Fig. 4). The array base is aligned to some boundary by allocating
memory using the standard posix_memalign() libc function (leftmost border
in Fig. 4). The data is then divided into segments, not necessarily of equal
size, and padding is inserted in order to align each segment except the first to
another specific boundary (arrows in Fig. 4). After that, a constant amount of
additional padding (“shift”) is added before each segment and finally the whole
data block is shifted by some offset. Thereby it is, e.g., possible to align an
array to a memory page and then shift a segment that would be assigned to
thread t by t · 128 bytes.

Although the segmented data structure can be equipped with a standard
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bidirectional iterator, its use is discouraged in loop kernels because of the re-
quired conditional branches in, e.g., operator++(). Instead, low-level loops
are handled by a C++ programming technique called segmented iterators [6, 7]
which enables the design of STL-style generic algorithms with performance char-
acteristics equivalent to standard C or Fortran versions. OpenMP parallelization
directives are applied to the loop over all segments, and a separate function is
called to handle a single segment:

seg_array a,b,c,d; // parameters omitted

...

typedef seg_array::iterator it;

typedef seg_array::local_iterator lit;

typedef seg_array::segment_iterator sit;

sit ai = a.begin().segment();

// ... same for bi, ci, di

#pragma omp parallel for schedule(...)

for(int s=0; s < N_SEGMENTS; s++) {

lit alb = (ai+s)->begin();

lit ale = (ai+s)->end();

lit blb = (bi+s)->begin();

...

triad(alb, blb, clb, dlb, ale);

}

The triad() function performs the actual low-level array operations and is
actually a generic dispatching algorithm that can handle both segmented and
local iterators. Details about the template mechanism and its general use for
high performance kernels are omitted for brevity and will be published elsewhere
[8].

Although C++ is used for administrative purposes, the (purely serial) inner
benchmark kernel can be written in C or Fortran and even compiled separately
without OpenMP, so as to produce the possibly most efficient machine code. In
our implementation of the segmented triad we choose the number of segments
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equal to the number of OpenMP threads and do manual scheduling with segment
sizes of ⌊N/t⌋+1 and ⌊N/t⌋, respectively. The segmented array class constructor
takes care of optimal ccNUMA placement as well by employing parallel first
touch on the allocated memory segments. It is even possible to use the container
for objects with dynamic content by utilizing placement new in a parallel loop
across all container objects.

2.2.1 Vector triad and aliasing conflicts on T2

For the T2 processor, Fig. 5 shows vector triad performance in GB/s versus
array length, using different alignment constraints. The interval on the N axis
was chosen to clearly show essential features without superimposed small-N
startup effects. In the “plain” case, no special arrangements were made and
arrays were allocated as continuous blocks using malloc(). This results in
very erratic performance behaviour with a periodicity of 64 DP words, showing
“hard” upper and lower limits at roughly 16 and 3.7 GB/s, respectively. Aligning
all arrays to page boundaries (8 kB), one can force an especially bad situation
that corresponds to the zero offset case for the STREAM triad (bottom line).
On the other hand, by choosing suitable offsets for B, C, and D (128, 256 and
384 bytes, respectively, in the optimal case), one can achieve a nearly perfectly
balanced utilization of all four memory controllers that causes no breakdowns at
all (top line). In this case it is not even required to use padding and shifts (see
Fig. 4) for the segments as the large number of streams (three for reading, one
for writing) ensures that even the single thread features optimal access patterns
if the offset is chosen correctly.

Although of minor importance here, padding to 16-byte boundaries can
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greatly improve performance of memory-bound kernels on x86 architectures.
Current x86 designs like AMD Opteron and Intel Xeon (Netburst as well as
Core2 architectures) feature a non-temporal store in the SSE2 instruction set
extension that writes a complete 16-byte wide SSE register directly to memory
without the need for RFO on a write miss (“cache bypass”). Using this instruc-
tion in a memory-bound streaming loop kernel leads to improved performance,
but the store addresses must all be multiples of 162. In cases where it is not
possible to achieve this simply by choosing an appropriate OpenMP chunk size,
manual alignment of OpenMP chunks can be used. Moreover, aliasing effects
as described above for the UltraSPARC T2 processor can also be observed on
standard x86 systems, albeit at a much lesser extent [8].

The performance overhead incurred by segmented iterators is negligible even
for tight loops like the vector triad. Fig. 6 shows a comparison between plain
OpenMP and segmented triad performance with 64 threads. Optimal alignment
was chosen in the latter case. Obviously, the cost of starting a parallel region is
clearly dominating, which is not surprising since the data distribution (segmen-
tation, first touch placement) has already been completed on array allocation
and the segmented iterators have been designed to show pointer performance in
inner kernels. See the next section for a discussion of OpenMP overhead in the
multi-socket T2+ configuration.

2.2.2 Vector triad performance and ccNUMA characteristics on

T2+

Like any other ccNUMA-type system, the two-socket T2+ node (Fig. 2) shows
the typical characteristics of such architectures: Non-local accesses across the
coherent links suffer from bandwidth and latency penalties, and severe memory
bus contention can occur if pages are accessed by two sockets concurrently.
Although correct page placement by first touch (or other means like system-
dependent libraries) can ameliorate such effects in many cases, this is not always
possible and it is important to know the characteristics of the system under
“unfortunate” conditions. Fig. 7 shows results for the vector triad with 64 and
128 threads on the T2+ (T2 data with optimal alignment and 64 threads is
included for reference). The following observations are worth noting:

• With 64 threads on a single socket, T2+ is able to achieve about 70 % of
the saturation bandwidth on T2, although the latter features twice the
number of memory controllers. As shown previously, this cannot be a
consequence of the increased number of outstanding misses but must be
attributed to other optimizations in the memory interface.

• Unfortunately, saturation bandwidth does not scale perfectly across local-
ity domains, and there are strong fluctuations whenever both domains are
used. This leads to a mere 20 %–25 % improvement in overall system band-
width compared to T2. The fluctuations cannot be removed by any choice
of alignment or padding and will also be present on more high-level codes
(see below). However, data that was obtained on a single socket always
shows very smooth behaviour. See Sect. 2.3.2 for further discussion.

2The latest AMD Opteron implementation called “Barcelona” and its relatives even provide

a scalar non-temporal store instruction, but this has not been adopted by Intel so far.
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Figure 7: OpenMP startup overhead and locality/contention effects on Ultra-
SPARC T2+, demonstrated with the vector triad. In the 64 threads case,
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thread data on T2 with optimal alignment and 8-thread data for a two-socket
AMD Opteron system (see text for details) is included for reference.

• Running 64 threads on one socket while all memory pages are placed
into the remote locality domain (“nonlocal” data in Fig. 7) shows a 20 %
bandwidth penalty for large N . Not surprisingly, when using 128 threads
on the same data performance saturates at the same level. This shows,
as in any other ccNUMA architecture, that a fast inter-domain network
alone is not sufficient to avoid memory bus contention effects.

• Generally, the L2 cache is too small to have any significant impact on
small-N performance for both systems (4 MB and 8 MB cache size limits
are shown for reference in Fig. 7). The reason is that OpenMP parallel
region startup overhead dominates for small N . Comparing the 64-thread
data on two sockets (2S) with 128 threads we conclude that adding more
threads adds to startup overhead proportionally. Moreover, startup is con-
siderably faster when all threads in a team are located on the same socket
(see 64-thread data on one socket vs. two sockets). This is completely
in line with experience from standard x86-based multi-core multi-socket
systems.

For reference, vector triad performance for eight threads on a two-socket AMD
Opteron 2350 system (2 GHz “Barcelona” quad-cores, 512 kB L2 per core, 2 MB
shared L3 per socket) is also shown in Fig. 7. Note that non-temporal stores
were not used here and would further improve memory bandwidth by about 20 %
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for large N . At small N (in cache), eight Opteron cores achieve an aggregated
triad bandwidth of > 90 GB/s.

Although those low-level benchmarks show that memory performance can
be quite competitive on T2 and T2+ systems, they also reveal one of the
weaknesses of trading single-core performance for massive thread parallelism:
OpenMP startup overhead becomes an important factor to consider if the num-
ber of threads gets large. Dynamic thread number adjustment should thus be
considered but bears the potential for new complexities due to the required
modifications to thread/process pinning (even more so on the ccNUMA-based
T2+ nodes).

2.3 2D relaxation solver

For the vector triad, solving the aliasing problems on the UltraSPARC T2 pro-
cessor merely required a correct choice of the offset between the four differ-
ent data streams. There are cases, however, where this will not suffice. This
happens, e.g., when the number of concurrent load/store streams is not large
enough to address all memory controllers concurrently with a single thread. As
an example and an intermediate step towards more complex applications we
consider a simple 2D Jacobian heat equation solver using a five-point stencil on
a quadratic N × N domain:

#pragma omp parallel for schedule(...)

for(int i=1; i < N-1; i++) {

for(int j=1; j < N-1; j++)

dest[i][j] = (source[i-1][j]

+ source[i+1][j]

+ source[i][j-1]

+ source[i][j+1])*0.25;

}

With four loads, one store and four floating-point operations, this kernel has an
application balance (ratio of bytes loaded or stored vs. flops) of 10 bytes/flop,
much smaller than the vector triad from the previous section (16 bytes/flop).
However, three of the four source operands needed at the current index can be
obtained from cache or registers, given that the amount of cache available per
thread is large enough to accommodate at least two successive rows. If this
condition is fulfilled, the actual data transfer to and from memory amounts to
only 4 bytes/flop (6 bytes/flop with RFO). Comparing with the achievable T2
STREAM copy bandwidth (Fig. 3) of roughly 18 GB/s (including RFO) one
should expect a performance of about 3 GF/s, which corresponds to 750 million
lattice site updates per second (MLUPs/s).

Implementing the segmented iterator technique is straightforward and is
only used here to enforce the desired alignment constraints: Each source and
destination row is a separate segment which is subject to the alignment options
described in Sect. 2.2. The parallel OpenMP loop runs over rows so that schedul-
ing can be done in the standard way. The low-level kernel is parametrized with
iterators pointing to the three current source rows and the destination row (any
template syntax is again omitted):

typedef seg_array::iterator it;

11



typedef seg_array::local_iterator lit;

typedef seg_array::segment_iterator sit;

sit si = source.begin().segment();

sit di = dest.begin().segment();

#pragma omp parallel for schedule(...)

for(int i=1; i < N-1; i++) {

lit dl = (di + i)->begin();

lit sa = (si+i-1)->begin();

lit sb = (si+i-1)->begin();

lit sl = (si + i)->begin();

relax_line(dl, sa, sb, sl, N);

}

The relax line() function is again purely serial:

void relax_line(lit &dl, lit &sa,

lit &sb, lit &sl, int N){

for(int j=1; j < N-1; j++)

dl[j] = (sa[j] + sb[j]

+ sl[j-1] + sl[j+1])*0.25;

}

In a 3D formulation, two additional arguments (rows) to relax_line() would
be required. The number of segments equals the number of rows N and is hence
not directly connected to the number of threads t.

2.3.1 Relaxation solver and alignment optimization on T2

Fig. 8 shows performance results on UltraSPARC T2 in MLUPs/s for up to 64
threads using the most optimal set of alignment parameters:

• Each segment, i.e. each row, is aligned to a 512 byte boundary using
appropriate padding.

• By using shift=128, the base addresses of successive segments are shifted
versus each other so as to address different controllers.

• As destination row i can only be updated by reading source row i+1 first,
there is a natural offset between read and write streams and no further
provisions are required to make sure that they address different controllers
if shift=128.

• An OpenMP schedule of “static,1” (round robin) has to be used for op-
timal performance. This is because the 4 MB L2 cache of the processor
is too small to accommodate a sufficient number of rows when using 64
threads if the addresses are too far apart, i.e. if the domain is too large (see
also the comparison with T2+ below for some more discussion regarding
this point). Certainly, this problem could easily be resolved by employing
spatial blocking.

Note that these parameters are the same for all problem sizes and can be
obtained by analyzing the data access properties of the loop kernel, together
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Figure 8: Performance and scaling of 2D heat equation relaxation solver versus
problem size with optimal alignment and “static,1” scheduling on UltraSPARC
T2. See text for parameters. “Plain” data with no alignment optimizations is
shown for reference.

with some knowledge about the mapping between addresses and memory con-
trollers. No “trial and error” is required. The maximum performance of about
600 MLUPs/s is just 20 % below expectations from STREAM copy bandwidth.

For reference, 64-thread data with no optimizations is included. The typical
periodicity of 64 or 32 versus N is clearly visible in the latter case. The residual
“jitter” on the optimized data, especially for large thread counts, is due to the
number of rows not being a multiple of the number of threads. This effect can
be expected to become more pronounced in the 3D case and will be discussed
in Sect. 2.4 on lattice-Boltzmann.

2.3.2 Relaxation solver on T2+

Fig. 9 shows a performance comparison between T2 (using optimal alignment as
described above) and T2+ for a single socket using 64 threads in all cases. The
characteristic performance drop on T2 at N ≈ 6000 for static,1 and N ≈ 3000
for static scheduling results from the L2 cache being too small to hold two
successive rows of the read stream, as mentioned above. However, the T2+
data for static,1 scheduling does not show this drop at all. One may thus
conjecture that there has been some change in the T2+ cache organization, but
this information is not available from Sun.

In Fig. 10 we present two-socket T2+ performance data. Obviously, the small
cache size per thread starts to show very early when all 128 threads are used, so
that 64 threads with static scheduling are best to use at small to intermediate
problem sizes. For N & 8000, however, 64- and 128-thread performance with
static scheduling coincide, as could be expected from the low-level bandwidth
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Figure 9: Single socket Performance comparison between UltraSPARC T2 (op-
timal alignment, dashed) and T2+ (solid) for the relaxation solver benchmark.

measurements shown earlier.
Interestingly, in contrast to the situation on a single socket, static scheduling

yields better performance for intermediate N . In order to identify a possible
reason for this, we removed the write operation from the relaxation iteration.
The result is shown in the inset of Fig. 10 and confirms that the mediocre
performance, strong fluctuations and characteristic “jumps” up to N ≈ 8000
are a consequence of write traffic. Whether the corresponding increase in co-
herence (snoop) activity or ccNUMA boundary effects are responsible for the
performance characteristics can not be answered as of today; a more thorough
investigation, possibly using hardware performance counters, will be conducted.
It is also worth noting that at large N & 8000, round robin scheduling on 128
threads performs best.

2.4 Lattice-Boltzmann algorithm (LBM)

The advantage of using a special data structure to address alignment problems
is its generality and applicability to non-regular problems (e.g., segments of
different size). It is, however, in some cases possible to circumvent aliasing
effects just by choosing the right data layout. As an example we consider a
lattice-Boltzmann benchmark that has been developed out of a production code
in order to study various optimizations [9]. For these tests we use a 3D model
with 19 distribution functions (D3Q19) on a cubic domain with two disjoint grids
(or “toggle arrays”). There is a choice as to which data layout to employ for the
cartesian array holding the distribution functions. On cache-based architectures
the propagation-optimized “IJKv” data layout, often referred to as “structure
of arrays”, is usually the best choice where I, J and K are cartesian coordinates
and v denotes the distribution function index. The computational kernel using
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Figure 10: Relaxation solver performance on UltraSPARC T2 on 64 (2 sockets)
and 128 threads with OpenMP static and static,1 scheduling,respectively. Inset:
Synthetic benchmark with write operations removed.

this layout is sketched in Fig. 11. Evidently, the 19 read and 19 write streams
are traversed with unit stride in this case.

2.4.1 LBM on the T2

Judging from the achievable STREAM copy memory bandwidth (≈18 GB/s
including RFO) and the required load/store traffic for a single lattice site update
(456 bytes including RFO), one would expect an LBM performance of roughly
40 MLUPs/s . These kinds of estimates usually give good approximations for
standard multi-core architectures [10] if the kernel is really memory-bound.

Fig. 12 shows performance results in MLUPs/s for LBM on a cubic domain
of extent N3 for the standard IJKv layout as well as for an alternative IvJK
layout. Obviously the latter choice yields twice the performance than IJKv and
also smoother behaviour over a wide range of domain sizes. As the loop nest
is parallelized on the outer level, the fortunate number of 19 distribution func-
tions leads to an automatic skew between streams when doing the 19 neighbour
updates. The large number of concurrent stride-1 write streams is of course
instrumental in achieving this effect.

There are two residual peculiarities worth noting. First, if the 1D domain
size is a multiple of 64 (minus two boundary layers), the well-known cache
thrashing effects are ruinous. This could be eliminated by padding the first
array dimension. Second, the sawtooth-like performance pattern is a “modulo
effect” which emerges from N not being a multiple of the number of threads. A
simple way to remove the pattern is to coalesce several outer loop levels in order
to lengthen the OpenMP parallel loop. Results for up to 64 threads and two-
way coalescing are also shown in Fig. 12 and corroborate the call for extensions
of the OpenMP standard towards more flexible options for parallel execution of
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real*8 f(0:N+1,0:N+1,0:N+1,0:18,0:1)

logical fluidCell(1:N,1:N,1:N)

real*8 dens, ne, ...

!$OMP PARALLEL DO PRIVATE(...)

do z=1,N

do y=1,N; do x=1,N

if ( fluidCell(x,y,z) ) then

! read distributions from local cell

! and calculate moments

dens=f(x,y,z,0,t)+f(x,y,z,1,t)+ &

f(x,y,z,2,t)+...

...

! compute non-equilibrium parts

ne0=...

...

! write updates to neighbouring cells

f(x ,y ,z , 0,tN)=f(x,y,z, 0,t)*...

f(x+1,y+1,z , 1,tN)=f(x,y,z, 1,t)*...

...

f(x ,y-1,z-1,18,tN)=f(x,y,z,18,t)*...

endif

enddo; enddo

enddo

!$OMP END PARALLEL DO

Figure 11: Computational kernel for the IJKv layout D3Q19 LBM.

loop nests. Luckily, the recently adopted OpenMP 3.0 standard provides basic
support for this.

However, even when these optimizations are employed, the system falls short
of the performance expectations derived from STREAM by a factor of 1.5. As
for the reason one may speculate that the T2’s arithmetic units are a limiting
factor due to the rather low code balance of LBM of ≈ 2.5 bytes/flop, so that
the code is not memory-bound on this processor. This conclusion is supported
by the observation that LBM performance does not change if the benchmark is
carried out in single precision (the SPARC core’s peak performance is identical
for single and double precision). More cores or a larger peak performance per
core should thus improve the results. See the next section for details.

Interestingly, comparing 32- and 64-thread performance in Figs. 3, 8 and 12
we conclude that the smaller the application balance in bytes/flop the larger
the gain when using 64 instead of 32 threads. This is contrary to expecta-
tions as strongly memory-bound kernels should benefit from a larger number of
outstanding references.

2.4.2 LBM on the T2+

In Fig. 13 we compare the best possible LBM variant on T2 (64 threads, lower
graph) with the same code on T2+, using 128 threads. Performance saturates
at ≈43 MLUPs/s, a 65 % boost versus T2. This is much more than could be ex-
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Figure 12: LBM performance versus domain size (cubic) at up to 64 threads
on UltraSPARC T2 using different data layouts and scheduling methodologies.
The “modulo variation” can be eliminated by coalescing the outer loop pair (top
curve).

pected from the STREAM triad or even STREAM copy comparisons presented
in Sect. 2.1.2. In the previous section it was speculated that the D3Q19 lattice-
Boltzmann algorithm is not limited by memory bandwidth on the T2. The large
improvement seen on T2+ strongly supports this conjecture. The UltraSPARC
T2 processor is the only microprocessor on which the D3Q19 LBM is compute
bound, a feature which it shares exclusively with vector machines like the NEC
SX-8.

3 Conclusions

We have analyzed the performance of the Sun UltraSPARC T2 and T2+ multi-
core processors using low-level and application benchmarks. Aliasing conflicts
when accessing memory on T2 could be attributed to the simple mapping of
memory controllers to physical addresses. Consequently, bandwidth-intensive
code tends to show large performance fluctuations with respect to problem size.
Using explicit alignment and padding techniques we were able to remedy alias-
ing conflicts for a simple vector triad benchmark and a 2D Jacobi heat equation
solver. For a D3Q19 lattice-Boltzmann algorithm we could show that an ap-
propriate choice of data layout removes most of the aliasing. Comparing a
single-socket T2 system to a dual-socket T2+ node we have demonstrated that
most of the aliasing problems have vanished at the price of a doubled number of
threads and the typical ccNUMA performance features. On both architectures
— but especially for T2+ — OpenMP startup overhead can play a dominant
role at small problem sizes due to the large thread numbers. At large prob-
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Figure 13: Comparison of best LBM performance on UltraSPARC T2 (same
data as in Fig. 12) versus T2+. There is significant performance gain from
using twice the number of cores at the same theoretical memory bandwidth.

lem sizes the small amount of L2 cache available per thread will make spatial
blocking optimizations mandatory for many stencil-based applications. More-
over, the two-socket T2+ system shows performance peculiarities not related
to aliasing conflicts whenever there is write traffic on both memory domains.
Finally we demonstrated that a D3Q19 lattice-Boltzmann flow solver is limited
by compute performance on T2 and by memory bandwidth on T2+.

We believe all demonstrated performance features and optimizations to be
very relevant on large-scale systems because predictable one-node performance
is essential for getting good parallel efficiency.

Finally one must emphasize that in the light of upcoming massively multi-
core, multi-threaded designs, the rigid and only slowly evolving OpenMP pro-
gramming model might not be the ultimate solution for shared-memory parallel
programming in the future. More “lightweight” paradigms like, e.g., Threading
Building Blocks (TBB) [11], could provide a promising alternative.
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