
Performance-oriented programming on

multicore-based systems,

with a focus on the Cray XE6

Georg Hager(a), Jan Treibig(a), and Gerhard Wellein(a,b)

(a)HPC Services, Erlangen Regional Computing Center (RRZE)

(b)Department for Computer Science

 Friedrich-Alexander-University Erlangen-Nuremberg

Cray XE6 optimization workshop, November 5-8, 2012, HLRS

mailto:georg.hager@fau.de
mailto:jan.treibig@fau.de
mailto:gerhard.wellein@fau.de

2

The Rules™

There is no alternative to knowing what is going on

between your code and the hardware

Without performance modeling,

optimizing code is like stumbling in the dark

Performance x Flexibility = constant
a.k.a. Abstraction is the natural enemy of efficiency

Cray XE6 Workshop Performance for Multicore

3

Agenda

 Basics of multicore processor and node architecture

 Probing node topology with likwid-topology

 Data access on modern processors

 Basic performance benchmarks and properties

 The balance metric: Bandwidth-based performance modeling

 Optimizing data access by code transformations

 Enforcing affinity in multicore environments

 Performance properties of parallel code on multicore processors

and nodes

 Exploration by microbenchmarks

 Sparse matrix-vector multiplication

 Microarchitectural features of modern processors

 SIMD parallelism

 A closer look at the cache hierarchy

 Performance modeling on the microarchitecture level

 ccNUMA: Properties and efficient programming

Cray XE6 Workshop Performance for Multicore

Multicore processor and system

architecture

Basics

5

The x86 multicore evolution so far
Intel Single-Dual-/Quad-/Hexa-/-Cores (one-socket view)

Sandy Bridge EP

“Core i7”

32nm

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

2012: Wider SIMD units

AVX: 256 Bit

P
C

P
C

C

P
C

P
C

C

W
o

o
d

c
re

s
t

“
C

o
re

2
 D

u
o
”

6
5

n
m

H
a

rp
e
rt

o
w

n

“C
o
re

2
 Q

u
a
d

”
4

5
n

m

Memory

Chipset

P
C

P
C

C

Memory

Chipset

O
th

e
r

s
o

c
k
e
t

O
th

e
r

s
o

c
k
e
t

2006: True dual-core

P

C
C

Memory

Chipset

Memory

Chipset

P

C
C

P

C
C

2005: “Fake” dual-core

Nehalem EP

“Core i7”

45nm

Westmere EP

 “Core i7”

32nm

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

2008:

Simultaneous

Multi Threading (SMT)

O
th

e
r

s
o

c
k
e
t

O
th

e
r

s
o

c
k
e
t

C
C

C
C

C
C

C
C

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

2010:

6-core chip

Cray XE6 Workshop Performance for Multicore

6

There is no longer a single driving force

for chip performance!

Floating Point (FP) Performance:

 P = ncore * F * S * n

ncore number of cores: 8

F FP instructions per cycle: 2

 (1 MULT and 1 ADD)

S FP ops / instruction: 4 (dp) / 8 (sp)

 (256 Bit SIMD registers – “AVX”)

n Clock speed : 2.5 GHz

P = 160 GF/s (dp) / 320 GF/s (sp)

Intel Xeon

“Sandy Bridge EP” socket

4,6,8 core variants available

But: P=5 GF/s (dp) for serial, non-SIMD code

Cray XE6 Workshop Performance for Multicore

TOP500 rank 1 (1996)

7

Today: Dual-socket Intel (Westmere) node:

Yesterday (2006): Dual-socket Intel “Core2” node:

From UMA to ccNUMA
Basic architecture of commodity compute cluster nodes

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

But: system “anisotropy”

Cache-coherent Non-Uniform Memory

Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at

the price of ccNUMA architectures:

Where does my data finally end up?

On AMD it is even more complicated  ccNUMA within a socket!

Cray XE6 Workshop Performance for Multicore

8

Back to the 2-chip-per-case age

12 core AMD Magny-Cours – a 2x6-core ccNUMA socket

 AMD: single-socket ccNUMA since Magny Cours

 1 socket: 12-core Magny-Cours built from two 6-core chips

  2 NUMA domains

 2 socket server  4 NUMA domains

 4 socket server:  8 NUMA domains

 WHY?  Shared resources are hard two scale:

 2 x 2 memory channels vs. 1 x 4 memory channels per socket

Cray XE6 Workshop Performance for Multicore

9

Another flavor of “SMT”

AMD Interlagos / Bulldozer

 Up to 16 cores (8 Bulldozer modules) in a single socket

 Max. 2.6 GHz (+ Turbo Core)

 Pmax = (2.6 x 8 x 8) GF/s

 = 166.4 GF/s

Each Bulldozer module:

 2 “lightweight” cores

 1 FPU: 4 MULT & 4 ADD

(double precision) / cycle

 Supports AVX

 Supports FMA4

2 NUMA domains per socket

16 kB

dedicated

L1D cache

2 DDR3 (shared) memory

channel > 15 GB/s

2048 kB

shared

L2 cache

8 (6) MB

shared

L3 cache

Cray XE6 Workshop Performance for Multicore

10

Cray XE6 (Hermit) “Interlagos” 16-core dual socket node

 Two 8- (integer-) core chips per

socket @ 2.3 GHz (3.3 @ turbo)

 Separate DDR3 memory

interface per chip

 ccNUMA on the socket!

 Shared FP unit per pair of

integer cores (“module”)

 “256-bit” FP unit

 SSE4.2, AVX, FMA4

 16 kB L1 data cache per core

 2 MB L2 cache per module

 8 MB L3 cache per chip

(6 MB usable)

Cray XE6 Workshop Performance for Multicore

11 Cray XE6 Workshop Performance for Multicore

Parallel programming models
on multicore multisocket nodes

 Shared-memory (intra-node)

 Good old MPI (current standard: 2.2)

 OpenMP (current standard: 3.0)

 POSIX threads

 Intel Threading Building Blocks

 Cilk++, OpenCL, StarSs,… you name it

 Distributed-memory (inter-node)

 MPI (current standard: 2.2)

 PVM (gone)

 Hybrid

 Pure MPI

 MPI+OpenMP

 MPI + any shared-memory model

All models require

awareness of

topology and affinity

issues for getting

best performance

out of the machine!

12 Cray XE6 Workshop Performance for Multicore

Parallel programming models:
Pure MPI

 Machine structure is invisible to user:

  Very simple programming model

  MPI “knows what to do”!?

 Performance issues

 Intranode vs. internode MPI

 Node/system topology

13 Cray XE6 Workshop Performance for Multicore

Parallel programming models:
Pure threading on the node

 Machine structure is invisible to user

  Very simple programming model

 Threading SW (OpenMP, pthreads,

TBB,…) should know about the details

 Performance issues

 Synchronization overhead

 Memory access

 Node topology

14 Cray XE6 Workshop Performance for Multicore

Parallel programming models:
Hybrid MPI+OpenMP on a multicore multisocket cluster

One MPI process / node

One MPI process / socket:

OpenMP threads on same

socket: “blockwise”

OpenMP threads pinned

“round robin” across

cores in node

Two MPI processes / socket

OpenMP threads

on same socket

Probing node topology

 Standard tools

 likwid-topology

16 Cray XE6 Workshop Performance for Multicore

How do we figure out the node topology?

 Topology =

 Where in the machine does core #n reside? And do I have to remember this

awkward numbering anyway?

 Which cores share which cache levels?

 Which hardware threads (“logical cores”) share a physical core?

 Linux

 cat /proc/cpuinfo is of limited use

 Core numbers may change across kernels

and BIOSes even on identical hardware

 numactl --hardware prints

ccNUMA node information 

 Information on caches is harder

to obtain

$ numactl --hardware

available: 4 nodes (0-3)

node 0 cpus: 0 1 2 3 4 5

node 0 size: 8189 MB

node 0 free: 3824 MB

node 1 cpus: 6 7 8 9 10 11

node 1 size: 8192 MB

node 1 free: 28 MB

node 2 cpus: 18 19 20 21 22 23

node 2 size: 8192 MB

node 2 free: 8036 MB

node 3 cpus: 12 13 14 15 16 17

node 3 size: 8192 MB

node 3 free: 7840 MB

17 Cray XE6 Workshop Performance for Multicore

How do we figure out the node topology?

 LIKWID tool suite:

Like

I

Knew

What

I’m

Doing

 Open source tool collection

(developed at RRZE):

http://code.google.com/p/likwid

J. Treibig, G. Hager, G. Wellein: LIKWID: A

lightweight performance-oriented tool suite

for x86 multicore environments. Accepted for

PSTI2010, Sep 13-16, 2010, San Diego, CA

http://arxiv.org/abs/1004.4431

18 Cray XE6 Workshop Performance for Multicore

Likwid Tool Suite

 Command line tools for Linux:

 easy to install

 works with standard linux 2.6 kernel

 simple and clear to use

 supports Intel and AMD CPUs

 Current tools:

 likwid-topology: Print thread and cache topology

 likwid-pin: Pin threaded application without touching code

 likwid-perfctr: Measure performance counters

 likwid-mpirun: mpirun wrapper script for easy LIKWID integration

 likwid-bench: Low-level bandwidth benchmark generator tool

 … some more

19 Cray XE6 Workshop Performance for Multicore

likwid-topology – Topology information

 Based on cpuid information

 Functionality:

 Measured clock frequency

 Thread topology

 Cache topology

 Cache parameters (-c command line switch)

 ASCII art output (-g command line switch)

 Currently supported (more under development):

 Intel Core 2 (45nm + 65 nm)

 Intel Nehalem + Westmere (Sandy Bridge in beta phase)

 AMD K10 (Quadcore and Hexacore)

 AMD K8

 Linux OS

20 Cray XE6 Workshop Performance for Multicore

Output of likwid-topology –g
on one node of Cray XE6 “Hermit”

CPU type: AMD Interlagos processor

Hardware Thread Topology

Sockets: 2

Cores per socket: 16

Threads per core: 1

HWThread Thread Core Socket

0 0 0 0

1 0 1 0

2 0 2 0

3 0 3 0

[...]

16 0 0 1

17 0 1 1

18 0 2 1

19 0 3 1

[...]

Socket 0: (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

Socket 1: (16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)

Cache Topology

Level: 1

Size: 16 kB

Cache groups: (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13

) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (

28) (29) (30) (31)

21

Output of likwid-topology continued

Cray XE6 Workshop Performance for Multicore

Level: 2

Size: 2 MB

Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15) (16 17) (18

19) (20 21) (22 23) (24 25) (26 27) (28 29) (30 31)

Level: 3

Size: 6 MB

Cache groups: (0 1 2 3 4 5 6 7) (8 9 10 11 12 13 14 15) (16 17 18 19 20 21 22 23) (24 25 26

27 28 29 30 31)

NUMA Topology

NUMA domains: 4

Domain 0:

Processors: 0 1 2 3 4 5 6 7

Memory: 7837.25 MB free of total 8191.62 MB

Domain 1:

Processors: 8 9 10 11 12 13 14 15

Memory: 7860.02 MB free of total 8192 MB

Domain 2:

Processors: 16 17 18 19 20 21 22 23

Memory: 7847.39 MB free of total 8192 MB

Domain 3:

Processors: 24 25 26 27 28 29 30 31

Memory: 7785.02 MB free of total 8192 MB

22

Output of likwid-topology continued

Cray XE6 Workshop Performance for Multicore

Graphical:

Socket 0:

+---+

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | | 8 | | 9 | | 10 | | 11 | | 12 | | 13 | | 14 | | 15 | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| +---+ +---+ |

| | 6MB | | 6MB | |

| +---+ +---+ |

+---+

Socket 1:

+---+

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16 | | 17 | | 18 | | 19 | | 20 | | 21 | | 22 | | 23 | | 24 | | 25 | | 26 | | 27 | | 28 | | 29 | | 30 | | 31 | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| +---+ +---+ |

| | 6MB | | 6MB | |

| +---+ +---+ |

+---+

Data access on modern processors

Characterization of memory hierarchies

Balance analysis and light speed estimates

Data access optimization

24

Latency and bandwidth in modern computer environments

ns

ms

ms

1 GB/s

Cray XE6 Workshop Performance for Multicore

We care about this

region today

Avoiding slow data

paths is the key to

most performance

optimizations!

25

Interlude: Data transfers in a memory hierarchy

 How does data travel from memory to the CPU and back?

 Example: Array copy A(:)=C(:)

Cray XE6 Workshop Performance for Multicore

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1) MISS

write

allocate

evict

(delayed)

3 CL

transfers

LD C(2..Ncl)

ST A(2..Ncl)

HIT

CPU registers

Cache

Memory

CL

CL

CL CL

LD C(1)

NTST A(1)
MISS

2 CL

transfers

LD C(2..Ncl)

NTST A(2..Ncl)

HIT

Standard stores Nontemporal (NT)

stores

50%

performance

boost for

COPY

C(:) A(:) C(:) A(:)

26 Cray XE6 Workshop Performance for Multicore

The parallel vector triad benchmark

A “swiss army knife” for microbenchmarking

Simple streaming benchmark:

 Report performance for different N

 Choose NITER so that accurate time measurement is possible

 This kernel is limited by data transfer performance for all memory

levels on all current architectures!

double precision, dimension(N) :: A,B,C,D

A=1.d0; B=A; C=A; D=A

do j=1,NITER

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

 if(.something.that.is.never.true.) then

 call dummy(A,B,C,D)

 endif

enddo

Prevents smarty-pants

compilers from doing

“clever” stuff

27

A(:)=B(:)+C(:)*D(:) on one Interlagos core

Cray XE6 Workshop Performance for Multicore

L1D cache (16k)

L2 cache (2M)

L3 cache

(8M)

Memory 6
x

 b
a

n
d

w
id

th
 g

a
p

 (
1

 c
o

re
)

64 GB/s (no write allocate in L1)

10 GB/s

(incl. write

allocate)

Is this the

limit???

28

STREAM benchmarks:
Memory bandwidth on Cray XE6 Interlagos node

Cray XE6 Workshop Performance for Multicore

COPY:
A(:)=C(:)

TRIAD:
A(:)=B(:)+s*C(:)

 STREAM is the

“standard” for

memory BW

comparisons

 NT store variants

save write

allocate on stores

 50% boost for

copy, 33% for

TRIAD

 STREAM BW is

practical limit for

all codes
BW saturation

within the 8-core

chip

BW scaling across

NUMA domains

29

Balance metric: Machine balance

 The machine balance for data memory access of a specific computer

is given by

(architectural

limitation)

 Bandwidth: 1 W = 8 bytes = 64 bits

 bS = achievable bandwidth over

 the slowest data path

Floating point peak: Pmax

 Machine Balance = How many input operands can be delivered for

each FP operation?

 Typical values (main memory):
AMD Interlagos (2.3 GHz): Bm = {(17/8) GW/s} / {4 x 2.3 x 8 GFlop/s} ~0.029 W/F

 Intel Sandy Bridge EP (2.7 GHz): ~0.025 W/F

NEC SX9 (vector): ~0.3 W/F

 nVIDIA GTX480 ~0.026 W/F

]flops/s[

]words/s[

maxP

b
B S

m 

Cray XE6 Workshop Performance for Multicore

30

Machine Balance: Typical values beyond main memory

Data path Balance BM [W/F]

Cache 0.5 – 1.0

Machine (main memory) 0.01 – 0.5

Interconnect (Infiniband) 0.001 – 0.002

Interconnect (GBit ethernet) 0.0001 – 0.0007

Disk (or disk subsystem) 0.0001 – 0.001

1/BM = “Computational Intensity”: How many FP ops can be

performed before FP performance becomes a bottleneck?

D
o

u
b

le
 p

re
c

is
io

n
:

W
 


 6
4
-B

it

Cray XE6 Workshop Performance for Multicore

31

Balance metric: Code balance & lightspeed estimates

 BM tells us what the hardware can deliver at most

 Code balance (BC) quantifies

the requirements of the code:

 Expected fraction of peak performance

(„lightspeed"):

l =1  code is not limited by bandwidth

 Lightspeed for absolute performance:

(Pmax : “applicable” peak performance)

 Example: Vector triad A(:)=B(:)+C(:)*D(:) on 2.3 GHz Interlagos

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)

Bm/Bc = 0.029/2.5 = 0.012, i.e. 1.2 % of peak performance (~1.7 GF/s)

][operations arithmetic

][(LD/ST) transfer data

flops

words
Bc 













c

m

B

B
l ,1min

This is what we

need

This is what we

get













C

S

B

b
PPlP ,min maxmax

Cray XE6 Workshop Performance for Multicore

32

Balance metric (a.k.a. the “roofline model”)

 The balance metric formalism is based on some (crucial)

assumptions:

 The code makes balanced use of MULT and ADD operation. For others

(e.g. A=B+C) the peak performance input parameter Pmax has to be

adjusted (e.g. Pmax  Pmax/2)

 Attainable bandwidth of code = input parameter! Determine effective

bandwidth via simple streaming benchmarks to model more complex

kernels and applications.

 Definition is based on 64-bit arithmetic but can easily be adjusted, e.g. for

32-bit

 Data transfer and arithmetic overlap perfectly!

 Slowest data path is modeled only; all others are assumed to be infinitely

fast

 Latency effects are ignored, i.e. perfect streaming mode

Cray XE6 Workshop Performance for Multicore

33

Balance metric: 2D diffusion equation + Jacobi solver

 Diffusion equation in 2D

 Stationary solution with Dirichlet boundary conditions using

Jacobi iteration scheme can be obtained with:

Balance (crude estimate incl. write allocate):

phi(:,:,t0): 3 LD +

phi(:,:,t1): 1 ST+ 1LD

 BC = 5 W / 4 FLOPs = 1.25 W / F

Reuse when computing
phi(i+2,k,t1)

WRITE ALLOCATE:
LD + ST phi(i,k,t1)

Cray XE6 Workshop Performance for Multicore

34

Balance metric: 2 D Jacobi

 Modern cache subsystems may further reduce memory traffic

If cache is large enough to hold at least 2 rows
(shaded region): Each phi(:,:,t0) is loaded

once from main memory and reused 3 times from

cache:

phi(:,:,t0): 1 LD + phi(:,:,t1): 1 ST+ 1LD

BC = 3 W / 4 F = 0.75 W / F

If cache is large enough to hold at least one row
phi(:,k-1,t0) needs to be reloaded:

phi(:,:,t0): 2 LD + phi(:,:,t1): 1 ST+ 1LD

BC = 4 W / 4 F = 1.0 W / F

Beyond that:
phi(:,:,t0): 2 LD + phi(:,:,t1): 1 ST+ 1LD

BC = 5 W / 4 F = 1.25 W / F

Cray XE6 Workshop Performance for Multicore

35

Performance metrics: 2D Jacobi

 Alternative implementation (“Macho FLOP version”)

 MFlops/sec increases by 7/4 but time to solution remains the same

 Better metric (for many iterative stencil schemes):

 Lattice Site Updates per Second (LUPs/sec)

 2D Jacobi example: Compute LUPs/sec metric via

Cray XE6 Workshop Performance for Multicore

wall

maxmaxmax]/[
T

kiit
sLUPsP




36

Balance metric for 3D Jacobi

 3D sweep:

 Best case balance: 1 LD phi(i,j,k+1,t0)

 1 ST + 1 write allocate phi(i,j,k,t1)

 6 flops

 BC = 0.5 W/F (24 bytes/update)

 If 2-layer condition does not hold but 2 rows fit:

 BC = 5/6 W/F (40 bytes/update)

 Worst case (2 rows do not fit):  BC = 7/6 W/F (56 bytes/update)

Cray XE6 Workshop Performance for Multicore

do k=1,kmax

 do j=1,jmax

 do i=1,imax

 phi(i,j,k,t1) = oos *(phi(i-1,j,k,t0)+phi(i+1,j,k,t0) &

 + phi(i,j-1,k,t0)+phi(i,j+1,k,t0) &

 + phi(i,j,k-1,t0)+phi(i,j,k+1,t0))

 enddo

 enddo

enddo

37

3D Jacobi solver
Performance of vanilla code on one Interlagos chip (8 cores)

Cray XE6 Workshop Performance for Multicore

cache memory

2 layers of source array

drop out of L2 cache

Problem size: N3

Data Access Optimizations

 General considerations

 Case study: Optimizing a Jacobi solver

39 Cray XE6 Workshop Performance for Multicore

Data access – general considerations

 Case 1: O(N)/O(N) Algorithms

 O(N) arithmetic operations vs. O(N) data access operations

 Examples: Scalar product, vector addition, sparse MVM etc.

 Performance limited by memory BW for large N (“memory bound”)

 Limited optimization potential for single loops

 …at most a constant factor for multi-loop operations

 Example: successive vector additions

do i=1,N

 a(i)=b(i)+c(i)

enddo

do i=1,N

 z(i)=b(i)+e(i)

enddo no optimization
potential for either loop

do i=1,N

 a(i)=b(i)+c(i)

 z(i)=b(i)+e(i)

enddo

fusing different loops

allows O(N) data

reuse from registers

Loop fusion

Bc = 4/1 W/F
(incl. write-allocate)

Bc = 7/2 W/F

40 Cray XE6 Workshop Performance for Multicore

Data access – general guidelines

 Case 2: O(N2)/O(N2) algorithms

 Examples: dense matrix-vector multiply, matrix addition, dense matrix

transposition etc.

 Nested loops

 Memory bound for large N

 Some optimization potential (at most constant factor)

 Can often enhance code balance by outer loop unrolling or spatial blocking

 Example: dense matrix-vector multiplication

do i=1,N

 do j=1,N

 c(i)=c(i)+a(i,j)*b(j)

 enddo

enddo

= + •

Naïve version loads b[] N times!

41 Cray XE6 Workshop Performance for Multicore

Data access – general guidelines

 O(N2)/O(N2) algorithms cont’d

 “Unroll & jam” optimization (or “outer loop unrolling”)

do i=1,N

 do j=1,N

 c(i)=c(i)+a(i,j)*b(j)

 enddo

enddo

do i=1,N,2

 do j=1,N

 c(i)=c(i)+a(i,j)*b(j)

 enddo

 do j=1,N

 c(i+1)=c(i+1)+a(i+1,j)*b(j)

 enddo

enddo

unroll

do i=1,N,2

 do j=1,N

 c(i)=c(i)+a(i,j) * b(j)

 c(i+1)=c(i+1)+a(i+1,j)* b(j)

 enddo

enddo

jam

b(j) can be re-used once

from register → save 1 LD

operation

Lowers Bc from 1 to ¾ W/F

42 Cray XE6 Workshop Performance for Multicore

 O(N2)/O(N2) algorithms cont’d

 Data access pattern for 2-way unrolled dense MVM:

 Data transfers can further be reduced by more aggressive unrolling (i.e., m-

way instead of 2-way)

 Significant code bloat (try to use compiler directives if possible)

 Main memory limit: b[] only be loaded once from memory (Bc ≈ ½ W/F) (can be

achieved by high unrolling OR large outer level caches)

 Outer loop unrolling can also be beneficial to reduce traffic within caches!

 Beware: CPU registers are a limited resource

 Excessive unrolling can cause register spills to memory

Data access – general guidelines

= + •

Vector b[] now only loaded

N/2 times!

Remainder loop handled

separately

Optimizing data access for dense matrix

transpose

44 Cray XE6 Workshop Performance for Multicore

Dense matrix transpose

 Simple example for data access problems in cache-based systems

 Naïve code:

 Problem: Stride-1 access for a implies stride-N access for b

 Access to a is perpendicular to cache lines ()

 Possibly bad cache efficiency (spatial locality)

 Three performance levels are expected:

 C: Cache size; LC: Cache line length; both are given in double words (8 byte)

 2 * N2 < C: Both matrices stay in cache

 N * LC + N < C: N cache lines of b and one row of a stays in cache

 N * LC + N > C: Matrix b is reloaded from memory LC times

 Use outer loop unrolling blocking to reduce / avoid second drop

do i=1,N

 do j=1,N

 a(j,i) = b(i,j)

 enddo

enddo

a(:,:) b(:,:)

45 Cray XE6 Workshop Performance for Multicore

Dense matrix transpose: Base version

Second drop: cache lines of b are

evicted before they can be reused

2nd drop:

1 MB cache

 NC ~ 7.530

4 MB cache

 NC ~ 30.000

Rule of thumb

use C/2 as

effective cache

size

 NC  NC/2

46 Cray XE6 Workshop Performance for Multicore

Dense matrix transpose: Unrolling and blocking

do i=1,N

 do j=1,N

 a(j,i) = b(i,j)

 enddo

enddo

do i=1,N,U

 do j=1,N

 a(j,i) = b(i,j)

 a(j,i+1) = b(i+1,j)

 ...

 a(j,i+U-1) = b(i+U-1,j)

 enddo

enddo do ii=1,N,B

 istart=ii; iend=ii+B-1

 do jj=1,N,B

 jstart=jj; jend=jj+B-1

 do i=istart,iend,U

 do j=jstart,jend

 a(j,i) = b(i,j)

 a(j,i+1) = b(i+1,j)

 ...

 a(j,i+U-1) = b(i+U-1,j)

enddo;enddo;enddo;enddo

unroll/jam

block

Blocking and unrolling factors

(B,U) can be determined

experimentally; be guided by

cache sizes and line lengths

47 Cray XE6 Workshop Performance for Multicore

Dense matrix transpose: Blocked/unrolled versions

 Intel Xeon/Netburst 3.2 GHz

Breakdown

only eliminated

by blocking!

Case study:

3D Jacobi solver

Spatial blocking for improved cache utilization

49

Remember the 3D Jacobi solver?

Cray XE6 Workshop Performance for Multicore

2 layers of source array

drop out of L2 cache

 avoid through spatial

blocking!

50 Cray XE6 Workshop Performance for Multicore

Jacobi iteration (2D): No spatial Blocking

 Assumptions:

 Cache can hold 32 elements (16 for each array)

 Cache line size is 4 elements

 Perfect eviction strategy for source array

This element is needed for three more updates; but 29 updates happen before this element is

used for the last time

i

k

51 Cray XE6 Workshop Performance for Multicore

Jacobi iteration (2D): No spatial blocking

 Assumptions:

 Cache can hold 32 elements (16 for each array)

 Cache line size is 4 elements

 Perfect eviction strategy for source array

This element is needed for

three more updates but has

been evicted

52 Cray XE6 Workshop Performance for Multicore

Jacobi iteration (2D): Spatial Blocking

 Divide system into blocks

 Update block after block

 Same performance as if three complete rows of the systems fit

into cache

53 Cray XE6 Workshop Performance for Multicore

Jacobi iteration (2D): Spatial Blocking

 Spatial blocking reorders traversal of data to account for the data

update rule of the code

Elements stay sufficiently long in cache to be fully reused

Spatial blocking improves temporal locality!
(Continuous access in inner loop ensures spatial locality)

This element remains in cache until it is fully used (only 6 updates happen before

last use of this element)

54 Cray XE6 Workshop Performance for Multicore

Jacobi iteration (2D): Spatial blocking

 Implementation:

 Guidelines:

 Blocking of inner loop levels (traversing continuously through main memory)

 Blocking size iblock large enough to keep elements sufficiently long in

cache but cache size is a hard limit!

 Blocking loops may have some impact on ccNUMA page placement (see

later)

do it=1,itmax

 do ioffset=1,imax,iblock

 do k=1,kmax

 do i=ioffset, min(imax,ioffset+iblock-1)

 phi(i, k, t1) = (phi(i-1, k, t0) + phi(i+1, k, t0)

 + phi(i, k-1, t0) + phi(i, k+1, t0))*0.25

enddo; enddo; enddo; enddo

loop over i-blocks

55

3D Jacobi solver (problem size 4003)
Blocking different loop levels (8 cores Interlagos)

Cray XE6 Workshop Performance for Multicore

3D vs. 2D?

OpenMP parallelization?

Optimal block size?

k-loop blocking?

 see Exercise!

24B/update

performance

model

inner (i) loop

blocking

middle (j) loop

blocking

optimum j

block size

56

3D Jacobi solver
Spatial blocking + nontemporal stores

Cray XE6 Workshop Performance for Multicore

blocking
NT

stores

expected

boost:

50%

16 B/update perf. model

Enforcing thread/process-core affinity

under the Linux OS

 Standard tools and OS affinity facilities

under program control

 likwid-pin

 aprun (Cray)

58 Cray XE6 Workshop Performance for Multicore

Example: STREAM benchmark on 12-core Intel Westmere:

Anarchy vs. thread pinning

No pinning

Pinning (physical cores first,

alternating sockets)

There are several reasons for caring about

affinity:

 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention

59 Cray XE6 Workshop Performance for Multicore

Generic thread/process-core affinity under Linux
Overview

 taskset [OPTIONS] [MASK | -c LIST] \

 [PID | command [args]...]

 taskset binds processes/threads to a set of CPUs. Examples:

taskset 0x0006 ./a.out

taskset –c 4 33187

mpirun –np 2 taskset –c 0,2 ./a.out # doesn’t always work

 Processes/threads can still move within the set!

 Alternative: let process/thread bind itself by executing syscall
#include <sched.h>

int sched_setaffinity(pid_t pid, unsigned int len,

 unsigned long *mask);

 Disadvantage: which CPUs should you bind to on a non-exclusive
machine?

 Still of value on multicore/multisocket cluster nodes, UMA or ccNUMA

60 Cray XE6 Workshop Performance for Multicore

Generic thread/process-core affinity under Linux

 Complementary tool: numactl

Example: numactl --physcpubind=0,1,2,3 command [args]

Bind process to specified physical core numbers

Example: numactl --cpunodebind=1 command [args]

Bind process to specified ccNUMA node(s)

 Many more options (e.g., interleave memory across nodes)

  see section on ccNUMA optimization

 Diagnostic command (see earlier):
numactl --hardware

 Again, this is not suitable for a shared machine

61 Cray XE6 Workshop Performance for Multicore

More thread/Process-core affinity (“pinning”) options

 Highly OS-dependent system calls

 But available on all systems

 Linux: sched_setaffinity(), PLPA (see below)  hwloc
Solaris: processor_bind()

Windows: SetThreadAffinityMask()
…

 Support for “semi-automatic” pinning in some
compilers/environments

 Intel compilers > V9.1 (KMP_AFFINITY environment variable)

 PGI, Pathscale, GNU

 SGI Altix dplace (works with logical CPU numbers!)

 Generic Linux: taskset, numactl, likwid-pin (see below)

 Affinity awareness in MPI libraries

 SGI MPT

 OpenMPI

 Intel MPI

 …

Example for program-controlled

affinity: Using PLPA under Linux!

62 Cray XE6 Workshop Performance for Multicore

Likwid-pin
Overview

 Inspired by and based on ptoverride (Michael Meier, RRZE) and taskset

 Pins processes and threads to specific cores without touching code

 Directly supports pthreads, gcc OpenMP, Intel OpenMP

 Allows user to specify skip mask (shepherd threads should not be pinned)

 Based on combination of wrapper tool together with overloaded pthread

library  binary must be dynamically linked!

 Can also be used as a superior replacement for taskset

 Supports logical core numbering within a node and within an existing CPU

set

 Useful for running inside CPU sets defined by someone else, e.g., the MPI

start mechanism or a batch system

 Configurable colored output

 Usage examples:

 likwid-pin –t intel -c 0,2,4-6 ./myApp parameters

 likwid-pin –s 3 –c S0:0-3 ./myApp parameters

63 Cray XE6 Workshop Performance for Multicore

Likwid-pin
Example: Intel OpenMP

 Running the STREAM benchmark with likwid-pin:

 $ export OMP_NUM_THREADS=4

 $ likwid-pin -s 0x1 -c 0,1,4,5 ./stream

 [likwid-pin] Main PID -> core 0 - OK

 --

 Double precision appears to have 16 digits of accuracy

 Assuming 8 bytes per DOUBLE PRECISION word

 --

 [... some STREAM output omitted ...]

 The *best* time for each test is used

 EXCLUDING the first and last iterations

 [pthread wrapper] PIN_MASK: 0->1 1->4 2->5

 [pthread wrapper] SKIP MASK: 0x1

 [pthread wrapper 0] Notice: Using libpthread.so.0

 threadid 1073809728 -> SKIP

 [pthread wrapper 1] Notice: Using libpthread.so.0

 threadid 1078008128 -> core 1 - OK

 [pthread wrapper 2] Notice: Using libpthread.so.0

 threadid 1082206528 -> core 4 - OK

 [pthread wrapper 3] Notice: Using libpthread.so.0

 threadid 1086404928 -> core 5 - OK

 [... rest of STREAM output omitted ...]

Skip shepherd

thread

Main PID always

pinned

Pin all spawned

threads in turn

64 Cray XE6 Workshop Performance for Multicore

Likwid-pin
Using logical core numbering

 Core numbering may vary from system to system even with

identical hardware

 Likwid-topology delivers this information, which can then be fed into likwid-

pin

 Alternatively, likwid-pin can abstract this variation and provide a

purely logical numbering (physical cores first)

 Across all cores in the node:
OMP_NUM_THREADS=8 likwid-pin -c N:0-7 ./a.out

 Across the cores in each socket and across sockets in each node:
OMP_NUM_THREADS=8 likwid-pin -c S0:0-3@S1:0-3 ./a.out

Socket 0:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 0 1| | 2 3| | 4 5| | 6 7| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Socket 1:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 8 9| |10 11| |12 13| |14 15| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Socket 0:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 0 8| | 1 9| | 2 10| | 3 11| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

Socket 1:

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 4 12| | 5 13| | 6 14| | 7 15| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 32kB| | 32kB| | 32kB| | 32kB| |

| +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ |

| | 256kB| | 256kB| | 256kB| | 256kB| |

| +------+ +------+ +------+ +------+ |

| +---------------------------------+ |

| | 8MB | |

| +---------------------------------+ |

+-------------------------------------+

65

Likwid-pin
Using logical core numbering

 Possible unit prefixes

N node

S socket

M NUMA domain

C outer level cache group

Cray XE6 Workshop Performance for Multicore

Chipset

Memory

Default if –c is not

specified!

66

Likwid-pin
Using logical core numbering

 … and: Logical numbering inside a pre-existing cpuset:

 OMP_NUM_THREADS=4 likwid-pin -c L:0-3 ./a.out

Cray XE6 Workshop Performance for Multicore

0 2 1

3

67

aprun on Cray

 See Cray workshop slides 28ff

 aprun supports only physical core numbering

 This is OK since the cores are always numbered consecutively on Crays

 Use -ss switch to restrict allocation to local NUMA domain (see later for

more on ccNUMA)

 Use -d $OMP_NUM_THREADS or similar for MPI+OMP hybrid code

 See later on how using multiple cores per module/chip/socket

affects performance

Cray XE6 Workshop Performance for Multicore

General remarks on the performance

properties of multicore multisocket

systems

69

Parallelism in modern computer systems

 Parallel and shared resources within a shared-memory node

GPU #1

GPU #2

PCIe link

 Parallel resources:

 Execution/SIMD units

 Cores

 Inner cache levels

 Sockets / memory domains

 Multiple accelerators

 Shared resources:

 Outer cache level per socket

 Memory bus per socket

 Intersocket link

 PCIe bus(es)

 Other I/O resources

Other I/O

1

2

3

4 5

1

2

3

4

5

6

6

7

7

8

8

9

9

10

10

How does your application react to all of those details?

Cray XE6 Workshop Performance for Multicore

70 Cray XE6 Workshop Performance for Multicore

The parallel vector triad benchmark

(Near-)Optimal code on Cray x86 machines

Large-N version

(nontemporal stores)

Small-N version

(standard stores)

call get_walltime(S)

!$OMP parallel private(j)

do j=1,R

 if(N.ge.CACHE_LIMIT) then

!DIR$ LOOP_INFO cache_nt(A)

!$OMP parallel do

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

!$OMP end parallel do

 else

!DIR$ LOOP_INFO cache(A)

!$OMP parallel do

 do i=1,N

 A(i) = B(i) + C(i) * D(i)

 enddo

!$OMP end parallel do

 endif

 ! prevent loop interchange

 if(A(N2).lt.0) call dummy(A,B,C,D)

enddo

!$OMP end parallel

call get_walltime(E)

“outer parallel”: Avoid thread team restart at

every workshared loop

71 Cray XE6 Workshop Performance for Multicore

The parallel vector triad benchmark

Single thread on Cray XE6 Interlagos node

OMP overhead

and/or lower

optimization w/

OpenMP active

L1 cache L2 cache memory L3 cache

Team restart is

expensive!

 use only

outer parallel

from now on!

72 Cray XE6 Workshop Performance for Multicore

The parallel vector triad benchmark

Intra-chip scaling on Cray XE6 Interlagos node

L2

bottleneck

Aggregate

L2, exclusive

L3

sync

overhead

Memory BW

saturated @

4 threads

Per-module

L2 caches

73 Cray XE6 Workshop Performance for Multicore

The parallel vector triad benchmark

Nontemporal stores on Cray XE6 Interlagos node

slow L3

NT stores

hazardous if data

in cache

25% speedup for

vector triad in

memory via NT

stores

74 Cray XE6 Workshop Performance for Multicore

The parallel vector triad benchmark

Topology dependence on Cray XE6 Interlagos node

sync overhead nearly

topology-independent

@ constant thread count

more aggregate

L3 with more

chips
bandwidth

scalability across

memory

interfaces

75 Cray XE6 Workshop Performance for Multicore

The parallel vector triad benchmark

Inter-chip scaling on Cray XE6 Interlagos node

sync overhead grows

with core/chip count
bandwidth

scalability across

memory

interfaces

Bandwidth saturation effects in cache and

memory

Low-level benchmark results

77 Cray XE6 Workshop Performance for Multicore

Bandwidth limitations: Memory

Some problems get even worse….

 System balance = PeakBandwidth [MByte/s] / PeakFlops [MFlop/s]

Typical balance ~ 0.25 Byte / Flop  4 Flop/Byte  32 Flop/double

Balance values:

Scalar product:

1 Flop/double

 1/32 Peak

Dense

Matrix∙Vector:

2 Flop/double

 1/16 Peak

Large

MatrixMatrix

(BLAS3)

79 Cray XE6 Workshop Performance for Multicore

Bandwidth limitations: Main Memory
Scalability of shared data paths inside a NUMA domain (V-Triad)

1 thread cannot

saturate bandwidth

Saturation with

3 threads

Saturation with

2 threads

Saturation with

4 threads

80 Cray XE6 Workshop Performance for Multicore

Bandwidth limitations: Outer-level cache
Scalability of shared data paths in L3 cache (V-Triad)

OpenMP performance issues

on multicore

Synchronization (barrier) overhead

Work distribution overhead

82 Cray XE6 Workshop Performance for Multicore

Welcome to the multi-/many-core era

Synchronization of threads may be expensive!

!$OMP PARALLEL …

…

!$OMP BARRIER

!$OMP DO

…

!$OMP ENDDO

!$OMP END PARALLEL

On x86 systems there is no hardware support for synchronization!

 Next slide: Test OpenMP Barrier performance…

 for different compilers

 and different topologies:

 shared cache

 shared socket

 between sockets

 and different thread counts

 2 threads

 full domain (chip, socket, node)

Threads are synchronized at explicit AND

implicit barriers. These are a main source of

overhead in OpenMP progams.

Determine costs via modified OpenMP

Microbenchmarks testcase (epcc)

83 Cray XE6 Workshop Performance for Multicore

Thread synchronization overhead on Interlagos
Barrier overhead in CPU cycles

2 Threads Cray 8.03 GCC 4.6.2 PGI 11.8 Intel 12.1.3

Shared L2 258 3995 1503 128623

Shared L3 698 2853 1076 128611

Same

socket
879 2785 1297 128695

Other socket 940 2740 / 4222 1284 / 1325 128718

Intel compiler barrier very expensive on Interlagos

 OpenMP & Cray compiler

Full domain Cray 8.03 GCC 4.6.2 PGI 11.8 Intel 12.1.3

Shared L3 2272 27916 5981 151939

Socket 3783 49947 7479 163561

Node 7663 167646 9526 178892

Case study:

OpenMP-parallel sparse matrix-vector

multiplication

A simple (but sometimes not-so-simple)

example for bandwidth-bound code and

saturation effects in memory

85 Cray XE6 Workshop Performance for Multicore

Case study: Sparse matrix-vector multiply

 Important kernel in many applications (matrix diagonalization,

solving linear systems)

 Strongly memory-bound for large data sets

 Streaming, with partially indirect access:

 Usually many spMVMs required to solve a problem

 Following slides: Performance data on one 24-core AMD Magny

Cours node

do i = 1,Nr

 do j = row_ptr(i), row_ptr(i+1) - 1

 c(i) = c(i) + val(j) * b(col_idx(j))

 enddo

enddo

!$OMP parallel do

!$OMP end parallel do

86

Bandwidth-bound parallel algorithms:
Sparse MVM

 Data storage format is crucial for performance properties

 Most useful general format: Compressed Row Storage (CRS)

 SpMVM is easily parallelizable in shared and distributed memory

 For large problems, spMVM is

inevitably memory-bound

 Intra-LD saturation effect

on modern multicores

 MPI-parallel spMVM is often

communication-bound

 See hybrid part for what we

can do about this…

Cray XE6 Workshop Performance for Multicore

87

SpMVM node performance model

 Double precision CRS:

 DP CRS code balance

  quantifies extra traffic

for loading RHS more than once

 Predicted Performance = streamBW/BCRS

 Determine  by measuring performance and actual memory BW

  Even though the model has a “fudge factor” it is still useful!

8 8 8 4 8

8

Cray XE6 Workshop Performance for Multicore

G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector multiplication with

explicit communication overlap on current multicore-based systems. Parallel Processing Letters 21(3), 339-

358 (2011). DOI: 10.1142/S0129626411000254, Preprint: arXiv:1106.5908

http://dx.doi.org/10.1142/S0129626411000254
http://arxiv.org/abs/1106.5908

88 Cray XE6 Workshop Performance for Multicore

Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

 Case 1: Large matrix

Intrasocket

bandwidth

bottleneck
Good scaling

across sockets

89 Cray XE6 Workshop Performance for Multicore

 Case 2: Medium size

Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

Intrasocket

bandwidth

bottleneck

Working set fits

in aggregate

cache

90 Cray XE6 Workshop Performance for Multicore

Application: Sparse matrix-vector multiply
Strong scaling on one Magny-Cours node

 Case 3: Small size

No bandwidth

bottleneck

Parallelization

overhead

dominates

Probing performance behavior

likwid-perfctr

92

likwid-perfctr

Basic approach to performance analysis

1. Runtime profile / Call graph (gprof)

2. Instrument parts which consume significant part of runtime

3. Find performance signatures

Possible signatures:

 Bandwidth saturation

 Instruction throughput limited (real or language induced)

 Latency bound (irregular data access, high branch ratio)

 Load inbalance

 ccNUMA issues

 Pathologic cases (false cacheline sharing, expensive operations)

Cray XE6 Workshop Performance for Multicore

93 Cray XE6 Workshop Performance for Multicore

Probing performance behavior

 How do we find out about the performance properties and

requirements of a parallel code?

 Profiling via advanced tools is often overkill

 A coarse overview is often sufficient

 likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on

Linux/Altix)

 Simple end-to-end measurement of hardware performance metrics

 “Marker” API for starting/stopping

counters

 Multiple measurement region

support

 Preconfigured and extensible

metric groups, list with
likwid-perfctr -a

BRANCH: Branch prediction miss rate/ratio

CACHE: Data cache miss rate/ratio

CLOCK: Clock of cores

DATA: Load to store ratio

FLOPS_DP: Double Precision MFlops/s

FLOPS_SP: Single Precision MFlops/s

FLOPS_X87: X87 MFlops/s

L2: L2 cache bandwidth in MBytes/s

L2CACHE: L2 cache miss rate/ratio

L3: L3 cache bandwidth in MBytes/s

L3CACHE: L3 cache miss rate/ratio

MEM: Main memory bandwidth in MBytes/s

TLB: TLB miss rate/ratio

94 Cray XE6 Workshop Performance for Multicore

likwid-perfctr

Example usage with preconfigured metric group

$ env OMP_NUM_THREADS=4 likwid-perfctr -C N:0-3 -g FLOPS_DP ./stream.exe

CPU type: Intel Core Lynnfield processor

CPU clock: 2.93 GHz

Measuring group FLOPS_DP

YOUR PROGRAM OUTPUT

+--------------------------------------+-------------+-------------+-------------+-------------+

| Event | core 0 | core 1 | core 2 | core 3 |

+--------------------------------------+-------------+-------------+-------------+-------------+

| INSTR_RETIRED_ANY | 1.97463e+08 | 2.31001e+08 | 2.30963e+08 | 2.31885e+08 |

| CPU_CLK_UNHALTED_CORE | 9.56999e+08 | 9.58401e+08 | 9.58637e+08 | 9.57338e+08 |

| FP_COMP_OPS_EXE_SSE_FP_PACKED | 4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |

| FP_COMP_OPS_EXE_SSE_FP_SCALAR | 882 | 0 | 0 | 0 |

| FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION | 0 | 0 | 0 | 0 |

| FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION | 4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |

+--------------------------------------+-------------+-------------+-------------+-------------+

+--------------------------+------------+---------+----------+----------+

| Metric | core 0 | core 1 | core 2 | core 3 |

+--------------------------+------------+---------+----------+----------+

| Runtime [s] | 0.326242 | 0.32672 | 0.326801 | 0.326358 |

| CPI | 4.84647 | 4.14891 | 4.15061 | 4.12849 |

| DP MFlops/s (DP assumed) | 245.399 | 189.108 | 189.024 | 189.304 |

| Packed MUOPS/s | 122.698 | 94.554 | 94.5121 | 94.6519 |

| Scalar MUOPS/s | 0.00270351 | 0 | 0 | 0 |

| SP MUOPS/s | 0 | 0 | 0 | 0 |

| DP MUOPS/s | 122.701 | 94.554 | 94.5121 | 94.6519 |

+--------------------------+------------+---------+----------+----------+

Always

measured

Derived

metrics

Configured metrics

(this group)

95

likwid-perfctr

Best practices for runtime counter analysis

Things to look at (in roughly this

order)

 Load balance (flops, instructions,

BW)

 In-socket memory BW saturation

 Shared cache BW saturation

 Flop/s, loads and stores per flop

metrics

 SIMD vectorization

 CPI metric

 # of instructions,

branches, mispredicted branches

Caveats

 Load imbalance may not show in

CPI or # of instructions
 Spin loops in OpenMP barriers/MPI

blocking calls

 Looking at “top” or the Windows Task

Manager does not tell you anything useful

 In-socket performance saturation

may have various reasons

 Cache miss metrics are overrated

 If I really know my code, I can often

calculate the misses

 Runtime and resource utilization is

much more important

Cray XE6 Workshop Performance for Multicore

96

likwid-perfctr

Identify load imbalance…

 Instructions retired / CPI may not be a good indication of

useful workload – at least for numerical / FP intensive codes….

 Floating Point Operations Executed is often a better indicator

 Waiting / “Spinning” in barrier generates a high instruction count

!$OMP PARALLEL DO

DO I = 1, N

 DO J = 1, I

 x(I) = x(I) + A(J,I) * y(J)

 ENDDO

ENDDO

!$OMP END PARALLEL DO

Cray XE6 Workshop Performance for Multicore

97

likwid-perfctr

… and load-balanced codes

!$OMP PARALLEL DO

DO I = 1, N

 DO J = 1, N

 x(I) = x(I) + A(J,I) * y(J)

 ENDDO

ENDDO

!$OMP END PARALLEL DO

Higher CPI but

better performance

env OMP_NUM_THREADS=6 likwid-perfctr –C S0:0-5 –g FLOPS_DP ./a.out

Cray XE6 Workshop Performance for Multicore

98

Detecting latency-bound codes

… often with graph and tree data structures

Metric Red-Black tree Optimized data structure

Instructions retired 1.34268e+11 1.28581e+11

CPI 9.0176 0.71887

L3-MEM data volume [GB] 301 3.22

TLB misses 3.71447e+09 4077

Branch rate 36% 8.5%

Branch mispredicted ratio 7.8% 0.0000013%

Memory bandwidth [GB/s] 10.5 1.1

Useful likwid-perfctr groups: L3, L3CACHE, MEM, TLB, BRANCH

High CPI, near perfect scaling if using SMT threads (Intel).

Note: Latency bound code can still produce significant aggregated bandwidth.

Cray XE6 Workshop Performance for Multicore

99

Programming language induced problems

 The object-oriented programming paradigm implements

functionality resulting in many calls to small functions

 The ability of the compiler to inline functions (and still generate the

best possible machine code) is limited

 Symptoms:

 Low (“good”) CPI

 Low resource utilization (Flops/s, bandwidth)

 Orders of magnitude more general purpose than arithmetic floating point

instructions

 High branch rate

 Solution:

 Use basic data types and plain arrays in compute intensive loops

 Use plain C-like code

 Keep things simple – do not obstruct the compiler’s view on the code

Cray XE6 Workshop Performance for Multicore

Microarchitectural features

of modern processors

Hardware-software interaction

SIMD parallelism

A closer look at the cache hierarchy

Performance modeling on the microarchitecture level

101

Where do we come from?
Stored program design

Flexible, but optimization

is hard!

Architect’s view:

Make the common case fast !

Instruction Level Parallelism

Pipelining

Superscalar execution

Data Access Locality

Memory Hierarchy

Hardware Prefetcher

Data Parallelism

SIMD execution

MIMD Parallelism

SMT

Multicore

Multisocket

Cluster

Performance for Multicore Cray XE6 Workshop

ENIAC 1948

EDSAC 1949

102

First Assumption: ILP

Assumption: Every sequential instruction stream implies potential

parallelism on instruction level (ILP)

Techniques to exploit assumption:

 Pipelining (Overlap the execution of instructions)

 Superscalar design (more than 1 ALU)

 Out of order (OoO) execution

Problems:

 Makes hardware implementation complex

 Benefit is often not worth the effort

 Real-world benefit is limited (3-6 ops/cycle, 1 or less on average)

Cray XE6 Workshop Performance for Multicore

103

CPI: A Measure for ILP

CPI: Cycles per Instruction

Ideal CPI for pipelined (non-superscalar) processor: 1

CPI for superscalar processor: < 1

Connection to Runtime:

 time = cycles x clock rate

Cycles can be calculated as:

 cycles = CPI x number of instructions

Cray XE6 Workshop Performance for Multicore

104

Second Assumption: Locality of Data Access

Assumption: If a data item is loaded it is likely that it is loaded again

in the near future (temporal locality). If a data item is loaded it is

likely that a data item in close distance is also loaded (spatial

locality).

Techniques to exploit assumption:

 Use caches to make repeated data accesses faster

 Use cache lines to reduce latency impact

Problems:

 Does not work for unstructured data accesses

 There are many algorithms with no or weak locality

Cray XE6 Workshop Performance for Multicore

105

Hardware- Software Co-Design?

From algorithm to execution

The machine view:

ISA (Machine code)

Reality:

Algorithm

Programming language

Hardware = Black Box

Libraries Compiler

Cray XE6 Workshop Performance for Multicore

106

How to achieve Performance
(for data intensive floating point codes on commodity chips)

1990

Caches

SIMD

1998

2001

Prefetching

NUMA

2003

2005

Multicore

Node Performance: 1TFlops/s, 50-100 GB/s memory bandwidth

Cray XE6 Workshop Performance for Multicore

CLOCK
-2004

Explicit Performance

factor

Thread level

parallelism

4-40x

SIMD DP 2-4x

SP 4-8x

Distributed memory

parallelism

unlimited 

1000x

Implicit Performance

factor

Instruction level

parallelism

Pipelining 3-4x

Superscalar 2x

SMT 30%)

Caches 4-6x

NUMA 2-4x

107 Cray XE6 Workshop Performance for Multicore

IA-32 Architecture Basics:
Floating Point Operations and SIMD

 “Sensible SIMD” came with SSE (Pentium III) and SSE2

(Pentium 4) – Streaming SIMD Extensions

 With AVX a new SIMD instruction set with 256 bit register

width was introduced

 AVX will be the relevant instruction set for the near future

 An extension to 512 bit register width is already in planning

 Each register can be

partitioned into several integer

or FP data types

 8 to 128-bit integers

 single or double precision

floating point

 SIMD instructions can operate

on the lowest or all partitions

of a register at once

108 Cray XE6 Workshop Performance for Multicore

IA-32 Architecture Basics:

SIMD Operations

 Possible data types in an SIMD register

109 Cray XE6 Workshop Performance for Multicore

IA-32 Architecture Basics:
Floating Point Operations and SIMD

 Example: Single precision FP packed vector addition

 Multiple operations are done in one single instruction

 Nehalem: 1-cycle throughput for double precision SSE2 MULT &

ADD leading to a peak performance of 4 (DP) FLOPs/cycle

 Sandy Bridge & Interlagos: Peak performance of 8 (DP)

FLOPs/cycle

 Interlagos: Only achievable with FMA instruction

110

Computer Architecture
Basics

Cray XE6 Workshop Performance for Multicore

 Everything on a processor happens in terms of cycles!

 All efforts are focused on increasing the average instruction

throughput:

 Metric CPI (cycles per instruction)

 Important for us:

• Arithmetic instruction throughput

• Load/Store instruction throughput

• Overall instruction throughput

Runtime Contributions:

1. Instruction execution

2. Data transfers

• Cache transfers

• Memory transfers

111 Cray XE6 Workshop Performance for Multicore

AMD Interlagos
Microarchitecture of Compute Unit (CU)

FP units 128bit wide

FP Co-processor supports:

AVX and FMA4

CU can sustain two 128bit

and one 128 bit store

112 Cray XE6 Workshop Performance for Multicore

AMD Interlagos
Node topology

Provide competitive node

memory bandwidth for the

price of a higher node

complexity.

Target cache (i.e., the level

that gets filled from memory)

is the L2 cache.

Visible L3 cache size is 6 MB

per chip (12 MB per socket).

113

Comparison chart
SIMD instruction throughput (instr/cycle)

Instruction type SandyBridge Westmere MagnyCours Interlagos

Add SSE 1 1 1 2

Mul SSE 1 1 1 2

Mul/Add SSE 2 2 2 2

Load SSE 2 1 2 2

Store SSE 1 1 1 1

Load/Store 2 2 2 ? 2

Add AVX 1 - - 1

Mul AVX 1 - - 1

Mul/Add AVX 2 - - 1 (FMA 2)

Load AVX 1 - - 1

Store AVX 0.5 - - 0.5

Load/Store AVX 0.5 0.5

Max Overall 6 4 3 4

Cray XE6 Workshop Performance for Multicore

114

Comparison chart
Memory Hierarchies

 Intel SandyBridge EP

 8 cores, 8 FP Units

L1D:

32kB, 8-way, write back

L2:

256kB, 8-way, inclusive

L3:

20MB, 20-way,inclusive,

shared 8C

Memory:

4-channel DDR3-1600

Aggregated 40MB node

cache size.

Cray XE6 Workshop Performance for Multicore

 AMD Magny Cours

 6 cores, 6 FP Units

L1D:

64kB, 2-way, write back

L2:

512kB, 16-way, exclusive

L3:

5 MB, 32-way,exclusive,

shared 6C

Memory:

2-channel DDR3-1333

 AMD Interlagos

 8 cores, 4 FP Units

L1D:

16kB, 4-way, write through

L2:

2MB, 16-way, inclusive.

shared 2C

L3:

6 MB, 48-way, exclusive,

shared 8C

Memory:

2-channel DDR3-1866

Aggregated 56MB node

cache size.

115

Interlagos design feature
Exclusive caches

 Exclusive cache means that there is only one copy of a cache line

in the cache hierarchy! Often called victim cache

 Motivation: Visible cache size for application is larger

 BUT: More cache traffic necessary

Cray XE6 Workshop Performance for Multicore

Magny Cours Interlagos

 The aggregated L3

bandwidth is low

 For HPC applications the L3

cache is not attractive

 Stream benchmark:

L3: IL 40 GB/s, SNB 193 GB/s

5MB (fits in aggr. L2):

IL 108 GB/s, SNB 215GB/s

116

Interlagos design feature
Write through L1 cache

Cycles/CL load store copy stream triad

Cores/ CU 1 2 1 2 1 2 1 2

L1 2 4 10 20 10 20 7 14

L2 5.43 5.83 11.21 22.21 13.47 25.21 17.63 30.40

L2 (prefetch) 3.64 5.72 - - 12.92 25.53 16.22 30.21

Cray XE6 Workshop Performance for Multicore

Consequences:

 Stores involve a large penalty

 L2 cache store bandwidth does not scale

 Prefetching to L1 only pays off with one core

Try to avoid stores as far as possible! 

Write through motivation:

• Simpler to implement

(cache coherence)

• Can save overhead for

shared L2 access

• No write allocate

• But higher cost for

stores in L1 cache

Reading x86 assembly code

118 Cray XE6 Workshop Performance for Multicore

Introduction to Assembly

To read or write assembly code you have to know about:

 Instruction Set Architecture (ISA)

 Application Binary Interface (ABI)

 Object Code Format (ELF on Linux)

 Assembler specific directives (gas, masm)

Useful tools:

 GNU binutils (objdump, readelf)

 Debugger (gdb)

 Compiler option –S (Intel/GCC)

119 Cray XE6 Workshop Performance for Multicore

Basic approach to check the instruction code

 Get the assembler code (Intel compiler):

 icc –S –O3 -xHost triad.c -o triad.s

 Disassemble Executable:

 objdump –d ./cacheBench | less

 Things to check for:

 Is the code vectorized? Search for pd/ps suffix.

 mulpd, addpd, vaddpd, vmulpd

 Is the data loaded with 16 byte moves?

 movapd, movaps, vmovupd

 For memory-bound code: Search for nontemporal stores:

 movntpd, movntps

The x86 ISA is documented in:

Intel Software Development Manual (SDM) 2A and 2B

AMD64 Architecture Programmer's Manual Vol. 1-5

120 Cray XE6 Workshop Performance for Multicore

Basics of the x86-64 ISA

 Instructions have 0 to 2 operands

 Operands can be registers, memory references or immediates

 Opcodes (binary representation of instructions) vary from 1 to 17

bytes

 There are two syntax forms: Intel (left) and AT&T (right)

 Addressing Mode: BASE + INDEX * SCALE + DISPLACEMENT

 C: A[i] equivalent to *(A+i) (a pointer has a type: A+i*8)

movaps [rdi + rax*8+48], xmm3

add rax, 8

js 1b

401b9f: 0f 29 5c c7 30 movaps %xmm3,0x30(%rdi,%rax,8)

401ba4: 48 83 c0 08 add $0x8,%rax

401ba8: 78 a6 js 401b50 <triad_asm+0x4b>

movaps %xmm4, 48(%rdi,%rax,8)

addq $8, %rax

js ..B1.4

121 Cray XE6 Workshop Performance for Multicore

Basics of the x86-64 ISA II

16 general Purpose Registers (64bit):

rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp, r8-r15

alias with eight 32 bit register set:

eax, ebx, ecx, edx, esi, edi, esp, ebp

Floating Point SIMD Registers:

xmm0-xmm15 SSE (128bit) alias with 256bit registers

ymm0-ymm15 AVX (256bit)

SIMD instructions are distinguished by:

AVX (VEX) prefix: v

Operation: mul, add, mov

Modifier: non temporal (nt), unaligned (u), aligned (a), high (h)

Data type: single (s), double (d)

122 Cray XE6 Workshop Performance for Multicore

Basics of x86-64 ABI

 Regulations how functions are called on binary level

 Differs between 32 bit / 64 bit and Operating Systems

x86-64 on Linux:

 Integer or address parameters are passed in the order :

 rdi, rsi, rdx, rcx, r8, r9

 Floating Point parameters are passed in the order xmm0-xmm7

 Registers which must be preserved across function calls:
 rbx, rbp, r12-r15

 Return values are passed in rax/rdx and xmm0/xmm1

123

Case Study: summation

float sum = 0.0;

for (int j=0; j<size; j++){

 sum += data[j];

}

Instruction code:

401d08: f3 0f 58 04 82 addss (%rdx,%rax,4),%xmm0

401d0d: 48 83 c0 01 add $0x1,%rax

401d11: 39 c7 cmp %eax,%edi

401d13: 77 f3 ja 401d08

Cray XE6 Workshop Performance for Multicore

Instruction

address

Opcodes
Assembly

code

To get code use objdump –d

on object file or executable.

124

How to leverage SIMD

 The compiler does it for you (aliasing, alignment, language)

 Compiler directives (pragmas)

 Alternative programming models for compute kernels (OpenCL, ispc)

 Intrinsics (restricted to C/C++)

 Implement directly in assembler

To use intrinsics the following headers are available. To enable

instruction set often additional flags are necessary:

 xmmintrin.h (SSE)

 pmmintrin.h (SSE2)

 immintrin.h (AVX)

 x86intrin.h (all instruction set extensions)

Cray XE6 Workshop Performance for Multicore

125

Case Study: summation using intrinsics

Cray XE6 Workshop Performance for Multicore

__m128 sum0, sum1, sum2, sum3;

__m128 t0, t1, t2, t3;

float scalar_sum;

sum0 = _mm_setzero_ps();

sum1 = _mm_setzero_ps();

sum2 = _mm_setzero_ps();

sum3 = _mm_setzero_ps();

for (int j=0; j<size; j+=16){

 t0 = _mm_loadu_ps(data+j);

 t1 = _mm_loadu_ps(data+j+4);

 t2 = _mm_loadu_ps(data+j+8);

 t3 = _mm_loadu_ps(data+j+12);

 sum0 = _mm_add_ps(sum0, t0);

 sum1 = _mm_add_ps(sum1, t1);

 sum2 = _mm_add_ps(sum2, t2);

 sum3 = _mm_add_ps(sum3, t3);

}

sum0 = _mm_add_ps(sum0, sum1);

sum0 = _mm_add_ps(sum0, sum2);

sum0 = _mm_add_ps(sum0, sum3);

sum0 = _mm_hadd_ps(sum0, sum0);

sum0 = _mm_hadd_ps(sum0, sum0);

_mm_store_ss(&scalar_sum, sum0);

126

Case Study: summation, instruction code

14: 0f 57 c9 xorps %xmm1,%xmm1

17: 31 c0 xor %eax,%eax

19: 0f 28 d1 movaps %xmm1,%xmm2

1c: 0f 28 c1 movaps %xmm1,%xmm0

1f: 0f 28 d9 movaps %xmm1,%xmm3

22: 66 0f 1f 44 00 00 nopw 0x0(%rax,%rax,1)

28: 0f 10 3e movups (%rsi),%xmm7

2b: 0f 10 76 10 movups 0x10(%rsi),%xmm6

2f: 0f 10 6e 20 movups 0x20(%rsi),%xmm5

33: 0f 10 66 30 movups 0x30(%rsi),%xmm4

37: 83 c0 10 add $0x10,%eax

3a: 48 83 c6 40 add $0x40,%rsi

3e: 0f 58 df addps %xmm7,%xmm3

41: 0f 58 c6 addps %xmm6,%xmm0

44: 0f 58 d5 addps %xmm5,%xmm2

47: 0f 58 cc addps %xmm4,%xmm1

4a: 39 c7 cmp %eax,%edi

4c: 77 da ja 28 <compute_sum_SSE+0x18>

4e: 0f 58 c3 addps %xmm3,%xmm0

51: 0f 58 c2 addps %xmm2,%xmm0

54: 0f 58 c1 addps %xmm1,%xmm0

57: f2 0f 7c c0 haddps %xmm0,%xmm0

5b: f2 0f 7c c0 haddps %xmm0,%xmm0

5f: c3 retq

Cray XE6 Workshop Performance for Multicore

Loop body

127 Cray XE6 Workshop Performance for Multicore

Improving Memory Performance
Streaming Stores on Interlagos

..B1.4:

movaps (%rdx,%rax,8),%xmm1

mulpd %xmm0, %xmm4

addpd (%rsi,%rax,8),%xmm1

movntpd %xmm1, (%rdi,%rax,8)

addq 1,%rax

cmpq %rcx, %rax

js ..B1.4

#pragma vector aligned

#pragma vector always

#pragma vector nontemporal

for (i=0;i< size;i++){

 A[i] = B[i] +alpha* C[i];

}

617 GFlop/s vs. 854 GFlop/s

On Interlagos NT stores circumvent both write-through stores and the

L3 cache. This makes them even attractive for smaller data sets which

could fit into L3 cache. triad (3MB): 783 Gflop/s, NT 1156 Gflop/s

Cray:

LOOP_INFO cache_nt(A)

Efficient parallel programming

on ccNUMA nodes

Performance characteristics of ccNUMA nodes

First touch placement policy

C++ issues

ccNUMA locality and dynamic scheduling

ccNUMA locality beyond first touch

129 Cray XE6 Workshop Performance for Multicore

ccNUMA performance problems
“The other affinity” to care about

 ccNUMA:

 Whole memory is transparently accessible by all processors

 but physically distributed

 with varying bandwidth and latency

 and potential contention (shared memory paths)

 How do we make sure that memory access is always as "local"

and "distributed" as possible?

 Page placement is implemented in units of OS pages (often 4kB, possibly

more)

C C C C

M M

C C C C

M M

130

Cray XE6 Interlagos node

4 chips, two sockets, 8 threads per ccNUMA domain

 ccNUMA map: Bandwidth penalties for remote access

 Run 8 threads per ccNUMA domain (1 chip)

 Place memory in different domain  4x4 combinations

 STREAM triad benchmark using nontemporal stores

Cray XE6 Workshop Performance for Multicore

S
T

R
E

A
M

 t
ri

a
d

 p
e

rf
o

rm
a

n
c

e
 [

M
B

/s
]

Memory node

C
P

U
 n

o
d

e

131 Cray XE6 Workshop Performance for Multicore

ccNUMA locality tool numactl:

How do we enforce some locality of access?

 numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out # map pages only on <nodes>

 --preferred=<node> a.out # map pages on <node>

 # and others if <node> is full

 --interleave=<nodes> a.out # map pages round robin across

 # all <nodes>

 Examples:

env OMP_NUM_THREADS=2 numactl --membind=0 –cpunodebind=1 ./stream

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \

 likwid-pin -c N:0,4,8,12 ./stream

 But what is the default without numactl?

132 Cray XE6 Workshop Performance for Multicore

ccNUMA default memory locality

 "Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the

processor that first touches it!

 Except if there is not enough local memory available

 This might be a problem, see later

 Caveat: "touch" means "write", not "allocate"

 Example:

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE

 huge[i] = 0.0;

 It is sufficient to touch a single item to map the entire page

Memory not

mapped here yet

Mapping takes

place here

133 Cray XE6 Workshop Performance for Multicore

Coding for ccNUMA data locality

integer,parameter :: N=10000000

double precision A(N), B(N)

A=0.d0

!$OMP parallel do

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

 A(i)=0.d0

end do

!$OMP end do

...

!$OMP do schedule(static)

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

 Most simple case: explicit initialization

134 Cray XE6 Workshop Performance for Multicore

Coding for ccNUMA data locality

integer,parameter :: N=10000000

double precision A(N), B(N)

READ(1000) A

!$OMP parallel do

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

 A(i)=0.d0

end do

!$OMP end do

!$OMP single

READ(1000) A

!$OMP end single

!$OMP do schedule(static)

do i = 1, N

 B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

 Sometimes initialization is not so obvious: I/O cannot be easily

parallelized, so “localize” arrays before I/O

135 Cray XE6 Workshop Performance for Multicore

Coding for Data Locality

 Required condition: OpenMP loop schedule of initialization must

be the same as in all computational loops

 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to

be sure…

 Imposes some constraints on possible optimizations (e.g. load balancing)

 Presupposes that all worksharing loops with the same loop length have the

same thread-chunk mapping

 Guaranteed by OpenMP 3.0 only for loops in the same enclosing parallel region

and static schedule

 In practice, it works with any compiler even across regions

 If dynamic scheduling/tasking is unavoidable, more advanced methods may

be in order

 How about global objects?

 Better not use them

 If communication vs. computation is favorable, might consider properly

placed copies of global data

 In C++, STL allocators provide an elegant solution (see hidden slides)

136 Cray XE6 Workshop Performance for Multicore

Coding for Data Locality:

Placement of static arrays or arrays of objects

 Speaking of C++: Don't forget that constructors tend to touch the

data members of an object. Example:

 class D {
 double d;

public:

 D(double _d=0.0) throw() : d(_d) {}

 inline D operator+(const D& o) throw() {

 return D(d+o.d);

 }

 inline D operator*(const D& o) throw() {

 return D(d*o.d);

 }

...

};

→ placement problem with
 D* array = new D[1000000];

137 Cray XE6 Workshop Performance for Multicore

Coding for Data Locality:

Parallel first touch for arrays of objects

 Solution: Provide overloaded D::operator new[]

 Placement of objects is then done automatically by the C++ runtime via

“placement new”

void* D::operator new[](size_t n) {

 char *p = new char[n]; // allocate

 size_t i,j;

#pragma omp parallel for private(j) schedule(...)

 for(i=0; i<n; i += sizeof(D))

 for(j=0; j<sizeof(D); ++j)

 p[i+j] = 0;

 return p;

}

void D::operator delete[](void* p) throw() {

 delete [] static_cast<char*>p;

}

parallel first

touch

138 Cray XE6 Workshop Performance for Multicore

Coding for Data Locality:
NUMA allocator for parallel first touch in std::vector<>

template <class T> class NUMA_Allocator {

public:

 T* allocate(size_type numObjects, const void

 *localityHint=0) {

 size_type ofs,len = numObjects * sizeof(T);

 void *m = malloc(len);

 char *p = static_cast<char*>(m);

 int i,pages = len >> PAGE_BITS;

#pragma omp parallel for schedule(static) private(ofs)

 for(i=0; i<pages; ++i) {

 ofs = static_cast<size_t>(i) << PAGE_BITS;

 p[ofs]=0;

 }

 return static_cast<pointer>(m);

 }

...

}; Application:
vector<double,NUMA_Allocator<double> > x(10000000)

139 Cray XE6 Workshop Performance for Multicore

Diagnosing Bad Locality

 If your code is cache-bound, you might not notice any locality

problems

 Otherwise, bad locality limits scalability at very low CPU numbers

(whenever a node boundary is crossed)

 If the code makes good use of the memory interface

 But there may also be a general problem in your code…

 Consider using performance counters

 LIKWID-perfctr can be used to measure nonlocal memory accesses

 Example for Intel Nehalem (Core i7):

env OMP_NUM_THREADS=8 likwid-perfctr -g MEM –C N:0-7 ./a.out

140 Cray XE6 Workshop Performance for Multicore

Using performance counters for diagnosing bad ccNUMA

access locality

 Intel Nehalem EP node:

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+

| Event | core 0 | core 1 | core 2 | core 3 | core 4 | core 5 | core 6 | core 7 |

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+

| INSTR_RETIRED_ANY | 5.20725e+08 | 5.24793e+08 | 5.21547e+08 | 5.23717e+08 | 5.28269e+08 | 5.29083e+08 | 5.30103e+08 | 5.29479e+08 |

| CPU_CLK_UNHALTED_CORE | 1.90447e+09 | 1.90599e+09 | 1.90619e+09 | 1.90673e+09 | 1.90583e+09 | 1.90746e+09 | 1.90632e+09 | 1.9071e+09 |

| UNC_QMC_NORMAL_READS_ANY | 8.17606e+07 | 0 | 0 | 0 | 8.07797e+07 | 0 | 0 | 0 |

| UNC_QMC_WRITES_FULL_ANY | 5.53837e+07 | 0 | 0 | 0 | 5.51052e+07 | 0 | 0 | 0 |

| UNC_QHL_REQUESTS_REMOTE_READS | 6.84504e+07 | 0 | 0 | 0 | 6.8107e+07 | 0 | 0 | 0 |

| UNC_QHL_REQUESTS_LOCAL_READS | 6.82751e+07 | 0 | 0 | 0 | 6.76274e+07 | 0 | 0 | 0 |

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+

RDTSC timing: 0.827196 s

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+

| Metric | core 0 | core 1 | core 2 | core 3 | core 4 | core 5 | core 6 | core 7 |

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+

| Runtime [s] | 0.714167 | 0.714733 | 0.71481 | 0.715013 | 0.714673 | 0.715286 | 0.71486 | 0.71515 |

| CPI | 3.65735 | 3.63188 | 3.65488 | 3.64076 | 3.60768 | 3.60521 | 3.59613 | 3.60184 |

| Memory bandwidth [MBytes/s] | 10610.8 | 0 | 0 | 0 | 10513.4 | 0 | 0 | 0 |

| Remote Read BW [MBytes/s] | 5296 | 0 | 0 | 0 | 5269.43 | 0 | 0 | 0 |

+-----------------------------+----------+----------+---------+----------+----------+----------+---------+---------+

Uncore events only

counted once per socket

Half of read BW comes

from other socket!

141 Cray XE6 Workshop Performance for Multicore

If all fails…

 Even if all placement rules have been carefully observed, you may

still see nonlocal memory traffic. Reasons?

 Program has erratic access patters  may still achieve some access

parallelism (see later)

 OS has filled memory with buffer cache data:

numactl --hardware # idle node!

available: 2 nodes (0-1)

node 0 size: 2047 MB

node 0 free: 906 MB

node 1 size: 1935 MB

node 1 free: 1798 MB

top - 14:18:25 up 92 days, 6:07, 2 users, load average: 0.00, 0.02, 0.00

Mem: 4065564k total, 1149400k used, 2716164k free, 43388k buffers

Swap: 2104504k total, 2656k used, 2101848k free, 1038412k cached

142 Cray XE6 Workshop Performance for Multicore

ccNUMA problems beyond first touch:

Buffer cache

 OS uses part of main memory for

disk buffer (FS) cache

 If FS cache fills part of memory,

apps will probably allocate from

foreign domains

  non-local access!

 “sync” is not sufficient to

drop buffer cache blocks

 Remedies

 Drop FS cache pages after user job has run (admin’s job)

 seems to be automatic after aprun has finished on Crays

 User can run “sweeper” code that allocates and touches all physical

memory before starting the real application

 numactl tool or aprun can force local allocation (where applicable)

 Linux: There is no way to limit the buffer cache size in standard kernels

P1
C

P2
C

C C

MI

P3
C

P4
C

C C

MI

BC

data(3)

BC

data(3)

d
a
ta

(1
)

143 Cray XE6 Workshop Performance for Multicore

ccNUMA problems beyond first touch:

Buffer cache

Real-world example: ccNUMA and the Linux buffer cache

Benchmark:

1. Write a file of some size

from LD0 to disk

2. Perform bandwidth

benchmark using

all cores in LD0 and

maximum memory

available in LD0

Result: By default,

Buffer cache is given

priority over local

page placement

 restrict to local

 domain if possible!

aprun –ss ...

144 Cray XE6 Workshop Performance for Multicore

ccNUMA placement and erratic access patterns

 Sometimes access patterns are

just not nicely grouped into

contiguous chunks:

 In both cases page placement cannot easily be fixed for perfect parallel

access

double precision :: r, a(M)

!$OMP parallel do private(r)

do i=1,N

 call RANDOM_NUMBER(r)

 ind = int(r * M) + 1

 res(i) = res(i) + a(ind)

enddo

!OMP end parallel do

 Or you have to use tasking/dynamic

scheduling:

!$OMP parallel

!$OMP single

do i=1,N

 call RANDOM_NUMBER(r)

 if(r.le.0.5d0) then

!$OMP task

 call do_work_with(p(i))

!$OMP end task

 endif

enddo

!$OMP end single

!$OMP end parallel

145 Cray XE6 Workshop Performance for Multicore

ccNUMA placement and erratic access patterns

 Worth a try: Interleave memory across ccNUMA domains to get at least

some parallel access

1. Explicit placement:

2. Using global control via numactl:

numactl --interleave=0-3 ./a.out

 Fine-grained program-controlled placement via libnuma (Linux)

using, e.g., numa_alloc_interleaved_subset(),

numa_alloc_interleaved() and others

!$OMP parallel do schedule(static,512)

do i=1,M

 a(i) = …

enddo

!$OMP end parallel do

This is for all memory, not

just the problematic

arrays!

Observe page alignment of

array to get proper

placement!

146

The curse and blessing of interleaved placement:

OpenMP STREAM on a Cray XE6 Interlagos node

 Parallel init: Correct parallel initialization

 LD0: Force data into LD0 via numactl –m 0

 Interleaved: numactl --interleave <LD range>

Cray XE6 Workshop Performance for Multicore

147

Conclusions

Cray XE6 Workshop Performance for Multicore

There is no alternative to knowing what is going on

between your code and the hardware

Without performance modeling,

optimizing code is like stumbling in the dark

Performance x Flexibility = constant
a.k.a. Abstraction is the natural enemy of performance

