Thirteen modern ways to fool the masses
with performance results on parallel
computers

Georg Hager
Erlangen Regional Computing Center (RRZE)

University of Erlangen-Nuremberg

6th Erlangen International High End Computing Symposium
RRZE, 04.06.2010

1991

David H. Bailey

Supercomputing Review, August 1991, p. 54-55
“Twelve Ways to Fool the Masses When Giving Performance Results
on Parallel Computers”

s

© N O O

- O
- O -

—_—

12.

04.06.2010 Fooling the masses L'

I~
. Iviulia

Quote only 32-bit performance results, not 64-bit results.

Present performance figures for an inner kernel, and then represent these
figures as the performance of the entire application.

Quietly employ assembly code and other low-level language constructs.

Scale up the problem size with the number of processors, but omit any
mention of this fact.

Quote performance results projected to a full system.
Compare your results against scalar, unoptimized code on Crays.
When direct run time comparisons are required, compare with an old code on an obsolete system.

If MFLOPS rates must be quoted, base the operation count on the parallel implementation, not on
the best sequential implementation.

Quote performance in terms of processor utilization, parallel speedups or MFLOPS per dollar.

Mitilata tha alAan
L Ui aiyv

€
Measure parallel run times on a dedicated system, but measure conventional run times in a busy
environment.

If all else fails, show pretty pictures and animated videos, and don't talk about performance.

High Performance
Computing

If you were plowing a field, which
would you rather use?

HIESE e

Two strong oxen
or 1024 chickens?

(Attributed to Seymour Cray)

- High Performance

04.06.2010 Fooling the masses |-|F'|_ Compting

1991 ...

Vectorization

No parallelization

cetandarde
QL Wdiivdl U9

04.06.2010 Fooling the masses

Strong /O facilities

32-bit vs. 64-bit FP
arithmetic

SIMD/MIMD
parallelism

System-specific
optimizations

- High Performance
I'IFIL Computing 4

Today we have... [T m'—

Multicore processors
with shared/separate caches, shared data paths

[Memory] [Memory] [Memory] [Memory] [Memory] [Memory] [Memory] [Memory]

MNetwork Int. Metwork Int. MNetwork Int. Network Int.

Communication network

with multi-socket, multi-core, ccNUMA, heterogeneous networks

High Performance

04.06.2010 Fooling the masses I-IFIE Computing

Today we have...

Ants all over the place

, GPUs...

Cell, Clearspeed

High Performance

Computing

HI=L

Fooling the masses

04.06.2010

Today we have... [T m'—

Commodity everywhere
x86-type processors, cost-effective interconnects, GNU/Linux

Nt ‘%

u

i ‘i: o '
® . ‘4 A e
eon 2.
- - ™ ’ g i t » J)] "
'.. inside AR v
= - - :r g I g
— " e s . I
i .
- S 1 :
S s et -
L= (= i .
=% - e - —
AMD e
== - E-l 5 - 1]
Opteron SERp o o —
g, SR o -
P o o oy e
B)] e b S B g <
- _ :‘ II-:_: z ‘ | |
s . =
"‘. |:“ — :
- . i -
: e -
g -
E;— = 5

04.06.2010 Fooling the masses FIR'L G i e 7

The landscape of High Performance Computing and the way
we think about HPC has changed over the last 19 years, and
we need an update!

Still, many of Bailey’s points are valid without change

High Performance

Computing 8

04.06.2010 Fooling the masses L'

Stunt 1 e —

Report scalability, not absolute performance.

work/time with N workers
work/time with 1 worker

Speedup: S(N) =

“Good” scalability « S(N)= N, but there is no mention of how fast you
can solve your problem!

Consequence: Comparing different systems is much easier when using
scalability instead of work/time directly
: 1 High Performance
04.06.2010 Fooling the masses I-IFIL Computing 9

Stunt 1: Scalability vs. performance -

And... instant success!

45
40 /
30
o
-g /
o 2 /
o
o
0 20 /
15 / -
. /
5 /
O]] I ' ! T 1
0 10 20 30 40 50 60 70
—8—NEC —&—Cluster # CPUs or nodes
[== High Performance
04.06.2010 Fooling the masses I'IFIL o 10

Stunt 2 e —

Slow down code execution.

This is useful whenever there is some noticeable “non-execution”
overhead

+(1-s)N“
Parallel speedup with work ~ Ne: S(N) = s+(aS_?N
(a=0: strong, a=1: weak scaling) s+(1-s)N“" +e, (N)

Now let's slow down execution by a factor of y>1 (for strong scaling):

S (N)= “ - :
,u(s+(1—s)/N)+c(N) s+(—s)/N+c(N)/ u

|.e., if there is overhead, the slow code/machine scales better:

S, (N)> S, (N) if ¢(N)>0

04.06.2010 Fooling the masses FIm'L G i ™" 11

Stunt 2: Slow computing [T ®'—

Corollaries:

Do not use high compiler optimization levels or the latest compiler
versions.

If scalability is still bad, parallelize some short loops with OpenMP. That
way you can get some extra bonus for a scalable hybrid code.

If someone asks for time to solution, answer that if you had a bigger
machine, you could get the solution as fast as you want. This is of
course due to the superior scalability of your code.

High Performance

Computing 12

04.06.2010 Fooling the masses L'

Stunt 2: Slow computing _

“Slowness” has some surprises in store...
= Let’s look at u=2:

fast N=4 slow N=8 fast N=4 slow N=8

< > < P
Tf Tf
To<T; ? 1T, < 2IT, ?
This happens if This happens if
, B c(uN) What's the
C(N)<O@S_O C(N)> @S:O catch here?
u
04.06.2010 Fooling the masses FIm'L G g e 13

Stunt 2: Slow computing [T m'—
Example for y=4 and c¢(N)~N-23 at strong scaling:

40

The performance is
» better with uN slow

35
. / CPUs than with N fast

/ CPUs
2 “Slow computing” can
20 / effectively lessen the
y impact of

/@ communication
10 & / overhead
5 Aﬁ-/'/ We assume that the

network is the same In

Performance

0 -

0 10 20 30 40 50 60 70 both machines
—t—fast =fl=slow # nodes
04.06.2010 Fooling the masses FIm'L G g ™" 14

Stunt 3 (The power of obfuscation, part 1) r r E E

If scalability doesn’t look good enough, use a logarithmic scale to
drive your point home.

Everything looks OK if you plot it the right way!

1. Linear plot: bad scaling, 45
strange things at N=32 40
; /

2. Log-log plot: better N /
scaling, but still the /
N=32 problem # 7

20 /
3. Log-linear plot: N=32 19 /
roblem gone 10

P g 5 7

4. ... and remove the ideal 0% , .
scaling line to make it 1 10 100
perfeCt! —o—Speedup

04.06.2010 Fooling the masses FIm'L G g ™" 15

Stunt 3: Log scale =

L RS

6.97 PF/s
1 Pﬂup;sé 478.2 TF/s
100 Tflop/s 3 SUM 1BM
] / EC BlueGene/L
10 Tflop/s+

Earth Simulator

: 5.9 TF/s
1 Tflop/s IBM ASCI White
1 59.7 GF/s Intel ASCI Red LLNL
§ <and
100 Gflop/s Sl
] Fujitsu
] NWT NAL
10 Gflop/s3 00 Notebook ﬁ
1 0.4 GF/s
1 Gflop;’s§ Notebook {3
100 Mﬂop{s N I D B B R B R S A L
M T N O N 00D O == M g N O
o o~ o o o~ o~ o~ o o o - o o o
o o~ @) o~ o~ o~ o~ o o o o o o o o
-— -~ — -— — — — c~ o~ c~ ~ () o~ N o~
© Top500 08
: 1 High Performance
04.06.2010 Fooling the masses FI='L con i 16

Stunt 4 e —

—

If you must report actual performance, quietly employ weak scaling
to show off

s+(1—-s)N“
It's all in that bloody denominator... S(N) = s+ (1 —s§N“3 +c,(N)

At a=1 the world looks so much nicer:

s+(1-s)N
1+c¢(N)

S(N) =

... but keep in mind: Do not mention the term “weak scaling” or you will be
asked nasty questions about parallel efficiency.

04.06.2010 Fooling the masses FIm'L G i e 17

Stunt 4: Weak scaling [»'—

But weak scaling gives us much more than just a “straight” graph. It gives
us perfect scaling if we choose the right metric to look at!

Assumption: Weak scaling with parallel efficiency € = S(N)/N << 1 and no
other overhead

> S(N)=s5+(1—-5)N has asmall slope

But: If we choose a metric for work that is
applicable to the parallel part alone,
work/time scales linearly.

So all you need to do is plot Mflop/s, MLUP/s,
or anything that doesn’t happen in the serial

part and you can even show real performance
numbers! - See also stunt #10 cPU¥ 1 o 3 4 s

04.06.2010 Fooling the masses FIm'L G g ™" 18

Stunt 5 (The power of obfuscation, part Il) [T ®'—

Instead of performance, plot absolute runtime vs. CPU count

Very, very popular indeed!

1,2

Nobody will be able to tell

1 -
whether your code actually l
Scales g 0®
o 22?7
% 0,6 AN
E // \
2 0,4
o

Corollary: 0:2 \\‘\,ﬁ/ / \\

—

CPU time per core is even 0 ' ' ' ' ' ' '

' , . 0 10 20 30 40 50 60 70
better because it omits # CPUs
most overheads...

High Performance

Computing 19

04.06.2010 Fooling the masses L'

Stunt 6 (The power of obfuscation, part Il [T ®'—

Compare different systems by showing the log of parallel efficiency

vs. CPU count

Unusual ways of putting
data together surprise
and confuse your
audience

Remember: Legends
can be any size you
like!

Parallel efficiency

0,01

04.06.2010 Fooling the masses

nodes/CPUs

50 60 70
—

—t

=4
N

—m— Cluster

—A— NEC

- High Performance
I'IFIL Computing 20

Stunt 7

Emphasize the quality of your shiny accelerator
code by comparing it with scalar, unoptimized
code on a single core of an old standard CPU.

And use GCC 2.7.2.

L
(&)
|

LS
_mll!!llllllllll

Anything else is a waste of time.

And besides, don’t the compiler guys always say that
they’re “multi-core enabled™?

Corollary:
Use single precision on the GPU but double precision on the CPU. This
will i1t An thea affactivve handwidthe ~arhae ci7za and naale nearfarmanca
duliv vilau, dlliu PUGI\ VUI IVililidiiveo

VVIII VUL VI LUV UlIVUL VU Vdlidvvviull 1o, U

of the latter and let the former shine.

04.06.2010 Fooling the masses FIm'L G i ™" 21

Stunt 8 FFEE

Always quote GFlops, Mlps, Watts per Flop or any other@m
interesting metric instead of inverse time to solution.

Flops are so cool it hurts:

for (i=0; i<N; ++i)
for (§=0; j<N; ++3)
b[i][j] = 0.25*(a[i-1][j]+ali+1l] [j]l+a[i]l[j-1]+ai][]J+1]):

for (i=0; i<N; ++i)
for (§=0; j<N; ++3)
b[i][§] = 0.25%a[i-1][j]1+0.25*%a[i+1][j]
+0.25%a[i] [§-1140.25%a[i] [+1];

“Floptimization”

Watts/Flop are an ingenious fallback — who would dare question a truly
“green” application/system? Except maybe some investors...

High Performance

Computing 2z

04.06.2010 Fooling the masses L'

Stunt 9 e —

Ignore affinity and topology issues. Real scientists are not bothered
by such details.

Multi-core, cache groups, ccNUMA, SMT, network hierarchies etc. are just
parts of a vicious plot to take the fun out of computing. Ignoring those
issues will make them go away. If people ask specific questions about
it, answer that it's the OS’s or the compiler’s job.

OpenMP overhead

Shared cache re-use 0OS buffer cache

Bandwidth contention

Intra-node MPI

ccNUMA page placement

High Performance

Computing 23

04.06.2010 Fooling the masses L'

Stunt 9: Affinity issues [==

Re-using shared cache on multi-core CPUs? More cores mean
more performance, do they not?

y-direction

z-direction

High Performance

Computing 24

04.06.2010 Fooling the masses L'

Stunt 9: Affinity issues -

Memory bandwidth saturation? ccNUMA effects? Shouldn’t the OS
put the threads and pages where they are supposed to be?

Parallel STREAM performance

! | ! | ! | ! | ! |
40000 = —
OO Nehalem
O—0 Istanbul 4
30000 —
@
[« =]
2
&
=2 —
2 20000
o
=
=
o)
1[]-[](}(}< —
0 ! | ! | ! | ! | ! |
0 5 10 15 20 25
cores

High Performance

04.06.2010 Fooling the masses FI='L con i 25

Stunt 9: Affinity issues

= Intra-node MPI is infinitely fast! Look at those latencies!

MPI intra-node and inter-node latencies on Cray XT5

Latency [us]

intra-socket

inter-node inter-socket

04.06.2010 Fooling the masses I-IFIL gfrzriﬁgzrmance 26

Stunt 9: Affinity issues

Intra-node MPI is infinitely fast! Low-level benchmarking is

unreliable!

04.06.2010

3000

2500

N
o
o
o

1500

1000

Bandwidth [MBytes/s]

500

LR LR LR | '\"""I LR _I

O—0 XT5 inter-node
O inter-socket
OO0 intra-socket

Between two cores
of one socket

Shared cache
advantage

Between two nodes
via interconnect

fabric

Between two sockets
of one node (cache
effects eliminated)

10°

Fooling the masses

10" 10° 10° 10
Message length [bytes]

- High Performance
I'IFIL Computing

27

Stunt 9: Affinity issues

Why should you reverse engineer the overcomplicated cache
topology of those modern systems?

Xeon E5420 shared L2 same socket | different socket
2 Threads

pthreads_barrier_wait 5863 27032 27647
omp barrier (icc 11.0) G?@ 760 @@
Spin loop 259 485 11602
Nehalem Shared SMT shared L3 different socket
2 Threads threads

pthreads barrier_wait 23352 4796 49237
omp barrier (icc 11.0)
Spin loop 17388 267 787
04.06.2010 Fooling the masses FIm'L G g " 28

Stunt 9: Affinity — if you still insist... =

Command line tools for Linux:
easy to install
works with standard linux 2.6 kernel
simple and clear to use
support Intel and AMD CPUs
Current tools: Z
likwid-topology: Print thread and cache topology
likwid-perfCtr: Measure performance counters
likwid-features: View and enable/disable hardware prefetchers
likwid-pin: Pin threaded application without touching code

Open source project (GPL v2):
http://code.google.com/p/11kwid/

04.06.2010 Fooling the masses FIm'L G g ™" 29

Stunt 10 e —

If you really can’t reduce communication overhead, argue in favor of
“reliable inefficiency.”

Even if you spend 80% '?

of time communicating,

that’s ok if the ratio o i
stays constant — it : /

means you can scale
to any size!

Fraction of runtime

And fill any machine.

! 10 100 1000
—e—Calculation =#=Computation # nodes/LFUS

Efficiency constant
for large N

04.06.2010 Fooling the masses FIm'L G i ™" 30

Stunt 11 (The power of obfuscation, part IV)

Performance modeling is for wimps. Show real data. Plenty.
And then some.

300

Don’t try to make sense
of your data by fitting it

250

to a model. Instead, show
at least 8 graphs per plot, 200
all in bright pastel colors,

with different symbols. 10

Performance

100

If nasty questions pop up, 50 —=
say your code is so 5{
0 P

comblex that no model R o o o o
A\ AW & iy | lrJIVI\ Wl IGAL 1 I\ 1 1INV NANIIL U ’IUU ZUU dUU 4UU bUU

can describe it. # nodes/CPUs

High Performance

04.06.2010 Fooling the masses I-IFIE Computing

=¢=Machine 1
==Machine 2
==#=Machine 3
=>¢=NMachine 4
Machine 5
=®=Machine 6
Machine 7
Machine 8

31

Stunt 12 =

If they get you cornered, blame it all on OS jitter.

They will understand and nod knowingly.

Coroliary: i

Depending on the audience,

TLB misses may work just as fine.

- High Performance

04.06.2010 Fooling the masses I-IFIL Computing 32

Stunt 13 =

If all else fails, show pretty pictures and animated videos, and don’t
talk about performance.

In four decades of supercomputing, this was always the best-selling plan,
and it will stay that way forever.

—
| CEEE— ; ; ; ; =
96 10 20 30 40 50 60 70 80

High Performance

Computing 33

04.06.2010 Fooling the masses I.IFIE

THANK YOU

