
First Experiences with Intel Cluster First Experiences with Intel Cluster OpenMPOpenMP

GeorgGeorg HagerHager
RegionalesRegionales RechenzentrumRechenzentrum ErlangenErlangen
(RRZE)(RRZE)

19.05.200619.05.2006
CLOMP Workshop, HLRSCLOMP Workshop, HLRS

19.05.2006 georg.hager@rrze.uni-erlangen.de 2CLOMP first experiences

Overview

Systems used
EM64T (dual Nocona) with Gbit Ethernet and Infiniband,
Debian 3.1 (Sarge)
Itanium2 (HP zx6000) with Gbit Ethernet, SLES9pl3
Opteron would be a nice exercise, but CLOMP doesn’t work
on AMD…

Basic numbers: Triad tests

Application: Lattice-Boltzmann code
influence of algorithmic details
data layout considerations

Odds and ends

19.05.2006 georg.hager@rrze.uni-erlangen.de 3CLOMP first experiences

General Remarks

CLOMP == "extreme" ccNUMA
very long latencies, expensive non-local access
page replications can lead to memory problems
but: placement is handled “automatically”

Consequence: A well-optimized, ccNUMA-aware OMP
code that scales well on Altix does not necessarily scale
well with CLOMP

example: boundary code must be optimized for local access

Good stability on all systems with latest CLOMP release
No problems and good performance with IP over IB

native IB not working yet

19.05.2006 georg.hager@rrze.uni-erlangen.de 4CLOMP first experiences

General Remarks

Problems (RRZE-specific?)
memory footprint is about 2.5 times larger than expected
from serial code (270MB instead of 61MB for vector triad)

Partially resolved by Intel (Jim C.)
huge core dumps even with small sharable heap and resident
memory (2.4GB core with 200MB code)
Reproducible hangs on entry to parallel region when
OMP_NUM_THREADS smaller than number of hosts in
hostfile (only for LBMKernel)

19.05.2006 georg.hager@rrze.uni-erlangen.de 5CLOMP first experiences

Parallel Triad A(:)=B(:)+C(:)*D(:)

Three flavors
1. Standard triad, OMP parallel

#pragma omp parallel for
for(i=0; i<N; i++)

a[i]=b[i]+c[i]*d[i];

2. Throughput triad (separate local arrays on each thread)

#pragma omp parallel
sub_triad(N);

3. Padded triad

#pragma omp parallel
do_triad(N[myID],
start[myID],a,b,c,d)

T0 T1 T2 T3

T0
T1
T2
T3

T0 T1 T2 T3

19.05.2006 georg.hager@rrze.uni-erlangen.de 6CLOMP first experiences

Standard Triad on
GBit Ethernet vs. IP over IB (1T/node)

0

100

200

300

400

500

600

51
1

73
5

10
58

15
22

21
91

31
54

45
40

65
37

94
12

13
55

2
19

51
4

28
09

9
40

46
1

58
26

3
83

89
8

12
08

12
17

39
68

25
05

13
36

07
38

51
94

62
74

80
24

10
77

153
15

51
099

22
33

581
32

16
356

46
31

552
66

69
434

N

M
Fl

op
/s

1T GBit
2T GBit
4T GBit
2T IB
4T IB

Report only on IP over IB in
the following

19.05.2006 georg.hager@rrze.uni-erlangen.de 7CLOMP first experiences

Filled vs. Half-filled nodes

2 ways to „fill the node“
1. Keep unique names in hostfile and use 2 „real“ OpenMP

threads per node with -–process_threads=2
2. Duplicate names in hostfile and use --process_threads=1

Observations
breakdown of performance compared to the half-filled case
for large N
Improvement with OpenMP for medium-sized arrays
--process_threads=2: quite erratic performance data

Breakdown was actually expected (the same happens on
single node with pure OpenMP)
Erratic behaviour

influence of „loaded“ switch? (improbable)
Threads losing CPU affinity?

19.05.2006 georg.hager@rrze.uni-erlangen.de 8CLOMP first experiences

Threads vs. processes on node

0

100

200

300

400

500

600

51
1

73
5

10
58

15
22

21
91

31
54

45
40

65
37

94
12

13
55

2
19

51
4

28
09

9
40

46
1

58
26

3
83

89
8

12
08

12
17

39
68

25
05

13
36

07
38

51
94

62
74

80
24

10
77

153
15

51
099

22
33

581
32

16
356

N

M
Fl

op
/s

8T 2PPN 8T 1PPN

• Erratic behaviour
• influence of „loaded“

switch? (improbable)
• threads losing CPU

affinity?

19.05.2006 georg.hager@rrze.uni-erlangen.de 9CLOMP first experiences

Pinning of threads

Performance results seem quite erratic when using all
available CPUs on a node
Possible remedy? → pin threads to CPUs

using PLPA for portability reasons
#pragma omp parallel
{
#pragma omp critical
{

if(PLPA_NAME(api_probe)()!=PLPA_PROBE_OK) {
cerr << "PLPA failed!" << endl;

} else {
plpa_cpu_set_t msk;
PLPA_CPU_ZERO(&msk);
PLPA_CPU_SET(omp_get_thread_num() & 1,&msk);
PLPA_NAME(sched_setaffinity)((pid_t)0, (size_t)32, &msk);

}
}
}

19.05.2006 georg.hager@rrze.uni-erlangen.de 10CLOMP first experiences

Results for pinned triad (4 and 8 threads)

0

100

200

300

400

500

600

51
1

73
5

10
58

15
22

21
91

31
54

45
40

65
37

94
12

13
55

2
19

51
4

28
09

9
40

46
1

58
26

3
83

89
8

12
08

12
17

39
68

25
05

13
36

07
38

51
94

62
74

80
24

10
77

153
15

51
099

22
33

581
32

16
356

N

M
Fl

op
/s

4T 1PPN 4T 1PPN pinned 8T OMP pinned 8T OMP

• 4T: no change

• 8T Numbers get less erratic,
but performance is worse

• Observation: IB completion
thread (ts_ib_completion)
frequently using CPU time

19.05.2006 georg.hager@rrze.uni-erlangen.de 11CLOMP first experiences

Lattice Boltzmann Method

Numerical Method for Simulation of Fluids
Stream-Collide (Pull-Method)

Get the distributions from the neighboring cells
in the source array and store the relaxated values
to one cell in the destination array

Collide-Stream (Push-Method)
Take the distributions from one cell in the source
array and store the relaxated values to the
neighboring cells in the destination array

D3Q19 model:

source destinationΩ

Two Grids:

Compressed Grid

(not used here):
19.05.2006 georg.hager@rrze.uni-erlangen.de 12CLOMP first experiences

double precision f(0:xMax+1,0:yMax+1,0:zMax+1,0:18,0:1)
!$OMP PARALLEL DO
do z=1,zMax

do y=1,yMax
do x=1,xMax

if(fluidcell(x,y,z)) then
LOAD f(x,y,z, 0:18,t)
...Relaxation (complex computations)...
SAVE f(x ,y ,z , 0,t+1)
SAVE f(x+1,y+1,z , 1,t+1)
SAVE f(x ,y+1,z , 2,t+1)
SAVE f(x-1,y+1,z , 3,t+1)
…
SAVE f(x ,y-1,z-1,18,t+1)

endif
enddo

enddo
enddo

LBMKernel – Code Structure for Collide-Stream
Step

19.05.2006 georg.hager@rrze.uni-erlangen.de 13CLOMP first experiences

LBMKernel

Scalability beyond 2 nodes was very bad with standard
code
proper choice of geometry (long thin channel) can restore
scalability

not a general solution
Solution: bounceback (boundary) routine was not properly
optimized for local access

on ccNUMA, this is a negligible effect for
small obstacle density (n2)
on CLOMP, it is devastating

Still: indexing has significant impact on performance
"push" vs. "pull" algorithm
parallelized dimension should be the outermost one to
minimize false sharing: (i,j,v,t,k) better than (I,j,k,v,t)

Might profit from ghost layers, but is this still OpenMP???

19.05.2006 georg.hager@rrze.uni-erlangen.de 14CLOMP first experiences

Influence of Bounceback and push vs. Pull
for 128x64x128 and (i,j,k,v,t) layout

0

2

4

6

8

10

12

14

push push
nobb

pull pull nobb orig
(push
wrong

BB)

push
nobb
optidx

M
LU

Ps 1T
2T
4T

19.05.2006 georg.hager@rrze.uni-erlangen.de 15CLOMP first experiences

DMRG

Large C++ code, OpenMP parallelized
good scalability not really expected, but a good example for
porting
cache-bound, so not optimized for ccNUMA

Important issues:
use new (kmp_sharable) for dynamic objects used in
parallel regions
derive classes from kmp_sharable_base if dynamic objects
are used in parallel regions

Possible problem with global objects (still under
investigation)

19.05.2006 georg.hager@rrze.uni-erlangen.de 16CLOMP first experiences

Conclusions

Cluster OpenMP is an intersting programming experience

Imagine a ccNUMA machine with automatic page
migration (wow!) and an awfully slow network

If something strange happens (performancewise), use
profiler by all means

Otherwise (with OMP) negligible boundary effects may
become dominant with CLOMP

With CLOMP, performance results tend to be more
scattered than usual

Looking forward to AMD-enabled versions…

