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The Rules™ 

There is no alternative to knowing what is going on 

between your code and the hardware 

Without performance modeling, 

optimizing code is like stumbling in the dark 

 

Performance x Flexibility = constant 
a.k.a. Abstraction is the natural enemy of efficiency 

Cray XE6 Workshop Performance for Multicore 
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Agenda 

 Basics of multicore processor and node architecture 

 Probing node topology with likwid-topology 

 Data access on modern processors 

 Basic performance benchmarks and properties 

 The balance metric: Bandwidth-based performance modeling 

 Optimizing data access by code transformations 

 Enforcing affinity in multicore environments 

 Performance properties of parallel code on multicore processors 

and nodes 

 Exploration by microbenchmarks 

 Sparse matrix-vector multiplication 

 Microarchitectural features of modern processors 

 SIMD parallelism 

 A closer look at the cache hierarchy 

 Performance modeling on the microarchitecture level 

 ccNUMA: Properties and efficient programming 

Cray XE6 Workshop Performance for Multicore 



Multicore processor and system 

architecture 

Basics 



5 

The x86 multicore evolution so far 
Intel Single-Dual-/Quad-/Hexa-/-Cores (one-socket view) 

Sandy Bridge EP  

“Core i7”  

32nm 
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2008:  

Simultaneous  

Multi Threading (SMT) 
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2010: 

6-core chip 
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There is no longer a single driving force  

for chip performance! 

Floating Point (FP) Performance: 
 

   P = ncore * F * S * n 
 

ncore  number of cores:  8 
 

F  FP instructions per cycle:  2  

 (1 MULT and 1 ADD) 
 

S  FP ops / instruction:    4 (dp) / 8 (sp)  

 (256 Bit SIMD registers – “AVX”) 
 

n   Clock speed :             2.5 GHz 

 

P = 160 GF/s (dp) / 320 GF/s (sp) 

 

Intel Xeon 

“Sandy Bridge EP” socket  

4,6,8 core variants available 

But: P=5 GF/s (dp) for serial, non-SIMD code  

Cray XE6 Workshop Performance for Multicore 

TOP500 rank 1 (1996) 
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Today: Dual-socket Intel (Westmere) node: 

Yesterday (2006): Dual-socket Intel “Core2” node: 

From UMA to ccNUMA  
Basic architecture of commodity compute cluster nodes 

 

Uniform Memory Architecture (UMA) 

Flat memory ; symmetric MPs 

But: system “anisotropy” 

 

 

Cache-coherent Non-Uniform Memory 

Architecture (ccNUMA) 

HT / QPI provide scalable bandwidth at 

the price of ccNUMA architectures: 

Where does my data finally end up? 

On AMD it is even more complicated  ccNUMA within a socket! 

Cray XE6 Workshop Performance for Multicore 
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Back to the 2-chip-per-case age 

12 core AMD Magny-Cours – a 2x6-core ccNUMA socket 

 AMD: single-socket ccNUMA since Magny Cours 

 

 1 socket: 12-core Magny-Cours built from two 6-core chips 

    2 NUMA domains    

 

 2 socket server   4 NUMA domains 

    

 

 

 

 

 

 

 

 4 socket server:  8 NUMA domains 

        

 WHY?  Shared resources are hard two scale:  

 2 x 2 memory channels  vs. 1 x 4 memory channels per socket 

Cray XE6 Workshop Performance for Multicore 
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Another flavor of “SMT”  

AMD Interlagos / Bulldozer 

 Up to 16 cores (8 Bulldozer modules) in a single socket 

 Max. 2.6 GHz  (+ Turbo Core) 

 Pmax = (2.6 x 8 x 8) GF/s  

     = 166.4 GF/s 

Each Bulldozer module: 

 2 “lightweight” cores 

 1 FPU: 4 MULT & 4 ADD 

(double precision) / cycle 

 Supports AVX 

 Supports FMA4  

2 NUMA domains per socket 

16 kB 

dedicated  

L1D cache 

2 DDR3 (shared) memory 

channel > 15 GB/s 

2048 kB 

shared  

L2 cache 

8 (6) MB 

shared 

L3 cache  

Cray XE6 Workshop Performance for Multicore 
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Cray XE6 (Hermit) “Interlagos” 16-core dual socket node 

 Two 8- (integer-) core chips per 

socket @ 2.3 GHz (3.3 @ turbo) 

 Separate DDR3 memory 

interface per chip 

 ccNUMA on the socket! 

 

 Shared FP unit per pair of 

integer cores (“module”) 

 “256-bit” FP unit 

 SSE4.2, AVX, FMA4 

 

 16 kB L1 data cache per core 

 2 MB L2 cache per module 

 8 MB L3 cache per chip  

(6 MB usable) 

 
Cray XE6 Workshop Performance for Multicore 
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Parallel programming models 
on multicore multisocket nodes 

 Shared-memory (intra-node) 

 Good old MPI (current standard: 2.2) 

 OpenMP (current standard: 3.0) 

 POSIX threads 

 Intel Threading Building Blocks 

 Cilk++, OpenCL, StarSs,… you name it 

 

 Distributed-memory (inter-node) 

 MPI (current standard: 2.2) 

 PVM (gone) 

 

 Hybrid 

 Pure MPI 

 MPI+OpenMP 

 MPI + any shared-memory model 

All models require 

awareness of 

topology and affinity 

issues for getting 

best performance 

out of the machine! 
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Parallel programming models: 
Pure MPI 

 Machine structure is invisible to user: 

  Very simple programming model 

  MPI “knows what to do”!? 

 Performance issues 

 Intranode vs. internode MPI 

 Node/system topology 
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Parallel programming models: 
Pure threading on the node 

 Machine structure is invisible to user 

  Very simple programming model 

 Threading SW (OpenMP, pthreads, 

TBB,…) should know about the details 

 Performance issues 

 Synchronization overhead 

 Memory access 

 Node topology 
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Parallel programming models: 
Hybrid MPI+OpenMP on a multicore multisocket cluster 

 

One MPI process / node 

 

 

One MPI process / socket: 

OpenMP threads on same 

socket: “blockwise” 

 

OpenMP threads pinned 

“round robin” across 

cores in node 

 

Two MPI processes / socket 

OpenMP threads  

on same socket 



Probing node topology 

 Standard tools 

 likwid-topology 
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How do we figure out the node topology? 

 Topology = 

 Where in the machine does core #n reside? And do I have to remember this 

awkward numbering anyway? 

 Which cores share which cache levels? 

 Which hardware threads (“logical cores”) share a physical core? 

 Linux 

 cat /proc/cpuinfo is of limited use 

 Core numbers may change across kernels 

and BIOSes even on identical hardware 

 

 numactl --hardware prints  

ccNUMA node information                  

 

 Information on caches is harder 

to obtain 

$ numactl --hardware 

available: 4 nodes (0-3) 

node 0 cpus: 0 1 2 3 4 5 

node 0 size: 8189 MB 

node 0 free: 3824 MB 

node 1 cpus: 6 7 8 9 10 11 

node 1 size: 8192 MB 

node 1 free: 28 MB 

node 2 cpus: 18 19 20 21 22 23 

node 2 size: 8192 MB 

node 2 free: 8036 MB 

node 3 cpus: 12 13 14 15 16 17 

node 3 size: 8192 MB 

node 3 free: 7840 MB 
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How do we figure out the node topology? 

 

 LIKWID tool suite: 

 

Like 

I 

Knew 

What 

I’m 

Doing 

 

 Open source tool collection  

(developed at RRZE): 

 

http://code.google.com/p/likwid 

J. Treibig, G. Hager, G. Wellein: LIKWID: A 

lightweight performance-oriented tool suite 

for x86 multicore environments. Accepted for 

PSTI2010, Sep 13-16, 2010, San Diego, CA 

http://arxiv.org/abs/1004.4431 
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Likwid Tool Suite 

 Command line tools for Linux: 

 easy to install  

 works with standard linux 2.6 kernel 

 simple and clear to use  

 supports Intel and AMD CPUs 

 

 Current tools: 

 likwid-topology: Print thread and cache topology 

 likwid-pin: Pin threaded application without touching code 

 likwid-perfctr: Measure performance counters 

 likwid-mpirun: mpirun wrapper script for easy LIKWID integration 

 likwid-bench: Low-level bandwidth benchmark generator tool 

 … some more 
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likwid-topology – Topology information 

 Based on cpuid information 

 Functionality: 

 Measured clock frequency  

 Thread topology 

 Cache topology 

 Cache parameters (-c command line switch) 

 ASCII art output (-g command line switch) 

 Currently supported (more under development): 

 Intel Core 2 (45nm + 65 nm) 

 Intel Nehalem + Westmere (Sandy Bridge in beta phase) 

 AMD K10 (Quadcore and Hexacore) 

 AMD K8 

 Linux OS 
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Output of  likwid-topology –g 
on one node of Cray XE6 “Hermit” 
------------------------------------------------------------- 

CPU type:       AMD Interlagos processor  

************************************************************* 

Hardware Thread Topology 

************************************************************* 

Sockets:                2  

Cores per socket:       16  

Threads per core:       1  

------------------------------------------------------------- 

HWThread        Thread          Core            Socket 

0               0               0               0 

1               0               1               0 

2               0               2               0 

3               0               3               0 

[...] 

16              0               0               1 

17              0               1               1 

18              0               2               1 

19              0               3               1 

[...] 

------------------------------------------------------------- 

Socket 0: ( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ) 

Socket 1: ( 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ) 

------------------------------------------------------------- 

 

************************************************************* 

Cache Topology 

************************************************************* 

Level:  1 

Size:   16 kB 

Cache groups:   ( 0 ) ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 ) ( 11 ) ( 12 ) ( 13 

) ( 14 ) ( 15 ) ( 16 ) ( 17 ) ( 18 ) ( 19 ) ( 20 ) ( 21 ) ( 22 ) ( 23 ) ( 24 ) ( 25 ) ( 26 ) ( 27 ) ( 

28 ) ( 29 ) ( 30 ) ( 31 ) 
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Output of likwid-topology continued 

Cray XE6 Workshop Performance for Multicore 

------------------------------------------------------------- 

Level:  2 

Size:   2 MB 

Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 ) ( 16 17 ) ( 18 

19 ) ( 20 21 ) ( 22 23 ) ( 24 25 ) ( 26 27 ) ( 28 29 ) ( 30 31 ) 

------------------------------------------------------------- 

Level:  3 

Size:   6 MB 

Cache groups:   ( 0 1 2 3 4 5 6 7 ) ( 8 9 10 11 12 13 14 15 ) ( 16 17 18 19 20 21 22 23 ) ( 24 25 26 

27 28 29 30 31 ) 

------------------------------------------------------------- 

 

************************************************************* 

NUMA Topology 

************************************************************* 

NUMA domains: 4  

------------------------------------------------------------- 

Domain 0: 

Processors:  0 1 2 3 4 5 6 7 

Memory: 7837.25 MB free of total 8191.62 MB 

------------------------------------------------------------- 

Domain 1: 

Processors:  8 9 10 11 12 13 14 15 

Memory: 7860.02 MB free of total 8192 MB 

------------------------------------------------------------- 

Domain 2: 

Processors:  16 17 18 19 20 21 22 23 

Memory: 7847.39 MB free of total 8192 MB 

------------------------------------------------------------- 

Domain 3: 

Processors:  24 25 26 27 28 29 30 31 

Memory: 7785.02 MB free of total 8192 MB 

------------------------------------------------------------- 
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Output of likwid-topology continued 

Cray XE6 Workshop Performance for Multicore 

************************************************************* 

Graphical: 

************************************************************* 

Socket 0: 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| |   0  | |   1  | |   2  | |   3  | |   4  | |   5  | |   6  | |   7  | |   8  | |   9  | |  10  | |  11  | |  12  | |  13  | |  14  | |  15  | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

| |                                 6MB                                 | |                                 6MB                                 | | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

Socket 1: 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| |  16  | |  17  | |  18  | |  19  | |  20  | |  21  | |  22  | |  23  | |  24  | |  25  | |  26  | |  27  | |  28  | |  29  | |  30  | |  31  | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | | 

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

| |                                 6MB                                 | |                                 6MB                                 | | 

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ | 

+-------------------------------------------------------------------------------------------------------------------------------------------------+ 



Data access on modern processors 

Characterization of memory hierarchies 

Balance analysis and light speed estimates  

Data access optimization 
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Latency and bandwidth in modern computer environments 

ns 

ms 

ms 

1 GB/s 

Cray XE6 Workshop Performance for Multicore 

We care about this 

region today 

Avoiding slow data 

paths is the key to 

most performance 

optimizations! 
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Interlude: Data transfers in a memory hierarchy 

 How does data travel from memory to the CPU and back? 

 Example: Array copy A(:)=C(:) 

Cray XE6 Workshop Performance for Multicore 

CPU registers 

Cache 

Memory 

CL 

CL CL 

CL 

LD C(1) 

MISS 

ST A(1) MISS 

write 

allocate 

evict 

(delayed) 

3 CL 

transfers 

LD C(2..Ncl) 

ST A(2..Ncl) 

 

HIT 

CPU registers 

Cache 

Memory 

CL 

CL 

CL CL 

LD C(1) 

NTST A(1) 
MISS 

2 CL 

transfers 

LD C(2..Ncl) 

NTST A(2..Ncl) 

 

HIT 

Standard stores Nontemporal (NT) 

stores 

50% 

performance 

boost for 

COPY 

C(:) A(:) C(:) A(:) 
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The parallel vector triad benchmark 

A “swiss army knife” for microbenchmarking 

Simple streaming benchmark: 

 

 

 

 

 

 

 

 

 

 

 Report performance for different N 

 Choose NITER so that accurate time measurement is possible 

 This kernel is limited by data transfer performance for all memory 

levels on all current architectures! 

double precision, dimension(N) :: A,B,C,D 

A=1.d0; B=A; C=A; D=A 

 

do j=1,NITER 

  do i=1,N 

    A(i) = B(i) + C(i) * D(i) 

  enddo 

  if(.something.that.is.never.true.) then 

    call dummy(A,B,C,D) 

  endif 

enddo 

Prevents smarty-pants 

compilers from doing 

“clever” stuff 
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A(:)=B(:)+C(:)*D(:) on one Interlagos core 

Cray XE6 Workshop Performance for Multicore 

L1D cache (16k) 

L2 cache (2M) 

L3 cache 

(8M) 

Memory 6
x

 b
a

n
d

w
id

th
 g

a
p

 (
1

 c
o

re
) 

64 GB/s (no write allocate in L1) 

10 GB/s 

(incl. write 

allocate) 

Is this the 

limit??? 
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STREAM benchmarks: 
Memory bandwidth on Cray XE6 Interlagos node 

Cray XE6 Workshop Performance for Multicore 

COPY:  
A(:)=C(:) 

TRIAD: 
A(:)=B(:)+s*C(:) 

 STREAM is the 

“standard” for 

memory BW 

comparisons 

 

 NT store variants 

save write 

allocate on stores 

 50% boost for 

copy, 33% for 

TRIAD 

 

 STREAM BW is 

practical limit for 

all codes 
BW saturation 

within the 8-core 

chip 

BW scaling across 

NUMA domains 
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Balance metric: Machine balance 

 The machine balance for data memory access of a specific computer 

is given by 

(architectural 

limitation) 

 

 Bandwidth:   1 W = 8 bytes = 64 bits 

    bS = achievable bandwidth over 

    the slowest data path 

      

Floating point peak:  Pmax  

 Machine Balance = How many input operands can be delivered for 

each FP operation? 

 Typical values (main memory):  
AMD Interlagos  (2.3 GHz):  Bm = {(17/8) GW/s} / {4 x 2.3 x 8 GFlop/s} ~0.029 W/F 

 Intel Sandy Bridge EP (2.7 GHz):  ~0.025 W/F 

NEC SX9 (vector):     ~0.3 W/F 

 nVIDIA GTX480   ~0.026 W/F 

]flops/s[ 

]words/s[ 

maxP

b
B S

m 

Cray XE6 Workshop Performance for Multicore 
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Machine Balance: Typical values beyond main memory 

Data path Balance BM [W/F]  

Cache 0.5 – 1.0 

Machine (main memory) 0.01 – 0.5 

Interconnect (Infiniband) 0.001 – 0.002 

Interconnect (GBit ethernet) 0.0001 – 0.0007 

Disk (or disk subsystem) 0.0001 – 0.001 

1/BM = “Computational Intensity”: How many FP ops can be 

performed before FP performance becomes a bottleneck? 

 

D
o
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n
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 6
4
-B

it
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Balance metric: Code balance & lightspeed estimates 

 BM tells us what the hardware can deliver at most 

 Code balance (BC) quantifies  

the requirements of the code: 

 

 Expected fraction of peak performance  

(„lightspeed"): 

l =1  code is not limited by bandwidth 

 

 Lightspeed for absolute performance: 

(Pmax : “applicable” peak performance) 

 

 Example: Vector triad A(:)=B(:)+C(:)*D(:) on 2.3 GHz Interlagos 

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate) 

 

Bm/Bc = 0.029/2.5 = 0.012, i.e. 1.2 % of peak performance (~1.7 GF/s) 

][ operations arithmetic

][ (LD/ST) transfer data

flops

words
Bc 













c

m

B

B
l ,1min

This is what we 

need 

This is what we 

get 













C

S

B

b
PPlP ,min maxmax
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Balance metric (a.k.a. the “roofline model”) 

 The balance metric formalism is based on some (crucial) 

assumptions: 

 The code makes balanced use of MULT and ADD operation. For others 

(e.g. A=B+C) the peak performance input parameter Pmax has to be 

adjusted (e.g. Pmax  Pmax/2 ) 

 

 Attainable bandwidth of code = input parameter! Determine effective 

bandwidth via simple streaming benchmarks to model more complex 

kernels and applications.    

 Definition is based on 64-bit arithmetic but can easily be adjusted, e.g. for 

32-bit 

 

 Data transfer and arithmetic overlap perfectly! 

 

 Slowest data path is modeled only; all others are assumed to be infinitely 

fast 

 Latency effects are ignored, i.e. perfect streaming mode 

Cray XE6 Workshop Performance for Multicore 
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Balance metric: 2D diffusion equation + Jacobi solver 

 Diffusion equation in 2D 

 

 Stationary solution with Dirichlet boundary conditions using 

Jacobi iteration scheme can be obtained with: 

Balance (crude estimate incl. write allocate):  

phi(:,:,t0): 3 LD +  

phi(:,:,t1): 1 ST+ 1LD 

 BC = 5 W / 4 FLOPs = 1.25 W / F 

Reuse when computing 
phi(i+2,k,t1) 

WRITE ALLOCATE:  
LD + ST  phi(i,k,t1) 

Cray XE6 Workshop Performance for Multicore 
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Balance metric: 2 D Jacobi 

 Modern cache subsystems may further reduce memory traffic  

If cache is large enough to hold at least 2 rows 
(shaded region): Each phi(:,:,t0) is loaded 

once from main memory and reused 3 times from 

cache: 

phi(:,:,t0): 1 LD + phi(:,:,t1): 1 ST+ 1LD 

BC = 3 W / 4 F = 0.75 W / F 

 

If cache is large enough to hold at least one row 
phi(:,k-1,t0) needs to be reloaded: 

phi(:,:,t0): 2 LD + phi(:,:,t1): 1 ST+ 1LD 

BC = 4 W / 4 F = 1.0 W / F 

 

Beyond that: 
phi(:,:,t0): 2 LD + phi(:,:,t1): 1 ST+ 1LD 

BC = 5 W / 4 F = 1.25 W / F 

Cray XE6 Workshop Performance for Multicore 
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Performance metrics: 2D Jacobi 

 Alternative implementation (“Macho FLOP version”) 

 

 

 

 

 

 MFlops/sec increases by 7/4 but time to solution remains the same 

 

 Better metric (for many iterative stencil schemes): 

 Lattice Site Updates per Second (LUPs/sec) 

 

 2D Jacobi example: Compute LUPs/sec metric via 
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wall

maxmaxmax]/[
T

kiit
sLUPsP



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Balance metric for 3D Jacobi 

 3D sweep: 

 

 

 

 

 

 

 

 Best case balance: 1 LD  phi(i,j,k+1,t0) 

 1 ST + 1 write allocate phi(i,j,k,t1) 

 6 flops 

 BC = 0.5 W/F (24 bytes/update) 

 If 2-layer condition does not hold but 2 rows fit:  

 BC = 5/6 W/F (40 bytes/update) 

 Worst case (2 rows do not fit):  BC = 7/6 W/F (56 bytes/update) 

Cray XE6 Workshop Performance for Multicore 

do k=1,kmax 

  do j=1,jmax 

    do i=1,imax 

      phi(i,j,k,t1) = oos *(phi(i-1,j,k,t0)+phi(i+1,j,k,t0) & 

                          + phi(i,j-1,k,t0)+phi(i,j+1,k,t0) & 

                          + phi(i,j,k-1,t0)+phi(i,j,k+1,t0)) 

    enddo 

  enddo 

enddo 
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3D Jacobi solver 
Performance of vanilla code on one Interlagos chip (8 cores) 

Cray XE6 Workshop Performance for Multicore 

cache memory 

2 layers of source array 

drop out of L2 cache 

Problem size: N3 



Data Access Optimizations  

 General considerations 

 Case study: Optimizing a Jacobi solver 
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Data access – general considerations 

 Case 1: O(N)/O(N) Algorithms 

 O(N) arithmetic operations vs. O(N) data access operations 

 Examples: Scalar product, vector addition, sparse MVM etc. 

 Performance limited by memory BW for large N (“memory bound”) 

 Limited optimization potential for single loops  

 …at most a constant factor for multi-loop operations 

 Example: successive vector additions 

do i=1,N 

  a(i)=b(i)+c(i) 

enddo 

 

do i=1,N 

  z(i)=b(i)+e(i) 

enddo no optimization 
potential for either loop 

do i=1,N 

  a(i)=b(i)+c(i) 

  z(i)=b(i)+e(i) 

enddo 

fusing different loops 

allows O(N) data 

reuse from registers 

Loop fusion 

Bc = 4/1 W/F 
(incl. write-allocate) 

Bc = 7/2 W/F 
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Data access – general guidelines 

 Case 2: O(N2)/O(N2) algorithms 

 Examples: dense matrix-vector multiply, matrix addition, dense matrix 

transposition etc. 

 Nested loops 

 Memory bound for large N 

 Some optimization potential (at most constant factor) 

 Can often enhance code balance by outer loop unrolling or spatial blocking 

 Example: dense matrix-vector multiplication 

 

do i=1,N 

 do j=1,N 

  c(i)=c(i)+a(i,j)*b(j) 

 enddo 

enddo 

= + • 

Naïve version loads b[] N times! 
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Data access – general guidelines 

 O(N2)/O(N2) algorithms cont’d 

 “Unroll & jam” optimization (or “outer loop unrolling”) 

do i=1,N 

 do j=1,N 

  c(i)=c(i)+a(i,j)*b(j) 

 enddo 

enddo 

do i=1,N,2 

 do j=1,N 

  c(i)=c(i)+a(i,j)*b(j) 

 enddo 

 do j=1,N 

  c(i+1)=c(i+1)+a(i+1,j)*b(j) 

 enddo 

enddo 

unroll 

do i=1,N,2 

 do j=1,N 

  c(i)=c(i)+a(i,j)      * b(j) 

  c(i+1)=c(i+1)+a(i+1,j)* b(j) 

 enddo 

enddo 

jam
 

b(j) can be re-used once 

from register → save 1 LD 

operation 

Lowers  Bc from 1 to ¾ W/F 
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 O(N2)/O(N2) algorithms cont’d 

 Data access pattern for 2-way unrolled dense MVM: 

 

 

 

 

 

 

 

 Data transfers can further be reduced by more aggressive unrolling (i.e., m-

way instead of 2-way) 

 Significant code bloat (try to use compiler directives if possible) 

 Main memory limit: b[] only be loaded once from memory (Bc ≈ ½ W/F) (can be 

achieved by high unrolling OR large outer level caches) 

 Outer loop unrolling can also be beneficial to reduce traffic within caches! 

 Beware: CPU registers are a limited resource 

 Excessive unrolling can cause register spills to memory 

Data access – general guidelines 

= + • 

Vector b[] now only loaded 

N/2 times! 

 

Remainder loop handled 

separately 



Optimizing data access for dense matrix 

transpose 
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Dense matrix transpose 

 Simple example for data access problems in cache-based systems 

 Naïve code: 
 
 
 

 

 

 

 Problem: Stride-1 access for a implies stride-N access for b 

 Access to a is perpendicular to cache lines (     ) 

 Possibly bad cache efficiency (spatial locality) 

 Three performance levels are expected:  

 C: Cache size; LC: Cache line length; both are given in double words (8 byte) 

 2 * N2  < C:  Both matrices stay in cache 

 N * LC + N < C:  N cache lines of b and one row of a stays in cache 

 N * LC + N > C: Matrix b is reloaded from memory LC times 

 Use outer loop unrolling blocking to reduce / avoid second drop 

do i=1,N 

 do j=1,N 

  a(j,i) = b(i,j) 

 enddo 

enddo 

a(:,:) b(:,:) 
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Dense matrix transpose: Base version 

Second drop: cache lines of b are 

evicted before they can be reused 

2nd drop:  

 

1 MB cache  

 NC ~ 7.530 

 

4 MB cache 

 NC ~ 30.000 

 

Rule of thumb 

use C/2 as 

effective cache 

size 

 NC  NC/2 
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Dense matrix transpose: Unrolling and blocking 

do i=1,N 

 do j=1,N 

  a(j,i) = b(i,j) 

 enddo 

enddo 

do i=1,N,U 

 do j=1,N 

  a(j,i)     = b(i,j) 

  a(j,i+1)   = b(i+1,j) 

  ... 

  a(j,i+U-1) = b(i+U-1,j)  

 enddo 

enddo do ii=1,N,B 

 istart=ii; iend=ii+B-1 

 do jj=1,N,B 

  jstart=jj; jend=jj+B-1 

  do i=istart,iend,U 

   do j=jstart,jend 

    a(j,i)     = b(i,j) 

    a(j,i+1)   = b(i+1,j) 

    ... 

    a(j,i+U-1) = b(i+U-1,j)  

enddo;enddo;enddo;enddo 

unroll/jam 

block 

Blocking and unrolling factors 

(B,U) can be determined 

experimentally; be guided by 

cache sizes and line lengths  
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Dense matrix transpose: Blocked/unrolled versions 

 Intel Xeon/Netburst 3.2 GHz 

Breakdown 

only eliminated 

by blocking! 



Case study:  

3D Jacobi solver  

Spatial blocking for improved cache utilization 
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Remember the 3D Jacobi solver? 

 

Cray XE6 Workshop Performance for Multicore 

2 layers of source array 

drop out of L2 cache 

 

 avoid through spatial 

blocking! 
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Jacobi iteration (2D): No spatial Blocking 

 Assumptions:  

 Cache can hold 32 elements (16 for each array) 

 Cache line size is 4 elements 

 Perfect eviction strategy for source array 

 

This element is needed for three more updates; but 29 updates happen before this element is 

used for the last time 

i 

k 
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Jacobi iteration (2D): No spatial blocking 

 Assumptions:  

 Cache can hold 32 elements (16 for each array) 

 Cache line size is 4 elements 

 Perfect eviction strategy for source array 

This element is needed for 

three more updates but has 

been evicted 
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Jacobi iteration (2D): Spatial Blocking 

 Divide system into blocks 

 Update block after block 

 Same performance as if three complete rows of the systems fit 

into cache 
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Jacobi iteration (2D): Spatial Blocking  

 Spatial blocking reorders traversal of data to account for the data 

update rule of the code 

Elements stay sufficiently long in cache to be fully reused  

Spatial blocking improves temporal locality! 
(Continuous access in inner loop ensures spatial locality) 

This element remains in cache until it is fully used (only 6 updates happen before 

last use of this element) 
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Jacobi iteration (2D): Spatial blocking 

 Implementation: 

 

 

 

 

 

 

 

 

 Guidelines: 

 Blocking of inner loop levels (traversing continuously through main memory) 

 Blocking size iblock large enough to keep elements sufficiently long in 

cache but cache size is a hard limit! 

 Blocking loops may have some impact on ccNUMA page placement (see 

later) 

 

do it=1,itmax 

  do ioffset=1,imax,iblock 

    do k=1,kmax 

      do i=ioffset, min(imax,ioffset+iblock-1) 

        phi(i, k, t1) = ( phi(i-1, k, t0) + phi(i+1, k, t0) 

                        + phi(i, k-1, t0) + phi(i, k+1, t0) )*0.25 

enddo; enddo; enddo; enddo 

loop over i-blocks 
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3D Jacobi solver (problem size 4003) 
Blocking different loop levels (8 cores Interlagos) 

Cray XE6 Workshop Performance for Multicore 

3D vs. 2D? 

OpenMP parallelization? 

Optimal block size? 

k-loop blocking? 

 

 see Exercise! 

24B/update  

performance 

model 

inner (i) loop 

blocking  

middle (j) loop 

blocking  

optimum j 

block size 
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3D Jacobi solver 
Spatial blocking + nontemporal stores 

Cray XE6 Workshop Performance for Multicore 

blocking 
NT 

stores 

expected 

boost: 

50% 

16 B/update perf. model 



Enforcing thread/process-core affinity 

under the Linux OS 

 Standard tools and OS affinity facilities 

under program control 

 likwid-pin 

 aprun (Cray) 
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Example: STREAM benchmark on 12-core Intel Westmere: 

Anarchy vs. thread pinning 

No pinning 

Pinning (physical cores first, 

alternating sockets) 

There are several reasons for caring about 

affinity: 

 Eliminating performance variation 

 Making use of architectural features 

 Avoiding resource contention 
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Generic thread/process-core affinity under Linux 
Overview 

 taskset [OPTIONS] [MASK | -c LIST ] \                      

                      [PID | command [args]...] 

 

 taskset binds processes/threads to a set of CPUs. Examples: 
 
taskset 0x0006 ./a.out 

taskset –c 4 33187 

mpirun –np 2 taskset –c 0,2 ./a.out # doesn’t always work 

 

 Processes/threads can still move within the set! 

 Alternative: let process/thread bind itself by executing syscall 
#include <sched.h> 

int sched_setaffinity(pid_t pid, unsigned int len,  

                   unsigned long *mask); 

 

 Disadvantage: which CPUs should you bind to on a non-exclusive 
machine? 

 

 Still of value on multicore/multisocket cluster nodes, UMA or ccNUMA 
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Generic thread/process-core affinity under Linux 

 Complementary tool: numactl 

 
Example: numactl --physcpubind=0,1,2,3 command [args] 

Bind process to specified physical core numbers 

 
Example: numactl --cpunodebind=1 command [args] 

Bind process to specified ccNUMA node(s) 

 

 Many more options (e.g., interleave memory across nodes) 

  see section on ccNUMA optimization 

 

 Diagnostic command (see earlier): 
numactl --hardware 

 

 Again, this is not suitable for a shared machine 
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More thread/Process-core affinity (“pinning”) options 

 Highly OS-dependent system calls 

 But available on all systems 

 Linux:  sched_setaffinity(), PLPA (see below)  hwloc 
Solaris:  processor_bind() 

Windows:  SetThreadAffinityMask() 
… 

 Support for “semi-automatic” pinning in some 
compilers/environments 

 Intel compilers > V9.1 (KMP_AFFINITY environment variable) 

 PGI, Pathscale, GNU 

 SGI Altix dplace (works with logical CPU numbers!) 

 Generic Linux: taskset, numactl, likwid-pin (see below) 

 Affinity awareness in MPI libraries 

 SGI MPT 

 OpenMPI 

 Intel MPI 

 … 

Example for program-controlled 

affinity: Using PLPA under Linux! 
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Likwid-pin 
Overview 

 Inspired by and based on ptoverride (Michael Meier, RRZE) and taskset 

 Pins processes and threads to specific cores without touching code 

 Directly supports pthreads, gcc OpenMP, Intel OpenMP 

 Allows user to specify skip mask (shepherd threads should not be pinned) 

 Based on combination of wrapper tool together with overloaded pthread 

library  binary must be dynamically linked! 

 Can also be used as a superior replacement for taskset 

 Supports logical core numbering within a node and within an existing CPU 

set 

 Useful for running inside CPU sets defined by someone else, e.g., the MPI 

start mechanism or a batch system 

 Configurable colored output 

 Usage examples: 

 likwid-pin –t intel -c 0,2,4-6  ./myApp parameters  

 likwid-pin –s 3 –c S0:0-3 ./myApp parameters 



63 Cray XE6 Workshop Performance for Multicore 

Likwid-pin 
Example: Intel OpenMP 

 Running the STREAM benchmark with likwid-pin: 

   

  $ export OMP_NUM_THREADS=4   

  $ likwid-pin -s 0x1 -c 0,1,4,5 ./stream 

  [likwid-pin] Main PID -> core 0 - OK 

  ---------------------------------------------- 

   Double precision appears to have 16 digits of accuracy 

   Assuming 8 bytes per DOUBLE PRECISION word 

  ---------------------------------------------- 

  [... some STREAM output omitted ...] 

   The *best* time for each test is used 

   *EXCLUDING* the first and last iterations 

  [pthread wrapper] PIN_MASK: 0->1  1->4  2->5   

  [pthread wrapper] SKIP MASK: 0x1 

  [pthread wrapper 0] Notice: Using libpthread.so.0 

          threadid 1073809728 -> SKIP  

  [pthread wrapper 1] Notice: Using libpthread.so.0  

          threadid 1078008128 -> core 1 - OK 

  [pthread wrapper 2] Notice: Using libpthread.so.0  

          threadid 1082206528 -> core 4 - OK 

  [pthread wrapper 3] Notice: Using libpthread.so.0  

          threadid 1086404928 -> core 5 - OK 

  [... rest of STREAM output omitted ...] 

Skip shepherd  

thread 

Main PID always  

pinned 

Pin all spawned  

threads in turn 
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Likwid-pin 
Using logical core numbering 

 Core numbering may vary from system to system even with 

identical hardware 

 Likwid-topology delivers this information, which can then be fed into likwid-

pin 

 Alternatively, likwid-pin can abstract this variation and provide a 

purely logical numbering (physical cores first) 

 

 

 

 

 

 

 

 Across all cores in the node: 
OMP_NUM_THREADS=8 likwid-pin -c N:0-7 ./a.out 

 Across the cores in each socket and across sockets in each node: 
OMP_NUM_THREADS=8 likwid-pin -c S0:0-3@S1:0-3 ./a.out 

Socket 0: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  0  1| |  2  3| |  4  5| |  6  7| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 

Socket 1: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  8  9| |10  11| |12  13| |14  15| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 

Socket 0: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  0  8| |  1  9| |  2 10| |  3 11| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 

Socket 1: 

+-------------------------------------+ 

| +------+ +------+ +------+ +------+ | 

| |  4 12| |  5 13| |  6 14| |  7 15| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| |  32kB| |  32kB| |  32kB| |  32kB| | 

| +------+ +------+ +------+ +------+ | 

| +------+ +------+ +------+ +------+ | 

| | 256kB| | 256kB| | 256kB| | 256kB| | 

| +------+ +------+ +------+ +------+ | 

| +---------------------------------+ | 

| |                8MB              | | 

| +---------------------------------+ | 

+-------------------------------------+ 
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Likwid-pin 
Using logical core numbering 

 Possible unit prefixes 

 

N  node 

 

 

 

S  socket 

 

 

 

 

M  NUMA domain 

 

 

 

C  outer level cache group 

Cray XE6 Workshop Performance for Multicore 

Chipset 

Memory 

Default if –c is not 

specified! 
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Likwid-pin 
Using logical core numbering 

 … and: Logical numbering inside a pre-existing cpuset: 

 

 

 

 

 

 

 

 

 

 

 

 

 OMP_NUM_THREADS=4 likwid-pin -c L:0-3 ./a.out 

Cray XE6 Workshop Performance for Multicore 

0 2 1 

3 
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aprun on Cray 

 See Cray workshop slides 28ff  

 

 aprun supports only physical core numbering 

 This is OK since the cores are always numbered consecutively on Crays 

 Use -ss switch to restrict allocation to local NUMA domain (see later for 

more on ccNUMA) 

 Use -d $OMP_NUM_THREADS or similar for MPI+OMP hybrid code 

 

 See later on how using multiple cores per module/chip/socket 

affects performance 

Cray XE6 Workshop Performance for Multicore 



General remarks on the performance 

properties of multicore multisocket 

systems 
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Parallelism in modern computer systems 

 Parallel and shared resources within a shared-memory node 

GPU #1 

GPU #2 

PCIe link 

    Parallel resources: 

 Execution/SIMD units 

 Cores 

 Inner cache levels 

 Sockets / memory domains 

 Multiple accelerators 

    Shared resources: 

 Outer cache level per socket 

 Memory bus per socket 

 Intersocket link 

 PCIe bus(es) 

 Other I/O resources 

Other I/O 

1 

2 

3 

4 5 

1 

2 

3 

4 

5 

6 

6 

7 

7 

8 

8 

9 

9 

10 

10 

How does your application react to all of those details? 

Cray XE6 Workshop Performance for Multicore 
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The parallel vector triad benchmark 

(Near-)Optimal code on Cray x86 machines 

Large-N version  

(nontemporal stores) 

Small-N version  

(standard stores) 

call get_walltime(S) 

!$OMP parallel private(j) 

do j=1,R 

  if(N.ge.CACHE_LIMIT) then 

!DIR$ LOOP_INFO cache_nt(A) 

!$OMP parallel do 

    do i=1,N 

      A(i) = B(i) + C(i) * D(i) 

    enddo 

!$OMP end parallel do 

  else 

!DIR$ LOOP_INFO cache(A) 

!$OMP parallel do 

    do i=1,N 

      A(i) = B(i) + C(i) * D(i) 

    enddo 

!$OMP end parallel do 

  endif 

  ! prevent loop interchange 

  if(A(N2).lt.0) call dummy(A,B,C,D) 

enddo 

!$OMP end parallel 

 

call get_walltime(E) 

“outer parallel”: Avoid thread team restart at 

every workshared loop 
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The parallel vector triad benchmark 

Single thread on Cray XE6 Interlagos node 

OMP overhead 

and/or lower 

optimization w/ 

OpenMP active 

L1 cache L2 cache memory L3 cache 

Team restart is 

expensive! 

 use only 

outer parallel 

from now on! 
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The parallel vector triad benchmark 

Intra-chip scaling on Cray XE6 Interlagos node 

L2 

bottleneck 

Aggregate 

L2, exclusive 

L3 

sync 

overhead 

Memory BW 

saturated @ 

4 threads 

Per-module 

L2 caches 
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The parallel vector triad benchmark 

Nontemporal stores  on Cray XE6 Interlagos node 

slow L3 

NT stores 

hazardous if data 

in cache 

25% speedup for 

vector triad in 

memory via NT 

stores 
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The parallel vector triad benchmark 

Topology dependence  on Cray XE6 Interlagos node 

sync overhead nearly 

topology-independent  

@ constant thread count 

more aggregate 

L3 with more 

chips 
bandwidth 

scalability across 

memory 

interfaces 



75 Cray XE6 Workshop Performance for Multicore 

The parallel vector triad benchmark 

Inter-chip scaling  on Cray XE6 Interlagos node 

sync overhead grows  

with core/chip count 
bandwidth 

scalability across 

memory 

interfaces 



Bandwidth saturation effects in cache and 

memory 

Low-level benchmark results 
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Bandwidth limitations: Memory 

Some problems get even worse…. 

 System balance = PeakBandwidth [MByte/s] / PeakFlops [MFlop/s]  

Typical balance ~ 0.25 Byte / Flop  4 Flop/Byte  32 Flop/double 

Balance values: 

Scalar product: 

1 Flop/double 

 1/32 Peak 

 

Dense 

Matrix∙Vector: 

2 Flop/double 

 1/16 Peak 

Large 

MatrixMatrix 

(BLAS3)   
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Bandwidth limitations: Main Memory 
Scalability of shared data paths inside a NUMA domain  (V-Triad) 

1 thread cannot 

saturate bandwidth 

Saturation with 

3 threads 

Saturation with 

2 threads 

Saturation with 

4 threads 
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Bandwidth limitations: Outer-level cache 
Scalability of shared data paths in L3 cache (V-Triad) 



OpenMP performance issues  

on multicore 

Synchronization (barrier) overhead 

Work distribution overhead 
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Welcome to the multi-/many-core era 

Synchronization of threads may be expensive! 

!$OMP PARALLEL … 

… 

!$OMP BARRIER  

!$OMP DO  

… 

!$OMP ENDDO 

!$OMP END PARALLEL 

 

On x86 systems there is no hardware support for synchronization! 

 Next slide: Test OpenMP Barrier performance… 

 for different compilers 

 and different topologies: 

 shared cache 

 shared socket 

 between sockets 

 and different thread counts 

 2 threads 

 full domain (chip, socket, node) 

Threads are synchronized at explicit AND 

implicit barriers. These are a main source of 

overhead in OpenMP progams. 
 

Determine costs via modified OpenMP 

Microbenchmarks  testcase  (epcc) 
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Thread synchronization overhead on Interlagos  
Barrier overhead in CPU cycles 

2 Threads Cray 8.03 GCC 4.6.2 PGI 11.8 Intel 12.1.3 

Shared L2 258 3995 1503 128623 

Shared L3 698 2853 1076 128611 

Same 

socket 
879 2785 1297 128695 

Other socket 940 2740 / 4222 1284 / 1325 128718 

Intel compiler barrier very expensive on Interlagos 

     OpenMP & Cray compiler 

Full domain Cray 8.03 GCC 4.6.2 PGI 11.8 Intel 12.1.3 

Shared L3 2272 27916 5981 151939 

Socket 3783 49947 7479 163561 

Node 7663 167646 9526 178892 



Case study:  

OpenMP-parallel sparse matrix-vector 

multiplication 

 

A simple (but sometimes not-so-simple) 

example for bandwidth-bound code and 

saturation effects in memory 
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Case study: Sparse matrix-vector multiply 

 Important kernel in many applications (matrix diagonalization, 

solving linear systems) 

 Strongly memory-bound for large data sets 

 Streaming, with partially indirect access: 

 

 

 

 

 

 

 

 

 Usually many spMVMs required to solve a problem 

 

 Following slides: Performance data on one 24-core AMD Magny 

Cours node 

 

do i = 1,Nr  

 do j = row_ptr(i), row_ptr(i+1) - 1  

  c(i) = c(i) + val(j) * b(col_idx(j))  

 enddo 

enddo 

 

!$OMP parallel do 

 

 

 

 

 

!$OMP end parallel do 
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Bandwidth-bound parallel algorithms: 
Sparse MVM 

 Data storage format is crucial for performance properties 

 Most useful general format: Compressed Row Storage (CRS) 

 SpMVM is easily parallelizable in shared and distributed memory 

 

 For large problems, spMVM is 

inevitably memory-bound 

 Intra-LD saturation effect 

on modern multicores 

 

 

 

 

 MPI-parallel spMVM is often  

communication-bound 

 See hybrid part for what we 

can do about this… 

Cray XE6 Workshop Performance for Multicore 
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SpMVM node performance model 

 Double precision CRS: 

 

 

 

 

 

 

 DP CRS code balance 

  quantifies extra traffic 

for loading RHS more than once 

 Predicted Performance = streamBW/BCRS 

 Determine   by measuring performance and actual memory BW 

  Even though the model has a “fudge factor” it is still useful! 

 

 

8 8 8 4 8 

8 
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G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector multiplication with 

explicit communication overlap on current multicore-based systems. Parallel Processing Letters 21(3), 339-

358 (2011). DOI: 10.1142/S0129626411000254, Preprint: arXiv:1106.5908 

http://dx.doi.org/10.1142/S0129626411000254
http://arxiv.org/abs/1106.5908
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Application: Sparse matrix-vector multiply 
Strong scaling on one XE6 Magny-Cours node 

 Case 1: Large matrix 

Intrasocket 

bandwidth 

bottleneck 
Good scaling 

across sockets 
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 Case 2: Medium size 

Application: Sparse matrix-vector multiply 
Strong scaling on one XE6 Magny-Cours node 

Intrasocket 

bandwidth 

bottleneck 

Working set fits 

in aggregate 

cache 



90 Cray XE6 Workshop Performance for Multicore 

Application: Sparse matrix-vector multiply 
Strong scaling on one Magny-Cours node 

 Case 3: Small size 

No bandwidth 

bottleneck 

Parallelization 

overhead 

dominates 



Probing performance behavior 

likwid-perfctr 
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likwid-perfctr 

Basic approach to performance analysis 

1. Runtime profile / Call graph (gprof) 

2. Instrument parts which consume significant part of runtime 

3. Find performance signatures 

 

Possible signatures: 

 Bandwidth saturation 

 Instruction throughput limited (real or language induced) 

 Latency bound (irregular data access, high branch ratio) 

 Load inbalance 

 ccNUMA issues 

 Pathologic cases (false cacheline sharing, expensive operations) 

 

Cray XE6 Workshop Performance for Multicore 
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Probing performance behavior 

 How do we find out about the performance properties and 

requirements of a parallel code? 

 Profiling via advanced tools is often overkill 

 A coarse overview is often sufficient 

 likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on 

Linux/Altix) 

 Simple end-to-end measurement of hardware performance metrics 

 “Marker” API for starting/stopping  

counters 

 Multiple measurement region  

support 

 Preconfigured and extensible  

metric groups, list with 
likwid-perfctr -a     

 

BRANCH: Branch prediction miss rate/ratio 

CACHE: Data cache miss rate/ratio 

CLOCK: Clock of cores 

DATA: Load to store ratio 

FLOPS_DP: Double Precision MFlops/s 

FLOPS_SP: Single Precision MFlops/s 

FLOPS_X87: X87 MFlops/s 

L2: L2 cache bandwidth in MBytes/s 

L2CACHE: L2 cache miss rate/ratio 

L3: L3 cache bandwidth in MBytes/s 

L3CACHE: L3 cache miss rate/ratio 

MEM: Main memory bandwidth in MBytes/s 

TLB: TLB miss rate/ratio 
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likwid-perfctr 

Example usage with preconfigured metric group  

$ env OMP_NUM_THREADS=4 likwid-perfctr -C N:0-3 -g FLOPS_DP  ./stream.exe 

------------------------------------------------------------- 

CPU type:       Intel Core Lynnfield processor  

CPU clock:      2.93 GHz  

------------------------------------------------------------- 

Measuring group FLOPS_DP 

------------------------------------------------------------- 

YOUR PROGRAM OUTPUT 

+--------------------------------------+-------------+-------------+-------------+-------------+ 

|                Event                 |   core 0    |   core 1    |   core 2    |   core 3    | 

+--------------------------------------+-------------+-------------+-------------+-------------+ 

|          INSTR_RETIRED_ANY           | 1.97463e+08 | 2.31001e+08 | 2.30963e+08 | 2.31885e+08 | 

|        CPU_CLK_UNHALTED_CORE         | 9.56999e+08 | 9.58401e+08 | 9.58637e+08 | 9.57338e+08 | 

|    FP_COMP_OPS_EXE_SSE_FP_PACKED     | 4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 | 

|    FP_COMP_OPS_EXE_SSE_FP_SCALAR     |     882     |      0      |      0      |      0      | 

| FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION |      0      |      0      |      0      |      0      | 

| FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION | 4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 | 

+--------------------------------------+-------------+-------------+-------------+-------------+ 

+--------------------------+------------+---------+----------+----------+ 

|          Metric          |   core 0   | core 1  |  core 2  |  core 3  | 

+--------------------------+------------+---------+----------+----------+ 

|       Runtime [s]        |  0.326242  | 0.32672 | 0.326801 | 0.326358 | 

|           CPI            |  4.84647   | 4.14891 | 4.15061  | 4.12849  | 

| DP MFlops/s (DP assumed) |  245.399   | 189.108 | 189.024  | 189.304  | 

|      Packed MUOPS/s      |  122.698   | 94.554  | 94.5121  | 94.6519  | 

|      Scalar MUOPS/s      | 0.00270351 |    0    |    0     |    0     | 

|        SP MUOPS/s        |     0      |    0    |    0     |    0     | 

|        DP MUOPS/s        |  122.701   | 94.554  | 94.5121  | 94.6519  | 

+--------------------------+------------+---------+----------+----------+  

Always 

measured 

Derived 

metrics 

Configured metrics 

(this group) 
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likwid-perfctr 

Best practices for runtime counter analysis  

Things to look at (in roughly this 

order) 

 

 Load balance (flops, instructions, 

BW) 

 

 In-socket memory BW saturation 

 

 Shared cache BW saturation 

 

 Flop/s, loads and stores per flop 

metrics 

 

 SIMD vectorization 

 

 CPI metric 

 

 # of instructions,  

branches, mispredicted branches 

 

 

 

Caveats 

 

 Load imbalance may not show in 

CPI or # of instructions 
 Spin loops in OpenMP barriers/MPI 

blocking calls 

 Looking at “top” or the Windows Task 

Manager does not tell you anything useful 

 

 In-socket performance saturation 

may have various reasons 

 

 Cache miss metrics are overrated 

 If I really know my code, I can often  

calculate the misses 

 Runtime and resource utilization is 

much more important 

Cray XE6 Workshop Performance for Multicore 
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likwid-perfctr 

Identify load imbalance… 

 Instructions retired / CPI may not be a good indication of 

useful workload – at least for numerical / FP intensive codes…. 

 Floating Point Operations Executed is often a better indicator 

 Waiting / “Spinning” in barrier generates a high instruction count  

!$OMP PARALLEL DO 

DO I = 1, N 

 DO J = 1, I 

    x(I) = x(I) + A(J,I) * y(J) 

 ENDDO 

ENDDO 

!$OMP END PARALLEL DO 

Cray XE6 Workshop Performance for Multicore 
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likwid-perfctr 

… and load-balanced codes 

!$OMP PARALLEL DO 

DO I = 1, N 

 DO J = 1, N 

    x(I) = x(I) + A(J,I) * y(J) 

 ENDDO 

ENDDO 

!$OMP END PARALLEL DO 

Higher CPI but 

better performance 

env OMP_NUM_THREADS=6 likwid-perfctr –C S0:0-5 –g FLOPS_DP ./a.out 

Cray XE6 Workshop Performance for Multicore 
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Detecting latency-bound codes 

… often with graph and tree data structures 

Metric Red-Black tree Optimized data structure 

Instructions retired 1.34268e+11 1.28581e+11  

CPI 9.0176 0.71887  

L3-MEM data volume [GB] 301 3.22 

TLB misses 3.71447e+09 4077 

Branch rate 36% 8.5% 

Branch mispredicted ratio 7.8% 0.0000013% 

Memory bandwidth [GB/s] 10.5 1.1 

Useful likwid-perfctr groups:  L3, L3CACHE, MEM, TLB, BRANCH 

 

High CPI, near perfect scaling if using SMT threads (Intel). 

Note: Latency bound code can still produce significant aggregated  bandwidth.  

Cray XE6 Workshop Performance for Multicore 
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Programming language induced problems 

 The object-oriented programming paradigm implements 

functionality resulting in many calls to small functions 

 The ability of the compiler to inline functions (and still generate the 

best possible machine code) is limited 

 

 Symptoms: 

 Low (“good”) CPI 

 Low resource utilization (Flops/s, bandwidth) 

 Orders of magnitude more general purpose than arithmetic floating point 

instructions 

 High branch rate 

 

 Solution: 

 Use basic data types and plain arrays in compute intensive loops 

 Use plain C-like code 

 Keep things simple – do not obstruct the compiler’s view on the code   

Cray XE6 Workshop Performance for Multicore 



Microarchitectural features  

of modern processors 

Hardware-software interaction 

SIMD parallelism 

A closer look at the cache hierarchy 

Performance modeling on the microarchitecture level 
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Where do we come from? 
Stored program design 

Flexible, but optimization  

is hard! 

Architect’s view: 

Make the common case fast ! 

Instruction Level Parallelism 

Pipelining 

Superscalar execution 

Data Access Locality 

Memory Hierarchy 

Hardware Prefetcher 

Data Parallelism 

SIMD execution 

MIMD Parallelism 

SMT 

Multicore 

Multisocket 

Cluster 

Performance for Multicore Cray XE6 Workshop 

ENIAC 1948 

EDSAC 1949 



102 

First Assumption:  ILP 

Assumption: Every sequential instruction stream implies potential 

parallelism on instruction level (ILP) 

 

Techniques to exploit assumption: 

 Pipelining (Overlap the execution of instructions) 

 Superscalar design (more than 1 ALU) 

 Out of order (OoO) execution 

 

Problems: 

 Makes hardware implementation complex 

 Benefit is often not worth the effort 

 Real-world benefit is limited (3-6 ops/cycle, 1 or less on average) 

 

Cray XE6 Workshop Performance for Multicore 
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CPI: A Measure for ILP 

CPI: Cycles per Instruction 

Ideal CPI for pipelined (non-superscalar) processor:  1 

CPI for superscalar processor:  < 1 

 

Connection to Runtime: 

 

 time  =  cycles  x  clock rate 

 

Cycles can be calculated as: 

 

 cycles = CPI x number of instructions 

Cray XE6 Workshop Performance for Multicore 
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Second Assumption: Locality of Data Access 

Assumption: If a data item is loaded it is likely that it is loaded again 

in the near future (temporal locality). If a data item is loaded it is 

likely that a data item in close distance is also loaded (spatial 

locality). 

 

Techniques to exploit assumption: 

 Use caches to make repeated data accesses faster 

 Use cache lines to reduce latency impact 

 

Problems: 

 Does not work for unstructured data accesses 

 There are many algorithms with no or weak locality 

Cray XE6 Workshop Performance for Multicore 
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Hardware- Software Co-Design? 

From algorithm to execution 

The machine view: 

 

ISA (Machine code) 

 

 

Reality: 

Algorithm 

Programming language 

Hardware = Black Box 

Libraries Compiler 

Cray XE6 Workshop Performance for Multicore 
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How to achieve Performance  
(for data intensive floating point codes on commodity chips) 

1990 

Caches 

SIMD 

1998 

2001 

Prefetching 

NUMA 

2003 

2005 

Multicore 

Node Performance:  1TFlops/s, 50-100 GB/s memory bandwidth 
 

Cray XE6 Workshop Performance for Multicore 

CLOCK   
-2004 

Explicit  Performance 

factor 

Thread level 

parallelism  

4-40x 

SIMD DP 2-4x 

SP 4-8x 

Distributed memory 

parallelism  

unlimited  

1000x 

Implicit Performance 

factor 

Instruction level 

parallelism 

Pipelining 3-4x 

Superscalar 2x 

SMT 30%) 

Caches 4-6x 

NUMA 2-4x 
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IA-32 Architecture Basics: 
Floating Point Operations and SIMD 

 “Sensible SIMD” came with SSE (Pentium III) and SSE2 

(Pentium 4) – Streaming SIMD Extensions 

 With AVX  a new SIMD instruction set with 256 bit register 

width was introduced 

 AVX will be the relevant instruction set for the near future 

 An extension to 512 bit register width is already in planning 

 Each register can be 

partitioned into several integer 

or FP data types 

 8 to 128-bit integers 

 single or double precision 

floating point 

 SIMD instructions can operate 

on the lowest or all partitions 

of a register at once 
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IA-32 Architecture Basics: 

SIMD Operations 

 Possible data types in an SIMD register 
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IA-32 Architecture Basics: 
Floating Point Operations and SIMD 

 Example: Single precision FP packed vector addition 

 Multiple operations are done in one single instruction 

 Nehalem: 1-cycle throughput for double precision SSE2 MULT & 

ADD leading to a peak performance of 4 (DP) FLOPs/cycle 

 Sandy Bridge & Interlagos:  Peak performance of 8 (DP) 

FLOPs/cycle 

 Interlagos: Only achievable with FMA instruction 
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Computer Architecture 
Basics 

Cray XE6 Workshop Performance for Multicore 

 Everything on a processor happens in terms of cycles! 

 

 All efforts are focused on increasing the average instruction 

throughput: 

 Metric CPI (cycles per instruction) 

 

 Important for us: 

•  Arithmetic instruction throughput 

•  Load/Store instruction throughput 

•  Overall instruction throughput 

 
Runtime Contributions: 

1. Instruction execution 

2. Data transfers 

• Cache transfers 

• Memory transfers 
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AMD Interlagos 
Microarchitecture of Compute Unit (CU) 

FP units 128bit wide 

 

FP Co-processor  supports: 

AVX and FMA4 

 

CU can sustain two 128bit 

and one 128 bit store  
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AMD Interlagos 
Node topology 

Provide competitive node 

memory bandwidth  for the 

price of  a higher node 

complexity. 

 

Target cache (i.e., the level 

that gets filled from memory) 

is  the L2 cache. 

 

Visible L3 cache size is 6 MB 

per chip (12 MB per socket). 
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Comparison chart 
SIMD instruction throughput (instr/cycle) 

Instruction type SandyBridge Westmere MagnyCours Interlagos 

Add  SSE 1 1 1 2 

Mul  SSE 1 1 1 2 

Mul/Add SSE 2 2 2 2 

Load SSE 2 1 2 2 

Store SSE 1 1 1 1 

Load/Store 2 2 2 ? 2 

Add AVX 1 - - 1 

Mul AVX 1 - - 1 

Mul/Add AVX 2 - - 1 (FMA 2) 

Load AVX 1 - - 1 

Store AVX 0.5 - - 0.5 

Load/Store AVX 0.5 0.5 

Max Overall 6 4 3 4  

Cray XE6 Workshop Performance for Multicore 
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Comparison chart 
Memory Hierarchies 

 Intel SandyBridge EP 

 8 cores, 8 FP Units 

 

L1D: 

32kB, 8-way, write back 

L2:  

256kB, 8-way, inclusive 

L3:  

20MB, 20-way,inclusive,  

shared 8C 

Memory: 

4-channel DDR3-1600 

 

Aggregated 40MB node 

cache size. 

Cray XE6 Workshop Performance for Multicore 

 AMD Magny Cours 

 6 cores, 6 FP Units 

 

L1D: 

64kB, 2-way, write back 

L2:  

512kB, 16-way, exclusive 

L3:  

5 MB, 32-way,exclusive, 

shared 6C 

Memory: 

2-channel DDR3-1333 

 AMD Interlagos 

 8 cores, 4 FP Units 

 

L1D: 

16kB, 4-way, write through 

L2:  

2MB, 16-way, inclusive. 

shared 2C 

L3:  

6 MB, 48-way, exclusive, 

shared 8C 

Memory: 

2-channel DDR3-1866 

 

Aggregated  56MB node 

cache size. 
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Interlagos design feature 
Exclusive caches 

 Exclusive cache means that there is only one copy of a cache line 

in the cache hierarchy! Often called victim cache 

 Motivation: Visible cache size for application is larger 

 BUT: More cache traffic necessary 

Cray XE6 Workshop Performance for Multicore 

Magny Cours Interlagos 

 The aggregated L3 

bandwidth is low 

 For HPC applications the L3 

cache is not attractive 

 

 Stream benchmark: 

 
L3:  IL 40 GB/s,  SNB 193 GB/s 

 

5MB (fits in aggr. L2):  

IL 108 GB/s, SNB 215GB/s 
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Interlagos design feature 
Write through L1 cache 

Cycles/CL load store copy stream triad 

Cores/ CU 1 2 1 2 1 2 1 2 

L1 2 4 10 20 10 20 7 14 

L2 5.43 5.83 11.21 22.21 13.47 25.21 17.63 30.40 

L2 (prefetch) 3.64 5.72 - - 12.92 25.53 16.22 30.21 

Cray XE6 Workshop Performance for Multicore 

Consequences: 

 Stores involve a large penalty 

 L2 cache store bandwidth does not scale 

 Prefetching to L1 only pays off with one core 

Try to avoid stores as far as possible!  

Write through motivation: 

• Simpler to implement 

(cache coherence) 

• Can save overhead for 

shared L2 access  

• No write allocate 

• But higher cost  for 

stores in L1 cache 



Reading x86 assembly code 
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Introduction to Assembly 

To read or write assembly code you have to know about: 

 Instruction Set Architecture (ISA) 

 Application Binary Interface (ABI) 

 Object Code Format (ELF on Linux) 

 Assembler specific directives (gas, masm) 

 

Useful tools: 

 GNU binutils (objdump, readelf) 

 Debugger (gdb) 

 Compiler option –S (Intel/GCC) 
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Basic approach to check the instruction code 

 Get the assembler code (Intel compiler): 

 icc –S –O3  -xHost  triad.c  -o triad.s 

 Disassemble Executable: 

    objdump –d  ./cacheBench | less 

 Things to check for: 

 Is the code vectorized? Search for pd/ps suffix. 

     mulpd, addpd, vaddpd, vmulpd 

 Is the data loaded with 16 byte moves? 

    movapd, movaps, vmovupd 

 For memory-bound code: Search for nontemporal stores: 

    movntpd, movntps 

 

The x86 ISA is documented in: 

Intel Software Development Manual (SDM) 2A and 2B 

AMD64 Architecture Programmer's Manual Vol. 1-5 
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Basics of the x86-64 ISA 

 Instructions have 0 to 2 operands 

 Operands can be registers, memory references or immediates  

 Opcodes (binary representation of instructions) vary from 1 to 17 

bytes 

 There are two syntax forms: Intel (left)  and AT&T (right) 

 Addressing Mode: BASE + INDEX * SCALE + DISPLACEMENT 

 C:  A[i]  equivalent to  *(A+i)  (a pointer has a type: A+i*8) 

movaps [rdi + rax*8+48], xmm3 

add rax, 8 

js 1b 

401b9f: 0f 29 5c c7 30     movaps %xmm3,0x30(%rdi,%rax,8) 

401ba4: 48 83 c0 08        add    $0x8,%rax 

401ba8: 78 a6              js     401b50 <triad_asm+0x4b> 

 

movaps    %xmm4, 48(%rdi,%rax,8)  

addq      $8, %rax 

js        ..B1.4  
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Basics of the x86-64 ISA II 

16 general Purpose Registers (64bit):   

rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp, r8-r15 

alias with eight  32 bit register set: 

eax, ebx, ecx, edx, esi, edi, esp, ebp 

 

Floating Point SIMD Registers: 

xmm0-xmm15  SSE (128bit)   alias with 256bit registers 

ymm0-ymm15  AVX (256bit) 

 

SIMD instructions are distinguished by: 

AVX (VEX) prefix:  v 

Operation:  mul, add, mov 

Modifier: non temporal (nt), unaligned (u), aligned (a), high (h) 

Data type: single (s),  double  (d) 
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Basics of x86-64 ABI 

 Regulations how functions are called on binary level 

 Differs between 32 bit / 64 bit and Operating Systems 

 

x86-64 on Linux: 

 

 Integer or address parameters are passed in the order : 

     rdi, rsi, rdx, rcx, r8, r9 

 

 Floating Point parameters are passed in the order xmm0-xmm7 

 

 Registers which must be preserved across function calls:  
 rbx, rbp, r12-r15 

 

 Return values are passed in rax/rdx and xmm0/xmm1  
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Case Study: summation 

float sum = 0.0; 

 

for (int j=0; j<size; j++){ 

    sum += data[j]; 

} 

 

 

Instruction code: 

401d08:   f3 0f 58 04 82          addss  (%rdx,%rax,4),%xmm0 

401d0d:   48 83 c0 01             add    $0x1,%rax 

401d11:   39 c7                   cmp    %eax,%edi 

401d13:   77 f3                   ja     401d08 

 

Cray XE6 Workshop Performance for Multicore 

Instruction 

address 

Opcodes 
Assembly 

code 

To get code use objdump –d 

on object file or executable. 
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How to leverage SIMD 

 The compiler does it for you (aliasing, alignment, language) 

 Compiler directives (pragmas) 

 Alternative programming models for compute kernels (OpenCL, ispc) 

 Intrinsics (restricted to C/C++) 

 Implement directly in  assembler 

 

To use intrinsics the following headers are available. To enable 

instruction set often additional flags are necessary: 

 

 xmmintrin.h  (SSE) 

 pmmintrin.h (SSE2) 

 immintrin.h  (AVX) 

 

 x86intrin.h (all instruction set extensions) 

 

 
Cray XE6 Workshop Performance for Multicore 
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Case Study: summation using intrinsics 

Cray XE6 Workshop Performance for Multicore 

__m128 sum0, sum1, sum2, sum3; 

__m128 t0, t1, t2, t3; 

float scalar_sum; 

sum0 =  _mm_setzero_ps(); 

sum1 =  _mm_setzero_ps(); 

sum2 =  _mm_setzero_ps(); 

sum3 =  _mm_setzero_ps(); 

 

for (int j=0; j<size; j+=16){ 

    t0 = _mm_loadu_ps(data+j); 

    t1 = _mm_loadu_ps(data+j+4); 

    t2 = _mm_loadu_ps(data+j+8); 

    t3 = _mm_loadu_ps(data+j+12); 

    sum0 = _mm_add_ps(sum0, t0); 

    sum1 = _mm_add_ps(sum1, t1); 

    sum2 = _mm_add_ps(sum2, t2); 

    sum3 = _mm_add_ps(sum3, t3); 

} 

  

 

sum0 = _mm_add_ps(sum0, sum1); 

sum0 = _mm_add_ps(sum0, sum2); 

sum0 = _mm_add_ps(sum0, sum3); 

sum0 = _mm_hadd_ps(sum0, sum0); 

sum0 = _mm_hadd_ps(sum0, sum0); 

 

_mm_store_ss(&scalar_sum, sum0); 
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Case Study: summation, instruction code 

14:   0f 57 c9                xorps  %xmm1,%xmm1 

17:   31 c0                   xor    %eax,%eax 

19:   0f 28 d1                movaps %xmm1,%xmm2 

1c:   0f 28 c1                movaps %xmm1,%xmm0 

1f:   0f 28 d9                movaps %xmm1,%xmm3 

22:   66 0f 1f 44 00 00       nopw   0x0(%rax,%rax,1) 

28:   0f 10 3e                movups (%rsi),%xmm7 

2b:   0f 10 76 10             movups 0x10(%rsi),%xmm6 

2f:   0f 10 6e 20             movups 0x20(%rsi),%xmm5 

33:   0f 10 66 30             movups 0x30(%rsi),%xmm4 

37:   83 c0 10                add    $0x10,%eax 

3a:   48 83 c6 40             add    $0x40,%rsi 

3e:   0f 58 df                addps  %xmm7,%xmm3 

41:   0f 58 c6                addps  %xmm6,%xmm0 

44:   0f 58 d5                addps  %xmm5,%xmm2 

47:   0f 58 cc                addps  %xmm4,%xmm1 

4a:   39 c7                   cmp    %eax,%edi 

4c:   77 da                   ja     28 <compute_sum_SSE+0x18> 

4e:   0f 58 c3                addps  %xmm3,%xmm0 

51:   0f 58 c2                addps  %xmm2,%xmm0 

54:   0f 58 c1                addps  %xmm1,%xmm0 

57:   f2 0f 7c c0             haddps %xmm0,%xmm0 

5b:   f2 0f 7c c0             haddps %xmm0,%xmm0 

5f:   c3                      retq  

Cray XE6 Workshop Performance for Multicore 

Loop body 
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Improving Memory Performance  
Streaming Stores on Interlagos 

..B1.4: 

movaps (%rdx,%rax,8),%xmm1 

mulpd  %xmm0, %xmm4 

addpd (%rsi,%rax,8),%xmm1 

movntpd %xmm1, (%rdi,%rax,8) 

addq  1,%rax 

cmpq  %rcx, %rax 

js  ..B1.4 

#pragma vector aligned 

#pragma vector always 

#pragma vector nontemporal 

for (i=0;i< size;i++){ 

 A[i] = B[i] +alpha* C[i]; 

} 

 
617 GFlop/s vs. 854 GFlop/s 

On Interlagos NT stores circumvent both write-through stores and the 

L3 cache. This makes them even attractive for smaller data sets which 

could fit into L3 cache.  triad (3MB): 783 Gflop/s, NT 1156 Gflop/s 

Cray: 

LOOP_INFO cache_nt(A) 



Efficient parallel programming  

on ccNUMA nodes 

Performance characteristics of ccNUMA nodes 

First touch placement policy 

C++ issues 

ccNUMA locality and dynamic scheduling 

ccNUMA locality beyond first touch 
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ccNUMA performance problems 
“The other affinity” to care about 

 ccNUMA: 

 Whole memory is transparently accessible by all processors 

 but physically distributed 

 with varying bandwidth and latency 

 and potential contention (shared memory paths) 

 How do we make sure that memory access is always as "local" 

and "distributed" as possible? 

 

 

 

 

 

 

 

 Page placement is implemented in units of OS pages (often 4kB, possibly 

more) 
 

C C C C 

M M 

C C C C 

M M 
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Cray XE6 Interlagos node 

4 chips, two sockets, 8 threads per ccNUMA domain 

 
 ccNUMA map: Bandwidth penalties for remote access 

 Run 8 threads per ccNUMA domain (1 chip) 

 Place memory in different domain  4x4 combinations 

 STREAM triad benchmark using nontemporal stores  

Cray XE6 Workshop Performance for Multicore 
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ccNUMA locality tool numactl: 

How do we enforce some locality of access? 

 numactl can influence the way a binary maps its memory pages: 

 
numactl --membind=<nodes> a.out # map pages only on <nodes> 

        --preferred=<node> a.out  # map pages on <node>  

                             # and others if <node> is full 

        --interleave=<nodes> a.out # map pages round robin across 

                               # all <nodes> 

 

 Examples: 

 
env OMP_NUM_THREADS=2 numactl --membind=0 –cpunodebind=1 ./stream 

 

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \ 

    likwid-pin -c N:0,4,8,12 ./stream 

 

 

 

 But what is the default without numactl? 
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ccNUMA default memory locality 

 "Golden Rule" of ccNUMA: 

 

A memory page gets mapped into the local memory of the 

processor that first touches it! 

 

 Except if there is not enough local memory available 

 This might be a problem, see later 

 Caveat: "touch" means "write", not "allocate" 

 Example:  

 
double *huge = (double*)malloc(N*sizeof(double)); 

 

for(i=0; i<N; i++) // or i+=PAGE_SIZE 

   huge[i] = 0.0;   

 

 

 It is sufficient to touch a single item to map the entire page 

Memory not 

mapped here yet 

Mapping takes 

place here 
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Coding for ccNUMA data locality 

integer,parameter :: N=10000000 

double precision A(N), B(N) 

 

 

 

A=0.d0 

 

 

 

!$OMP parallel do 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end parallel do 

integer,parameter :: N=10000000 

double precision A(N),B(N) 

!$OMP parallel  

!$OMP do schedule(static) 

do i = 1, N 

  A(i)=0.d0 

end do 

!$OMP end do 

... 

!$OMP do schedule(static) 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end do 

!$OMP end parallel 

 Most simple case: explicit initialization  
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Coding for ccNUMA data locality 

integer,parameter :: N=10000000 

double precision A(N), B(N) 

 

 

 

 

READ(1000) A 

 

 

 

!$OMP parallel do 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end parallel do 

integer,parameter :: N=10000000 

double precision A(N),B(N) 

!$OMP parallel  

!$OMP do schedule(static) 

do i = 1, N 

  A(i)=0.d0 

end do 

!$OMP end do 

!$OMP single 

READ(1000) A 

!$OMP end single 

!$OMP do schedule(static) 

do i = 1, N 

  B(i) = function ( A(i) ) 

end do 

!$OMP end do 

!$OMP end parallel 

 Sometimes initialization is not so obvious: I/O cannot be easily 

parallelized, so “localize” arrays before I/O 
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Coding for Data Locality 

 Required condition: OpenMP loop schedule of initialization must 

be the same as in all computational loops 

 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to 

be sure… 

 Imposes some constraints on possible optimizations (e.g. load balancing) 

 Presupposes that all worksharing loops with the same loop length have the 

same thread-chunk mapping 

 Guaranteed by OpenMP 3.0 only for loops in the same enclosing parallel region 

and static schedule 

 In practice, it works with any compiler even across regions 

 If dynamic scheduling/tasking is unavoidable, more advanced methods may 

be in order 

 How about global objects? 

 Better not use them 

 If communication vs. computation is favorable, might consider properly 

placed copies of global data 

 In C++, STL allocators provide an elegant solution (see hidden slides) 



136 Cray XE6 Workshop Performance for Multicore 

Coding for Data Locality: 

Placement of static arrays or arrays of objects 

 Speaking of C++: Don't forget that constructors tend to touch the 

data members of an object. Example: 

 

 class D { 
  double d; 

public: 

  D(double _d=0.0) throw() : d(_d) {} 

  inline D operator+(const D& o) throw() { 

    return D(d+o.d); 

  } 

  inline D operator*(const D& o) throw() { 

    return D(d*o.d); 

  } 

... 

}; 

→ placement problem with  
     D* array = new D[1000000]; 
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Coding for Data Locality: 

Parallel first touch for arrays of objects 

 Solution: Provide overloaded D::operator new[] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Placement of objects is then done automatically by the C++ runtime via 

“placement new” 

void* D::operator new[](size_t n) { 

  char *p = new char[n];    // allocate 

 

  size_t i,j; 

#pragma omp parallel for private(j) schedule(...) 

  for(i=0; i<n; i += sizeof(D)) 

    for(j=0; j<sizeof(D); ++j) 

      p[i+j] = 0; 

  return p; 

} 

 

void D::operator delete[](void* p) throw() { 

  delete [] static_cast<char*>p; 

} 

parallel first 

touch 
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Coding for Data Locality: 
NUMA allocator for parallel first touch in std::vector<> 

template <class T> class NUMA_Allocator { 

public: 

  T* allocate(size_type numObjects, const void   

              *localityHint=0) { 

    size_type ofs,len = numObjects * sizeof(T); 

    void *m = malloc(len); 

    char *p = static_cast<char*>(m); 

    int i,pages = len >> PAGE_BITS; 

#pragma omp parallel for schedule(static) private(ofs) 

    for(i=0; i<pages; ++i) { 

      ofs = static_cast<size_t>(i) << PAGE_BITS; 

      p[ofs]=0; 

    } 

    return static_cast<pointer>(m); 

  } 

... 

}; Application: 
vector<double,NUMA_Allocator<double> > x(10000000) 
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Diagnosing Bad Locality 

 If your code is cache-bound, you might not notice any locality 

problems 

 

 Otherwise, bad locality limits scalability at very low CPU numbers 

(whenever a node boundary is crossed) 

 If the code makes good use of the memory interface 

 But there may also be a general problem in your code… 

 

 Consider using performance counters 

 LIKWID-perfctr can be used to measure nonlocal memory accesses 

 Example for Intel Nehalem (Core i7): 

 
env OMP_NUM_THREADS=8 likwid-perfctr -g MEM –C N:0-7 ./a.out 
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Using performance counters for diagnosing bad ccNUMA 

access locality 

 Intel Nehalem EP node: 

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+ 

|             Event             |   core 0    |   core 1    |   core 2    |   core 3    |   core 4    |   core 5    |   core 6    |   core 7    | 

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+ 

|       INSTR_RETIRED_ANY       | 5.20725e+08 | 5.24793e+08 | 5.21547e+08 | 5.23717e+08 | 5.28269e+08 | 5.29083e+08 | 5.30103e+08 | 5.29479e+08 | 

|     CPU_CLK_UNHALTED_CORE     | 1.90447e+09 | 1.90599e+09 | 1.90619e+09 | 1.90673e+09 | 1.90583e+09 | 1.90746e+09 | 1.90632e+09 | 1.9071e+09  | 

|   UNC_QMC_NORMAL_READS_ANY    | 8.17606e+07 |      0      |      0      |      0      | 8.07797e+07 |      0      |      0      |      0      | 

|    UNC_QMC_WRITES_FULL_ANY    | 5.53837e+07 |      0      |      0      |      0      | 5.51052e+07 |      0      |      0      |      0      | 

| UNC_QHL_REQUESTS_REMOTE_READS | 6.84504e+07 |      0      |      0      |      0      | 6.8107e+07  |      0      |      0      |      0      | 

| UNC_QHL_REQUESTS_LOCAL_READS  | 6.82751e+07 |      0      |      0      |      0      | 6.76274e+07 |      0      |      0      |      0      | 

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+ 

RDTSC timing: 0.827196 s 

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+ 

|           Metric            |  core 0  |  core 1  | core 2  |  core 3  |  core 4  |  core 5  | core 6  | core 7  | 

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+ 

|         Runtime [s]         | 0.714167 | 0.714733 | 0.71481 | 0.715013 | 0.714673 | 0.715286 | 0.71486 | 0.71515 | 

|             CPI             | 3.65735  | 3.63188  | 3.65488 | 3.64076  | 3.60768  | 3.60521  | 3.59613 | 3.60184 | 

| Memory bandwidth [MBytes/s] | 10610.8  |    0     |    0    |    0     | 10513.4  |    0     |    0    |    0    | 

|  Remote Read BW [MBytes/s]  |   5296   |    0     |    0    |    0     | 5269.43  |    0     |    0    |    0    | 

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+ 

Uncore events only 

counted once per socket 

Half of read BW comes 

from other socket! 
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If all fails… 

 Even if all placement rules have been carefully observed, you may 

still see nonlocal memory traffic. Reasons? 
 

 Program has erratic access patters  may still achieve some access 

parallelism (see later) 

 OS has filled memory with buffer cache data: 

 

 

 

 

 

 

# numactl --hardware    # idle node! 

available: 2 nodes (0-1) 

node 0 size: 2047 MB 

node 0 free: 906 MB 

node 1 size: 1935 MB 

node 1 free: 1798 MB 

top - 14:18:25 up 92 days,  6:07,  2 users,  load average: 0.00, 0.02, 0.00 

Mem:   4065564k total,  1149400k used,  2716164k free,    43388k buffers 

Swap:  2104504k total,     2656k used,  2101848k free,  1038412k cached 

 



142 Cray XE6 Workshop Performance for Multicore 

ccNUMA problems beyond first touch: 

Buffer cache 

 OS uses part of main memory for 

disk buffer (FS) cache 

 If FS cache fills part of memory,  

apps will probably allocate from  

foreign domains 

  non-local access! 

 “sync” is not sufficient to 

drop buffer cache blocks 

 

 

 Remedies 

 Drop FS cache pages after user job has run (admin’s job) 

 seems to be automatic after aprun has finished on Crays  

 User can run “sweeper” code that allocates and touches all physical 

memory before starting the real application 

 numactl tool or aprun can force local allocation (where applicable) 

 Linux: There is no way to limit the buffer cache size in standard kernels 

P1 
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P2 
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ccNUMA problems beyond first touch: 

Buffer cache 

Real-world example: ccNUMA and the Linux buffer cache 

Benchmark: 

1. Write a file of some size 

from LD0 to disk 

2. Perform bandwidth 

benchmark using 

all cores in LD0 and 

maximum memory 

available in LD0 

 

Result: By default, 

Buffer cache is given  

priority over local  

page placement 

 restrict to local  

    domain if possible! 

aprun –ss ... 



144 Cray XE6 Workshop Performance for Multicore 

ccNUMA placement and erratic access patterns 

 Sometimes access patterns are  

just not nicely grouped into  

contiguous chunks: 

 

 

 

 

 

 

 

 

 

 

 In both cases page placement cannot easily be fixed for perfect parallel 

access 

double precision :: r, a(M) 

!$OMP parallel do private(r) 

do i=1,N 

  call RANDOM_NUMBER(r) 

  ind = int(r * M) + 1 

  res(i) = res(i) + a(ind) 

enddo 

!OMP end parallel do 

 Or you have to use tasking/dynamic 

scheduling: 

!$OMP parallel 

!$OMP single 

do i=1,N 

  call RANDOM_NUMBER(r) 

  if(r.le.0.5d0) then 

!$OMP task 

    call do_work_with(p(i)) 

!$OMP end task 

  endif 

enddo 

!$OMP end single 

!$OMP end parallel 
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ccNUMA placement and erratic access patterns 

 Worth a try: Interleave memory across ccNUMA domains to get at least 

some parallel access 

1. Explicit placement: 

 

 

 

 

 

2. Using global control via numactl: 

 

numactl --interleave=0-3 ./a.out 

 

 Fine-grained program-controlled placement via libnuma (Linux) 

using, e.g., numa_alloc_interleaved_subset(), 

numa_alloc_interleaved() and others 

 

!$OMP parallel do schedule(static,512) 

do i=1,M 

  a(i) = … 

enddo 

!$OMP end parallel do 

This is for all memory, not 

just the problematic 

arrays! 

Observe page alignment of 

array to get proper 

placement! 
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The curse and blessing of interleaved placement:  

OpenMP STREAM on a Cray XE6 Interlagos node 

 Parallel init: Correct parallel initialization 

 LD0: Force data into LD0 via  numactl –m 0 

 Interleaved:  numactl --interleave <LD range> 

Cray XE6 Workshop Performance for Multicore 
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Conclusions 

Cray XE6 Workshop Performance for Multicore 

There is no alternative to knowing what is going on 

between your code and the hardware 

Without performance modeling, 

optimizing code is like stumbling in the dark 

 

Performance x Flexibility = constant 
a.k.a. Abstraction is the natural enemy of performance 


